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Abstract  
The share of distributed energy generation is growing at a rapid pace. The dropping cost of photovoltaic 

panels and Governments’ incentives are making more and more convenient the installation of 

photovoltaic panels for privates all around the world. 

In this thesis, data from 18 houses in the Netherlands is collected and analyzed to verify the effect of a 

large concentration of photovoltaic energy generation on the distribution grid. The study reveals that 

during Spring and Summer problems for the grid may arise due to the large amount of current injected 

into the grid. 

Distributed storage, through the installation of batteries, and load shifting are simulated to test their 

effectiveness in the reduction of the over-injection problem. The results of the physical model are then 

studied from the economic perspective to verify which option is the most profitable. 

Finally, different machine learning algorithms are implemented to predict the load consumption and 

photovoltaic energy generation one-day ahead. 
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Chapter 1 
 

1.1 Introduction 
Climate change and rising awareness toward the effects of greenhouse gasses emissions are promoting 

the demand for cleaner energy production. Many Governments around the world are investing in 

renewable energy technologies trying to reduce costs, increasing the share of sustainable sources in 

the energy mix and create new job opportunities.  

Renewable energies, like wind and solar photovoltaic generation, are not easy to predict due to their 

strong dependence from weather conditions.  Storms or overcast days translate into sudden changes 

in the power output of windfarm or PV installations. The current electric grid is based on the constant 

balance between electricity generation and consumption, no grid-size storage installation is currently 

available, except for some pilot projects. The growing amount of unpredictable renewable generation 

poses a problem in the management of the electricity grid; solutions are needed to guarantee the 

security of the system without slowing the advance of renewables [1]. 

Uncertainty in the power generation is not the only problem the grid needs to address. Traditionally 

electricity has been deployed in a centralized manner. Big power plants produce the necessary 

electricity and through a voltage grid, organized on different levels, energy reaches the final consumers. 

This paradigm is being challenged by the rise of “prosumers”, individuals that install photovoltaic panels 

on the rooftops of their houses. The specific cost of PV for residential installations is constantly 

decreasing, in 2009 was equal to 7.06 $/WDC in 2016 it was 2.93 $/WDC  and it’s forecasted to drop 

further [2]. In many countries, the injection of energy back into the grid is not only allowed, but 

encouraged through a system of subsidies and feed-in incentives, the grid is used as a virtual battery 

where excess energy can be freely dumped. In low voltage sections of the grid, where solar rooftops 

density is maximum, network congestion problems are becoming more and more frequent. The cable 

and the transformers installed in this branch of the grid require upgrades to cope with the increasing 

backflow of electricity. Grid upgrades are not only expensive, but also time consuming, thus system 

operators are looking for alternative solutions [3].  

The above-mentioned challenges are putting in discussion the “status quo” of grid operation, managing 

the system in a “smarter” way seems mandatory. Recently there has been a significant increase in the 
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installation of smart meters, devices used to collect data of energy generation and consumption [4]. 

Access to real-time data is the first step towards a “proactive” and safer grid. Leveraging the high 

amount of data collected and the continuous advancements in data mining techniques is possible to 

gain valuable insights on user consumption patterns and even forecast future behaviors. Estimates of 

future generation and consumption are key elements for better grid planning.  

 Improvements in the storage technologies are another crucial element for the energy revolution, 

batteries prices are decreasing [5]. Batteries can be used to provide flexibility covering the discrepancies 

between load and consumption. Storage coupled with solar rooftops can significantly boosts self-

consumption and reduces over-injection during sunny days. More distributed renewables can be 

integrated in the grid leveraging storage technologies [6]. 

Flexibility of the grid can also be increased through alternative solutions, like Demand Side 

Management. Most of the modern appliances can be monitored and controlled remotely, heat pumps, 

dish washers, laundry machines are all example of interruptible loads. Utilization of controllable loads 

can be shifted from peak hours to other periods of the day, when generation is abundant and 

underexploited. These solutions were unlocked by the rollout of smart-meters and by the introduction 

of information technologies knowledge in the management of the energy system [7]. 

Current years are a pivotal point in the evolution of the energy grid. The challenges to face are 

numerous and difficult to solve. Energy field is fertile ground for innovative business models and 

technologies. 

 

1.2 Scope of the Thesis 
This thesis utilizes data from 18 houses, located in Delfzijl a small city in the province of Groenningen, 

in the north of the Netherlands. Every house is provided with a 4.5 kW peak solar rooftop, heat pump 

and smart meters.  

The scope of the thesis is to use available data to study and observe what happens when a high 

concentration of renewable generation is present in low voltage sections of the grid. The study of the 

data highlighted seasonal over injection problems that are addressed making use of storage and DSM. 

Finally, forecasting algorithms for PV energy production and load consumption are implemented. The 

mentioned algorithms are needed to develop an online system through which DSOs can interact with 

customers trying to adjust the status of the grid. 

It is important to remark that the thesis is a preliminary study to assess the potential opportunity of 

using storage and DSM, hence some technical details, like analyzing the power flow of the distribution 

grid or deciding the optimal position for the installation of the batteries are not considered. Some 

information, especially grid upgrade costs should also be reviewed in a future study of the problem. 
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1.3 Organization of the thesis 
This thesis is organized in seven chapters, this first chapter serves as a general introduction to the 

energy sector situation showcasing the most relevant trend and problems to address in the industry. 

The second chapter is a comprehensive review of the most significant topics in the contest of the study. 

Technological solutions for the improvement of the grid, forecasting algorithms and energy policies are 

discussed to prepare the framework within which the thesis is developed. The third chapter is focused 

on the study of the data, collection of the information and analyses performed are explained together 

with the main findings. Attention is paid to understanding the consumption patterns along the day and 

the year. Chapter four presents the simulation prepared to evaluate the installation of batteries and 

implementation of DSM. The economic profitability of the solutions implemented in Chapter four is 

investigated in Chapter five. Chapter six focuses on algorithms for the prediction of load consumption 

and PV generation, these are key tools in the implementation of a real-world energy management 

application. Different predicting algorithm are explored and their performances are evaluated. Chapter 

seven wraps up all the findings of the thesis, providing highlights of the results and suggestions for 

future developments on the topic.  
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Chapter 2 
 

The transition toward a “smarter” grid is a very relevant problem, many researches with different 

focuses are undergoing in this study field. This chapter will present some of the previous works in the 

this research area; the results of the studies are mentioned and used to address the problem that this 

thesis is focusing on. In addition to the technical review, energy policies are analyzed to better 

understand the choices that the Dutch Government is taking. 

Three important topics have been evaluated:  

• Usage of distributed storage 

• Demand Side Management 

• Forecasting algorithms for photovoltaic energy generation and load consumption 

 

2.1 Distributed storage using batteries 
Batteries are seen by many experts as an effective tool for balancing the grid. Having some storage 

capacity allows to accumulate energy, when generation is greater than consumption and use it later in 

the day. Additionally, stored energy can be used to increase the security of the grid guaranteeing 

supplies in case of black-outs or adjusting unbalances of the network. While storage technology has 

been known from many years it has become relevant only recently, thanks to the technological 

improvements and the increasing amount of variable generation added to the grid. 

In [8] the authors show the necessity of batteries and power electronics in the management of the grid, 

they also highlight the importance to create different revenue streams using batteries for more than 

one task. Household storage can be used to increase the reliability of the service in case of black-outs 

as well as a tool to boost self-consumption. The main result of the study is the simulation of two 

systems, a 5 kW PV system for home application and a 100 MW wind farm, both systems showed their 

potential to make the grid more stable. Another important finding is the influence of local condition of 

the grid and its topology on the design of the optimal solution. 

[9] is a comprehensive report from IRENA summarizing the state of the art of battery technologies and 

addressing some potential usage opportunities. The report shows that storage market is becoming 

more and more important, prices are steadily decreasing due to recent technological breakthrough and 

large scale production of the batteries. Lithium-ion batteries is the rising technology, due to a good 

energy and power density, long lifetime and decreasing costs. 
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[10] is another study that exposes the different solution that are available and investigates the possible 

opportunities for the different shareholders, ranging from TSO to single customers. It has been found 

that batteries can be particularly beneficial for DSO as an alternative solution to grid upgrades and as a 

tool to decrease the thermal stress of the substations components. Batteries can also be utilized to 

improve the profile of the local voltage and finally they can provide back-up in case of emergency 

situations. 

In the contest of this thesis Lithium-Ion batteries are used to relieve the stress on the grid caused by 

the high share of photovoltaic energy produced by the houses analyzed. 

 

FIGURE 1: VALUE PROPOSITION OF STORAGE [11] 

2.2 Demand Side Management opportunities  
Demand Side Management is defined as a portfolio of measures to improve the energy system at the 

consumption side [7]. DSM is considered as one of the main enabler in the transition toward a “smarter” 

energy system.  

Reference [12] analyzes the possibility to use heat pumps as a source of flexibility, different business 

models are presented. The results show that heat pump flexibility has high potential in driving down 

grid costs. An important remark from the study is the necessity of a clear regulation for these kind of 

activities, the creation of a new actor in the energy field, the aggregator and the deployment of an 

infrastructure that guarantees the interconnection of all the interested parties. 

In this thesis is studied the possibility to shift the production of hot water and consuming part of the 

energy produced by the PV panels, instead of injecting it in an already congested grid. 
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2.3 Forecasting algorithms for photovoltaic energy generation and load 
consumption 
The balance of the grid is a difficult task to accomplish, knowing the future values of generation and 

consumption is crucial for a better grid management. Many efforts have been done in the creation of 

forecasting tools of renewable energy generation and load consumption. Three approaches can be 

followed to generate weather predictions: 

 

• Physical approach 

• Statistical modelling  

• Hybrid approach 

Different input data is needed depending on the model used, outputs are also very different in terms 

of time and space resolution. 

Numerical Weather Prediction (NWP) belongs to the physical methods class. This kind of approach is 

based on the solution of physical equations that describe the evolution of the weather given some 

initial conditions. NWP models are usually used to generate predictions with a large resolution both in 

time and space. Solving the physical equations requires high computing power, therefore this service is 

typically provided by national weather services. The output of these models often requires additional 

manipulations to remove the biases or  extrapolate information about specific areas [13]. 

Statistical models are more general approaches, no prior knowledge of the system is required, the 

algorithms used are designed to “learn” from the data actualizing parameters and generating a function 

that maps the relation between input and output data. These methods are particularly interesting since 

they are very general, the same forecasting algorithm can be applied for different locations with some 

minor adjustments. It is also important to remember that the results of the model are heavily influenced 

by the quality and quantity of input data [13]. 

Hybrid models are an attempt to combine the two previous approaches. Using statistical models on top 

of NWP often results in very accurate predictions.  

Previous works used different types of machine learning techniques. The decision of the algorithm that 

better fits the data is one of the key decision in a machine learning problem. Performance of statistical 

methods are heavily influenced by the amount and quality of input data, for example some locations 

may have a more stable and predictable weather compared to others. Comparing the results of 

different researches is difficult, since there is no consensus on the error metrics to use when presenting 

the results. Some attempts have been made to address this problem. Technical reviews, where different 

models are compared, have been written by several authors [15] [14]. 

 In [16] SARIMA models in addition to Support Vector Machine (SVM) are used, interesting to notice 

how the combination of the two approaches results in an improvement of the performance. SARIMA 

models are good at capturing linear trends in the data, whereas SVM is used to capture the non-linear 

components.  
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In [17] quantile random forest is implemented to forecast the production of five PV plants using 

weather data as input for the model, the paper thoroughly explains the methodology and documents 

the advantages of using random forest – based algorithm in PV forecasting.  

Reference [18] is a detailed study in which ANNs are used to forecast load profiles, different aggregation 

sizes of the dataset are also tested to observe their influence of the results. Interestingly the higher the 

aggregation level of the data the smoother the load profiles become and consequently forecasts’ 

quality improves.  

 

2.4 Dutch energy policies review 
The Dutch Government, being one of the countries who signed the Paris Agreement, has pledged to 

drastically cut its carbon emissions in the following years. The current objectives are to produce at least 

16% of the total energy from renewables by 2023. By 2050 the emissions should be reduced by 95% 

[19]. The Government is committed to reach its goals, an inclusive discussion where all the parties 

involved are listened has been started, to draft a plan that will allow the Netherlands to achieve these 

ambitious goals. Three main pillars to future policies have been identified: 

• Reduction of CO2 emissions 

• Take advantage of all the economic opportunities that energy transition offers 

• Integrate energy in spatial planning policy 

 

 

FIGURE 2: DUTCH GOVERNMENT 2050 GOALS [20] 
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Four working area are highlighted: 

• Power & light 

• High-temperature heat 

• Low-temperature heat 

• Transport 

 

Regarding power and light sector, which is the most relevant for this thesis, the objectives are to reduce 

the carbon footprint of the energy industry, improve the Northwestern European electricity market and 

adapting the electricity system to accommodate the increasing decentralized supply of electricity and 

boosting the flexibility of the whole system. The measures that are being considered to achieve these 

goals are: 

 

• Extending the energy production incentive scheme (SDE+) 

• Collaborate with neighboring countries to avoid competition for subsidy tools between nations 

• Proceed with the large-scale rollout of offshore wind energy  

• Applying the successful approach used for offshore wind and utilize it for other technologies 

• Encourage local renewable energy production  

 

The Dutch Government strongly believes that energy transition will largely take place at regional and 

local level, central institutions should cover a support role, providing guidance and incentives to boost 

progress [20]. 

 

FIGURE 3: DUTCH EMISSION BREAKDOWN BY SECTOR [20] 

High-temperature heat is important to address since in the Netherlands there are numerous energy-

intensive companies that accounts for almost 25% of the total carbon emissions of the country. The 

challenge to face in the sector is particularly difficult, severe cuts in the carbon emission are needed, 

but at the same time the cost-competitiveness of the industry has to be preserved. Carbon tax schemes 

have already been applied by the European Union, but the results of such measures revealed to be 
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insufficient. The strategy of the Dutch Government is to utilize a mix of incentives and regulations. 

Energy conservation measures, more effective tax schemes, alternative heating methods and finally 

CO2 capture and storage are the tools chosen to make Dutch industrial sector more sustainable. A 

measure to reduce emissions that is deemed particularly effective is exploitation of deep geothermal 

heat, that according to a study made by ECN could cover up to 30% of the total heat demand of the 

industry [20]. 

Residential sector emissions are addressed in the low-temperature heat policies. This sector accounts 

for more than 30% of the total energy consumption of the country. Energy conservation and a reduction 

in the usage of natural gas appear as the main challenges to accomplish. No new gas infrastructure will 

be created in newly built districts, moreover the requirement to provide a gas connection will be 

replaced by a more general right to a heating infrastructure connection. The overall objective is to meet 

the heating requirement through local solutions like heat pumps, solar boilers, district heating and 

biogas installations, for these reasons a lot of decisional power is left in the hand of local administrations 

[20]. 

The fourth focus area is the transportation sector, which is still dominated by fossil fuels. The key words 

here are: fuel saving, sustainable biofuels and zero emission vehicles. The working areas are not only 

limited to technological development of solutions to address this problem, great importance is reserved 

to behavioral change. Transportation sector has some outstanding targets, by 2035 all the newly sold 

passenger cars should have zero emissions and by 2050 all the circulating cars should be emission free. 

Upgrades to the rail and road network have been planned for the future, charging points for electric 

cars will be deployed on the territory and the usage of locally produced fuel and renewable energies 

are promoted [20]. 

The current situation in terms of local energy production revolves around net metering. The Dutch 

Government realized the importance of distributed generation as a mean to foster social awareness 

toward energy transition. Even though distributed generation is not the most effective way to produce 

energy it is believed that its social function is worth to be supported. The form of net-metering applied 

in the Netherlands is particularly convenient for the users, since no energy taxes, no renewable energy 

surcharge and no VAT are applied on the netted electricity. This scheme is based on the usage of the 

grid as a virtual battery; electricity can be injected and extracted from the grid without any limitation. 

In order to guarantee the security of the network some upgrades are needed. Interconnection with 

neighboring countries are planned, an extended grid can accommodate increased incoming and 

outcoming energy flows. Flexibility is also another key aspect in the reinforcement of the grid. Small-

scale users’ flexibility is fostered through the installation of smart meters that collecting data enables 

new possibilities in the DSM. Moreover, new actors are emerging in the energy field: aggregators. Their 

role is to gather group of small-consumer and provide market services such as flexibility through 

demand response. Another crucial point that will be addressed by the Government is the regulation of 

the electricity storage market regarding the fiscal policies that are applied to stored energy. 
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Chapter 3 
 

The chapter’s focus is on the data that has been used in the thesis. The data pipeline is presented in all 

its passages, from collection to visualization, passing through the “cleaning” phase where anomalies 

are handled. Main findings are also presented. 

 

3.1 Data pipeline 
3.1.1 Data collection 
As mentioned in the first chapter, the data used come from one of the active projects of Enervalis, the 

company that proposed this thesis. Eighteen houses located in the city of Delfzjil, in the north of the 

Netherlands, are monitored. The houses are equipped with 4.5 kW peak PV panels, smart meters, a 200 

liters hot water tank and heat pumps to warm up water and provide space heating.  

 

FIGURE 4: DELFZJIL LOCATION 

The readings from the smart meters are sorted in different categories: household load, PV production 

and heat pump consumption. Sensors do not track only electricity usage but also additional information 

such as hot water consumption and the level of water in the tank. The sampling rate can be adjusted 

to different values, starting from a 5-minute resolution. 
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Data utilized for simulation purposes has a sampling rate of 15 minutes, since this is the relevant time 

horizon for grid planning. Hourly data is used for analyses, the quarterly hour precision is not needed 

to discover the information hidden in the data and the resulting plot would be less readable. Since the 

variation of the measured quantities are expected to be dependent on the season, a year of data is 

collected from 1/7/2016 to 28/6/2017. 

Python is the programming language used for data collection and elaboration. Data is queried using the 

Application Programming Interface (API) of Enervalis; information is requested remotely and provided 

to the user in the form of a JSON (JavaScript Object Notation) object, in which timestamp and desired 

values are stored.  

3.1.2 Data cleaning and aggregation 
Data is collected from each of the eighteen houses individually, but for visualization and analysis 

purposes it is aggregated. Consumption profile of a single house may vary a lot during time, whereas 

aggregated ones are easier to understand and predict. Moreover, for grid planning purposes is not 

important to know the details of each single house; regulation is done on groups of them. 

 Sometimes sensors go offline for several reasons, when it happens data shows anomalies that need to 

be corrected. In the case of consecutive wrong readings, the values are substituted with the ones 

measured the previous day at the same hour. Isolated anomalies are easier to treat, an average of the 

adjacent values can be used. Luckily very few times data needed to be corrected, hence the overall 

results of the analysis were not modified excessively. 

 

3.1.3 Data Visualization 
Visualizing the data helps to capture the most relevant information. The different components of the 

system are presented individually and analyzed. First, electricity generation and consumption is 

discussed, a separate analysis is devoted to hot water consumption due to the usage of heat pumps’ 

flexibility. 

 

3.2 Photovoltaic panels’ data 
The PV panels’ energy profile is both daily and yearly time dependent. Several factors influence the final 

production, the most important ones are: solar irradiation, temperature and humidity all of which vary 

with the seasons. The following figure represents the daily PV production by month. The graph used is 

a boxplot, the average value is shown with a red triangle, the median with a green line and the black 

whiskers show how much the data is sparse. 
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FIGURE 5: DAILY PV ENERGY BOXPLOT 

Energy generation is minimum during Winter months and maximum during Summer, also notable is the 

high amount of electricity produced in May. Late Spring is a very convenient period for PV production 

due to the high irradiance and mild temperature. Another important observation is the large difference 

between the maximum and minimum values in Summer and Spring. In the Netherlands, these periods 

are characterized by great variability of weather conditions, while some days are hot and sunny others 

are windy and rainy. 

 

3.3 Load data 
Electrical load consumption need to be divided in its controllable and fixed components. The installed 

smart meters differentiate only between household load (meaning all the appliances, lightning, etc.) 

and the consumption of the heat pumps. Household load is considered as fixed; while some smart 

appliances may be installed, no information about their individual consumption is available, hence 

nothing can be done with this information. Heat pumps usage has a dedicated reading from the meters. 

Space heating and hot water production are provided through heat pumps, the latter function is 

particularly interesting due to the presence of a hot water tank that allows to decouple the production 

of hot water from its consumption.  
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FIGURE 6: DAILY FIXED LOAD BOXPLOT 

 

FIGURE 7: DAILY CONTROLLABLE LOAD BOXPLOT 

The above figures compare the fixed and controllable load energy consumption along the year. The 

magnitudes of the two load categories are very different. Controllable load is just a small fraction of the 

total consumption, but controlling it helps to change the shape of the daily load curve. 
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3.4 Excess energy 
So far production and consumption have been analyzed, but what is truly interesting to observe is the 

net difference of these values: the excess energy that, without storage, would be injected into the grid. 

 

FIGURE 8: DAILY EXCESS ENERGY BOXPLOT 

Late Spring and Summer are the period in which there is a constant daily net injection of energy into 

the grid, while Fall and Winter are characterized by net import from the network. The amount of energy 

injected during the hot season is considerable and could lead to problems in the system. Spring and 

Summer situation is analyzed more carefully, time-series plots of load and consumption are created. 
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FIGURE 9: NET ENERGY HOURLY TIME-SERIES 

The plots show several interesting information, first the difference between load and consumption is 

significant, thus the large amount of excess net energy. Secondly, the production is highest when load 

is fairly low, charging batteries during this part of the day or shifting the hot water production could be 

good strategies for reducing current injection during the day. 

 

 
 

 

 



 21 

3.5 Heat pumps data 
Heat pumps data is particularly interesting since the information available does not only include the 

consumption, but also the operating mode of the devices. Moreover, the equipment can be controlled 

remotely, their usage can be scheduled. The mentioned operating mode are three: space heating, hot 

water production and a sterilization cycle.  

 

3.5.1 Space heating 
Heat pumps can be used to warm the rooms of the houses, the devices are not able to provide cooling. 

Space heating is not a flexible service, it is heavily influenced by the presence of people in the house. 

Thermal inertia of the building could be utilized to activate the heat pump in advance, but the 

implementation of such as a system would not be trivial and could lead to unexpected increases in the 

electricity consumption. 

 

FIGURE 10: DAILY SPACE HEATING ENERGY CONSUMPTION BOXPLOT 

Since no cooling can be provided by the installed heat pumps, consumption during Summer months is 

very low, almost nihil. Overall space heating is not interesting in the analysis, since it cannot be 

controlled and its usage is low during the critical period for over-injection. 
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3.5.2 Sterilization cycle 
Warm stagnant water is the perfect habitat for bacteria proliferation, that is why the tanks need to be 

sterilized regularly. To do so, the tanks are heated up to 65°C; while the activation procedure can be 

easily scheduled to the most convenient time of the day its activation is required only once a week, 

hence its overall energy consumption is not relevant. 

 

 

FIGURE 11: HOURLY ENERGY CONSUMPTION STERILIZATION CYCLE 

 

3.5.3 Hot water production 
This function is the most interesting one, due to its flexibility and limited disturbance of users’ habits. 

The average daily consumption is around 20 to 25 kWh/day during the Spring-Summer period, on top 

of that the presence of the hot water tank makes it controllable. Energy consumption is significantly 

higher during Winter and Fall while water consumption is not much higher, this is related to the 

different temperature increase required and the consequent reduced thermodynamic efficiency of the 

system. 
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FIGURE 12: DAILY ENERGY CONSUMPTION FOR HOT WATER PRODUCTION BOXPLOT 

It is important to verify the time at which energy is consumed during the day to warm up water, boxplot 

do not provide this kind of information, time-series plots are better suited for the task. These graphs 

show the average daily profile, which is drawn using a solid line while the shadowed area is used to 

show how much the data varies during the observation period. 

 

FIGURE 13: ENERGY CONSUMPTION TIME-SERIES FOR HOT WATER PRODUCTION 

Hot water is used mainly during the day and depending on the month two or three peaks are visible. 

Data show high variation along the day, but it looks like that from noon to 2PM consumption is generally 

low. Variation from one month to the other can be partially related to the vacation periods in the 

Netherlands, in particular it can be observed that, during Summer, peaks appear slightly later during 

the day.  
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3.6 Water consumption data 
Consumption patterns need to be analyzed to assess the feasibility of shifting hot water production. 

The tank capacity is 200 liters, the daily consumption should be lower than the storage volume and the 

peak consumption hours should be sufficiently separated one from the other, so that water can be 

warmed in the meantime. 

The first plot presented is the aggregated daily average consumption of the 18 houses month by month. 

 

FIGURE 14: DAILY WATER CONSUMPTION BOXPLOT 

The average daily consumption for the entire year is around 1470 liters per day, that divided by the 

number of houses, gives 86.5 liters per day per house of hot water. Also, it is important to observe that 

the consumption is relatively constant throughout the year, a slight increase is visible during Spring. 

The lowest consumption is registered in August, most likely because of vacations. The installed tanks 

are much larger than the daily average consumption, thus no problem should arise by shifting the hot 

water production. 
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FIGURE 15: HOURLY WATER CONSUMPTION TIME-SERIES 

Besides general statistics values, it is useful to observe the time-series plot of hourly water consumption 

to identify the peak hours. Only Spring and Summer months are analyzed, since they are the periods 

during which over-injection is more likely to be a problem. Depending on the month two or three peaks 

are visible, moreover it can be seen how these are concentrated during morning and late afternoon, 

while around noon consumption is low. Excess energy is often high around midday, since the solar 

irradiance is particularly strong and the consumption is low, hot water production could be shifted 

around this time harvesting the heat necessary to warm up the water for the entire day. 

Additional elaboration on the data is presented to pinpoint the highest consumption hours, since 

interpreting time-series plot is somehow subjective. The first approach utilized consists in summing the 

maximum hourly values one by one until the 75% of the daily consumption is covered, the selected 

hours are stored and their frequency showed through histograms. 
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FIGURE 16: WATER CONSUMPTION PEAK HOURS HISTOGRAMS 

A second approach is to first decide the maximum number of hours to sum for each day and then check 

how much of the total consumption is covered by the sum of the selected values. 

 

FIGURE 17: WATER CONSUMPTION PEAK HOURS HISTOGRAMS AND BOXPLOTS 

The resulting plot is composed of three subplots, on the left is the count of how many time a certain 

hour has been selected, the central boxplot shows how much of the daily consumption was covered 

selecting a certain number of relevant hours, finally the plot on the right is a graph that shows how 

much of the total consumption is covered by selecting a certain number of hours. Using the first 5 

maximum consumption hours of each day the 75% of the daily consumption is represented. 
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Heatmaps are another useful tool to quickly visualize the top consumption hours over a long period of 

time.

 

FIGURE 18: WATER CONSUMPTION PEAK HOURS HEATMAPS 

Each row represents a specific month, the first column is created using the first three peak hours, the 

second using five, the third one seven. A black square means that the corresponding hour is a peak 

consumption one for the specific day. This kind of representation is a quick way to summarize high 

dimensional data in one picture and understand the consumption patterns over several months in one 

plot. Using the two approaches and the resulting plots, the initial intuition formulated from the time-

series plot can be confirmed, morning and late afternoon hours are the periods during which 

consumption is higher, midday is a convenient time to refill the tank and cover the consumption of the 

entire day. 
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Chapter 4 
 

To verify the effectiveness of batteries and DSM in solving the over-injection problem a simulation is 

prepared. In this chapter the key assumptions for the simulation, the flowchart and the operative 

strategy of the system, the presentation of the results and their discussion from a technical standpoint 

can be found. 

 

4.1 Key assumptions 
Due to lack of some information and to simplify the analysis some assumptions are made. The most 

critical one is the current injection threshold that has been set to 48.6 kWh, corresponding to the 60% 

of the total peak production of the eighteen houses. The value used is not official, no project is currently 

undergoing with the DSO of the studied area and it is also extremely dependent on the local condition 

and topology of the grid. The used value has been suggested by co-workers at Enervalis as a reasonable 

starting point considering their experience on similar projects. Another assumption related to the over-

injection is how to deal with surplus energy, in this analysis it is curtailed. Batteries simulation required 

some simplifications, round-trip efficiency is set to 90%. No studies on the effect of full discharges, or 

on the optimal positioning in the grid are made. It is important to remark that the scope of this study is 

to evaluate the profitability of different alternatives to cope with the back-flow problem. No detailed 

data about the topology or state of the grid is available, hence very refined technical analyses cannot 

be prepared. 
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4.2 Starting conditions - curtailment 
A preliminary study on the curtailment is beneficial, the most problematic periods of the years can be 

identified. Quarterly hour data is studied and the following plots made. 

 

FIGURE 19: DAILY CURTAILMENT BOXPLOT 

It can be observed that curtailment is needed only in Summer and Spring, thus different operative 

strategies for the batteries will be necessary. Winter and Fall should take advantage of the batteries to 

increase self-consumption, whereas in Spring and Summer the focus should be on reducing the 

injection into the grid. 

Another important finding is that energy is curtailed in the central part of the day, thus hot water 

production is concentrated between 9AM and 3PM. 

 

4.3 Battery strategies 
Battery utilization strategies should be set accordingly to the goal to achieve. Two strategies for 

charging and discharging are considered. The naïve one is to charge the battery every time the energy 

produced by the PV panels is higher than the load. An alternative operative mode is to charge the 

battery only when the injection threshold is not respected, the main goal of this second approach is to 

minimize the curtailed energy using the storage of the battery to relieve some stress from the grid. 

Considering the findings about the curtailed energy the first battery strategy should be used during 

Winter and Fall, whereas the second one is better suited for Spring and Summer. 
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FIGURE 20: CURTAILED ENERGY AS A FUNCTION OF BATTERY SIZE 

Charging the battery every time production is higher than consumption leads to very poor results, as 

figure 20 shows. The reduction in curtailed energy is extremely low, thus a different strategy for the 

management of the battery is adopted. 

 

 

4.4 Simulation diagram 
Different battery sizes are tested to find the optimal size of storage to install. Historical data is utilized 

for the simulation, a quarter hour time span has been used, since this is the relevant time horizon in 

grid planning. Two different flowcharts are designed to account for the different operative conditions 

during Fall-Winter and Spring-Summer.  
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FIGURE 21: SIMULATION DIAGRAM FOR SPRING AND SUMMER 

 

The first step in the simulation is to compute the difference between the energy produced by the PV 

panels and the load consumption. When the resulting quantity is larger than the injection threshold the 

capacity of the battery is checked, if the battery is not full, energy is injected into it. The energy left is 

exported to the grid, until the injection limit is reached, the remainders are curtailed. Whenever 

consumption is larger than production energy from the battery is used to cover the deficit, if it is not 

enough the rest of the needed energy is bought from the grid. 
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FIGURE 22: SIMULATION DIAGRAM FOR WINTER AND FALL 

The Winter and Fall simulation is almost identical to the Summer and Spring one, in fact the right branch 

of the flowchart is left unchanged. The differences appear when production is larger than consumption, 

here the battery is charged whenever storage capacity is available and not only during peak hours. 
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4.5 Simulation scenarios 
4.5.1 Battery and Business as Usual energy management 
In this scenario, several batteries of different size are tested while the energy utilization is not modified. 

The results of the simulation serve as baseline in the comparisons with the other alternatives, moreover 

the effect of installing storage only can be observed. 

 

 

FIGURE 23: CURTAILED ENERGY AS A FUNCTION OF BATTERY CAPACITY BAU SCENARIO 

Storage clearly helps to decrease the amount of curtailed energy. In one year, hundreds of kWh of 

electricity can be saved with the installation of a relatively small amount of batteries. 

The amount of curtailed energy does not decrease linearly with the storage size thus, installation of 

additional capacity should be carefully evaluated to ensure its economic profitability. The physical 

reason behind the shape of the curve can be understood analyzing the state of charge of the batteries 

hour by hour, day by day for different battery capacity. 
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FIGURE 24: STATE OF CHARGE 42 KWH BATTERY SPRING AND SUMMER BAU SCENARIO 

The presented heatmaps show the evolution of the battery charge in the relevant months for the 

analysis, on the x-axis are present the day of the months, on the y-axis the hour of the day, the color 

scale is the state of charge of the storage device, the brighter the higher the charge.  

 

FIGURE 25: STATE OF CHARGE 112 KWH BATTERY SPRING AND SUMMER BAU SCENARIO 
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The large difference between production and consumption is the reason of the reduced effectiveness 

of bigger batteries. Two exemplary battery sizes are presented here, to see how much the state of 

charge of the battery is influenced by the total storage size. It is clear that, large batteries cannot fully 

discharge from one day to the other, hence their storage capacity cannot be fully exploited during 

curtailment hours. Considering the information about the state of charge of different size batteries and 

the curtailed energy plot it can be seen that in between 42 and 56 kWh lies the “sweet-spot” for storage 

capacity. Choosing to install batteries of this dimension allows to save 600 – 800 kWh/year.  

It is also relevant to highlight how the sole installation of batteries cannot solve entirely the over-

injection problem. Very large size batteries should be used to cancel curtailment completely, but their 

convenience would be very limited and the type of storage would be seasonal. Alternative storage 

solutions could be considered, but at the moment they are not completely reliable nor cost convenient.  

 

FIGURE 26: STATE OF CHARGE 42 KWH BATTERY FALL AND WINTER BAU SCENARIO 
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FIGURE 27: STATE OF CHARGE 112 KWH BATTERY FALL AND WINTER BAU SCENARIO 

State of charge plots during winter months are shown, in this period batteries are used in the normal 

operating mode charging whenever generated energy is greater than the load. Large batteries struggle 

to reach the full storage capacity, particularly during December and January the state of charge of the 

devices is low due to the limited solar insolation and high load. While the main purpose of installing 

batteries in this study is to reduce the over-injection in the grid, some positive side-effects can be 

achieved as well. During Fall and partially Winter self-consumption can be boosted increasing the 

consumption of locally produced energy. 

 

4.5.2 Battery and improved energy management 
Similarly to the previous scenario, different battery sizes are considered, in addition to that the hot 

water production is shifted to the time range between 9AM and 3PM. Better results are expected 

compared to the BAU energy management, using energy to warm up water should reduce the amount 

of excess energy and helps to maintain some storage space in the batteries for longer. 
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FIGURE 28: CURTAILED ENERGY AS A FUNCTION OF BATTERY SIZE, IMPROVED ENERGY MANAGEMENT 

The hypothesis mentioned before is confirmed, the amount of curtailed energy is drastically reduced. 

That being said, the shape of the curve has not changed, meaning that batteries still get saturated 

during the day and part of the energy still gets lost. 

 

FIGURE 29: STATE OF CHARGE 42 KWH BATTERY SPRING AND SUMMER WITH IMPROVED ENERGY MANAGEMENT 
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FIGURE 30: STATE OF CHARGE 112 BATTERY SPRING AND SUMMER WITH IMPROVED ENERGY MANAGEMENT 

The state of charge heatmaps confirm that even though DSM is applied and part of the consumption is 

shifted to the central part of the day, batteries get full quickly and part of the energy needs to be 

curtailed. The heatmaps obtained using DSM are not very different from the one without it, because as 

shown before the controllable load is much lower than the fixed one, but looking at the yearly results 

it can be seen that shifting hot water production is highly beneficial.  

The amount of produced energy is too high compared to the consumption, so no matter which solution 

is implemented the problem will not be solved entirely, but only reduced. A consideration would be to 

use smaller panels for the next installations or find some local consumer in the area that could make 

use of the extra energy. The houses analyzed are in the urban part of the city, so an example of big 

consumer could be some supermarket or some shops, another interesting alternative could be electric 

vehicles. The Netherlands has a very aggressive approach in terms of green mobility, electric cars offer 

an interesting possibility for energy storage through the big batteries that they are equipped with. 
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FIGURE 31: STATE OF CHARGE 42 KWH BATTERY FALL AND WINTER WITH IMPROVED ENERGY MANAGEMENT 

 

FIGURE 32: STATE OF CHARGE 112 KWH BATTERY FALL AND WINTER WITH IMPROVED ENERGY MANAGEMENT 

As for the previous scenario, the state of charge of the batteries during Winter is analyzed. Big batteries 

still seem to struggle to reach full capacity during Winter months and they cannot be exploited 

completely. 
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4.5.3 Scenarios comparison 

 

FIGURE 33: COMPARISON BAU AND IMPROVED ENERGY MANAGEMENT SCENARIO 

Figure 33 helps to summarize the findings of the chapter, different scenarios are presented in the same 

picture. The green line shows the effect of installing batteries without modifying the energy 

consumption pattern. The blue line is the result of battery installation and load shifting. The effect of 

DSM can be observed measuring the distance between the two curves when the installed storage is 

zero, shifting hot water consumption saves between 700 – 800 kWh/year. As mentioned before, none 

of the strategies eliminates the over-injection problem, a quota of the energy is always curtailed. A very 

large amount of storage would be needed to eradicate the problem completely, but the solution would 

never be economical nor convenient from the practical point of view. 
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Chapter 5 
 

Chapter 4 has proved that batteries and DSM are good solutions from the technical standpoint, now 

their economic feasibility is evaluated. Some assumptions regarding prices are needed to conduce the 

analysis. The main hypotheses, the calculation and the results are presented and explained in this 

chapter. 

 

5.1 Key Economic Assumptions 
Nowadays some storage solutions, like the Tesla Power-wall, cost around 500€/kWh [21]. Storage price 

is forecasted to decrease in the future, thanks to technological breakthroughs and mass production of 

the devices. To take into account future discounts on cost of batteries some estimates are used. Figure 

34 shows estimates on the price of lithium-ion batteries, it comes from a study prepared for the 

Australian Energy Market Commission [5]. The price of electricity has been set to 0.2 €/kWh [22], of 

course this quantity is also subjected to variation through time, but no reliable estimates for the future 

have been found, hence it is kept constant.  

 

FIGURE 34: BATTERY PRICES FUTURE ESTIMATES [5] 
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The amount of curtailed energy is calculated using historical data, an underlying assumption is that this 

quantity will not vary significantly in the future. Considering the already advanced nature of the houses; 

each one of them has PV panels, heat pumps and hot water tank, it is reasonable to assume that things 

will not change greatly in the future. It is unlikely that more PV capacity will be installed in the coming 

years on these households. Nonetheless, the effect of increased/decreased curtailment is tested and 

compared to the reference scenario. 

 

 

5.2 Economic calculation explanation 
Different options are evaluated: installation of batteries plus load shifting, grid upgrade and no 

intervention. The fixed and variable costs of each scenario are considered and the total expenditures 

are actualized and compared on an equivalent time horizon.  

Upgrading the grid is the most expensive solution in terms of capital cost. Due to their confidential 

nature, no public information about grid upgrade costs were found. Enervalis has no ongoing project 

with the DSO that manages the grid of the studied houses. An assumption on the cost of grid upgrade 

was formulated using the knowledge gained from the previous projects in which the company was 

involved. A cost ranging from 50 to 100 €/year per house for a time horizon of 40 years can serve as a 

good first guess. Further investigations should devote time to determine the exact value of grid upgrade 

cost. 

Batteries useful lifetime is often set around 10 years thus, to compare it with grid upgrade it is necessary 

to evaluate the investment on a 40 years basis, batteries needs to be substituted every decade [9].  

Grid upgrade advantage over batteries and curtailment is that reinforcing the grid, installing larger 

cables and bigger transformer, should allow to avoid curtailment entirely saving a lot of energy. 

Installing batteries as shown in chapter 4 helps reducing the amount of curtailed energy, but does not 

solve the problem entirely, some yearly losses due to wasted electricity will always be present.  

Finally, doing nothing to solve the problem obviously does not cause any upfront costs but energy will 

be curtailed continuously and eventually the problem will become not negligible anymore. 
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Table 1 contains the electricity savings for different battery capacities and the related annual costs. The 

operator of the grid in fact is buying the electricity from the producers, but due to the limitation of the 

grid cannot transmit it entirely. 

 

battery capacity [kWh] electricity savings [kWh/year] 
Avoided 

costs [€/year] 

0 0 0 

14 961 192.2 

28 1128 225.6 

42 1280 256 

56 1381 276.2 

70 1445 289 

84 1497 299.4 

98 1537 307.4 

112 1570 314 

TABLE 1: ENERGY CURTAILMENT REDUCTION 

 

 

5.3 Economic calculation remainder 
Scenarios with different capital and annual costs are compared. In order to build a fair comparison of 

the available alternatives all the costs need to be actualized using the following formula: [23] 

𝑵𝑷𝑽 =  𝚺𝒕−𝟏
𝑻

𝑪𝒂𝒔𝒉 𝑭𝒍𝒐𝒘𝒕

(𝟏 + 𝒊)𝒕
− 𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐂𝐚𝐬𝐡 𝐈𝐧𝐯𝐞𝐬𝐭𝐦𝐞𝐧𝐭  

 

Where “t” is the year at which the cash flow is earned, “i” is the interest rate of the investment this last 

value is set by the investor and influence significantly the results. More than one value for the interest 

rate is tested, to measure the sensitivity of the analysis to the parameter.  

As mentioned before, installing batteries requires to buy and change the storage devices every ten 

years. Batteries are not bought and then stocked at year 0 of the simulation, since it is not a convenient 

solution from the financial point of view. It is much more economical to buy batteries only when they 

need to be changed, so that their actualized cost will result lower. 
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5.4 Economic results 
5.4.1 Low interest rate scenario 
Having all the necessary information it is possible to compute the actualized value of the investment. 

Figure 35 shows the actualized cash flows for all the available solutions over the 40 years’ time horizon.

 

FIGURE 35: LOW INTEREST RATE ECONOMIC RESULTS 

  [kWh] NPC [€]   NPC [€] 

b
atte

ry cap
 

14 -7598.92087 

transformer low -18321.8224 28 -18868.4675 

42 -30207.3585 

56 -41782.0202 

transformer high -54321.8224 70 -53527.7311 

84 -65328.9175 

98 -77185.5794 
curtailment -17678.1776 

112 -89074.602 

TABLE 2: LOW INTEREST RATE ECONOMIC RESULTS 

The x-axis represents years from 1 to 40, the y-axis is the cumulated actualized cost. To make the graph 

more readable only certain battery configuration are represented with the dashed lines. The two red 

lines are used for grid upgrades, the lower one refers to grid upgrade costs of 50€/year per house the 

other one to 100€/year, finally the yellow line is used for the option in which no measures are taken to 

face curtailment.  

The bumps in the dashed lines correspond to the installation of new batteries, that is required every 10 

years. The trend of the dashed and red lines is a downward one, since after the initial investment every 

year there are savings compared to the curtailment scenario. This last one on the other hand has an 
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upward trend, since yearly costs are associated to the constant waste of electricity due to saturation of 

the network. 

A table with the final results is also provided, so that all the options can be compared more precisely. 

None of the option is able to reach a positive value, their actualized value is always negative. Of all the 

options, installing 14 kWh batteries seems as the most convenient one, 28 kWh batteries are slightly 

more expensive than grid upgrading when the lower cost range is applied. 

 

5.4.2 Medium interest rate scenario 
The interest rate is now set to 5%, the results are analyzed again to check the differences with the 

previous ones and investigate if some solutions have become convenient. 

 

FIGURE 36: MEDIUM INTEREST RATE ECONOMIC RESULTS 

  [kWh] NPC [€]   NPC [€] 

b
atte

ry cap
 

14 -6484.25151 

transformer low -19595.9134 28 -16374.5817 

42 -26329.2584 

56 -36502.7135 

transformer high -55595.9134 70 -46834.8901 

84 -57218.544 

98 -67653.6751 
curtailment -16404.0866 

112 -78118.8347 

TABLE 3: MEDIUM INTEREST RATE ECONOMIC RESULTS 
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The final values of batteries and the no intervention strategies decreased, while grid upgrading costs 

substantially increased. Installing 14 kWh batteries is still the most convenient option, followed by non-

intervention, 28 kWh are also more convenient than grid upgrading. It is also worth noticing that almost 

all the battery options are more convenient than grid upgrading if the highest price range is applied. 

 

5.4.3 High interest rate scenario 
One last value of 10% is tested for the interest rate, this value is quite unrealistic since it is fairly high, 

but to fully comprehend the effect of this parameter an extreme value needs to be observed. 

 

FIGURE 37: HIGH INTEREST RATE ECONOMIC RESULTS 

  [kWh] NPC [€]   NPC [€] 

b
atte

ry cap
 

14 -6386.966 
transformer low -26651.2275 28 -14715.0736 

42 -23079.8526 

56 -31569.3145 
transformer 

high -62651.2275 70 -40149.2326 

84 -48758.4879 

98 -57397.0803 
curtailment -9348.77249 

112 -66052.7861 
TABLE 4: HIGH INTEREST RATE ECONOMIC RESULTS 

Battery NPC keep decreasing compared to the 3% and 5% scenarios, same behavior for the no-action 

strategy, while transformer values are getting higher. Once again 14 kWh storage seems like the most 

convenient option followed by curtailment and 28 kWh. It is interesting to notice that more and more 

storage can be installed and still remaining cheaper than upgrading the grid. 
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Besides varying the interest rate some other analyses are done, to verify the overall convenience of the 

investment and the importance of each factor. The uncertainty of each hypothesis need to assessed to 

understand how reliable the final results are and where more attention should be paid in order to 

improve the analysis. 

 

5.5 Additional analysis 
5.5.1 Battery price variation 
The first parameter analyzed is the battery price, the goal of the calculation is to find the cost of 

batteries that results in a positive final value of the investment. In other words, the storage cost for 

which the NPC of each battery size turns to zero. Table 5 shows the results: 

  [kWh] Battery price [€/kWh] 

b
atte

ry cap
 

14 136 

28 79.86 

42 60.41 

56 48.89 

70 40.92 

84 35.33 

98 31.09 

112 27.79 
TABLE 5: BATTERY PRICE VARIATION SCENARIO 

Batteries should be extremely cheap in order to turn the installation of batteries a convenient 

investment. The reason of such extreme results is related to the low value of electricity, while a 

considerable amount of energy can be saved using a small amount of batteries the economic return of 

this avoided cost is low compared to the high cost of the devices.  

 

5.5.2 Electricity Price variation 
Electricity price is the other main factor to investigate, the same procedure used for the batteries is 

followed and the results are shown below: 

  [kWh] Electricity price [€/kWh] 

b
atte

ry cap
 

14 0.5421 

28 0.9237 

42 1.2209 

56 1.5089 

70 1.8026 

84 2.0879 

98 2.3725 

112 2.6545 
TABLE 6: ELECTRICITY PRICE VARIATION SCENARIO 
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The outcomes of this analysis are even more extreme than the one obtained in the battery study. Prices 

are well above reasonable values and they are unlikely to be seen in the future. 

The previous two analyses clearly show that the investment in batteries for grid reinforcement is not 

convenient by itself in the analyzed situation. On the other hand, batteries are in certain condition the 

least expensive solution to cope with over-injection problems. When curtailment becomes excessive, 

actions need to be taken and batteries should definitely be taken into account. 

 

5.5.3 Curtailed electricity variation 
It is also important to evaluate what would happen in the case of decreased over-injection, that means 

less energy needs to be curtailed. This evaluation is needed because the data used is the historical and 

referred to a single year. 

  [kWh] NPC [€]   NPC [€] 

b
atte

ry cap
 

14 -7598.92087 
transformer low -18321.8224 28 -18868.4675 

42 -30207.3585 

56 -41782.0202 
transformer high -54321.8224 70 -53527.7311 

84 -65328.9175 

98 -77185.5794 
curtailment -17678.1776 

112 -89074.602 
TABLE 7: REFERENCE CASE CURTAILED ENERGY SCENARIO 

  [kWh] NPC [€]   NPC [€] 

b
atte

ry cap
 

14 -7154.65496 
transformer low -16554.0046 28 -18346.9983 

42 -29615.6204 

56 -41143.5902 
transformer high -52554.0046 70 -52859.7142 

84 -64636.8613 

98 -76475.0313 
curtailment -19445.9954 

112 -88348.7981 
TABLE 8: INCREASED CURTAILMENT (+10%) SCENARIO 

  [kWh] NPC [€]   NPC [€] 

b
atte

ry cap
 

14 -8043.18679 
transformer low -20089.6401 28 -19389.9368 

42 -30799.0967 

56 -42420.4502 
transformer high -56089.6401 70 -54195.748 

84 -66020.9738 

98 -77896.1275 
curtailment -15910.3598 

112 -89800.4058 
TABLE 9: DECREASED CURTAILMENT (-10%) SCENARIO 
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In the event of increased curtailment upgrading the grid and installing batteries become more 

convenient. The opposite happens when the amount of curtailed energy decreases, since the final cost 

of not acting to solve the problem is lower. Installing small batteries still seems the best course of action.  

 

5.5.4 Non-economic considerations 
The previous economic calculations help to determine the profitability of the different solutions, 

although some strategical considerations should be taken into account. Scalability, time needed to 

deploy the chosen solution, alignment with the future policies of the country and many other factors 

are to be considered.  

Batteries are a very flexible solution, no major intervention on the network is needed. The main flaw of 

storage is the cost of the solution and its short lifetime compared to grid upgrade, but they are also 

easy and quick to install. Scalability is a point in favor of storage if more capacity is needed additional 

batteries can be installed without any major problem. Also, it is important to define what should be the 

final goal of the intervention on the grid, batteries are not able to eliminate curtailment entirely. 

Grid upgrading is the solution to apply if the goal is to avoid curtailment entirely, but as the economic 

analysis revealed is a quite costly option. In addition to the high costs, grid reinforcement requires many 

resources (materials, working hours, etc.) and planning. Moreover, it is difficult to guarantee the 

continuity of the system during the interventions on the network. Finally, grid upgrading is not resilient 

to unexpected changes of the amount of energy to curtail in the future, the only way to cope with them 

is to oversize the system. 
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Chapter 6 
 

Previous analyses were made using historical data only, but for an online running system estimates of 
the future generation and consumption are needed; so that the management of the grid can be planned 
in advance. The sixth chapter is devoted to the implementation of machine learning algorithms that can 
help in the task. First, a quick theoretical explanation of the algorithms is provided, then their usage is 
shown and the results analyzed. 

6.1 Quick introduction to Machine Learning 
Machine learning has been defined by Arthur Samuel as: “Field of study that gives computers the ability 
to learn without being explicitly programmed”. 

 Machine learning is part of the broader study field named as artificial intelligence (AI). The aim is to 
obtain accurate predictions from software that has not been programmed explicitly. Three main type 
of machine learning’s tasks can be identified: 

• Supervised learning 

• Unsupervised learning 

• Reinforcement learning 

The desired kind of outcome determines the algorithm to use. A supervised learning problem is one in 
which the input data contains “labels”, the program receives a set containing input and output data. 
The algorithm is supposed to map the relationship between input variables and the output and then 
use the learned function to predict the value of new examples. Supervised learning tasks are further 
divided into: 

• Regression  

• Classification  

The division is made on the type of output, in a regression problem a continuous output field is 
expected, for example predicting the price of a house given information such as its area, position, 
number of rooms, etc. is a regression task. Not all the supervised problems output a continuous 
outcome, many times the predicted variable is discrete and belongs to a finite number of classes. A 
typical example of classification problem is determining whether a mail is spam or not given some 
information about it.  
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Unsupervised learning uses unlabeled data, the algorithm receives only a set of input information, the 
objective is to identify clusters in the data. 

 Finally, in reinforcement learning the goal is to take a series of decisions over time, the algorithm needs 
to keep track of the past decisions and evaluate their effectiveness in reaching the final goal of the task. 

Machine learning techniques are used in this thesis to predict the generated and consumed electricity 
one-day ahead using historical and weather information. It is a supervised regression task, labeled data 
is provided to the algorithm and the expected outcome is continuous. Different algorithms, such as 
ARIMA models, linear regression and random forest are used to verify which work best. 

6.2 ARIMA models 
ARIMA models are a class of mathematical models that can be used to analyze and predict future values 
of a data distribution. These models work as filters, that remove noise from the underlying information 
and use it to predict future values. Time-series data is required for this kind of analysis. Data should be 
collected regularly over time, information should be registered at a constant rate and no measurement 
should be missing. The sampling rate can be very short, fractions of seconds up to very large time 
interval such as years, but it has to remain constant over time. 

Data needs to be stationary to fit an ARIMA model on it. A time-series is said stationary if its statistical 
properties, such as mean, variance, autocorrelation, etc. are constant over time, if not its future values 
would be unpredictable [24]. Quite often data is not stationary, thus before fitting an ARIMA models 
some transformation are needed. Sometimes data oscillates around a trend-line, identifying it and 
subtracting it may help stabilizing the series, this is the case for trend-stationary series.  

Trend removal is not always enough, some additional differencing may be needed. Instead of studying 
the actual values of the series the difference between consecutive observations may be considered. 

𝑦𝑡
′ =  𝑦𝑡 −  𝑦𝑡−1 

𝑦𝑡
′′ =  𝑦′𝑡 −  𝑦′

𝑡−1
= 𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2 

The two equations above show how to apply first and second order difference. Using first order 
difference, the variation between the current and the previous value is considered. Second order 
difference applies differentiation on the results of the first order method. It is possible to continue with 
the differentiation process, but rarely more than two orders are needed. The last differencing scheme 
worth to mention is seasonal difference. In this case the difference is not between subsequent values, 
but values separated by one season. Seasons within data are defined by the presence of cyclical 
patterns, that are not necessarily the calendar seasons. The equation below shows how to apply 
seasonal differencing; “m” is the number of seasons to consider. 

𝑦𝑡
′ =  𝑦𝑡 −  𝑦𝑡−𝑚 
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6.2.1 Autoregressive models 
These models are described by the following equation: 

𝑦𝑡 = 𝑐 +  𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝑒𝑡 

Where c is a constant, 𝑒𝑡  is white noise: random variation with zero mean and finite variance 
characterized by absence of remaining correlation and the coefficients 𝜑 are the parameters to vary to 
fit the model on the data. Autoregressive models use a linear combination of the previous lags in the 
signal to predict the future ones, the prefix “auto” is added because the regression is on values of the 
time-series itself. The subscript “p” identifies the last relevant lag to consider, autoregressive models 
are often identified using the short notation AR(p) [25]. 

 

 

6.2.2 Moving average models 
𝑦𝑡 = 𝑐 + 𝑒𝑡 +  𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞 

Moving average models apply regression on past forecast errors, that in the formula above are 
indicated with the letter “e”, the only exception is the first term 𝑒𝑡  that is white noise. Similarly to 
autoregressive models, moving averages are identified by the number of lags to consider, indicated by 
the parameter “q”. Short notation for this class of models is MA(q) [26]. 

 

6.2.3 ARIMA and model identification procedure 
Many times, complex phenomena cannot be captured by pure AR, MA models. ARIMA is a combination 
of AR and MA with the addition of the integrated term “I”. These models are defined by three 
parameters (p, d, q) the first and the last one are explained in the previous two paragraphs, “d” refers 
to the order of differencing that is needed to make the series stationary. 

More complex models can be used, such as the so-called SARIMA. They work exactly like normal ARIMA 
models, with the difference that seasonal and non-seasonal components are treated separately. 
SARIMA models require the identification of six parameters (p, d, q) and (P, D, Q). The first three refer 
to the more recent non-seasonal values, whereas the ones written in capital letters refer to the seasonal 
components. Finally, the effect of external factors can be included using ARIMAX models. 

Determining all the necessary parameters is the task that the user of ARIMA models is required to 
accomplish, a standardized procedure can be followed. The “Box-Jenkins” method is an iterative 
procedure divided in three phases:   

• Model identification and selection 

• Parameter estimation 

• Model checking 

The first step makes sure that the time-series is stationary, if not differencing should be applied as much 
as necessary. Autocorrelation and partial autocorrelation plot are useful for this task.  

Parameter estimation consists in the identification of the multipliers, φ and θ, that appear in the AR 
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and MA formulae. The model is applied on the given data and the associated error is minimized, 
different criterion can be applied, such as maximum likelihood or non-linear least-squares estimation. 

Model checking is the last step in the process, once the model has been fit on the data it is necessary 
to control the residuals. They should be independent from each other, if not some information is still 
contained in them, moreover their mean and variance should not change in time. Being the procedure 
iterative, failing to respect the requirement of any phase means that another iteration is needed. 

While the procedure is straightforward trial and error is part of the process, correlation plots helps a 
lot in the model identification, but they are not always easy to interpret. Given a set of data more than 
one model could correctly fit it, the criterion to choose between multiple valid models is to pick the 
simplest one, which is the one that utilizes the lower number of parameters [27]. 

 

6.3 Linear regression 
Linear regression is probably the simplest machine learning algorithm available to extract information 
from data. A set of independent and dependent variables is analyzed, the goal of the procedure is to 
determine the underlying relation that links the independent to the dependent variables. Below is 
presented the typical equation used in a linear regression task: 

𝑌𝑡 = 𝑐 + 𝑎1𝑋1𝑡 + 𝑎2𝑋2𝑡 + ⋯ + 𝑎𝑘𝑋𝑘𝑡 

Where “c” is a constant and “a” are the parameters to determine to fit the model on the input data.  

An infinite number of lines could fit the data, in order to choose the best one an error function is defined 
and its value minimized iteratively, updating the parameters of the regression equation. 

𝑄 =  Σ𝑖=1
𝑛 (𝑦𝑖 − 𝑦̂𝑖 )

2 

The expression above is the “cost function”, the distance between each point and the value predicted 
by the linear model is squared and then summed. The cost function returns a scalar value, several 
optimization techniques can be used to minimize it, the most common one is gradient descent [28]. 

 

6.4 Random forest  
Random forest is one of the most effective machine learning algorithm, it provides high quality results 
while maintaining a relatively simple implementation and good readability of the output. This algorithm 
belongs to the ensemble methods class. The predictions of several base estimators are combined to 
improve generalizability of the model [29].  

Random forest is based on decision trees, a simpler machine learning algorithm. To understand how 
random forest works is first necessary to discuss decision trees. Figure 38 shows how the output of a 
decision tree may look like. The algorithm is named decision tree, because of its resemblance to a tree. 
The block at the top of the picture is called root, data is fed from the roots and subsequently split into 
interior nodes until when the bottom blocks are reached, these are called “leaves”. In the case of 
regression trees the principle used for splitting the data is the variance reduction. The variable on which 
data is split is the one that guarantees the maximum reduction in the variance of the target variable at 
the current step [30].   
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FIGURE 38: DECISION TREE STRUCTURE EXAMPLE [31] 

 

Decision trees are a very convenient data mining technique, as the figure shows the outcome is highly 
readable. Many information is contained in a single picture, such as the importance of the variable and 
how the data is split. Another advantage is the possibility to perform very quick predictions on new 
data, following the flow-chart is easy to determine the output of new examples. The drawbacks of the 
algorithms are numerous, the accuracy is not as high as the one of more complex techniques, the 
robustness is limited, small changes in the training data can alter significantly the structure of the tree 
and its predictions, but the main problem is the tendency to overfit. Overfit happens when a learning 
algorithm generates an excessively complex model to fit the training data, resulting in a loss of the 
generalization power of the model and lower quality predictions on unseen data. 

 

FIGURE 39: UNDERFITTING AND OVERFITTING EXAMPLES [32] 

Random forest is an attempt to solve the problems that affect decision trees, while preserving their 
advantages. The idea behind random forest is to use a high number of decision trees and then average 
their outcomes, single trees have the tendency to overfit, growing very deep in the attempt to explain 
the behavior of some irregular patterns. When training a random forest just a part of the training data 
is used for each tree, a random subset is utilized and the results of all the different trees are aggregated 
by averaging their outcomes. While a single tree is sensitive to noise in the training data, the average 
of several trees is more resilient to noise disturbance. The random selection of the training subset for 
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each tree is a crucial step, because it ensures low correlation between the trees, if they were highly 
correlated the averaging process would be ineffective. In addition to this procedure, another degree of 
randomness is introduced in the algorithm: the feature subspace is selected randomly to ensure that 
very significant features are not over represented in the model. One last randomness step can be also 
applied by making the splitting process random as well, this is the case for Extra randomized trees, but 
this technique is not used in this thesis [33]. 

 

6.5 Input data 
To predict load consumption, the only data necessary is the historical consumption for a sufficient long 
time. Good quality predictions can be obtained only using high quality data, that means that the sole 
consumption is not enough to feed the model, augmentation is needed. 

The augmentation process is typically referred to as “feature engineering”, the objective is to use 
empirical knowledge of the data to extract additional information manipulating the raw data. Here are 
the added inputs for the model: 

• Previous four lags for load consumption 

• Previous four days’ lags for load consumption 

• Mean of the previous three days 

• Mean of the previous three weeks 

• Mean of the previous day 

These added features aim to capture the cyclic behavior of load consumption. Checking the correlation 
degree between the input data and the output is the best way to verify the quality of the chosen 
variables.  

 

FIGURE 40: LOAD CONSUMPTION CORRELATION MATRIX 
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The correlation matrix shows how much features are related to each other, the range of the values is 
comprised between zero and one, the closer the value of a cell is to one, the darker the color. The cells 
named as “prediction” contain the value that the algorithm is supposed to predict using all the others. 
A significant feature has a high correlation with the “prediction”. The last column and the last row are 
the ones to focus on. As it is clear from figure 41, most of the features have a high degree of correlation 
with the predicted value. It is important to remember that correlation does not imply causation. That 
means that two variables might be highly correlated due to chance, but there is no causal link. Here, it 
is safe to assume that correlation also implies causation, the features are created from historical data 
of the load consumption and the old patterns are expected to be seen again in the future. 

A similar procedure is applied in the preparation of PV forecasts input data, historical data is gathered, 
but due to the influence of meteorological factors on the PV production some additional information 
are used. Weather data is downloaded from “forecast.io”, a website that offers access to open -data.  

 

FIGURE 41: WEATHER DATA CORRELATION MATRIX 

The selection of weather variable contains many features that are not so highly correlated to the PV 
production, moreover some of them are repetition of other variables, such as apparent temperature, 
dew-point and temperature or precipitation intensity and probability. It is important to remove 
repeated variables as well as the one that are not highly correlated to the PV production, otherwise the 
performance of the model could deteriorate.  
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Variables are filtered, keeping only the relevant ones: humidity, temperature and cloud coverage. It is 
well known that PV production is highly influenced by the irradiance, thus this is included in the model. 
Data about solar irradiance is collected from the Dutch Weather Service, the closest station to Delfzijl 
is situated 23 km south of it, in Nieuw Beertha. 

 

FIGURE 42: MAP OF DELFZJIL AND NIEUW BEERTHA 

As for the load input data, the historical measurements are included as additional features. A 
correlation matrix is shown below, all the chosen features are higly correlated to PV production and 
considering that they are all past production and weather data they can be considered good predictors 
of the photovoltaique generation. 

 

FIGURE 43: PV DATA CORRELATION MATRIX 
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6.6 Model implementation 
The first action needed for the implementation of the models is to divide the dataset into two parts: 
the training and the test set. The purpose of having a test set is to verify the performance of the trained 
model, collecting information on its performances. Data from July 2016 to April 2017 is used for training 
the algorithms, performances are tested on the entire month of May. It is important to have a 
sufficiently long test period, to capture sunny and rainy days. 

The goal of this implementation is to generate forecasts one-day ahead with quarterly hour resolution, 
for load consumption and hourly prediction for PV generation. Random forest and linear regression can 
output only one predicted value for every run, that means that the forecasts for an entire day need to 
be generated using a “rolling window” procedure. The output of the first run is used as starting point 
for the prediction of the very next time-step and repeating it until the forecast for an entire day are 
generated. This kind of technique is reliable only for short-term predictions, since the error of one 
forecast propagates, influencing the following ones. 

Linear regression and random forest algorithms are pre-built in the “scikit-learn” repository, written in 
Python language; ARIMA models are available on different libraries implemented in R. The user is not 
requested to write the algorithms from scratch, their open-source version can be used. The tasks to 
take care off are preparing the input data, through feature engineering and selection, testing the 
different algorithms, tinkering with their regulation parameters and organize and analyze the outputs. 
Each model has different values, called hyperparameters, that need regulation to make the algorithm 
work at the best of its possibilities. A separate discussion about every model is presented below. 

 

6.6.1 Linear regression 
This is the easiest model to prepare, the algorithm is straightforward, the only type of regulation from 
the user is normalization of the data. Linear regression typically needs regularization of the input data, 
when the order of magnitude of the input numbers is not the same, the coefficients of the equation 
are heavily distorted. To avoid this problem, all the input values are taken and divided by the maximum 
value that the variable registered in the training data, so that all the measures are comprised between 
zero and one. Once the predictions are generated it is possible to invert the normalization and obtain 
the actual value of the forecast. 
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FIGURE 44: LINEAR REGRESSION OUTPUT PV PRODUCTION 

 

FIGURE 45: LINEAR REGRESSION OUTPUT LOAD CONSUMPTION 

The pictures above are a graphic example of how the output of the algorithm looks like. Linear 
regression can capture the general trends in the data, but it is evident that the forecasts are not 
completely satisfactory, especially around noon.  

 

6.6.2 Random forest 
For this model adjustment of some hyperparameters is required: the number of trees to train and the 
maximum number of features fed to each tree. The higher the number of trees the better the results 
of the model, but computation time will also increase. The maximum number of features used should 
always be lower than the total amount of features, otherwise the influence of the variables with a high 
correlation index would affect excessively the output of the trees. A practical rule is to take the total 
number of features and use only a third of it.  

Hyperparameter optimization is a trade-off problem, accuracy of the model and its complexity have to 
be considered. A large set of possible value was tested and the results compared and lead to choose 
100 trees and 6 features per tree.  
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FIGURE 46: RANDOM FOREST OUTPUT PV PRODUCTION 

The output of the random forest includes two black lines that delimit the confidence interval of the 
results. The prediction of each tree is gathered in a distribution, of which the 95 quantile is selected to 
create the confidence interval. 

 

 

FIGURE 47: RANDOM FOREST OUTPUT LOAD CONSUMPTION 

A first visual analysis suggests that random forest’s predictions are better than the linear regression 
ones. The model is much more complex and its ability to represent non-linear relationship is higher 
than the one of a purely linear algorithm. Also, load is difficult to predict accurately due to the high 
sampling rate that causes large variability in the data, the lack of strong predictors, such as irradiance 
for PV production and the intrinsic unpredictability of the phenomenon. The usage of many furniture 
does not follow precise patterns and their consumption can be significant, an example is the utilization 
of a microwave or a toaster.  
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An interesting feature of random forest is the possibility to visualize the importance of the features, the 
number of times a certain feature is used in the first split of a tree is an indication of its relevance. 

 

FIGURE 48: FEATURE IMPORTANCE PV PRODUCTION 

Feature importance is linked to the correlation matrix, that was showed previously. Features with a 
high correlation index are the one that most likely have more importance in the model. Irradiance, and 
some historical information dominate the graph, whereas the influence of other weahter information 
is limited. The quality of the solar irradiance estimates greatly influences the accuracy of the 
predictions. 

 

FIGURE 49: FEATURE IMPORTANCE LOAD CONSUMPTION 

In the case of load forecasting only time-series data is available. The most recent lags are the more 
important ones, that being said it is necessary to include in the model some seasonal lags to ensure 
that the output does not diverge and is able to capture cyclical patterns in the data. 
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6.6.3 ARIMA  
In the theoretical explanation of the algorithm it has been said that the first requirement to fit an ARIMA 
model to some data is to make sure that the time-series is stationary. Figure 50 shows the raw PV 
production time-series on the left and its stabilized version on the right.  

 

FIGURE 50: RAW AND TRANSFORMED PV TIME-SERIES 

Once the series is stationary, the autocorrelation (ACF) and partial autocorrelation (PACF) plots can be 
analyzed to understand which model can better fit the data. 

 

FIGURE 51: ACF & PACF PLOT PV PRODUCTION 

On the horizontal axis are represented the lags, which are distanced once from each other by an hour 
of time. The vertical axis shows the correlation between the selected lag and the current time-step 
value. Two blue dotted lines are visible, they delimitate the non-relevance band, lags which value is 
contained in this area are not to be considered. The shape of the significant lags is used to identify 
which kind of model to choose and how many lags should be considered.  

The plots show a slowly decreasing ACF and a sharp cut-off in the PACF after the second lag. The model 
should be an autoregressive of parameter “p” equal to two. It is known that the phenomenon has daily 
seasonality, so it is necessary to observe the shape the plot after one entire season (value 1 on the x-
axis). Both ACF and PACF plots cut-off sharply with one and two significant lags.  
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The indications from the two plots above have been used and several models have been tested using 
the Box-Jenkins procedure, a seasonal ARIMA (3,0,1)(2,1,2) leads to the best results. 

Three significant lags for the autoregressive and one for the moving average part have been used for 
the non-seasonal component, whereas two autoregressive and two moving average lags are needed 
for the seasonal component of the model, that additionally required one order of differentiation. 

 

FIGURE 52: ARIMA MODEL OUTPUT PV PRODUCTION 

The results for two consecutive days can be seen in the picture, a sunny and a cloudy day were 
forecasted. The black lines is drawn using the measured values, in blue the output of the ARIMA model 
on the training data and in red the forecasted values. A sunny and a cloudy day are used for the 
predictions, the difference in the model performance is clear. Sunny days’ profile is much more regular 
and predictable; hence forecasts are more likely to be accurate. 

 

The same procedure is applied to load consumption time-series. Data needs to be stabilized, figure 53 
shows the transformation from the original data to its stationary version. 

 

FIGURE 53: RAW AND TRANSFORMED LOAD TIME-SERIES 
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Load forecasts are generated on a quarterly hour basis, 96 values for each day need to be calculated. 
To stabilize the series one order of differentiation is needed both for seasonal and non-seasonal 
component. Once the data is stationary ACF and PACF plots can be analyzed. 

 

FIGURE 54: ACF&PACF PLOT LOAD CONSUMPTION 

The data is extremely spicky, due to the high sample rate of the series. It is not possible to understand 
which model can better fit the data from the correlation plots, so a trial and error process is needed. 
Of the many models tested, a seasonal arima (3,1,2)(0,1,1) is the one that yields the best results. The 
chosen model is complex, several autoregressive and moving average orders are needed both for the 
seasonal and non-seasonal component. 

 

 

FIGURE 55: ARIIMA MODEL LOAD CONSUMPTION OUTPUT 

Figure 55 shows that the model is able to fit the training data particularly well and capture the overall 
trend for future values. Unpredictable spikes are the main source of error. 

A closing note on ARIMA models is related to the size of the training set. Since parameter estimation 
works minimizing the overall error on the training data a very large dataset can lead to a deterioration 
of the performances. Old data is not particularly relevant for the predictions and considering the high 
variability of the time-series, it is easy to understand why the training data should not be too large. 
Several tries were made for this analysis and the optimal size appears to be around one month of data. 
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6.7 Error metrics 
The evaluation of the algorithms’ performances is done using a large collection of error metrics. The 
chosen estimators are presented and explained. 

 

Root mean square error 

 

𝑹𝑴𝑺𝑬 =  √
𝚺𝒊=𝟏

𝒏 (𝒚𝒊̂ − 𝒚𝒊)𝟐

𝒏
 

 

It is a scale-dependent error metric, its units are the same as the target variable one so it is very easy 
to interpret. The lower the value of RMSE the better the forecasts are. A normalized version is available, 
the normalized root mean square error. The normalized version in which RMSE is divided by the range 
of the target variable. 

𝒏𝑹𝑴𝑺𝑬 =  
𝑹𝑴𝑺𝑬

𝒚𝒎𝒂𝒙 − 𝒚𝒎𝒊𝒏
 

A high value of nRMSE suggests that the predictions’ error is significant and the model need 
improvements [34]. 

Mean absolute error 

𝑴𝑨𝑬 =  
𝚺𝒊=𝟏

𝒏 |𝒚𝒊 − 𝒚𝒊|̂

𝒏
 

 

MAE like RMSE shares the same units of the target variable, making it an easy metric to understand. In 
comparison with RMSE, MAE penalizes less large error taking the absolute value instead of squaring the 
quantity [34]. 

 

Mean bias error 

𝑴𝑩𝑬 =  
𝚺𝒊=𝟏

𝒏 (𝒚𝒊 − 𝒚𝒊̂)

𝒏
 

 

The mean of the difference between the real value and the one predicted by the model is taken. The 
final result is not easy to interpret, because differences with opposite sign counterbalance each other, 
that is why RMSE and MAE are usually preferred to this metric [34]. 
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Mean absolute percentage error 

Contrarily to the previous error metrics, MAPE is a percentage error, its unit are not the same of the 
predicted variable. Typically, MAPE is defined by the following formula: 

 

𝑴𝑨𝑷𝑬 =  
𝟏𝟎𝟎

𝒏
𝚺𝒊=𝟏

𝒏 |
𝒚𝒊 − 𝒚𝒊̂

𝒚𝒊
| 

 

When “yi” approaches or is equal to zero the division tends to infinity or is indefinite, in these cases an 
alternative formulation is needed. 

 

𝑴𝑨𝑷𝑬∗ =  
𝟏𝟎𝟎

𝒏
|

𝚺𝒊=𝟏
𝒏  (𝒚𝒊 − 𝒚𝒊̂)

𝚺𝒊=𝟏
𝒏  𝒚𝒊

| 

 

The second formulation is needed in the case of PV forecast, during the night the production is always 
nihil, whereas no major problems appears for load predictions some consumption is always present 
throughout the day [34]. 

 

 

 

 

 



 67 

6.8 Results analysis 
Once the models and the error metrics are defined, it is possible to calculate the results and analyze 

them, so that the best algorithm can be found and used. The month of May is used as test set, daily 

predictions are prepared and compared to the actual values storing the results. Boxplot are used to 

showcase the performances of the models. To better understand the forecasting power of the 

algorithms their performances are compared to a naïve predicting technique. The PV production and 

load consumption profile are predicted transposing the profiles of the previous day. The models are 

supposed to do better than the naïve model. 

 

 

MAE and MBE results for PV forecast are shown above, in both cases the closer are the results to zero 

the better it is. Random forest is the model that has better perfomances, the average error is low and 

the error distribution is contained in a relatively small range. 

 

FIGURE 56: MAE & MBE BOXPLOTS PV PRODUCTION 

FIGURE 57: NRMSE &RMSE BOXPLOTS PV PRODUCTION 
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RMSE and nRMSE are presented, the models that are closer to zero are the ones that perform better. 

Random forest outperforms the other algorithms, its average daily cumulated error is only 7 kWh. 

 

FIGURE 58: MAPE* BOXPLOTS PV PRODUCTION 

Random forest is confirmed as the best model by MAPE* as well, the average error is around 30% that 

is a reasonable value for this group of houses, similar results were obtained by the study in reference 

[17]. 

The following plots shows the load forecasts’ results. 

 

 

Performances of random forest and linear regression are very similar in terms of MBE, while the first 

algorithm is better in the MAE, because the spread of its error is smaller.  

FIGURE 59: MAE & MBE BOXPLOTS LOAD CONSUMPTION 
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As before random forest and linear regression are the two models showing better results, while the 

average error of the linear model is lower the spread of the distribution is larger. 

 

 

FIGURE 61: MAPE BOXPLOTS LOAD CONSUMPTION 

Finally, the MAPE is analyzed, all the models perform better than the naïve forecast technique. An 

argument regarding which is the best model can be done, as the previous graphs show linear regression 

and random forest are very similar in terms of performances. 

FIGURE 60: NRMSE & RMSE BOXPLOTS LOAD CONSUMPTION 
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Chapter 7 
 

The most important results of the thesis are here recapped. Some considerations about what are the 

limits of the analysis are explained and improvement for future works on the topic are suggested. A 

general consideration about the “lesson learnt” and the reason why this kind of studies are helpful is 

included in this chapter. 

 

7.1 Summary of the results 
The first part of the thesis focused on understanding the data from the houses. The most relevant 

findings are that solar rooftop are generally oversized for the needs of a common household. When 

Sun shines the installed PV panels produce a large amount of energy that is rarely met by the load 

demand, this can lead to problems in the management of the grid. Considering the desire of many 

governments to support the transition toward a decentralized renewable production of energy, over-

injection problems are bound to be seen more and more.  

Assessed the over-production problem the attention is shifted toward its solution. Different options are 

tested, installation of batteries, load shifting and combinations of the two. The simulation on historical 

data proves that shifting hot water production alone can save up to 700 kWh/year and installation of 

batteries can help even more saving additional energy. An important conclusion of the simulation is 

that the over-injection problem cannot be solved entirely by the two previous techniques, due to the 

large difference between production and consumption.  

The economic feasibility of the mentioned solutions is studied and compared to the traditional scenario 

in which grid is upgraded and the one in which no intervention is done and energy is simply curtailed. 

The results show that installing up to 28 kWh of storage is usually the most convenient solution 

available. 

Finally, in the sixth chapter are presented forecasting tools to predict load consumption and PV 

production one-day ahead. It is crucial to have some indications on future consumption and generation, 

to guarantee a more accurate grid management. The goal is finding a simple model that is still able to 

produce accurate predictions. Currently, deep neural networks are used for the task, but their 
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development, training and maintenance is not trivial. Literature review suggested that ARIMA models 

and random forests are good alternatives to neural networks for online systems. The results of the 

implementation of the mentioned models shows that random forest is the most promising algorithm. 

The MAPE of random forest is around 30% and 25% for PV and load forecasts respectively, the 

implementation is straightforward and fast, making it a good solution for online systems.  

 

 

7.2 Future works  
While an attempt to address all the relevant aspects to the over-injection problem is done in the thesis, 

some aspects are overlooked and not completely treated.  

Optimization of the battery operating strategy should be addressed, in the simulation storage is 

managed naively, discharging batteries when needed without taking actions that prioritize their useful 

life. Additionally, battery placement should be investigated by studying the topology of the grid and 

preparing simulations to evaluate the effect of installing storage in different nodes of the network. A 

promising solution to this problem is the implementation of genetic algorithms to the optimal placing 

problem.  

Future works should also devote some time in the verification of the assumptions of the physical and 

economic model. More detailed information regarding the grid upgrade costs and the current and 

future regulations for energy curtailment should be found. 

Forecasting algorithms also deserve some attention, machine learning is a very popular research topic, 

innovative models are published frequently. New algorithms should be tested to verify if they can 

provide better forecasts than the ones presented in this thesis. 

Finally, to unify all the aspects of the thesis it would be useful to design the energy management system 

that using the PV and load forecast and the storage provided by the batteries plans the energy flows. 

 

 

7.3 Lesson learnt 
Working on the thesis has been the perfect occasion to interact with real-life data, manipulating and 

visualizing it to better understand what a high renewable penetration system can face. Different 

competencies are required to accomplish this kind of studies, a good knowledge of how an energy 

system works is crucial such as learning how to write scripts to interact remotely with smart-meters 

and website API to access data. Learning how to implement machine learning algorithm is also an 

invaluable lesson, this technology is on the rise and it is the solution to many contemporary problems. 
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