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Abstract 

 

Comminution represents one of the most important operations in mineral processing due to the high energy cost 

and tool wear. This paper presents a new population balance model (PBM) of ball mills that understands the ball 

mill process as a hybrid of a perfectly mixed mill and piston flow mill. Usually, PBM for grinding is related to a 

perfectly mixed mill. In this case, the piston flow was introduced for a more realistic process. The ball mill 

modelling process is described as the point where the feed entering the distribution size is coarse, and where 

there is an overflow and discharge of the mill, the distribution size is fine and equivalent to the product 

distribution size. In this work, the evolution of the size of particles along the mill piston flow process was studied. 

The relationship between the particle size and position in the length of the mill was established. The equation of 

the balance population model was formulated, and the parameters were determined for a tungsten ore. 
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1. Introduction 

 

Large amounts of energy are necessary to reduce the particle size in ore processing, usually representing a 

significant amount of the total expenses of the processing (Datta and Rajamani, 2002). Selection of the optimal 

parameters to reduce the particle size is a key factor in these operations (Grupta and Sharma, 2014; Zhang et al., 

2016). The development of models to predict the comminution behaviour of particles can determine the optimal 

parameters for reducing the particle dimension. Population balance modelling has been widely and successfully 

used in ball mills (King, 2001; Hennart et al., 2009); it was initially introduced by Epstein (1947) and used for 

comminution models (Austin et al., 1984; Venkataraman and Fuerstenau, 1984; Morrell et al., 1993; King and 

Bourgeois, 1993; King 2001; Wang et al., 2012). The Population Balance Model (PBM) is referred to as a simple 

mass balance for the size reduction. This model allows the particle size distribution to be controlled and the 

breakage mechanisms during comminution to be found (Bilgili et al., 2004, 2006). It is based on the determination 

of particle size distributions and divided into size classes. The fundamental postulate supports the kinetic model 

which states that the rate of breakage of material out of a size class is proportional to the amount of material of 

size i in the mill; it is detailed in Equation (1):  

 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑏𝑟𝑒𝑎𝑘𝑎𝑔𝑒 =  𝑘𝑖  𝑀 𝑚𝑖     (1) 

 

where ki is the specific rate of breakage, M is the mass of material in the mill, and mi is the fraction of the mill 

contents in size class i. The formulation of PBM for grinding has been developed by different authors (e.g., 

Austin et al., 1984). In brief, a mass balance for class i in a well-mixed milling process is achieved by Equation 

(2) (Austin, 1972; Datta and Rajamani, 2002): 

 
𝑑𝑚𝑖(𝑡)

𝑑𝑡
= − 𝑘𝑖  𝑚𝑖(𝑡) +  ∑ 𝑏𝑖𝑗𝑘𝑗𝑚𝑗(𝑡)

𝑖−1
𝑗=1     (2) 

 

where mi(t) is the mass fraction of particles with size class i at milling time t. The first term after the equal sign 

is the disappearance or breakage rate at which particles of class i are broken into smaller particles. The second 

term represents the summed rate at which particles in all classes j < i are broken into class i, where i and j are 

size class indices extending from size-class 1, containing the coarsest particles, to size-class N, containing the 

smallest particles. In this equation, bij is the breakage function. Breakage simulation can be obtained with the use 

of discrete elements (Cleary and Morrison, 2011; Wang et al., 2012; Weerasekara, et al., 2013; Soni et al., 2015). 

The equation of the PBM for a perfectly mixed mill derives directly from a simple mass balance for materials 

in any specific size class. This would be the simplest case, but it is also sufficiently realistic. This case assumes 

that once the material is inside the mill, it is broken directly to the product particle size. All of the material inside 

the mill has the same characteristics.  

In practice, there are some restrictions when the material inside the mill moves towards the outlet stream. 

Larger particles do not pass through the discharge grate, and then they are not released from the mill. In the 

overflow discharge mills, when the discharge grate is not used, larger particles do not leave the mill because 

finding a path to rise in the medium bed to the discharge is difficult (King and Schneider, 2011). On the other 

hand, very small particles move readily with water and are easily discharged. Therefore, the discharge end of the 

mill behaves as a classifier, which permits the selective discharge of the smallest particles and recycles the larger 

particles back into the body of the mill. Some authors state that transport is separated from breakage events. To 

enable a dynamic simulation capability for non-steady-state simulation and control modelling, a new model 

structure based on dynamic time stepping was proposed by Yu et al. (2014).  

The present work aims to study the evolution of particle size along the mill process to establish the 

relationships between particle size and its position along the mill. The study is based on the population balance 

models to determine the evolution of the particle size during the grinding process. It can be assumed that the 

distribution size is coarse at the feed inlet, the distribution size is fine at the overflow and discharge of the mill, 



 
 

 

and it is the product distribution size. Given this, it is credible that the distribution size changes along the mill; 

therefore, the real process can also be partly interpreted as a piston flow mill.  

 

 

2. Materials and methods 

 

2.1. Materials 

 

Approximately 400 kg of a low-grade tungsten ore from the Mittersill Mine, Austria, were used for the 

experiments. These are calc-silicate metamorphic rocks mainly comprising hornblende, biotite, plagioclase and 

epidote, with scheelite as the W-bearing mineral. The sample was crushed by a KHD Humblot Wedag jaw 

crusher, sieved and classified by size classes of -5 +4 mm, -4 +3.15 mm, -3.15 +2 mm and -2 +1 mm to perform 

the experiments. For the experiments, these size classes were mixed to have a feed particle size distribution. 

 

2.2. Experimental 

 

The methodology can be divided into three different stages: (1) Preparation of the materials and 

determination of operative parameters, (2) selection of the model and executing experiments, and (3) modelling 

and back-calculation to find the different parameters of the breakage and selection functions.  

Four experiments were performed with a laboratory scale overflow ball mill. Three were conducted to study 

the process and determine the parameters, and the last was for validation. The internal dimensions of the mill are 

48.26 cm in length and 22.86 cm in diameter. The tests were performed at 70% of the critical speed and charged 

with 300 balls of 26.8 mm in diameter with a residence time between 76 and 85 minutes. A window in the wall 

of the mill was built to control the activity inside the mill at a specific time. The tests started with the mill empty 

of material with only balls charging. The flow was constant during all of the experiments; initially, the mill ran 

in a non-stationary stage, and the experiment continued until it reached the stationary stage (same flow in the 

inlet and outlet). At this time, the particle size distribution of the product and three points along the mill were 

determined for each assay to prove the piston flow process. The mill was stopped to collect the samples, the 

cover was removed, and three different samples from three places along the mill were taken (Figure 1). The first 

sample was taken from the first 5 cm of the mill, the second from the centre, and the last from the last 5 cm of 

the mill. Each sample was a representative mass, approximately 500 g, from an entire cross-section of the three 

places described. The charge fraction inside the mill was also determined (Table 1). MATLAB software and the 

backcalculation globalsearch solver were used to adjust the parameters.  

 

Table 1. Operative parameters of the different experiments. L is the internal mill length; D is the internal mill 

diameter; JR is the fraction of the mill volume occupied by the bulk rock charge; and JB is the fraction of the mill 

volume occupied by the bulk ball charge.  

 

Parameters  Unit 

L 0.48 m 

D 0.23 m 

Nº balls 300 
 

JB 53.14% 
 

JR 22.21% 
 

Flow  80 g/min 

Residence time 76.5-85 min 

Power 0.75 kW 



 
 

 

Feed bulk density 1.8 t/m3 

Critical speed 94.2 rpm 

% critical speed 70 % 

Total time 106-200 min 

Rock porosity 0.52  

Mill conditions Dry  

 

 

Figure 1. Interior of the mill during an experiment. Coarse particles are fine compacted aggregates dropped 

from the window. 

 

3. Modelling 

 

Two main hypotheses have been proposed: (1) Perfectly mixed milling occurs once the material enters into 

the mill. (2) A percentage of material behaves as a piston flow phenomenon when a selection function 

discriminates the particle sizes with a certain probability to be influenced by this mechanical breakage. Figure 2 

shows the flux for this proposed model.  

 

 

Figure 2. Diagram of the process proposed for a ball mill. 



 
 

 

 

The perfectly mixed mill dynamic Equation (2) for PBM can be solved in a stationary state as a mathematical 

discretization assuming that the content of the mill is perfectly mixed at a first stage (Equation 3), mi=pi
P: 

 

𝑝𝑖
𝑃 =

𝑝𝑖
𝐹+∑ 𝑏𝑖𝑗𝑘𝑗𝜏

𝑖−1
𝑗=1 𝑝𝑗

𝑃

1+𝑘𝑖𝜏
                                                                  (3) 

 

where mi is the fraction of mill content in size class i, pi
P is the product of the mill in a differential mass, pi

F is 

the feed in a differential mass, bij is the breakage function, ki is the specific rate of breakage and τ is the residence 

time. Austin et al. (1987) proposed the variation of the specific rate of breakage with particle size as Equation 

(4). 

 

𝑘(𝑑𝑝) =
𝑆1𝑑𝑝

𝛼

1+(𝑑𝑝 𝜇⁄ )
Λ                                                                   (4) 

 

where the value of 𝛼 is a positive number, which is characteristic of the material; although the 𝛼 value will vary 

with the mill conditions, 𝜇 is the particle size that fixes the maximum position, and Λ is a positive number that is 

an index of how rapidly the breakage rate declines with increasing size. The standard form presented by Whiten 

et al. (1979) is used in Equation (5) for the breakage function: 

 

𝐵(𝑥, 𝑦) = 𝑘 (
𝑥

𝑦
)
𝑛1

+ (1 − 𝑘) (
𝑥

𝑦
)
𝑛2

𝑓𝑜𝑟 𝑥 ≥ 𝑦0                                           (5) 

 

where k, n1 and n2 are the parameters of the model. The mathematical function that discriminates between the 

particles entering the piston flow and those that are not affected is shown in Equation (6). 

 

𝑆(𝑑𝑝) = {𝑆𝑖 = 𝜔 𝑒
𝛽𝑑𝑝            𝑆 < 1  

𝑆 = 1                      𝑆 ≥ 1
                                                           (6) 

 

where ω and β are the parameters of the selection function. The process in the piston flow is described as the 

reduction of the particle size along the mill. Figure 3 shows the mass balance in any increment (dx) along the 

mill (Equation 7). 

 

 
Figure 3. Scheme of the piston flow in a ball mill. 

 

𝑊 (𝑝𝑖 + 𝑑𝑝𝑖) = 𝑊 𝑝𝑖 + ( ∑ 𝑏𝑖𝑗𝑘𝑗𝑝𝑗 −  𝑘𝑖  𝑝𝑖
𝑖−1
𝑗=1 )𝑑𝑚   (7) 

 

Then, dm can be written as in Equation (8). 

 



 
 

 

𝑑𝑚 =  𝜌 𝐽 
𝜋 𝐷2

4
 𝑑𝑥      (8) 

 

where ρ is the density of the mineral, J is the fraction of the mill filled by mineral, and D is the diameter of the 

mill. Equations (9) and (10) are obtained by introducing Equation (8) into Equation (7). 

 

𝑊 (𝑝𝑖 + 𝑑𝑝𝑖) = 𝑊 𝑝𝑖 + ( ∑ 𝑏𝑖𝑗𝑘𝑗𝑝𝑗 − 𝑘𝑖  𝑝𝑖
𝑖−1
𝑗=1 )𝜌 𝐽 

𝜋 𝐷2

4
 𝑑𝑥                                 (9) 

 
4 𝑊

𝜌 𝐽𝜋 𝐷2
  
𝑑𝑝𝑖

𝑑𝑥
= ∑ 𝑏𝑖𝑗𝑘𝑗𝑝𝑗 −  𝑘𝑖 𝑝𝑖

𝑖−1
𝑗=1                                                      (10) 

 

which have the following boundary conditions: 

 

𝑝𝑖(𝑥 = 0) =  𝑝𝑖
𝐹                                                                       (11) 

 

𝑝𝑖(𝑥 = 𝐿) =  𝑝𝑖
𝑃                                                                       (12) 

 

Equations (13) and (14) are achieved by applying the batch grinding kinetic equation solved by Reid (1965) 

for the piston flow phenomenon.  

 

 

𝑝𝑖
𝑃 =  ∑ 𝐴𝑖𝑗  𝑒𝑥𝑝 (−

𝑘𝑗

4 𝑊

𝜌 𝐽𝜋 𝐷2

 𝐿)𝑖
𝑗=1                                                           (13) 

 

𝐴𝑖𝑗 =

{
 

 
0 𝑖 < 𝑗

∑
𝑏𝑖𝑙  𝑘𝑙

𝑘𝑖−𝑘𝑗
𝐴𝑙𝑗

𝑖−1
𝑙=𝑗 𝑖 > 𝑗

𝑝𝑖
𝐹 −  ∑ 𝐴𝑖𝑙

𝑖−1
𝑙=1 𝑖 = 𝑗

                                                                (14)  

4. Results and discussion 

 

The experiments developed show that the milling process is regulated in the first step by a perfectly mixed, 

continuous mill, and this explains the existence of a gap from the feed distribution particle size to the particle 

size distribution in the feed inlet. Then, the grinding continues and its progress is regulated by the piston flow. 

Figure 4 represents the plot of different particle size distributions inside the mill in the four experiments 

developed. This phenomenon was observed in all experiments. 

 



 
 

 

 
Figure 4. Different curves of particle size distributions showing the piston flow phenomenon inside the laboratory 

scale ball mill and the product (feed inlet, centre and exit). (A) to (D) represent the experiments 1, 2, 4 and 5, 

respectively.  

 

The reduction rate obtained from the product and feed particle size distributions are 39, 32.5, 40 and 41 for 

experiments 1, 2, 4 and 5, respectively. These high reduction values are explained by the long residence time 

(Table 1). 

The differential mass inside the mill with respect to the differential mass of the product exhibited the same 

behaviour as the cumulative mass. The piston flow phenomenon is clearer in the coarsely size particles, where 

the differential mass curve decreases along the mill and increases again for the finest particle sizes (Figure 5). 

The line that defines the minimum of this differential mass draws the mass fraction, which is in a perfectly mixed 

continuous mill and not affected by the piston flow process.  



 
 

 

 
Figure 5. Plot of the differential mass of the different parts inside the mill and the product of experiment 1. 

 

The difference between the particle size product and the particle size in the feed inlet of the mill represents 

the selection function, and this is defined in the coarse particle sizes, where the reduction process was observed. 

The selection function for this work represents the mass fraction of the flow in the piston flow mill. From this 

criterion, this mathematical function is used to discriminate between the particles entering the piston flow and 

those that are not affected. Figure 6 plots the experimental values of this difference and the exponential 

regression. Parameters of these functions are indicated in Table 2. 

 

 

Figure 6. Plot of the difference between the differential mass of a sample from an internal feeding point of the 

mill and the final product and its consequently exponential regression function for each experiment. 

 

 



 
 

 

Table 2. Experimental parameters for the exponential selection function. 

Experiment ω β R 

1 0.0011 2.9074 0.92 

2 0.0009 2.9447 0.80 

4 0.0012 2.7330 0.95 

5 0.0022 2.4617 0.96 

Average 0.0010 2.7617  

Standard deviation 0.0002 0.2203  

 

The experimental average values achieved for this selection function are ω= 0.001067 and β= 2.7617. These 

values were used in the back-calculation to obtain the parameters of the model. As a goodness-of-fit indicator 

the correlation coefficient R was from 0.80 to 0.96, and it was above 0.90 in three of the four cases. The finest 

particles fit very well, whereas the coarsest particles varied (Table 2). The standard deviation was 0.0015 for the 

ω parameter and 0.22 for the β parameter. This selection function derived approximately 15% of the mass to 

piston flow process. 

The back-calculation results are plotted as simulated curves in Figure 7, and the related parameters are 

indicated in Table 3. The simulated curves follow the experimental points with an adequate fitting, and the error 

of these adjustments shows low values, from 0.123 to 0.375.  

 

 
Figure 7. Experimental (exp) and simulated (sim) particle size distributions for the experiments 2 (A), 4 (B) and 

5 (C). 

 



 
 

 

The back-calculated parameters show similar values for the different experiments. In two cases the standard 

deviation was 0.000, and in the other case it was 0.060, all extremely low values. This can be justified because 

the experiments have the same operational conditions. 

Table 3. Back-calculated parameters of representative experiments. 

Parameters Exp 2 Exp 4 Exp 5 Average Standard deviation 

k 0.100 0.100 0.100 0.100 0.000 

n1 1.000 1.000 0.896 0.965 0.060 

n2 13.928 20.000 10.001 14.643 5.038 

S1
E 31.429 20.000 23.811 25.080 5.819 

α 2.895 2.409 2.589 2.631 0.245 

˄  7.722 6.943 6.490 7.052 0.623 

µ 1.000 1.000 1.000 1.000 0.000 

Error 0.123 0.375 0.135   

 

To demonstrate that the model presented in this work fits better than the perfectly mixed mill, a comparison 

of the simulations of the piston flow model against the perfectly mixed model has been made (Figure 8). The real 

product is closer to the product of the new model than to that of the perfectly mixed model.  

 

 
Figure 8. Experimental and predicted curves of the new model and the perfectly mixed mill model for 

Experiment 5. 

 

Another experiment (Exp. 1) was developed to validate the previously back-calculated parameters. The 

average parameters shown in Table 2 were used to simulate experiment 1 (Figure 9). 

 



 
 

 

 

Figure 9. Experimental and predicted curve of the total product mesh size distribution of experiment 1. The 

simulated curve used the average parameters of experiments 2, 4 and 5. 

 

The fitting error, 0.30, demonstrates the goodness of the adjustment between experimental values and the 

simulated curve (Figure 9). The best adjustment was in the coarse particle sizes, and most of the error was 

accumulated in the fine particle sizes. These results indicate that those obtained with the balanced population 

model for a ball mill in dry conditions is a real alternative for modelling the milling process. 

 

5. Conclusions 

 

The comminution in a continuous ball mill can be described as a dual process. However, when a perfectly 

mixed mill process is predominant, a certain percentage of particles follow the piston flow phenomenon. The 

observation inside a lab-scale mill, where different samples from the feed inlet, the centre and the exit of the mill 

were obtained, evidences this behaviour. The analysis of the particle size distribution of the cumulative mass and 

the differential mas from these samples reinforces this proposal.  

A mathematical expression is presented as a selection function, which describes the probability of the 

particles going to this stage. The exponential regression was based on the plot of the difference between the 

differential mass of the product and the sample obtained from the feed inlet of the mill. A new population balance 

model is presented, with two stages, with a perfectly mixed mill solution combined with a piston flow equation 

as a second stage. The breakage function and the specific rate of breakage function parameters were found using 

back-calculation techniques. Theses parameters were used for validation, and they show an excellent prediction 

of the product.  
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