
 1/29

Architecture for Object-Oriented Programming Model

Nikola Markovic, Ruben Gonzalez, Osman Unsal, Mateo Valero, Adrian Cristal

nikola.markovic@bsc.es, gonzalez@ac.upc.edu, osman.unsal@bsc.es,

mateo.valero@bsc.es, adrian.cristal@bsc.es

Abstract

Current mainstream architectures have ISAs that are not able to maintain all the information

provided by the application programmer using a high level programming language. Typically, the

information that is lost in compiling to a low-level ISA is related to parallelism and speculation [14]. For

example some loops are typically expressed as parallel loops by the programmer but later the processor is

not able to determine this level of parallelism; conditional execution might apply control independent

execution that at execution time is basically impossible to detect; function and object-level parallelism is

lost when code is transformed into a low-level ISA that is oblivious to programmer intentions and high-

level programming structures.

Object Oriented Programming Languages are arguably the most successful programming medium

because they help the programmer to use well-known practices about data distribution through operations

related with the associated data. Therefore object oriented models express data/execution locality more

naturally and in an efficient manner. Other OO software mechanisms such as derivation and

polymorphism further help the programmer to exploit locality better. Once object oriented programs have

been compiled then all information about data/execution locality is completely lost in current assembly

code (ISA code). Maintaining this information until runtime is crucial to improve locality and security.

Finally, Object Oriented Programming Models maintain the idea of memory (data memory) far from the

programmer. These are all desirable qualities that is mostly lost in the compilation to a low-level ISA that

is oblivious to the Object-Oriented Programming model.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/132529558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2/29

This report considers implementing the Object Oriented (OO) Programming Model directly in the

hardware to serve as a base to exploit object/level parallelism, speculation and heterogeneous computing.

Towards this goal, we present new computer architecture that implements the OO Programming Models.

All its hardware structures are objects and its Instruction Set directly utilizes objects hiding totally the

notion of memory and other complex hardware structures. It also maintains all high-level programming

language information until execution time. This enables efficient extraction of available parallelism in OO

serial or parallel code at execution time with minimal compiler support. We will demonstrate the potential

of this novel computer architecture through several examples.

1 Introduction

 Current mainstream architectures have ISAs that are not able to maintain all the information

provided by the application programmer using a high level programming language. Typically, the

information that is lost in compiling to a low-level ISA is related to parallelism and speculation [14]. For

example some loops are typically expressed as parallel loops by the programmer but later the processor is

not able to determine this level of parallelism; conditional execution might apply control independent

execution that at execution time is basically impossible to detect; function and object-level parallelism is

lost when code is transformed into a low-level ISA that is oblivious to programmer intentions and high-

level programming structures.

Object Oriented Programming Languages are arguably the most successful programming medium

because they help the programmer to use well-known practices about data distribution through operations

related with the associated data. Therefore object oriented models express data/execution locality more

naturally and in an efficient manner. Other OO software mechanisms such as derivation and

polymorphism further help the programmer to exploit locality better. Once object oriented programs have

been compiled then all information about data/execution locality is completely lost in current assembly

code (ISA code). Maintaining this information until runtime is crucial to improve locality and security.

 3/29

Finally, Object Oriented Programming Models maintain the idea of memory (data memory) far

from programmer. However, after compilation to low-level ISA all object data are bound to memory

locations. This low-level memory management limits the processor in a lot of speculative scenarios:

- Some potentially parallel code is executed sequentially because the compiler is not able to

determine the speculation risk in the intermediate code and produces overly conservative code.

During runtime data references have been transformed to memory addresses and it is impossible

to guarantee that the high-level code which has been broken into memory references can be

executed in parallel.

- High-level code can exhibit control independent execution in a switch-condition which only

modifies one object that it totally independent from others. If the object structure is maintained

until execution time, then it will be easier to detect and apply control independence.

A solution, we believe, is to allow programmers to continue working in the most successful

programming model to date – the Object-Oriented one, and to move the complexity of parallelization for

multiple homogeneous or heterogeneous cores to hardware. As way of accomplishing that, we propose

new and unique computer architecture, leveraging Object-Oriented (OO) programming model. It is

presented as an architecture that extends software concepts into hardware. We call this architecture

Object-Oriented Computer Architecture (OOCA). OOCA is an abstract hardware layer based on

asynchronous communication and dataflow with hidden memory. It “short-circuits” the OO programming

model directly to hardware by representing every system structure (data, functions, conditions, etc.) as an

object on an OOCA Processor (OP). OOCA Processor hides memory management from OOCA ISA.

By not having notion of memory and preserving Programmer’s information from Object-Oriented

Code until execution time OOCA model improves locality data/execution, performance for speculative

scenarios [1, 3, 6, 9] and level of parallelism (Object Level Parallelism). Object Level Parallelism

combines ILP [10, 11], dataflow [2] and method level parallelism (MLP) [14], trying to emphasize on

their good sides and suppressing bad.

 4/29

OOCA model provides asynchronous, control independent and parallel execution model which

preserves sequential view of program. Methods are executing asynchronously, in its own context with out

any other interferences, where input/output parameters and results are sent in asynchronous ways. It opens

possibilities for dynamic optimization, which was not feasible in compile time.

Maintaining Object-Oriented Code information until execution time will open a window to

execute operation in heterogeneous target hardware: OOO processor, multiprocessor, embedded

processors, FPGA and other alternatives.

This paper describes the Object-Oriented Computer Architecture (OOCA) and its execution

model benefits. Section 1 provides an overview of the OOCA. OOCA architecture is described in Section

3. Microarchitecture view of OOCA Processor follows in Section 4. An explanation of OOCA execution

model and its benefits is given in Section 5. In Section 6, we compare OOCA with other architectures. In

Section 7, we summarize future work and offer concluding remarks.

2 OOCA overview

2.1 OOCA architecture basics

Figure 1 depicts the Object-Oriented Computer Architecture system stack. One major advantage

of Object-Oriented Computer Architecture (OOCA) is the transparent way of exposing hardware to

Object Oriented Language, without any impact on the programming model. Compiler translates the code

written in Object Oriented Language into OOCA Language which preserves OO semantics. Section 3.1

provides a more detailed description of OOCA Language.

 5/29

Figure 1: Object-Oriented Computer Architecture model view

The loader is responsible for loading code from OOCA Language into OOCA processor.

Descriptor context objects of classes, methods, loops, etc., are created by Loader based on information

provided from OOCA Language. Descriptor context is an object which contains information about

properties the actual instance contexts of objects are going to have after creation. Instance context objects

are created at execution time based on information from descriptor context object.

All objects (descriptor and instance contexts) are derived from OOCA base class, MicroClass,

and have unique reference, hardware identifier (note that hereafter in document word reference relates to

this definition). MicroClass, which is the OOCA Abstract Hardware Layer, is responsible for managing

the objects and executing OOCA primitives, through its methods, MicroMethods. These OOCA

primitives (a.k.a. ISA) enable the hardware to work directly with objects. OOCA primitives are oblivious

to memory implementation issues such as addresses and memory management. An explanation of OOCA

Abstract Hardware Layer (MicroClass) is given in Section 3.3.

OOCA hardware is composed of homogeneous or heterogeneous OOCA Processors (OP).

However not having a global concept of memory in the traditional sense can significantly simplify OP

design. In addition, we can have custom OP’s that are optimized for certain types of objects using exactly

the same primitives. Instance of an object will reside on OP. All objects have symmetrical access to

 6/29

hardware through MicroClass. Each object will be accessed only through methods, MicroMethods. The

way the object is stored is a design issue of the OP.

2.2 OOCA execution philosophy

To illustrate the power of OOCA execution model consider the simple example from Figure 2

a).While executing sequential program from Figure 2 a), OOCA processor creates logical model of

instance context object shown on Figure 2 b).When OOCA Processor starts with execution of instance

context object of function f OOCA primitives. It will create instance context object of data a and

instance context objects of functions g and h’. Execution of instance context objects of

functions g and h’ OOCA primitives can start immediately on other OOCA processor cores and go

in parallel with instance context object of function f execution. While OOCA primitives of instance

context object of function g are executed instance context objects of functions q and h’’ are

going to be created. Execution of their sets of OOCA primitives can start in parallel with instance context

objects of functions f, g and h’, if there are available cores on OOCA processor.

Figure 2: An example Code segment

 7/29

 If instance context objects of function h’ during its execution uses a temporally wrong

value of instance context objects of data a, and when instance context objects of function q sets

new values in instance context objects of data a, the mechanism of data versioning [12] will be

started. It will determine that instance context objects of function h’ has used wrong values of

instance context objects of data a and start “chain” re-execution. This will re-execute only those

OOCA primitives that actually need to be re-executed, not all OOCA primitives that have been executed

after wrong value of variable a has been used.

3 OOCA Architecture view

Using the quicksort algorithm on list shown in Figure 3, in this section we are explaining OOCA

architecture. In Section 3.1 we present OOCA Language. OOCA Logical Model is explained in Section

3.2. Abstract Hardware Layer (MicroClass) is described in Section 3.3.

Figure 3: An example of quicksort algorithm on the list

 8/29

3.1 OOCA Language

OOCA Language code describes all classes, loops, conditions and methods. It also contains set of

predefined STANDARD IDs to refer to well known classes (integer, float, collection, ...) and methods

(add, mull, div, ...) of OOCA. These well known objects are explained in Section 3.2.

The Loader which is a special part of OOCA software/hardware creates description contexts

based on information from OOCA Intermediate Language code file. Objects, instances contexts of classes

and methods, are created in execution time based on information from description contexts,

3.1.1 Description of classes

Each class from Object Oriented Language is going to be translated to OOCA language. After

translation, description of each class in OOCA language format will contain information about its fields,

description of class methods and properties of class (Figure 4). This information is required by Loader to

create a data structure which forms the description context of the observed class.

Figure 4: Part of OOCA Language for class Elem

3.1.2 Description of executable blocks

Every executable block consists of all the methods as well as any loop or condition. Each such

block is represented with its associated description and a set of OOCA primitives (setNumber in Figure

 9/29

4). The associated description can contain information about the block properties, local variables,

arguments, temporary fields, return value, references to description of other executable blocks and

reference to a set of OOCA primitives Based on this information from the OOCA Intermediate Language

code, the Loader is able to create description context of executable block of observed method, condition,

loop, etc.

3.2 OOCA Logical Model

OOCA Logical Model represents an abstract logical view of descriptor and instance contexts and

their relations. This model contains all information provided by the programmer in Object Oriented

Language. Every object context has its appropriate hardware representation on the Object Processors.

OOCA has several different kinds of descriptor contexts which can generally be divided into two groups.

One group consists of descriptor contexts of well known classes (integer, string, collection, ...)

and methods (add, div, mull, print, …). These descriptor contexts are embedded into system hardware.

They have pre-assigned STANDARD IDs which are used for specifying these descriptor contexts in

OOCA language code file.

The other group consists of descriptor contexts of classes and methods defined by user in Object

oriented Language. These contexts are created by Loader using the information’s from OOCA

intermediate language code file. There are two different descriptor contexts in this group: descriptor

context of class, descriptor context of executable block.

3.2.1 Descriptor and instance context of class

Descriptor context of class contains all necessary information, properties, references to descriptor

contexts of fields and description of methods, to create instance context object of observed class, as it is

shown on Figure 5 for class Elem from Figure 4.

Instance context of a class represents specific instance of a class in execution time. It is created

based on the information from appropriate description context of class. One instance context may obtain

 10/29

many versions of actual data of observed class (data object). Through the mechanism of data versioning,

explained in detail later in Section 5.3.1 instance context of class ensures that each instance context of

executable block which is using that instance context of class gets the correct version of data.

Figure 5: OOCA Logical Model for descriptor context of class Elem

3.2.2 Descriptor and instance context of executable block

Descriptor context of executable block contains the properties of that block, fields for describing

the arguments, local variables, temporal variables (for storing temporal products of execution), return

value, reference to a set of OOCA primitives, and may contain references to other executable blocks.

Descriptor context of iterators and conditions are a special form of executable block which consist of the

properties, fields and references. This is shown in.Figure 5 for the method setNumber from.Figure 4

Instance context of executable blocks are created from Descriptor context of executable block.

3.3 MicroClass (Abstract Hardware Layer)

MicroClass represents an Abstract Hardware Layer. It consists of a set of methods,

MicroMethods, which are implemented in hardware. MicroClass is responsible for managing the context

 11/29

objects, executing OOCA primitives and resource allocation, through its MicroMethods. All context

objects have symmetrical access to hardware through MicroClass. The memory management is not seen

by the MicroMethods. Each object will be accessed only through MicroMethods.

 All MicroMethods (primitives) have two common parameters:

- Hints given by compiler/user. All information generated by compiler that can help runtime. Hints can

be avoided. For example: hint try to execute in parallel is to give opportunity of parallelism but OP

later can execute sequentially.

- Requirements given by compiler/user. All that is required by semantic at runtime. For example: the

requirement do not speculate must be adhered to by the OP.

 MicroClass methods can be groups as: context primitives and executable primitives.

3.3.1 Context Primitives

 Context primitives are in service of managing descriptor context objects. They are used for

loading, registering, destroying and accessing to the fields of descriptor contexts and can not be used out

side descriptor context object.

3.3.2 Executable Primitives

 Executable primitives are used for creating and destroying of instance context objects based on

information provided from descriptor context objects, accessing to fields of instance context objects and

communication between instance context objects on execution time. Basic executable primitives are: call,

send, monoop, douop, threeop create and destroy.

Call primitive is used for creating instance contexts of executable blocks from descriptor contexts

of executable blocks and well known methods (add, mull, print, etc.) and preparing it for execution. They

are completely independent one from each other, inside and between blocks of instructions, and can be

executed in any order if the compiler has not pre-specified some requirement. The send primitive is used

 12/29

for sending references of instance context objects of classes to instance context objects of executable

blocks, iterators and conditions. All sends are also completely independent one form each other, inside

and between blocks of instructions, and can be executed in any order. Send primitive can not be executed

in case that one of the instance contexts, that send is using reference to, is not created jet. These two

primitives are part of OOCA ISA and allow asynchronous method calls and lazy execution; based on

previously mentioned properties of call and send primitives.

Monoop (1-op), duoop (2-op) and threeop (3-op) are special purpose operations, intended for

carrying out frequent functions, such as addition, subtraction, etc.., on the same type of operands. Monoop

is intended for executing primitives with one operand (a++ etc...); douop executes primitives with two

operands (a+=c etc...); while threeop executes primitives with three operands (a=b+c etc...).

Create primitive is used for creating instance contexts of objects from descriptor contexts of

objects. It returns reference to created object. Destroy primitive is used for destroying instance contexts of

object created from descriptor contexts of object. Instance context destruction is managed by OOCA

processor garbage collector.

Control primitives make special part of executable primitives. They are used for managing the

execution of instance context of iterators and conditions, which represent control structures from Object

Oriented Languages (if then else, for , foreach , forall , while , repeat, …).

4 OOCA Processor microarchitecture (Open HW Layer)

OOCA Processors are basic processing element of OOCA architecture. OOCA Processor can,

either be processor designed to execute OOCA primitives (Specialized OOCA Processor), or contains an

execution unit (EU) and knows how to control and execute OOCA primitives, MicroMethods, on EU

(Figure 6). OOCA Processor hides memory system from OOCA primitives. Instances of descriptor

contexts and instance contexts of all objects will reside on OOCA Processor. Execution Unit of General

 13/29

Purpose Processor can be any existing processor; OOO (Out-of-Order processor), Vector processor,

FPGR, multiprocessor, etc.

Figure 6: OOCA processor

 This flexible hardware model allows easy incorporation of any kind of acceleration units inside of

execution unit. Depending on OOCA Processor actual implementation, it will be able to exploit more or

less of OOCA advantages (speculation, object versioning, etc.). Open Hardware Layer can contain one or

more heterogeneous or homogeneous OOCA Processors (Figure 7).

Figure 7: Homogeneous & Heterogeneous OOCA Machine

5 OOCA Execution Model

 In this Section we represent OOCA execution model and its three main benefits; better locality

(all information are inside object), control independence and efficient recovery mechanism (“chain re-

execution”) and object level parallelism. We show how blocks of OOCA primitives can be executed

 14/29

independently one from each other in Section 5.1, how possible parallelism can be extracted using Object

Level Parallelism in Section 5.2 and how to incorporate control independent Object-Oriented execution

and data versioning in Section 5.3.

5.1 Independent blocks of OOCA primitives

 As mentioned in section 3.3.2; all call primitives are independent one from another and can be

executed in any order, unless a requirement has been set by compiler for them to be performed in a certain

order. They prepare and execute instance context of executable block. The instance context of executable

block will be executed when it gets a core of the OOCA Processor. The send primitive dispatches

references of instance context of data objects to instance context of executable blocks. They are

completely independent one from another and can not be initiated just in the case that some of the

instance contexts haven t́ been created yet. Primitives monoop, duoop and threeop prepare instance

context of executable block for execution, and send arguments to it in the same time, and therefore can not

be performed in case that instance context some argument has not been created yet. They are also

independent one from another unless the compiler has set the requirement that they have to be carried out

in a certain order.

 In each block of OOCA primitives we have two orders: execution order and commit order.

Execution order is the actual dataflow order of OOCA primitives inside the block while commit order of

OOCA primitives inside the block is marked with the sequence number denoting intra-block commit

order of primitives.

 Mechanism of data versioning, explained latter in Section 5.3.1 allows different executable

blocks to be executed independently one from another. In Figure 8 we show sets of OOCA ISA

primitives for functions quicksort and partition. Each OOCA primitive, inside block of OOCA primitives,

has associated sequence number by compiler which represents OOCA primitives sequential commit

order. Based on the previously mentioned facts two sets of OOCA primitives can be executed

independently.

 15/29

Figure 8: OOCA ISA primitives for functions quicksort and partition

5.2 Object Level Parallelism

 In previous sections we have shown that; block of OOCA instructions doesn’t contain branch

instructions, almost all instructions inside one block are independent amongst each other and instructions

within different blocks are independent one from each other.

 If we observe example of execution on OOCA Processor of quicksort algorithm on a linked list

from, Figure 9 we can see that while execution of first function quicksort (Q1) instruction block is in

progress we will have ready for parallel execution partition function (Q1.p) instruction block and

quicksort function (Q2 and Q3) .

 As soon as partition function (Q1.p) picks up pivot element (element 3) and puts the first element

(element 7) in list that is going to be passed to partition function (Q2.p), partition function (Q2.p) can

choose it as pivot element and proceed with processing other elements as they are inserted into list by

partition function (Q1.p) (elements 4, 12, 18, etc.). The same execution model can be applied further on

partition functions (Q2.p) and (Q4.p and Q5.p), etc.

 16/29

Figure 9: An example of execution of quicksort algorithm on list on OOCA processor

Note that the above observation apply further down the block execution path tree. How many of

these blocks will be executed in parallel (how many instructions will be executed in parallel) depends on

actual number of cores of OOCA Processor. If OOCA Processor has for example four cores (Figure 10)

we could execute in parallel instructions from blocks of following functions quicksort (Q1), (Q2) and

(Q3) and partition function (Q1.p), while executing functions quicksort (Q2) and (Q3) instruction blocks,

instruction blocks for functions quicksort (Q4) and (Q5) and partition functions (Q2.p) and (Q3.p) would

be ready for execution. They would be placed in the ready queue to wait until scheduler assigns them to a

core of OOCA Processor.

 17/29

Figure 10: OOCA Processor with four cores

5.3 Object-Oriented Speculative Execution

5.3.1 Object-Oriented Data Versioning

Data versioning mechanism is based on set of signatures which are located in instance context of

data object. One Signature consists of several fields. Those fields are: reference to the parent signature

(psig in Figure 11), signature of a method from which observed method is called (note that operations

like add are also methods in OOCA); sequence number (seq in Figure 11), explained in previous section

5.1.; depth (dep in Figure 11), number which represents depth of call (if parent depth is n, then depth of

observed method is n+1); if (if in Figure 11), number that distinguishes then and else branch of condition;

iteration (iter in Figure 11), number that distinguishes iterations of a loop; r/w (r/w in Figure 11), marks

weather data value is read or modified; commit (cm in Figure 11), marks weather that signature refers to

last committed data value; value (val in Figure 11), reference to actual data. New signature is inserted

into instance context of data when value of data is read or changed. When method completes its

execution, including all methods that it called, data value associated with that methods signature is

committed (Figure 11 b)).

 18/29

Figure 11: An example with conditional execution

On the Figure 11 a) we show simple example of modifying and reading variable a in

functions f and h and condition. Through this example we are showing how information about

dataflow are gathered inside instance context of object a Sets of OOCA primitives for functions

f and h and blocks (cnd, then and else) of condition can be executed in parallel. When function

h´ and h´´ and condition are called and value a passed to them new signatures are inserted into

instance context of variable a for each one of them, f:h´, f:if and f:h´´ in Figure 11 b). Inside

method h, execution of operation =+ will insert new signature in instance context of variable a

(h´:=+ and h´´:=+). Calling of condition creates blocks then and else and passes variable a to them, this

inserts two new signatures into instance context of variable a, if:then and if:else in Figure 11 b).

During execution of then and else blocks of condition in parallel two new signatures will be inserted into

instance context of variable a marking that variable a has been modified, and each signature will set

pointer to a new value.

 19/29

5.3.2 Control Independent Object-Oriented Execution

 If we presume that, in example from previous section (Figure 11), the then block finished its

execution first and that that branch is predicted taken, the function h´´ would use data values

produced in it for further execution. Afterwards, the cnd block finishes its execution and determines

that else branch is taken, it will re-reference data pointer in f:if signature and trigger versioning

control system, which will commit new value for variable a and go through signatures, checking them, to

see where wrong value of variable a was used. In this case, it will find out that OOCA primitive h´´:=+

used wrong value of variable a. It will trigger re-execution of this primitive only, not of whole set of

primitives of method h (re-execution of this primitive might trigger re-execution of some other

primitives (“chain” re-execution), but never whole primitive sets of some method). By localizing

information about dataflow inside an instance context of data object we never have need for squashing a

set of instructions and re-executing whole set in case of miss-prediction.

Figure 12: OOCA execution of while loop from Figure 3

Consider the while loop shown in Figure 3. In line 26, the first element of the list is taken (27th

line in Figure 3), the condition is evaluated (28th line in Figure 3), depending on the condition resolution

element is inserted into one of the other two lists (lines 28 and 29 in Figure 3) and then it is erased from

the first list (30th line in Figure 3). Actual work done by each of the loop iterations can be divided into two

parts: getting the first element from the head of the list and erasing it after (work B in Figure 12) followed

by inserting that element into list l or r depending on condition (work A in Figure 12). If loop iterations

are done in parallel and miss-speculation happens in iteration 1 Figure 12 OOCA processor would need to

 20/29

re-execute only work A in each loop iteration starting from iteration 1, because of “chain” re-execution

mechanism.

6 Related work

In the 1980s many experimental and commercial systems were produced with the aim of

embedding high-level language features directly in hardware. In this section, we non-exhaustively review

relevant research from this period focusing mainly on efforts aimed at incorporating object-oriented

language features in the processor. These efforts, which were ahead of their time, weren’t able to

translate the designs into efficient implementations mostly because the semiconductor

technology of the time was severely limited in available transistor budget and memory

capabilities.

 Intel’s iAPX 432 processor [8] has many hardware structures for object support. In this processor,

consisting of a three chip module, the data manipulation can operate over characters, ordinals,

integers, floating-point variables, bit strings, arrays, records, or "objects." Note that in OOCA all

data manipulations are done through “objects”, even for characters, integers, etc. Objects are

treated as single entities and their internal organization is hidden and protected from other

hardware procedures. OOCA does not have instruction pointer for executing instructions and function

call are totally asynchronous, also all functions are represented as special “objects" in unlike the iAPX

432. Furthermore, the iAPX 432 has specific memory organization, while OOCA does not have a global

concept of memory in the traditional sense, it is relaying on memory organization of actual

processing unit which represents execution unit of OOCA Object Processor.

 On the other camp are processors that were designed for particular OO languages.

Swamp [4] is such an example for the Smaltalk-80. Among other innovations, Swamp

introduced specialized caches for methods and contexts. Each context is only partly initialized

 21/29

when created, and has no memory allocated for it until absolutely necessary. We adopt the same

approach in OOCA. Another example for OO language/specific processors is PicoJava-I [5] which

supports Java runtime by executing Java byte code directly in hardware resulting in up to a 20X speedup

over pure software implementations. PicoJava-I core includes a RISC-style pipeline and straightforward

instruction set. It contains regular processor blocks such as cache, pipeline, stack, floating-point unit,

however these are optimized to execute Java byte code efficiently. More recently, SUN disclosed the

details of an object-aware memory architecture design [13]. It includes a special address space for

objects which are then accessed using object IDs mapped by a translator to physical addresses.

To support this, the system includes object-addressed caches. Although similar, OOCA extends

this concept, in our case all memory accesses has to be through an object.

Earlier research on Aleph, Accent and Mach [7] kernels introduced inter-process communication

to move data between programs and the kernel, so applications could transparently access

resources on any machine on the local area network. Accent utilized copy-on-write in which only

the portions of the data that actually changed were actually copied, conceptually this is similar to

OOCA miss-prediction recovery mechanism in which only the data that is not consistent is re-

executed. OOCA also using message passing mechanism, through primitives of AHL

implemented in HW, but on much finer grain level, for passing arguments between executable

blocks (functions, loops, conditions).

7 Conclusions

The goal of this paper has been to propose a new architecture that moves the high-level

programming language paradigm closer to hardware. It is based on the Object Oriented Language Model,

as one of the most successful models, extracts better data and execution locality and helps to apply

hardware optimizations related to parallelism and speculation more effectively.

 22/29

 Other papers like [14] have demonstrated that current architectures are limiting the speedup due

to architectural deficiencies. OOCA can be a new way to overcome some of this limitation because it

preserves the information given by the programmer in the high-level language. That can help the

hardware to execute the program more efficiently.

 OOCA Model offers a novelty asynchronous control independent parallel object aware execution

model. In this model, methods are executed asynchronously, in its own context, where all input/output

communication between them is done in asynchronous way. This OOCA model offers very aggressive

approach on speculative scenarios.

 The OOCA processor does not require deterministic hardware. Its execution unit can use anything

from simple execution unit, FPGA, OOO Processor, Multithreaded Processor, …, to a complex CMP.

While OOCA Control Unit manages the control/execution/interpret of OOCA ISA code through a special

software/hardware layer called MicroClass. This fact opens interesting window for heterogeneous

execution where some objects are bound to specific hardware.

 Finally, we have demonstrated that OOCA can totally or partially some solve problematic

scenarios that remain unsolved by current architectures like control independence and object speculation

parallelism.

8 References

1. H. Akkary and M. A. Driscoll. A dynamic multithreading processor. In Proceedings of the
31st Annual International Symposium on Microarchitecture (MICRO ’98), pages 226–236.
IEEE Computer Society, Dec. 1998

2. D. Burger, S.W. Keckler, K.S. McKinley, "Scaling to the End of Silicon with EDGE
Architectures", et al. IEEE Computer, 37 (7), pp. 44-55, July, 2004.

3. L. Codrescu and D. S. Wills. Architecture of the atlas chipmultiprocessor: Dynamically
parallelizing irregular applications. In Proceedings of the 1999 International Conference on
Computer Design (ICCD ’99), pages 428–435. IEEE Computer Society, Oct. 1999.

4. D. M. Lewis , D. R. Galloway , R. J. Francis , B. W. Thomson, “Swamp: a fast processor for
Smalltalk-80, ” Proceedings of Conference on Object-oriented Programming Systems,
Languages and Applications, OOPSLA, p.131-139, September 1986.

 23/29

5. J. M. O’Connor, M. Tremblay, Marc, "PicoJava-I: The Java Virtual Machine in Hardware",
IEEE Micro, Volume 17, Issue 2: pp. 45–53, March/April 1997.

6. J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of speculative thread-level parallelism.
In Proceedings of the 1999 International Conference on Parallel Architectures and
Compilation Techniques(PACT ’99), pages 303–313. IEEE Computer Society, Oct. 1999.

7. R. F. Rashid, “From RIG to Accent to Mach: the evolution of a network operating system,”
Proceedings of 1986 ACM Fall Joint Computer Conference, 1986.

8. J. Rattner, “Hardware/software cooperation in the iAPX-432,” ACM SIGARCH Computer
Architecture News, Volume 10, Issue 2, March 1982.

9. E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace processors. In Proceedings of
the 30th Annual International Symposium on Microarchitecture (MICRO ’97), pages 138–
148. IEEE Computer Society, Dec. 1997.

10. Smith, J.E. Sohi, G.S., “The microarchitecture of superscalar processors”, Dept. of Electr. &
Comput. Eng., Wisconsin Univ., Madison, WI, USA; This paper appears in: Proceedings of
the IEEE, Dec. 1995, Volume: 83 , Issue: 12 ,On page(s): 1609 – 1624

11. Sohi, G.S.; Breach, S.E.; Vijaykumar, T.N.; “Multiscalar processors”, Computer
Architecture, 1995. Proceedings. 22nd Annual International Symposium on
22-24 Jun 1995 Page(s):414 – 425

12. Vijaykumar, T.N.; Gopal, S.; Smith, J.E.; Sohi, G.; “Speculative Versioning Cache”, High-
Performance Computer Architecture (HPCA) 1998, pages 58-69

13. G. Wright, M. L. Seidl, M. Wolczko, “An Object-Aware Memory Architecture,” SUN
Microsystems Technical Report, TR-2005-143, 2005.

14. Warg Fredrik, Stenström Per, “Limits on Speculative Module-Level Parallelism in
Imperative and Object-Oriented Programs on CMP Platforms”, PACT 2001. Pages: 221 -
230.

9 Appendix A

Complete OOCA ISA code for the example form Figure 3.

/*OOCA Language description for class Elem*/
class Elem
 OOCA_atributes
 class int <number> [create]
 OOCA_functiones
 constructor
 OOCA_arguments
 class int <number>
 OOCA_temporal
 function assign r1
 OOCA_return
 class Elem <ret> [create]

 24/29

 OOCA_code l1
 getNumber
 OOCA_return
 class int <ret>
 OOCA_temporal
 function assign r1
 OOCA_caller
 class Elem <this>
 OOCA code l2
 setNumber
 OOCA_arguments
 class int <i> [nochange]
 OOCA_temporal
 function assign r1
 OOCA_caller
 class Elem <this>
 OOCA_code l3
 compare
 OOCA_argumets
 class Elem <e> [change]
 OOCA_return
 class bool <ret>
 OOCA_caller
 class Elem <this>
 OOCA_temporals
 cmp_if <r1>
 OOCA_code l4
 cmp_if derived from if
 OOCA_arguments
 class Elem <this> [share OOCA_cond]
 class Elem <e> [share OOCA_cond]
 class bool <ret> [change], [share OOCA_then, OOCA_else]
 OOCA_variables
 class bool <condition> [create]
 OOCA_blocks
 OOCA_cond
 OOCA_temporals
 function Elem.getNumber <r1>, <r2>
 class int <r3>, <r4>
 function int.<= <r5>
 OOCA_code l5
 OOCA_then
 OOCA_variables
 class boolean <r1> [create] = true, [cosnt]
 OOCA_code l6
 OOCA_else

 25/29

 OOCA_ variables
 class boolean <r1> [create] = false, [cosnt]
 OOCA_code l7

/*OOCA Language ISA code for class Elem*/

l1: begin
 1 duoop(assign, number, ret.number)
 end
l2: begin
 1 duoop(assign, this.number, ret)
 end
l3: begin
 3 call(assign, r1)
 1 send(i, r1)
 2 send(this.number, r1)
 end
l4: begin
 4 call(cmp_if, r1)
 1 send(this, r1.this)
 2 send(e, r1.e)
 3 send(ret, r1.ret)
 end
l5: begin
 2 call(this.getNumber, r1)
 1 send(r3, r1)
 4 call(e.getNumber, r2)
 3 send(r4, r2)
 7 call(r3.<=, r5)
 5 send(r4, r5)
 6 send(condition, r5)
 end
l6: begin
 1 duoop(assign, r1, ret)
 End
l7: begin
 1 duoop(assign, r1, ret)
 end

/*OOCA Language description code for partition function*/
partition
 OOCA_arfunemts
 class List {Elem} <lst>, <l>, <r> [change]
 OOCA_return
 class Elem <ret>
 OOCA_variables

 26/29

 class Elem <pivotElem>
 OOCA_temporals
 function List.getFirst <r1>
 function List.eraseFirst <r2>
 iterator <r3>
 OOCA_code l3
while_iterator generate from iterator
 OOCA_arguments
 class List {Elem} <lst> [share OOCA_condition, OOCA_block]
 class List {Elem} <l> [share OOCA_block send r2.l]
 class List {Elem} <r> [share OOCA_block send r2.r]
 class Elem <pivotElem> [share OOCA_block send r2.pivotElem]
 OOCA_variables
 class bool <condition> [create]
 OOCA_blocks
 OOCA_condition
 OOCA_temporals
 function List.empty <r1>
 class bool <r2>
 OOCA_code l5
 OOCA_block
 OOCA_temporals
 function List.getFirst <r1>
 while_block_if <r2> [create]
 class Elem <r4>
 function List.eraseFirst <r5>
 OOCA code l4

while_block_if generate from if
 OOCA_arguments
 class List {Elem} <l>, <r> [share OOCA_then, OOCA_else]
 class Elem <pivotElem> [share OOCA_condition, OOCA_then, OOCA_else]
 class Elem <r1> [share OOCA_condition, OOCA_then, OOCA_else]
 OOCA_variables
 class bool <condition> [create]
 OOCA_blocks
 OOCA_condition
 OOCA_temporals
 function Elem.compare <r2>
 OOCA code l6
 OOCA_then
 OOCA_temporals
 function List.insert <r2>
 OOCA_code l7
 OOCA_else
 OOCA_temporals

 27/29

 function List.insert <r2>
 OOCA_code l8

/*OOCA ISA code for partition function*/

l3: begin
 1 call(lst.getFirst, r1)
 2 send(pivotElem, r1.ret)
 3 call(lst.eraseFirst, r2)
 8 call(while_iterator, r3)
 4 send(lst, r3.lst)
 5 send(l, r3.l)
 6 send(r, r3.r)
 7 send(pivotElem, r9.pivotElem)
 9 douop(assign, pivotElem, ret)
 end
l4: begin
 3 call(lst.getFirst, r1)
 1 send(r4, r1)
 2 send(r4, r2.r1)
 4 call(lst.eraseFirst, r5)
 end
l5: begin
 2 call(lst.empty, r1)
 1 send(r2, r1.ret)
 3 duoop(r2.!, r2)
 4 send(condition, r2)
 end
l6: begin
 3 call(r1.compare, r2)
 1 send(pivotElem, r2.arg1)
 2 send(condition, r2.ret)
 end
l7: begin
 2 call(l.insert, r2)
 1 send(r1, r2.arg1)
 end
l8: begin
 2 call(r.insert, r2)
 1 send(r1, r2.arg1)
 end

/* OOCA Language description code for quicksort function */
quicksort
 OOCA_argunemts
 class List {Elem} <lst> [change]

 28/29

 OOCA_variables
 class List {Elem} <l>
 class List {Elem} <r>
 class Elem <pivot>
 OOCA_temporals
 empty_list_if <r1>
 function List {Elem}.constructor <r2>
 function List {Elem}.constructor <r3>
 function partition <r4>
 function quicksort <r5>
 function quicksort <r6>
 function List.insert <r7>
 function List.insert <r8>
 OOCA_code l3

empty_list_if generate from if
 OOCA_arguments
 class List {Elem} <lst> [share OOCA_condition]
 class Elem <ret> [share OOCA_then]
 OOCA_variables
 class bool <condition> [create]
 OOCA_blocks
 OOCA_condition
 OOCA_temporals
 function List.empty <r1>
 OOCA code l1
 OOCA_then
 OOCA_variable
 class Elem <r1> [create]
 OOCA code l2

/*OOCA ISA code for partition function*/

l1: begin
 2 call(lst.empty, r1)
 1 send(condition, r1.ret)
 end
l2: begin
 1 duoop(assign,r1, ret) [stop further execution]
 end
l3: begin
 2 call(empty_list_if, r1)
 1 send(lst, r1.lst)
 4 call(List {Elem}.constructor, r2)
 3 send(l, r2.ret)
 6 call(List {Elem}.constructor, r3)

 29/29

 5 send(r, r3.ret)
 11 call(partition, r4)
 7 send(lst, r4.lst)
 8 send(l, r4.l)
 9 send(r, r4.r)
 10 send(pivot, r4.ret)
 13 call(quicksort, r5)
 12 send(l, r5.l)
 15 call(quicksort, r6)
 14 send(r, r6.l)
 17 call(l.insert, r7)
 16 send(pivot, r7.caller)
 19 call(l.insert, r8)
 18 send(r, r8.caller)
 20 duoop(assign, l, lst)
 end

