
FaulTM: Fault-Tolerance Using
Hardware Transactional Memory

Gulay Yalcin Osman Unsal Ibrahim Hur Adrian Cristal Mateo Valero

Barcelona Supercomputing Center
{gulay.yalcin, osman.unsal, ibrahim.hur, adrian.cristal, mateo.valero} @ bsc.es

Abstract
Fault-tolerance has become an essential concern for
processor designers due to increasing soft-error rates.
In this study, we are motivated by the fact that Trans-
actional Memory (TM) hardware provides an ideal
base upon which to build a fault-tolerant system. We
show how it is possible to provide low-cost fault-
tolerance for serial programs by using a minimally-
modified Hardware Transactional Memory (HTM) that
features lazy conflict detection, lazy data version-
ing. This scheme, called FaulTM, employs a hybrid
hardware-software fault-tolerance technique. On the
software side, FaulTM programming model is able to
provide the flexibility for programmers to decide be-
tween performance and reliability. Our experimental
results indicate that FaulTM produces relatively less
performance overhead by reducing the number of com-
parisons and by leveraging already proposed TM hard-
ware. We also conduct experiments which indicate that
the baseline FaulTM design has a good error coverage.
To the best of our knowledge, this is the first architec-
tural fault-tolerance proposal using Hardware Transac-
tional Memory.

1. Introduction
Soft errors, caused by alpha particles from package ra-
dioactive decay, neutrons or protons from cosmic rays
or power supply noise, are becoming a major concern
for processor designers. Soft errors do not result in per-
manent circuit faults. However, unless they are detected
and corrected, soft errors may cause incorrect results,
data corruption or system crashes. Although the fre-
quency of the soft error occurrence in current proces-
sors is not high, due to increasing transistor integration
densities and clock frequencies as well as decreasing

supply voltages, it is expected that this type of errors
will become more prevalent in future systems [19].

On the other hand, Transactional Memory (TM) is
a promising technique which aims simplifying parallel
programming by executing transactions atomically and
in isolation. Atomicity means that all the instructions
in a transaction either commit as a whole, or abort. All
TM proposals implement two key mechanisms; data
versioning and conflict detection. Data versioning man-
ages all the writes inside transactions until the transac-
tions successfully complete or abort. Conflict detection
tracks the addresses of reads and writes in transactions
to identify concurrent accesses that violate atomicity. In
this study, we propose FaulTM, a soft-error detection
and recovery technique based on Transactional Mem-
ory. To the best of our knowledge, this is the first archi-
tectural fault tolerance proposal using Hardware Trans-
actional Memory (HTM).

Transactional Memory in general, and Hardware
Transactional Memory in particular provide an ideal
base platform for building a fault-tolerant system.
Two key HTM characteristics are notably suitable for
fault detection and recovery. First, HTM systems al-
ready have well-defined comparison mechanisms of
read/write sets for conflict detection [8, 12, 25]. In
these mechanisms the write sets of transactions are
compared in order to detect if there is any conflict.
While comparison of addresses is sufficient for con-
flict detection, some systems also send data along with
addresses [8, 25]. FaulTM adapts these conflict de-
tection mechanisms for fault detection. Second, HTM
systems provide mechanisms to abort transactions in
case of a conflict, thus they undo all the tentative mem-
ory updates and restart the execution from the start of
the transaction which is a checkpointed stable state.

34

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/132529536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


FaulTM uses the TM abort mechanisms for fault re-
covery.

In the FaulTM approach, we execute a vulnerable
section of an application in two redundant threads
and in two special-purpose reliable transactions. The
FaulTM approach classifies a mismatch between the
write sets of such reliable transaction pairs as a soft
error, and aborts both transactions which are then
restarted. In the case of a complete match, one of the
transactions commits the changes to the main memory.
This requires minimal hardware modifications to an ex-
isting HTM design. Therefore, FaulTM synergistically
leverages already proposed TM hardware for reliabil-
ity. In this sense, it is similar to other proposals that
leverage HTM for other purposes such as speculative
multithreading [18], scouting threads [27] or data race
detection [7].

Most of the conventional fault tolerant systems val-
idate results of all store instructions, because any er-
ror is benign unless it propagates out of the core. Since
FaulTM only compares the write-sets which have fewer
amount of entries than number of store instructions due
to multiple stores to the same address, FaultTM has less
comparison overhead than the previous systems.

Another advantage of FaulTM is supplying flexibil-
ity, if it is desired, to define vulnerable sections by us-
ing the TM-like programming model of FaulTM. Note
that in this first study, we mark entire applications as
vulnerable to soft errors.

This paper makes the following contributions:

• We introduce FaulTM to make multi-threaded sys-
tems fault-tolerant for sequential applications. To
detect soft errors and to recover from them, this ap-
proach utilizes the conflict detection and the abort
mechanisms of Hardware Transactional Memory
systems. The FaulTM approach has three desirable
properties: (1) it has low performance overhead in
execution time, (2) it requires only minor hardware
modifications, because it uses already proposed TM
implementations, and (3) it provides the option for
the programmer to determine code regions that are
vulnerable to the soft errors.
• We evaluate our approach using the MediaBench

Benchmark Suite. We find that FaulTM results in
3.2% overhead on average for sequential applica-
tions which is only 52.1% of the overhead of lock-
stepping technique [23, 28].

Data Versioning - Conflict Detection

lazy-lazy lazy-eager eager-eager
Error Containment High High Low
Performance Degradation Low High High
Error Detection Latency High Low Low
Error Coverage High Low Low

Table 1. Fault Tolerance attributes of different HTM
implementations.

• Our experimental results indicate that on average
FaulTM has good error coverage of 91.2%. A FaulTM
extension which features 100% coverage with 2.8%
additional performance degradation is also pro-
posed.

2. Design of the FaulTM System
In this section, we explain the basic steps of our
FaulTM approach, and we discuss its hardware and
software requirements.

2.1 Determining the TM Design Parameters
There are two main design parameters for HTM sys-
tems that make sense for fault tolerance: data version-
ing and conflict detection policies. Each of these poli-
cies can be either lazy or eager. Out of four possible
combinations of these policies, only the lazy-lazy [8],
lazy-eager [26], and eager-eager [12] schemes generate
valid results.

To select one of these combinations, we consider the
following four desirable features for fault-tolerant sys-
tems: (1) high error containment, to limit the propaga-
tion of errors in the system, (2) high error coverage, to
detect as many errors as possible, (3) low performance
overhead, and (4) low error detection latency, to detect
errors as soon as possible.

As we show in Table 1 (bolds are the desired proper-
ties), none of the possible three HTM policy combina-
tions has all these features. In this study, we choose to
use the lazy-lazy conflict detection and data versioning
combination, because this combination has more desir-
able features than the other two options, and it has the
lowest performance overhead.

Note that HTM policy combinations other than lazy-
lazy could also be modified for fault-tolerance to quan-
titatively qualify their fault-tolerance attributes. How-
ever, these implementations are beyond the scope of
this initial study.

35



In the rest of this section, we provide a succinct
discussion of the impact of HTM policies on fault-
tolerance features.

In HTM implementations with eager data version-
ing, main memory keeps the latest speculative version
of the data. If we use eager data versioning for FaulTM,
some data in the shared memory which is not validated,
can be read by other cores. Assuming any of these data
or any address is erroneous, this error might then prop-
agate to other cores. Therefore, error propagation in ea-
ger data versioning is marked high in Table 1.

For performance degradation we need to analyze the
number of comparisons required for fault tolerance.
The higher the number of comparisons, the higher the
potential for performance degradation. In lazy conflict
detection only the final write sets of the transactions
are compared. However, in eager conflict detection a
comparison is necessary for every transactional store.
Since some stores write to the same addresses multiple
times, the number of entries in the write set could
be significantly less than the number of stores in a
transaction. Thus, the number of comparisons in lazy
conflict detection would be less than in eager conflict
detection. Therefore, we could conclude that potential
performance degradation of lazy conflict detection is
lower.

On the other hand, in lazy conflict detection any
error occurring earlier in the transaction will only be
detected at the commit stage, so error detection latency
will be higher. In eager conflict detection, however,
the error could be detected earlier when a transactional
store containing the error is compared.

To provide full error coverage, we need to compare
the register files along with the write sets. While lazy
conflict detection would have reasonable overhead for
making this comparison only on commits, for eager ea-
ger conflict detection, the overhead of comparing the
register files at every transactional store would be un-
acceptably high. Therefore, the error coverage of lazy
conflict detection is higher compared to eager conflict
detection.

2.2 Basic Steps
The FaulTM approach consists of four steps: (1) defin-
ing the vulnerable sections of the code, (2) creating a
backup thread for each vulnerable section, (3) execut-
ing both the original and the backup thread in transac-
tions, and (4) comparing the write sets of the transac-

Figure 1. FaulTM design for sequential applications.

tions at the commit stage. We now briefly explain these
steps.

Defining vulnerable sections: In this study we as-
sume that the entire application is vulnerable and needs
to be protected. Note that it is also possible for the pro-
grammer to determine the reliability-critical sections of
the code and to define only these sections as vulnerable
for a tradeoff of performance for reliability. Figure 1
shows this case for a sequential application. Other al-
ternatives for this step can be employing a compiler-
driven approach to move the burden from the program-
mer to the compiler or using binary instrumentation to
avoid recompilation of the application.

Creating transactions: As soon as the definition of a
vulnerable section is reached, the FaulTM system cre-
ates a backup thread for that section, which is identi-
cal to the corresponding section of the original thread.
Then the original and backup thread are executed as
two separate transactions, that is, they execute atomi-
cally and in isolation from the other threads in the sys-
tem.

Executing transactions: In lazy data versioning TM
systems, such as TCC [8], all stores are written to a
special buffer instead of the shared memory. In our ap-
proach, during the execution of the transactions, there
will not be any conflicts between the original and the
backup transactions, because the backup transaction is
only for validation and it will not modify the shared
memory.

Ending transactions: Both the original and backup
transactions wait for each other to reach the commit
stage. Since both threads have identical instructions, in

36



the absence of a fault, their read/write sets have to be
identical as well. At the validation stage, the transac-
tions compare addresses and data values of their write
sets. If they match, the original transaction commits to
the memory, and the backup transaction is cleared as
it aborts and it does not execute again. If the write sets
do not match, both the original and backup transactions
abort and they restart execution.

2.3 Special Cases for Ending Transactions
Besides ending transactions at the end of the vulnerable
section, we define three additional situations causing
ending transactions: interrupts, system calls and buffer
overflow.

Handling interrupts and executing system calls in
our special transactions are not straight forward be-
cause of the problems associated with executing the
same interrupt or system call twice, once in the orig-
inal and once in the backup transaction. For example,
let’s suppose that there is a “printf” statement inside a
vulnerable section that needs to be protected. We can
not execute this command in both original and backup
transactions, because otherwise we can not rollback
the backup transaction and we will observe two out-
puts on the screen. Thus, we only protect user level
operations assuming that the operating system is pro-
tected by other means. As soon as any system call or
interrupt is detected in a reliable transaction, Ending
Transaction stage starts in the processor to validate
and commit the operations up to that point. Only one
thread executes the system call or handles the interrupt.
After returning from the operating system new original
and backup transactions are started.

In HTM designs, an important consideration is the
limited size of readset and writeset buffers. In FaulTM,
we set a threshold for the buffer size and whenever
the writeset of a transaction exceeds that threshold,
the validation and the commit processes start. As soon
as the whole write-set is committed, new original and
backup transactions start with empty buffers.

If a soft error might appear to cause an infinite loop
because of incorrect execution path in a transaction,
eventually the readset/writeset buffer overflow forces
the commit and the error check, therefore recovering
from the error. Note that it is not necessary to have the
identical reasons in transaction pairs for detecting the
error.

2.4 Overheads of FaulTM
Core Overhead: During the execution of a sequential
application in a multi-core architecture, only one core
is occupied and the others stay idle. FaulTM leverages
one of the idle cores for reliability purpose which sup-
plies the capability of detecting both soft and perma-
nent errors. Although this design costs 100% of a core
overhead, an SMT design of the TM is not adequate for
detection of permanent errors. Moreover, since we use
hardware threads, creating a backup thread is simply
activating the suspended hardware thread in the allo-
cated idle core which has negligible overhead.

Transaction Creation: In an HTM, creating a trans-
action means starting to write the values to the local
buffer area instead of writing to the shared memory
without thread creation overhead. However, in FaulTM,
the backup transaction is obliged to copy the register
file and TLBs from the original thread to be able to
produce the same results. Note that this copy opera-
tion does not need to be done when the transactions are
back-to-back. Even if any strike changes the value of
any data on the bus, that would cause the final results
of pair transactions to be different than each other.

Spinning Overhead: Whenever a transaction reaches
to the end, it spins, waiting for its pair to reach to the
same point.

Comparison Overhead: Comparison overhead of
FaulTM is less than other fault tolerance methods
which compare the results of all store instructions.
This is because FaulTM compares only the entries in
the writeset of transactions which are always less than
the number of stores due to multiple writings to the
same address in a transaction. Also, FaulTM needs less
costly comparators than our base lazy-lazy TM [21]
conflict detection under the assumption of changing the
comparator design. Because, that TM needs to compare
the address of each entry in a transaction with the ad-
dresses of all entries in the other transactions. However,
it is enough for FaulTM to compare only the entries in
the pair transactions’ write-sets. Moreover, this com-
parison is only done between the entries in the same
positions. For example, assume that there are T trans-
actions in the system and each transaction has N entries
in their write-sets. In the base TM system there should
be (T-1)N*N comparison of address for detecting any
conflicts. However, in FaulTM there would be only N

37



comparison of addresses and data for detecting any
mismatch between pair transactions.

Committing Overhead: After validating the data,
committing is done in the same way as in standard
HTM by publishing the stores.

2.5 Programming Model and Software Extensions
FaulTM adds the keyword ‘‘vulnerable’’ to denote
sections of code that should be protected against soft-
errors. Using this keyword, programmers only need
to define the vulnerable sections in their applications.
They can insert vulnerability boundaries as if they de-
fine atomic sections in TM applications. The vulner-
able sections can be either fine-grained, lasting for a
few instructions or coarse-grained such as the entire
application. While the fine-grained approach causes
less performance degradation, coarse-grained approach
provides more reliability. For instance, for an airplane
control application, the programmer could identify that
the code that is responsible for controlling the flaps
should be protected coarsely, whereas the code regard-
ing the on-flight entertainment system is not protected
at all. Alternatively in the fine grained version of flap
controlling code, the programmer decides to protect
only the calculation of desired flap angle but he leaves
the graphic user interface unprotected.

To be able to define vulnerable sections inside ap-
plications, we add two instructions to the Instruction
Set Architecture, namely begin Reliable Region and
end Reliable Region. Having these instructions pro-
vides flexibility, because reliability is provided only
for the defined parts of the applications, and the other
parts are executed without any overhead.

When a begin Reliable Region instruction is exe-
cuted, the backup thread and the original/backup trans-
actions are created; and when an end Reliable Region
instruction is executed, the commit phases of the trans-
actions start.

2.6 Architectural Extensions
The FaulTM approach extends an existing lazy-lazy
design, such as TCC, with minor modifications, namely
an isReliable bit, an isOriginal bit, and peerCPU bits,
require only (dlog2 ne+ 2) bits where n is the number
of cores in the Chip Multiprocessor (CMP).

isReliable (1-bit): In the FaulTM system, we may
have additional TM applications running concurrently
with our reliability-critical applications. Therefore, we

Figure 2. Sphere of Replication(SoR) of FaulTM in
both software and hardware point of view.

use the isReliable bit to distinguish between the trans-
actions for parallelism and transactions for reliability.
Unless the isReliable bit is set, the other two exten-
sions, isOriginal and peerCPU, are not used.

isOriginal (1-bit): When a transaction is for reliabil-
ity and if the isOriginal bit is set, this implies that this
transaction is the original transaction, otherwise it is a
backup.

peerCPU (dlog2ne)-bits for an n-core system): Trans-
action pairs have to know each other to compare their
results. The peerCPU bits point to the processor that
has the peer transaction of the transaction that runs in
the current processor.

FaulTM compares store addresses as well as store
data values to detect if a soft-error has manifested it-
self in either the address or data. First, the write set ad-
dresses are compared, a match signifies that there is no
error in the store address. Once a match in the addresses
is found, then the data are compared; in case of a match
there is no error in the store data. Since the error case
is rare, most of the time the store data comparison
will register a match. Therefore, regular dissipate-on-
mismatch comparators could be employed here. How-
ever, the address comparisons will most likely register
a mismatch since a store address is compared against
the whole write set. Here special comparators that dis-
sipate little energy on mismatches or partial matches
as proposed by Ponomarev et al. [17] could be used to
save energy.

38



Figure 3. Store instructions vs write sets of the trans-
actions in the FaulTM system. Write sets are smaller
than the number of Stores, because some Stores write
to the same addresses multiple times.

3. Evaluation
We now describe our simulation methodology, our sim-
ulated system, the benchmarks that we use to evaluate
our techniques, and the results from our empirical eval-
uation of the FaulTM system.

3.1 Simulation Setup
We use the M5 full-system simulator [5] with an imple-
mentation of a Hardware Transactional Memory sys-
tem that uses lazy-lazy specifications [21]. We extend
this simulator with our FaulTM technique. We eval-
uate our approach using the Mediabench benchmark
suite [10] by marking the entire applications as vulner-
able.

We evaluate our technique in the context of a CMP
with two Alpha 21264 cores [1] running at 1GHz. Our
simulator models two levels of cache, an L1D and an
L1I cache that are private to each core and a unified
L2 cache that is shared by the two cores. Each level-1
cache is 64KB with four-way set associativity, 64B line
size, and a two-cycle hit latency. The L2 cache is 2MB
with eight-way set associativity, a line size of 64B, and
10 cycles of hit latency. All caches use the write-back
policy. We also assume a 100 cycles of memory latency.
We limit the buffer for each transaction to 20 entries.

In this initial evaluation of the FaulTM approach, we
use a set of 13 sequential programs from the Media-

Figure 4. Performance overhead of the FaulTM tech-
nique. The commit overhead is correlated with the size
of the write sets. The spin overhead is the time elapsed
while one thread is waiting for the other thread to reach
the commit stage. Transaction Creation overhead is the
overhead of copying inner state of the original transac-
tion to the backup one.

Bench benchmark suite. We run these programs in their
entirety, and we mark entire programs as vulnerable.

3.2 Results
First, we show the logical boundary of FaulTM in Fig-
ure 2 by using the the Sphere of Replication(SoR) con-
cept. Since FaulTM is a hybrid software/hardware fault
tolerant method, we should depict the SoR in both soft-
ware and hardware point of view. FaulTM assumes
that operating system in terms of software and shared
memories in terms of hardware are protected by other
means.

We compare our FaulTM system against two differ-
ent configurations: (1) a single thread of an application
which runs on the base system and (2) two threads run
on two processors using lockstepping. The first config-
uration corresponds to the non fault-tolerant case; the
second configuration corresponds to a standard fault-
tolerance method.

In the lockstepping approach [28], after every Store
instruction, two threads synchronize and the results of
the same instruction are compared. In this study, we
assumed one cycle latency for comparing one entry in
either lockstepping or FaulTM.

Figure 3 compares the ratios of Stores out of all in-
structions to the ratios of entries in write sets. We find

39



Figure 5. Comparison of the performance overheads
of the FaulTM and the lockstepping techniques. Our
approach performs faster than the lockstepping tech-
nique in all cases.

that, in our benchmarks, the percentages of entries in
write-sets [0.1-6.5%] are smaller than the percentages
of all Stores [0.8-9.8%], because some Store instruc-
tions in transactions write to the same addresses multi-
ple times. Due to this temporal locality of the Stores our
FaulTM technique requires fewer comparisons com-
pared to the previously proposed techniques [28] in or-
der to check soft errors.

Figure 4 shows the performance overhead of FaulTM
over the single-threaded baseline system. For our bench-
marks, the total performance overhead of the FaulTM
is between 0.3% and 10.2%, and on average it is 3.2%.
The performance overhead has three components: the
transaction creation, the spin, and the comparison over-
heads. First, the transaction creation overhead is caused
when backup transaction copies the inner state of orig-
inal transaction after system calls or interrupts which
is only 1.8% in the worst case. Second, the spin over-
head is the time elapsed while one thread is waiting for
the other thread to reach the commit stage, and in our
experiments it is between 0.2% and 7.6%. Third, the
comparison overhead is correlated with the size of the
write sets, and it is in the range of 0.05% and 2.63%.

In Figure 5, dark bars show the performance over-
head of FaulTM over the single-threaded baseline sys-
tem while the light bars depict the performance over-
head of lockstepping configuration. Note that, to be
more conservative, we assume identical spin overheads

Figure 6. Percentage of the errors that can be detected
inside transactions vs the errors that can propagate out
of transactions. Our base FaulTM system can detect
most of the possible errors inside transactions.

in both systems. We find that the performance degra-
dation of our approach is 0.3-10.2%, on average 3.2%,
for sequential applications which is only 52.1% of the
overhead of lockstepping technique.

3.2.1 Avoiding Error Propagation from
Transactions

The base FaulTM system can detect soft errors that oc-
cur inside a transaction as long as these errors affect
the instructions that attempt to modify memory. Other-
wise, erroneous data in the registers may propagate out
of the transaction and affect overall system reliability.
We evaluate an extended FaulTM technique that com-
pares all registers as well as write sets at every commit
in order to achieve full coverage of soft errors.

Figure 6 shows that our base FaulTM approach can
detect 76.2-98.5%, on average 91.2%, of all possible
soft errors inside transactions. We find that, when we
compare the register files of the original and backup
transactions at each commit, overall performance de-
grades, on average, by 2.8% while providing full error
coverage, see Figure 7.

4. Related Work
Although this paper only focuses on the soft errors in
the circuit level caused by particle strikes, the work
done by Oplinger et al. [15] which proposes reliabil-
ity against software errors caused by programmers, is
quite inspiring. In that system, programmers define the

40



Figure 7. Additional performance overhead of the Ex-
tended FaulTM approach that compares register files at
every commit.

potentially problematic code regions by using transac-
tional memory like paradigms taking into account the
transactions granularities. Errors are detected by moni-
toring functions that is executed speculatively in par-
allel. Recovery is done by benefiting from the abort
mechanism of TM.

Koren and Krishna [9] provide a comprehensive
introduction to fault-tolerance including sections on
fault/error detection and recovery. A discussion of er-
ror containment for soft-errors can be found in Gold
et al. [6]. Soft-error detection latency and coverage are
discussed in [24].

There are well-known and widely used error detec-
tion and correction techniques, such as ECC [4], for
storage areas and data networks. However, these tech-
niques are not applicable to combinational circuits in
microprocessors.

One line of research for detecting soft errors in mi-
croprocessors focuses on developing software-based
techniques [2, 14, 16, 20]. For example, Reis et al. [20]
propose a dynamic binary instrumentation technique to
provide reliability to binary applications without hav-
ing their source codes. Although this approach is flex-
ible to allow the programmer to mark any part of the
binary as vulnerable, its performance overhead is high.

To reduce the performance overhead of software-
only techniques, another line of research focused on
hardware-based approaches [3, 11, 13, 23].

Austin [3] proposes a Dynamic Implementation
Verification Architecture (DIVA) to detect soft errors
as well as permanent errors and design faults in micro-
processors. DIVA validates the results of instructions
of a complex out-of-order processor using a simple in-
order low-frequency checker. This technique requires
large amount of new hardware components.

A simpler and less costly soft error detection tech-
nique, lockstepping [23, 28], is commonly used, espe-
cially in mission-critical applications. In this technique,
two synchronized and lockstepped processors run two
identical instruction streams, and the results of every
Store instruction in these streams are compared. Al-
though lockstepping is an effective method for detect-
ing errors, its performance overhead, due to frequent
synchronization and comparisons, is high. Its processor
pairs are tightly coupled using exactly the same clock
signal although the processors may have the different
clock domains.

To improve the performance of lockstepping meth-
ods, Mukherjee et al. [13] introduced the Redundant
Multithreading (RMT) approach. In this approach, two
copies of the same application run in two threads, ei-
ther on the same processor or on two different proces-
sors, and the trailing thread gathers information from
the leading thread to improve its execution time. Al-
though the RMT method achieves better performance
than the earlier lockstepping techniques, it still requires
synchronization and comparison after every Store in-
struction.

In all these hardware-based approaches, entire appli-
cations are executed redundantly, i.e. the programmer
does not have the flexibility to define vulnerable sec-
tions of the code.

In addition to software-only and hardware-only er-
ror detection techniques, there are also hybrid meth-
ods. For example, Shye et al. [22] propose the Process
Level Redundancy (PLR) technique to adapt parallel
hardware resources for soft error fault-tolerance. This
method creates a set of redundant threads for the orig-
inal application, and the operating system schedules
these threads to all available hardware resources. Faults
that result in incorrect execution are detected through
either a mismatch of write data sets of the threads or a
timeout mechanism. Similar to hardware-based meth-
ods, PLR does not allow the programmer to define only
certain sections of the application as vulnerable.

41



Our FaulTM system is a hybrid approach that com-
bine flexibility of software-based techniques and the
performance of hardware-based techniques. Our ap-
proach has five main advantages over the previous soft
error detection techniques: (1) It has smaller hardware
cost than previous hardware methods, because it uti-
lizes already proposed HTM hardware. (2) Unlike pre-
vious hardware methods, after every Store instruction,
it does not synchronize threads and it does not compare
their results, which leads to better performance. (3) It
recovers errors in addition to detecting them. (4) It is
flexible in the sense that the programmer can define any
section of an application as vulnerable to soft errors. (5)
Its pair cores are loosely coupled which let the system
decide between the parallelism and the reliability.

5. Conclusions and Future Work
We introduced a soft error fault-tolerance approach,
FaulTM, that leverages a hardware transactional mem-
ory system.

We design and simulate the FaulTM approach for se-
quential applications, in the context of an HTM system
that uses lazy conflict detection and lazy data version-
ing policies. In this approach, the programmer can de-
fine vulnerable program sections at the software level,
and these sections are executed redundantly and atom-
ically at the hardware level. In this study we mark
the entire applications as vulnerable. The FaulTM ap-
proach is flexible and requires only minor hardware
modifications, and in our evaluation we found that it
has lower performance overhead compared to com-
monly used lockstepping technique.

Currently, we are in the process of extending our
work for parallel applications as well as implementing
the eager-lazy and eager-eager conflict detection and
data versioning policies. Also, protecting the operating
system in FaulTM design is left as a future work.

Acknowledgment
We would like to thank the anonymous reviewers for
their useful comments. This work is supported by the
cooperation agreement between the Barcelona Super-
computing Center National Supercomputer Facility
and Microsoft Research, by the Ministry of Science and
Technology of Spain and the European Union (FEDER
funds) under contract TIN2007-60625, by the Euro-
pean Network of Excellence on High-Performance Em-
bedded Architecture and Compilation (HiPEAC) and

by the European Commission FP7 project VELOX
(216852). Gulay Yalcin is also supported by a schol-
arship from the Government of Catalonia.

References
[1] Alpha 21264 Microprocessor Hardware Reference

Manual. Compaq Computer Corparation, 1999.

[2] P. Ammann and J. Knight. Data diversity: An approach
to software fault tolerance. IEEE Transactions on Com-
puters, 37:418 – 425, 1988.

[3] T. M. Austin. DIVA: A dynamic approach to micropro-
cessor verification. Journal of Instruction-Level Paral-
lelism, 2:1–6, 2000.

[4] D. J. Baylis. Error Correcting Codes: A Mathematical
Introduction. Chapman and Hall, 1998.

[5] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt. The M5 simulator:
Modeling networked systems. IEEE Micro, 26:52–60,
2006.

[6] B. Gold, J. C. Smolens, B. Falsafi, and J. C. Hoe. The
granularity of soft-error containment in shared-memory
multiprocessors. In Proceedings of the 2006 Work-
shop on System Effects of Logic Soft Errors, Urbana-
Champaign, 2006.

[7] S. Gupta, F. Sultan, S. Cadambi, F. Ivancic, and M. Rot-
teler. Using hardware transactional memory for data
race detection. In IPDPS ’09: Proceedings of the IEEE
International Symposium on Parallel & Distributed
Processing, pages 1–11, Miami, Florida, 2009.

[8] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional mem-
ory coherence and consistency. SIGARCH Computer
Architecture News, 32(2):102, 2004.

[9] I. Koren and C. M. Krishna. Fault-Tolerant Systems.
Morgan Kaufmann Publishers, 2007.

[10] C. Lee, M. Potkonjak, and W. H. Mangione-smith. Me-
diabench: A tool for evaluating and synthesizing multi-
media and communications systems. In Proceedings of
30th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 330–335, Research Triangle
Park, NC, 1997.

[11] A. Mahmood and E. J. McCluskey. Concurrent error
detection using watchdog processors-a survey. IEEE
Transactions on Computers, 37:160–174, 1988.

[12] K. Moore, J. Bobba, M. Moravan, M. Hill, and
D. Wood. LogTM: log-based transactional memory.
volume 12, pages 254–265, Austin, Texas, 2006.

[13] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. De-
tailed design and evaluation of redundant multithread-
ing alternatives. In Proceedings of the 29th Annual

42



International Symposium on Computer Architecture,
pages 99–110, Washington, DC, 2002.

[14] N. Oh, S. Mitra, and E. J. Mccluskey. ED4I: Error
detection by diverse data and duplicated instructions.
IEEE Transactions on Computers, 51:180–199, 2002.

[15] J. Oplinger and M. S. Lam. Enhancing software relia-
bility with speculative threads. In Architectural Support
for Programming Languages and Operating Systems,
pages 184–196, San Jose, 2002.

[16] J. H. Patel and L. Y. Fung. Concurrent error detection
in ALU’s by recomputing with shifted operands. IEEE
Transactions on Computers, 31(7):589–595, 1982.

[17] D. V. Ponomarev, G. Kucuk, O. Ergin, and K. Ghose.
Energy efficient comparators for superscalar datapaths.
IEEE Transactions on Computers, 53:892–904, 2004.

[18] L. Porter, B. Choi, and D. M. Tullsen. Mapping out a
path from hardware transactional memory to specula-
tive multithreading. In PACT ’09: Proceedings of the
2009 18th International Conference on Parallel Archi-
tectures and Compilation Techniques, pages 313–324,
Washington, DC, USA, 2009.

[19] S. K. Reinhardt and S. S. Mukherjee. Transient fault
detection via simultaneous multithreading. SIGARCH
Computer Architecture News, 28(2):25–36, 2000.

[20] G. A. Reis, J. Chang, D. I. August, and S. S. Mukher-
jee. Configurable transient fault detection via dynamic
binary translation. In Proceedings of the 2nd Workshop
on Architectural Reliability, Orlando, Florida, 2006.

[21] S. Sanyal, S. Roy, A. Cristal, O. S. Unsal, and
M. Valero. Dynamically filtering thread-local variables
in lazy-lazy hardware transactional memory. In HPCC
’09: Proceedings of the 11th IEEE International Con-
ference on High Performance Computing and Commu-
nications, pages 171–179, Washington, DC, 2009.

[22] A. Shye, V. J. Reddi, T. Moseley, and D. A. Connors.
Transient fault tolerance via dynamic process redun-
dancy. In Proceedings of the 2006 Workshop on Binary
Instrumentation and Applications (WBIA) held in con-
junction with ASPLOS-12, San Jose, CA, 2006.

[23] T. J. Slegel, R. M. Averill III, M. A. Check, B. C.
Giamei, B. W. Krumm, C. A. Krygowski, W. H. Li,
J. S. Liptay, J. D. MacDougall, T. J. McPherson, J. A.
Navarro, E. M. Schwarz, K. Shum, and C. F. Webb.
IBM’s S/390 G5 microprocessor design. IEEE Micro,
19(2):12–23, 1999.

[24] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C.
Hoe, and A. Nowatzyk. Fingerprinting: bounding soft-
error detection latency and bandwidth. In Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
224–234, Boston, MA, 2004.

[25] F. Tabba, A. W. Hay, and J. R. Goodman. Transactional
value prediction. In Workshop on Transactional Com-
puting, Raleig, North Carolina, 2009.

[26] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach,
A. Cristal, O. Unsal, T. Harris, and M. Valero. Eazy-
htm: eager-lazy hardware transactional memory. In
Micro-42: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages
145–155, New York, NY, USA, 2009.

[27] M. Tremblay and S. Chaudhry. A third-generation
65nm 16-core 32-thread plus 32-scout-thread CMT
SPARC(R) processor. In International Solid-State Cir-
cuits Conference (ISSCC), pages 82–83, San Francisco,
2008.

[28] A. Wood, R. Jardine, and W. Bartlett. Data integrity in
HP NonStop servers. In Proceedings of the 2006 Work-
shop on System Effects of Logic Soft Errors, Urbana-
Champaign, 2006.

43




