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Abstract-Never-ending striving for performance has re
sulted in a tremendous increase in power consumption of 
HPC centers. Power budgeting has become very important 
from several reasons such as reliability, operating costs and 
limited power draw due to the existing infrastructure. In this 
paper we propose a power budget guided job scheduling policy 
that maximize overall job performance for a given power 
budget. We have shown that using DVFS under a power 
constraint performance can be significantly improved as it 
allows more jobs to run simultaneously leading to shorter wait 
times. Aggressiveness of frequency scaling applied to a job 
depends on instantaneous power consumption and on the job's 
predicted performance. Our policy has been evaluated for four 
workload traces from systems in production use with up to 4 
008 processors. The results show that our policy achieves up 
to two times better performance compared to power budgeting 
without DVFS. Moreover it leads to 23% lower CPU energy 
consumption on average. Furthermore, we have investigated 
how much job performance and energy efficiency can be 
improved under our policy and same power budget by an 
increase in the number of DVFS enabled processors. 
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I. INTRODUCTION 

The Top500 list ([ 1]) of the 500 most powerfull supercom

puters updated twice a year reflects a continuous struggle 

for performance. The current number one ranked system, 

Jaguar ([2]), comprising of an incredible number of almost 

225 thousands cores brings the theoretical peak capability to 

2.3 petaflop/s. Striving for performance has resulted in an 

enormously high peak power draw. Jaguar requires almost 

2.8 times the electric power of its predecessor Roadrunner, 

currently the number two on the list. This difference trans

lates into millions of dollars per year in operating costs. 

Power estimates for exascale computer power dissipation 

range from many tens to low hundreds of megawatts ([3]). 

Hence power consumption is one of the most important 

design constraints for high performance computing (HPC) 

centers nowadays. Besides a tremendous increase in cost of 

ownership, power-awareness in HPC centers is motivated by 

other reasons such as system reliability and environmental 

footprint. Starting a year ago the Top500 list is accompanied 

by the Green500 list ranking the most energy efficient 

supercomputers in FLOPSIW. 

Power budgeting has become very important in the context 

of power management. A modern HPC center may be faced 

with a power constraint from several reasons. One group of 

reasons is motivated by existing infrastructure. For instance, 

a supercomputing center can have limited power capacity 

due to the existing power provisioning facilities. Further

more in a large scale system reliability is a serious issue that 

is closely related to the cooling facilities. A power budget 

may be imposed by the existing cooling system. On the 

other hand power budgeting can be motivated by operating 

costs. Setting a power constraint guarantees keeping energy 

consumption, that determines the costs, under a given limit. 

Supercomputer theoretical peak capability is used to rank 

machines on the Top500 list but what matters the most 

in daily HPC center operation is user satisfaction. In the 

literature, job performance is usually measured in BSLD 

(Bounded Slowdown) metric that depends on two com

ponents: job's wait time and job's runtime. Job's runtime 

depends on the machine architecture. On the other hand how 

long a job submitted to a HPC center will wait for execution 

is determined by certain factors such as the current load in 

the center, the scheduling policy, job's requested number of 

processors, job's requested time, and job's priority. Many 

efforts have been done to improve job scheduling policies 

to decrease average wait time. 

A job scheduler has a global view of the whole system. 

It is aware of running jobs and their estimated termination 

times, and of queued jobs and their potential performance 

according to different schedules. Since a job scheduler is 

aware of system activity it can estimate instantaneous power 

consumption and if necessary apply a power reduction mech

anism. CPU power presents one of the major total system 

power components and it can be easily controlled/reduced 

in two ways: decreasing the number of running processors 

and reducing processor performance. Controlling the num

ber of running processors effectively controls CPU power 

consumption since idle processors can be put in low power 

modes in which their power consumption is negligible. 
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However enforcing a power budget in this way leads to great 

number of jobs blocked in the wait queue and accordingly 

to an increase in their wait times. Depending on the system 

size it can happen that the system is underutilized while 

there are many jobs waiting for execution due to the power 

constraint. 

DVFS (Dynamic Voltage Frequency Scaling) is a widely 

used technique that trades processor performance for lower 

power consumption. With DVFS a processor can run at one 

of the supported frequencies/voltage pairs that are lower than 

the nominal one. Lower frequency/voltage leads to signifi

cantly lower power consumption, hence DVFS presents a 

useful technique to manage CPU power by running jobs at 

lower frequencies. As jobs at lower frequencies consumes 

less, more jobs can execute simultaneously and long wait 

queues can be avoided. Thus, a job scheduler presents 

favorable place to integrate power control that keeps power 

consumption under a given limit while optimizing overall 

job performance. 

In this paper we propose the PowerBudget- guided job 

scheduling policy. Besides parallel job scheduling, it does 

CPU frequency assignment based on job's predicted BSLD. 

As the goal is to maximize performance for a given power 

budget DVFS is used only when power dissipation is high 

enough to endanger the power constraint. Four workloads 

from systems in production use with up to 4008 proces

sors are simulated to evaluate the proposed approach. The 

proposed policy shows an improvement in job performance 

from 20% to 50% over a baseline policy without DVFS. 

Furthermore we have investigated job performance and 

energy efficiency of enlarged systems under our policy 

for same CPU power budget. Having more DVFS enabled 

processors introduces a possibility to run more jobs si

multaneously within same power budget but at reduced 

frequencies. A larger system does not necessary dissipate 

more power since nowadays idle processors can be put 

in low power modes almost immediately and without an 

overhead. Furthermore other system components support or 

should support in near future low power modes suitable for 

idling ([4]) what will lead to energy proportional computing 

([5]). Systems with up to 75% extra processors are simulated 

to evaluate PowerBudget-guided policy potentials to benefit 

from additional computational power at lower frequency. 

The rest of the paper is organized as follows. The next 

sections describes the PowerBudget-guided job scheduling. 

Experimental methodology is discussed in Section 3. Section 

4 gives detailed evaluation of the policy proposed in the 

paper. It is followed by an overview of related work. Finally, 

Section 6 summarizes the paper. 

II. JOB SCHEDULING FOR A GIVEN POWER BUDGET 

We have upgraded the well established EASY backfilling 

policy ([6]) to support power budgeting. The EASY back

filling is described in the next subsection. It is followed by 

subsection II-B where we explain our power control policy. 

A. The EASY Backfilling 

Backfilling-strategies are a set of policies designed to 

eliminate the fragmentation typical for the FCFS policy. 

With the FCFS policy a job can not be executed before 

previously arrived ones although there might be holes in 

the schedule where it could run without delaying the others. 

There are many backfilling policies classified by characteris

tics such as the number of reservations and the prioritization 

algorithm used in the backfilling queue. The number of 

reservations determines how many jobs in the head of the 

wait queue will be allocated such that later arrived jobs 

can not delay them. When there are less jobs in the wait 

queue than reservations jobs are executed in FCFS order. If 

all reservations are used, the algorithm tries to baclifill jobs 

from a second queue (the backfilling queue) where jobs are 

potentially sorted in a different order than by submission 

time. The EASY-backfilling is one the simplest but still very 

effective backfilling policy. The EASY backfilling queue is 

sorted in FCFS order and the number of reservations is set 

to l. 
MakelobReservation(J) and BackfilUob(l) are two major 

functions in the EASY backfilling implementation. The 

reservation for the first job in the wait queue is made 

with MakelobReservation(J). If at its arrival time there 

are enough processors, MakelobReservation(J) will start 

immediately a job. Otherwise it will make a reservation for 

the job based on submitted user estimates of already running 

job runtimes. With backfilling policies users are expected to 

provide runtime estimates in order to allow the scheduler to 

exploit the unused fragments. It is in user's interest to give 

an accurate estimate of the runtime as an underestimation 

leads to killing the job, while an overestimation may result 

in a long wait time. 

The EASY-backfilling is executed each time a job is 

submitted or when a job finishes making additional resources 

available for jobs in the wait queue. If there is already 

a reservation made with MakelobReservation(l) , Back

jilUob(J) tries to find an allocation for the job J such that 

the reservation is not delayed. It means that the job requires 

no more than the currently free nodes and will terminate by 

the reservation time or it requires no more than the minimum 

of the currently free nodes and the nodes that will be free at 

the reservation time. Jobs scheduled in this way are called 

baclifilled jobs. 

Traditionally used metric of job performance, BSLD, 

gives the ratio between the time spent in the system and 

the job runtime: 

BSLD ( WaitTime + RunTime ) = max ,1 max(Th, RunTime) (1) 

where WaitTime and RunTime are times that the job 

spent waiting for the execution and its runtime. Th is a 



threshold used to avoid impact of very short jobs on the 

average value. In our experiments the threshold Th is set 

to 10 minutes as HPC jobs shorter than 10 minutes are 

classified as very short jobs([7]). 

B. PowerBudet-Guided Policy 

Since our algorithm assigns a CPU frequency to a job 

when it is scheduled and it runs at the same frequency during 

whole execution, we have decided to define our policy as 

power conservative. In a similar way that work conservative 

scheduling policies manage cpus ([8]), we keep certain 

amount of power anticipating new arrivals. This concept 

implies that we start to apply DVFS before a job cannot be 

started because of the power constraint. On the other hand, 

when there is no danger of overshooting the power limit 

DVFS should not be applied in order to maintain execution 

times achieved at the nominal frequency. 

Our policy uses two models when determining job's start 

time and CPU frequency. A power model is used to estimate 

power consumption of a job at a frequency/voltage pair 

(presented in Section III-B). An execution time model gives 

the new execution times of a job when executed at different 

frequencies (presented in Section III-C). 

The next subsection describes how exactly DVFS aggres

siveness is controlled while subsection II-B2 presents the 

modifications made to MakeJobReservation(J) and Back

filUob(J) functions to implement our PB-guided policy. 

1) Managing DVFS: Having always in mind that this 

policy should be integrated in an HPC center, our main 

aim is to control the performance penalty. Hence, CPU 

frequency is determined depending on the job's predicted 

BSLD. Predicted BSLD assuming that the job will be run 

at the frequency f is computed in the following way: 

WT + RQ * F(J, (3) 
PredBSLD = max( max(Th, RQ) ,1) (2) 

where WT is the job wait time according to the current 

schedule and requested time RQ presents the user runtime 

estimate. F is a time penalty function that determines how 

much the execution time is increased due to frequency 

reduction. Besides the reduced frequency f, the time penalty 

function F has one more argument {3 that reflects the job's 

CPU boundedness. 

Table I gives a list of the variables used in the DVFS 

management policy. A BSLDth threshold is introduced 

to control DVFS application. Changing the value of this 

threshold we can control DVFS aggressiveness. Higher 

BSLDth values allows more aggressive DVFS application 

that includes use of the lowest available CPU frequencies. 

Jobs consume less at lower frequencies allowing for more 

jobs to run simultaneously. Setting BSLDth to a very low 

value prevents the scheduler from running jobs at reduced 

frequencies. In order to run at reduced frequency f a job has 

to satisfies a BSLD condition at frequency f. A job satisfies 

the BSLD condition at frequency f if its predicted BSLD 

at the same frequency is lower than the current value of 

BSLDth. 

Variable Description 

Job'S Hounded :Slowdown 
BSLD due to its wait and execution time 

B:SLU metric parameter used to 
Th avoid impact of very short jobs 
WT Job's walt tIme (spent m the queue) 

JOb's requested tIme 
RQ (user runtime estimate) 

FunctIOn that determines impact 

F(f, (3) of frequency scaling on runtime 

f CPU frequency 
Job's charactenstic that detennmes 

(3 frequency scaling penalty in time 
Predicted H:sLU based on 

PredBSD requested time and CPU frequency 
BSLDth Current H:SLU target 

Pcurrent Current CPU power draw (Watts) 
User-speclUed bound above whICh 

Plower frequency scaling is enabled 
user-specined cpU power bound 

Pupper for aggressive frequency scaling 
H:sLU target when 

BSLDlower Plower < Pcurrent < PU1Jper 
B:sLU target when 

BSLDupper Pcurrent 2: Pupper 
Table I 

VARIABLES USED WITHIN THE POLICY AND THEIR MEANING 

The value of BSLDth is changed dynamically depending 

on the actual power draw as presented in Figure 1. BSLDth 
is set based on current power consumption Pcurrent that 

includes power consumed by already running jobs and 

power that would be consumed by the job that is being 

scheduled at the given frequency f. Ptower and Pupper 
are thresholds that manage closeness to the power limit. 

When CPU power consumption overpasses Ptower it means 

that processors consume a considerable amount of power. 

When PuppeT is overshot it is high probability that soon 

it would not be possible to start a job due to the power 

constraint. The power thresholds determine the BSLDth 
threshold: it is set to 0 (for Pcurrent < Plower), BSLDlower 
(for Ptower :s; Pcurrent < Pupper) or BSLDupper (for 

Pcurrent 2: PuppeT). 
Hence, when instantaneous power is not high no fre

quency scaling will be applied as predicted BSLD accord

ing to definition 2 is always higher than 1. When the 

power consumption starts to increase, BSLDth increases 

as well leading to frequency scaling. If power draw almost 

reaches the limit, BSLDth is increased even more to force 

aggressive frequency reduction using the lowest available 

frequencies. 

2) The EASY Backfilling Extension: As it has been ex

plained before with the EASY backfilling policy a job is 

scheduled with one of the two functions: MakeJobReser

vation(J) and BaclifilUob(J). These functions modified for 
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Figure 1. BSLDth as a function of current power 

the PB-guided scheduling are shown in Figure 2 and Figure 

3 respectively. With the PB-guided scheduling it is not 

anymore sufficient to find enough free processors to make a 

job allocation. An allocation has to satisfies the power con

straint and the BSLD condition (explained in the previous 

subsection) if the job will run at reduced frequency (Figure 

2 - line 12) or only the power constraint if scheduled for 

execution at the nominal frequency (Figure 2 - line 20). 

1: MakelobReservation(J) 
2: if alreadyScheduled(J) then 
3: annulateFrequencySettings(J); 
4: end if 
5: scheduled f- false; 
6: shiftInTime f- 0; 
7: nextFinishJob f-

next( OrderedRunningQueue); 
8: while (!scheduled) do 
9: 

10: 
11: 
12: 

13: 
14: 
15: 
16: 
17: 

f f-- FlowestReduced 
while f < Fnominal do 

Alloc = findAllocation(J,currentTime + shiftlnTime,f); 
if (satisfiesBSLD(Alloc, 1, f) and 
satisfiesPowerLimit(Alloc, 1, f )  ) then 

schedule(l, Alloc); 
scheduled f- true; 
break; 

end if 
end while 

18: if (f == Fnominal) then 
19: Alloc = findAliocation(J,currentTime + shiftlnTime, 

Fnominal) 
20: if (satisfiesPowerLimit(Alloc, 1,Fnominal» 

then 
21: schedule(l, Alloc); 
22: break; 
23: end if 
24: end if 
25: shiftInTime f-

FinishTime( nextFinishJ ob) - currentTime; 
26: nextFinishJob f- next(OrderedRunningQueue); 
27: end while 

Figure 2. Making a job reservation 

The scheduler iterates starting from the lowest available 

CPU frequency trying to schedule a job such that the BSLD 

condition is satisfied at that frequency. If it is not possible 

to schedule it at the lowest frequency, the scheduler tries 

with higher ones. Forcing lower frequencies is especially 

important when there are jobs waiting on execution because 

of the power constraint (although there are available proces

sors). On the other hand when the load is low, jobs will be 

prevented from low frequencies by lower BSLDth value. If 

none of the allocations found in an iteration of the allocation 

search satisfies all the conditions, then in the next iteration 

the allocation search looks for an allocation starting from 

the moment of the next expected job termination ( estimated 

according to requested times). 

BackjillJob(J) tries to find an allocation that does not de

lay the head of the queue and satisfies the power constraint. 

It also checks the BSLD condition when assigning reduced 

frequency. 

I: Backjilllob(J) 
2: if alreadyScheduled(J) then 
3: annulateFrequencySettings(J); 
4: end if 
5: f f- Flowest 
6: while f < Fnominal do 
7: Alloc = TryToFindBackfiliedAliocation(J,f); 
8: if (correct(AlIoc) and satisfiesBSLD(Alloc, 1, f )  

and satisfiesPowerLimit(Alloc,J,f) then 
9: schedule(J, Alloc); 

10: break; 
11: end if 
12: end while 
13: if (f == Fnominal) then 
14: Alloc = TryToFindBackfiliedAliocation(J,Fnominal) 

IS: if (correct(Alloc) and 
satisfiesPowerLimit(Alloc, 1,Fnominal» then 

16: schedule(J, Alloc); 
17: end if 
18: end if 

Figure 3. B ackfilling a job 

III. EXPERIMENTAL METHODOLOGY 

A parallel job scheduling simulator, Alvio ([9]), has been 

upgraded to support DVFS enabled clusters and the power 

management policy. Alvio is an event driven C++ simulator 

that supports various backfilling policies. A job scheduling 

policy interacts with a resource selection policy which 

determines how job processes are mapped to the processors. 

In the simulations First Fit is used as the resource selection 

policy. A description of workloads used in simulations is 

given in subsection III-A. It is followed by performance and 

power model explanation. 

A. Workloads 

Cleaned traces of five logs from Parallel Workload 

Archive ([ 10]) are used in the simulations. A cleaned trace 

does not contain flurries of activity by individual users 

which may not be representative of normal usage. Table 

III summarizes workload characteristics. The second column 



gives the number of processors that the system comprises of. 

We have simulated 5000 job part of each workload given in 

the third column of Table III. The parts are selected so that 

they do not have many jobs removed. The last column of 

the table gives average workload BSLD when the EASY 

backfilling without power constraints is used as the job 

scheduling policy. 

The CTC log contains records for IBM SP2 located at 

the Cornell Theory Center. The log presents a workload 

with many large jobs but with relatively low degree of 

parallelism. SDSC and SDSC-Blue logs are from the San 

Diego Supercomputing Center. The SDSC workload has 

less sequential jobs than the CTC workload while run time 

distribution is very similar. In the SDSC-Blue workload there 

are no sequential jobs, to each jobs is assigned at least 8 

processors. The LLNL-Thunder workload contains several 

months worth of accounting records in 2007 from a system 

installed at Lawrence Livermore National Lab. Thunder was 

devoted to running large numbers of smaller to medium size 

jobs. More information about workloads can be found in 

Parallel Workload Archive ([10]). 

B. Power Model 

CPU power consists of dynamic and static power. Dy

namic power depends on the CPU switching activity while 

static power presents various leakage powers of the MaS 

transistors. 

The dynamic component equals to: 

Pdynamic = AC jV2 (3) 

where A is the activity factor, C is the total capacity, j 
is the CPU frequency and V is the supply voltage. In our 

model we assume that all applications have same average 

activity factor, i.e. load-balanced applications with a similar 

(3 (defined below) across all nodes. Hence, dynamic power is 

proportional to the product of the frequency and the square 

of the voltage. According to [11] static power is proportional 

to the voltage: 

Pstatic = aV (4) 

where the parameter a is determined as a function of the 

static portion in the total CPU power of a processor running 

at the top frequency. All the parameters are platform depen

dent and adjustable in configuration files. In our experiments 

static power makes 25% of the total active CPU power at 

the highest frequency. 

We have used DVFS gear set given in Table II. The 

last row of the table presents normalized average power 

dissipated per processor for each frequency/voltage pair. 

Our power management is performed at high level. As 

frequency is assigned to a job statically for whole execution 

overheads due to transitions between different frequencies 

Table II 
D V FS GEAR SET 

are negligible. The same applies for entering or exiting low 

power modes. 

As nowadays there are low power modes in which power 

consumption is negligible energy consumed by a workload 

assumes that idle CPUs dissipate no power. Moreover, a 

design of a whole system that consume negligible power 

while idling has been proposed ([4]). Low power modes give 

an opportunity to explore full potential of system enlarging 

and frequency scaling. 

C. Frequency Scaling Impact On Runtime 

In this section we describe a model used in definition 

of predicted BSLD to determine new runtime at reduced 

frequency. Usually, due to non-CPU activity (memory ac

cesses and communication latency) the increase in time is 

not proportional to the change in frequency. The (3 metric, 

introduced by Hsu and Kremer ([12]) and investigated by 

Freeh et al. ([13]), compares the application slowdown 

compared to the CPU slowdown: 

T(J)/T(Jmax) = (3 (Jmax/ j - 1) + 1 (5) 

Different jobs experience different execution time penalty 

depending on their CPU-boundedness. Theoretically, if an 

application would be completely CPU bound then its (3 
would be equal to 1. (3 equals to 0 means that execution 

time is completely independent of the frequency. The (3 pa

rameter has values between 0 and 1, although it is generally 

lower than 0.5. The largest difference that was observed 

between any two (3 values for same application but different 

frequency is 5%. Hence, that the (3 value of an application 

is an application characteristic and it does not depend on the 

amount by the frequency was reduced. (3 values used in this 

work are extrapolated from measurement results reported 

in related work ([13]). While sequential applications from 

the NAS, SPEC INT and SPEC FP suites have averages of 

0.40, 0.59 and 0.71 respectively, parallel benchmarks from 

the NAS PB suite have a variety of (3 values from 0.052 

of FT class A to 0.466 of SP class C running on 8 nodes. 

Having in mind that the nodes were connected by very slow 

100Mb/s network applications have shown less sensitivity 

to frequency scaling than they would have with a faster 

network. Hence, we have assumed (3 values to be slightly 

higher. We have generated (3 for each job according to the 

following normal distributions: 

• if the number of processors is less or equal to 4: 

N(0.5,0.01) 



• if the number of processors is higher than 4 and less 

or equal to 32: N(O.4, 0.01) 
• if the number of processors is higher than 32: 

N(0.3,0.0064) . 

We have investigated two cases: 

• (3 is known in advance: at the moment of scheduling 

real (3 is used (Section IV-At) 

• (3 is not known in advance: at the moment of scheduling 

the worst case is assumed ((3 = 1) i.e. requested time 

is scaled by (3 = 1 and runtime is scaled by real beta 

(Section IV-A2). 

Since it would be difficult in practice to know (3 of each job 

in advance, it is important to see how conservative approach 

of assuming (3 of each job to be 1 affects the performance. 

The worst case of 1 is assumed in order not to have jobs 

killed because of overpassing their requested times. 

IV. RESULTS 

First we have evaluated our policy for original system 

sizes that correspond to the workload logs described in 

Section III-A. As a baseline we have assumed a policy 

that enforces same power budget without DVFS. With the 

baseline policy jobs are scheduled with the EASY backfilling 

with an additional power constraint that prevents a job from 

being started if it would violate the power constraint. Besides 

the oracle case when (3 values are known at the moment of 

scheduling, we have examined case when beta values are not 

known in advance. Finally, system dimensioning has been 

explored. 

The last three columns of Table III have been obtained 

for scheduling with the EASY backfilling without any power 

limitation. Taking into account average system utilizations 

without a power constraint (Utilization) we have decided 

to set power budgets to 80% of the maximum CPU power 

of the corresponding system. Maximum CPU power is 

consumed when all system processors are busy running at 

the nominal frequency. Percentage of time that a workload 

spends above the power budget with the EASY backfilling 

without power constraint is given in Table III (Over PB). 

Imposing 80% power budget decreases job performance 

tremendously. The power constraint severely penalizes av

erage job wait time. For instance, average wait time of the 

CTC workload without power budgeting is 7 107 seconds 

while with the baseline power budgeting it becomes 26 630 

seconds. The LLNLThunder average wait time originally 

was 0 seconds and in the baseline case it has been increased 

to 7 037 seconds. Hence BSLD job performance degradation 

is very high. 

The policy parameters Pzower and Pupper are set to 60% 

and 90% of the workload power budget respectively. After 

some initial tests we have decided to use the average BSLD 

of the workload without power constraints (avg(BSLD)) for 

the parameter BSLDlower. In this way the BSLDlower 

value is set to a workload dependent value. The parameter 

BSLDupper is two times higher, it is set to 2*avg(BSLD). 
We have simulated all workloads without power budgeting to 

get the original average BSLD values. These values without 

a power constraint are given in the last column of Table 

III (Avg.BSLD). The policy parameters are same for all 

reported results. 

A. Original System Size 

In this section we evaluate the PB-guided policy applied 

to original size systems. In the first subsection (3 values are 

used at the moment of scheduling when estimating frequency 

scaling penalty on user's runtime estimate. Accordingly (3 
values are reflected in BSLD prediction and in job schedul

ing via their impact on updated user runtime estimates. The 

second subsection investigates the impact of not-knowing (3 
in advance. 

1) Evaluation of PB-guided Policy: The average BSLD 

per workload for the baseline and our power control policy 

are given in Figure 4(a) (lower values are better). Although 

application of DVFS increases job runtime, having more 

jobs executing at the same time reduces wait time. Average 

wait times of baseline and PB-guided policies are given in 

Figure 4(b). Our policy under the power constraint improves 

significantly overall job performance for all workloads. In 

the case of the LLNLThunder workload performance is 

almost twice better. 

Figure 4( c) shows CPU energies consumed per workload 

with the two polices. The values are normalized with respect 

to the case when all jobs are run at the nominal frequency 

(the highest one). The energy consumed with the PB-guided 

policy is significantly reduced as a result of DVFS use in 

the PB-guided policy. Baseline energy is equal to 1 since it 

assumes that all jobs are executed at the nominal frequency. 

Figure 5 gives system utilization and normalized in

stantaneous power of the baseline (the upper graphics) 

and the PB-guided (the lower graphics) policies for the 

LLNLThunder workload over its execution. Instantaneous 

power is normalized with respect to the power budget. It 

can be remarked that the PB-guided policy has slightly 

lower instantaneous power and the workload execution takes 

shorter time. Furthermore system utilization is higher (in 

Figure 5(b) - it is always lower than 80%). With the PB

guided policy utilization reaches 100% running jobs at 

reduced frequencies. 

2) Impact Of Unknown Beta: Interestingly, we have 

observed that assuming more conservative (3 better perfor

mance is achieved. Scaling requested time with (3 = 1 and 

runtime with a lower value introduces more inaccuracy. It 

has been remarked that inaccurate estimates can yield better 

performance than accurate ones ([14]). By mUltiplying real 

estimates by the factor (3 * (fmax/ f -1) + 1 jobs with long 

runtimes can have large runtime overestimation at schedule 

time leaving at runtime larger 'holes' for backfilling shorter 



Workload I Number of CPUs Jobs I Utilization Over PB Avg BSLD 

CTC 430 20 - 25 70% 72% 4.66 
LLNLThunder 4008 20 - 25 80% 89% 1.00 

SDSC 128 40 - 45 85% 95% 24.91 
SDSCBlue 1152 20 - 25 69% 74% 5.15 

Table III 
WORKLOADS 
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Figure 5. Comparison of baseline and PB - guided policies 

jobs. As a result average slowdown and wait time may be 

lower. 

In Table IV results are given for the case when fJ values 

are not known in advance (no fJ) and for the oracle case 

when it is assumed that they are known in advance (fJ). 

Given values are normalized with respect to correspond

ing baseline case values. All workloads expect SDSC-Blue 

achieve better performance (Normalized Avg.BSLD) when 

fJ values are not known in advance. This can be explained 

by an increase in the number of backfilled jobs that has been 

observed (Number of Backfilled Jobs). 

When fJ is not known, the most conservative case of fJ = 1 
is assumed and accordingly assigned frequencies are higher 

on average (see column Avg.Freq). As higher frequencies 

have lower penalty on runtimes, it presents the second reason 

for better performance with unknown fJ. 



Normalized Normalized Normalized Number of 
Workload Avg.BSLD Avg.WT Avg.Freq Energy Backfilled Jobs 

\no,B\ ,B no {::J {:J no {:J \ {:J \ no,B \ ,B \ no,B ,B \ 
CTC 0.80 0.79 0.63 0.75 1.5 1.4 0.740 0.738 3924 3923 

LLNLThunder 0.33 0.51 0.28 0.47 2.07 1.9 0.884 0.865 3830 3651 
SDSC 0.62 0.76 0.53 0.70 1.6 1.5 0.755 0.744 4103 3944 

SDSC-Blue 0.86 0.75 0.73 0.76 1.5 1.4 0.727 0.724 3611 3550 

Table IV 
COMPARISON OF UNKNOWN AND KNOWN {3 FOR ORIGINAL SYSTEM SIZE 

Regarding energy consumption for the two cases pre

sented in column Normalized Energy savings are slightly 

higher when (3 values are known at the moment of schedul

ing. This is explained again by lower frequency selection in 

the oracle case as jobs running at lower frequencies consume 

less CPU energy. 

B. System Oversizing 

In this section we have tested our policy for 20%, SO% and 

7S% enlarged systems. Workloads and power budgets have 

stayed the same while system sizes have been increased. In 

this way we have investigated what is the effect of having 

more processors under same circumstances as before. 

Performance for various system sizes is shown in Figure 

6(a). It improves very fast with the system size increase. For 

instance, for 20% increase in system size, CTC's average 

BSLD drops from 11.23 to 6.38. For 7S% system size 

increase, its average BSLD with the PB-guided policy is 

2.1S in the oracle case and 1.79 when (3 values are not 

known in advance. 

When applied to a larger system, the PB-guided policy 

assigns lower frequencies as it can be seen in Figure 7(a) that 

shows average processor frequency per workload depending 

on the system size. In a larger system within the same 

power budget wait times are shorter (Figure 7(b)). Accord

ingly the predicted BSLD values are lower allowing more 

aggressive frequency reduction. Although lower frequencies 

have higher negative impact on execution times, the decrease 

in wait times leads to significantly better BSLD values. 

Moreover executing jobs at lower frequencies results in 

energy consumption reduction that is reflected in operating 

costs. Energy consumption for enlarged systems normalized 

with respect to the energy consumed when all jobs are run 

at the nominal frequency is given in Figure 6(b). For 20% 

system size increase energy reduction of more than 30% is 

achieved for all workloads except LLNLThunder (it achieves 

energy savings of 20%). 

Behavior of our policy for increased system sizes when 

(3 values are not known in advance is same as for the 

original system size. Due to more conservative (3 value used 

at the scheduling time assigned frequencies are higher than 

in oracle case (Figure 7(a)). Performance is slightly better 

and energy consumption is slightly higher when (3 values 

are not known in advance (Figure 6). 

V. RELATED WORK 

Power budgeting has been examined in the following 

works. Isci et al. have investigated chip level power man

agement that maintains a chip level power below a specified 

power budget ([IS]). Several different policies that assume 

per-core DVFS have been proposed and their impact on 

performance has been evaluated by simulations. Policies 

that allocate dynamically power budget of an application 

between processor and memory have been proposed ([16]). 

Wang et al have explored an approach to shift power among 

servers based on their utilization while controlling the total 

cluster power to be lower than a constraint. ([ 17]). Frequency 

assignment is performed at very fine grain and it is driven by 

the model predictive control theory. Applying this approach 

to a large scale system would involve very high overhead. 

Lefurgy et al have been presented a technique for high 

density servers that uses feedback control to keep the system 

within a fixed power constrained ([18]). This work, same 

as the previous one, limits only processor performance to 

control whole-server power consumption. 

In HPC there are several groups of works that deal with 

power consumption. The first group presents works at the 

application level. Power profiling of parallel applications un

der different conditions has been done ([19], [20]). Although 

they have only reported power and execution time on specific 

platforms for various frequencies or numbers of nodes, they 

have given a valuable insight into relations between CPU fre

quency, power and execution time. Power reduction systems 

based on previous application profiling have been proposed 

([21], [22], [23]). Several runtime systems that apply DVFS 

in order to reduce application energy consumption have been 

implemented ([24], [2S], [26]). These systems are designed 

to exploit certain application characteristics such as load 

imbalance of MPI applications or communication-intensive 

intervals. Therefore, they lead to power reduction only when 

applied to certain jobs. Nevertheless, these runtime systems 

are complementary to our approach as far as power allocated 

to a job at the scheduling time is not violated. This implies 

that the highest frequency available to them might be lower 

than the nominal one in some cases. 

The second group targets system level power management 

of large scale systems. Lawson et al have tried to decrease 

supercomputing center power dissipation by powering down 
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some nodes according to two proposed policies ([27]). The 

EASY backfilling has been used as the job scheduling policy. 

This approach has affected BSLD seriously in cases of high 

load. An empirical study on powering down some of system 

nodes has been done ([28]). A resource selection policy used 

to assign processors to a job has been designed to pack jobs 

as densely as possible and accordingly to allow for powering 

down unused nodes. Kim et al have proposed a power 

aware scheduling algorithm for bag-of-tasks applications 

with deadline constraints on DVFS enabled clusters ([29]). 

It gives a frequency scaling algorithm for a specific type of 

job scheduling with deadline constraints that is not common 

in HPC centers. Fan et al have explored the aggregate power 

usage characteristics of large collection of servers ([30]). The 

authors have also investigated possibility of energy saving 

using DVFS that is triggered based on CPU utilization. 

Elnozahy et al. have proposed policies for server clusters that 

adjust the number of nodes online as well as their operating 

frequencies according to the load intensity ([31]). Pinheiro et 

al have also decreased power consumption by turning down 

cluster nodes under low load ([32]). Since shutting a node 

or bringing it back up has taken non-negligible amount of 

time, it has not been recommendable to simply shut down 

all unused nodes. 

V I. CONCLUSIONS 

In this paper it has been shown how performance in HPC 

centers under a power constraint can be improved signifi

cantly using DVFS. Not only that careful DVFS application 

gives better performance but it leads to energy reduction 

decreasing operating costs. Our PB-guided job scheduling 

policy uses lower CPU frequencies allowing more jobs to 

run simultaneously. Depending on instantaneous power and 

additional adjustable thresholds, the policy assigns frequency 

to each job at the scheduling time. In the best case it achieves 

almost two times better performance than the baseline when 

applied to the original size systems. As in practice it would 

be difficult to know in advance the impact of frequency 

scaling on execution time of each job, we have investigated 

the most conservative case when f3 is assumed to be 1 at the 

scheduling time. The results show that it can lead to even 

better overall performance. 

Furthermore, power budgeting with our policy increasing 

system size has been evaluated. The ideas has been to 

test performance of more processors at lower frequencies 

under same power constraint. Increasing system size by only 

20% while applying the proposed PB-guided policy leads to 

significant improvement in performance and to up to 35% 

savings in CPU energy. This has shown the importance of 



proper DVFS system dimensioning. 

Future work will include a detailed evaluation of the 

policy parameters. Various values for Plower and Pupper 
thresholds that determine when the policy should start to 

use/use aggressively DVFS will be tested. Also, the impact 

of BSLDlower and BSLDupper parameters that govern 

frequency selection will be investigated more deeply. 
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