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Abstract highly constrained to an specific product, requiring a highly
accurate model, in the academia computer architects gen-
In order to evaluate novel ideas, computer architects re- erally focus on more long term and less specific research
quire simulation tools which model a target architecture. topics. Obviously, the computational cost of the model
According to the specific accuracy requirements we find employed is directly proportional to its accuracy. Conse-
very specific simulators, which model a single architecture quently, the research in the academia generally employs
with high accuracy and computational cost, like the ones general-purpose simulation tools, closer to their research in-
typically used in the industry, and general purpose simula- terests and computational possibilities.

tors with a less accurate model but requiring less compu- Among the general-purpose simulation tools typically
tational COst, like the ones typlcally used in the academia. emp|0yed in the academia during the last decade we find
Focusing on the latter, flexible simulation tools allow eval- Simplescalar [4] and SMTsim [9] simulators. The Sim-
uating a wide range of system configuration, requiring low plescalar models a single-core Superscalar processor with
effort to evaluate novel ideas. Consequently, the erXIbIIIty 5 pipe"ne Stages while the SMTsim models a Sing|e_core
is @ main characteristic to be considered by computer ar- Superscalar/SMT processor with 8 pipeline stages. On top
chitects when selecting a general-purpose simulation tool. of hoth simulators, several branch predictors and instruc-
In this paper it is presented a highly-flexible general- tjon fetch policies, so as new proposals, may be added. Re-
purpose simulation tool : th&1Psim It allows simulating  garding the Memory Subsystem, both simulators model two
a wide range of processor types, both single core (Super-cache levels (optionally up to the third cache level), with
scalar, SMT) and multi core (CMP, CMP+SMT), both ho- 3 single Instruction Cache, Data Cache, ITLB, DTLB, L2
mogeneous and heterogeneous configurations. Itis put specache. However, while the Simplescalar has a very sim-
cial emphaSiS on the simulator erXIbIIIty and how it is ob- p|e memory modeL in which each memory access is de-
tained. The simulation results included indicate that high- terministically resolved, the SMTsim non-deterministically
erXIbIIIty may be obtained without hardly Compromising the manages the Mmemory accesses by means of an event queue,
computational cost in a general purpose simulator. which cronologically stores all memory requests.

In this paper we present tiPsimsimulator, a highly-
flexible simulator based on SMTsim. It allows simulating
1 Introduction a wide range of processor types both single core (Super-
scalar, SMT) and multi core (CMP, CMP+SMT), both ho-
Computer Architecture has experienced great advancesnogeneous and heterogeneous configurations; so as pro-
in the last decades. Thus, we have withessed the raise o¥iding a complete set of simulation alternatives. It is put
Superscalars, Simultaneous Multithreading (SMT) and on- special emphasis on the simulator flexibility and how it is
chip Multiprocessors (CMP) among others. All these novel obtained. TheMPsim Parameter Interfacallows to easily
ideas had to be evaluated prior to their usage in order todeclare complex system configurations without needing to
measure their benefits and potential. To perform this eval-recompile the simulator source code. Both core-specific and
uation, computer architects require simulation tools which memory subsystem configuration parameters may be gath-
model the corresponding idea and allow simulating its ex- ered into parameter files comprising reusable configuration
ecution results, employing a set of benchmarks. The accu-+epositories. The simulation results included indicate that
racy of the model employed is in tune with the research re- high-flexibility may be obtained without hardly compromis-
quirements. Thus, while in industry computer architects areing the computational cost in a general-purpose simulator.
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Figure 1. MPsim Processor Types.
2 MPsim overview lated system core (e.g-pf.P1 POWERSpecifies the file

POWERS to configure the core number 1). Figure 1 shows

The MPsimis a cycle-accurate simulation tool based on the processor types that can be simulated usiRgim
the SMTsim simulator. Its design focus on the simulator  In order to reduce computational costs, MEsimpro-
flexibility andfunctionality, striving at the same time to in-  Vides a trace-drivéhfront-end. Although trace-driven, the
volve the least computational cost possible. The simulator'sMPsim also permits simulating the impact of executing
flexibility does not refer only to the amount of simulation along wrong paths on the branch predictor and the instruc-
alternatives provided to the user but also to the configura-tion cache by having a separate basic block dictionary in
tion easiness and adaptability to future modifications. The Which information of all static instructions is contained.
MPsim Parameter Interfacease the declaration of complex The MPsiminput traces are collected from the most rep-
simulation configurations. It allows to maintain configura- resentative 300 million instruction segment of each input
tion file repositories that may be reused in different simu- benchmark, following the idea presented in [7]. Each pro-
lations without needing to recompile the simulator’s source 9ram is compiled with theO2 —nonsharedoptions using
code. DEC Alpha AXP-21264 C/C++ compiler and executed us-

The MPsimallows simulating a wide range of processor ing the reference input set. These input traces can be indis-
types both single core (Superscalar, SMT) and multi core tinctly read from little-endian/big-endian machines, since
(CMP, CMP+SMT). By using th&lUM_CORE Sparameter the MPsim automatically detects the machine characteris-
it may be specified the number of cores in the simulated sys-tics and read data accordingly.
tem. All the remainder core-specific parameters will carry ~ TheMPsimfunctionality, provided to the user by means
the suffix_Px, wherex stands for the core number (e.g., of its flexible Parameter Interfaceincludes a long list of
IFETCH._POLICY.P1 ICOUNTdeclares that the core num- Simulation alternatives. Regarding simulation itself, the
ber 1 use the ICOUNT IFetch Policy). These suffixes allow MPsim provides simulation forwarding, numerous simu-
to individually configure each core, making possible hetero- 1ation statistics and histograms, so as six different simu-
geneouksystem configurations. Thus, although each simu- lation finalization modes. Regarding computer architec-
lated system core is comprised of at least 8 pipeline stagesture alternatives, th#Psimprovides a set of branch pre-
the specific pipeline depth may be individually declared for dictors and instruction fetch policies from which select
each constituent system core. To configure entire systemsthe desired one, thread migration between cores, so as
both homogeneous and heterogeneOUS, each simulated Comultibanked multiported caches. All these fUnCtionality
may be individually declared by using both the command items may be easily activated/deactivated by the user, ac-
line or configuration files. ThMPsim Parameter Interface ~ cording to her needs, using the appropriate parameter for
allows passing text files comprising all core-specific param- €ach case (e.gSTATSINTERVAL Odeactivates the in-

eters. These configuration files may be reused in multipletermediate IPC statistics). As a matter of example, by
declarations as simulation inputs to configure each simu-means of th&sTATSNTERVAL MAX.NUM.INTERVALS

STATSFORWARDINGand MAX_NUM_STATSFILES pa-

1The term heterogeneous refer to different amount of processor re-
sources, like instruction queue entries and number of registers. 2The execution-driven functionality is currently being developed.




rameters it may be obtained intermediate simulation IPC eter name included in the file. Thus, a single core file may
statistics (interval IPC, IPC variability and in-flight L1 be used to configure multiple cores in a multicore configu-
misses) in separate dump files. ration; or in different simulation calls.

The MPsim also allows some extent of clustering Once scanned the whole simulator call, the resulBag
when definining the system to be modeled. Thus, the rameter Data Basgthat comprises all declared pairs of pa-
SHAREDFETCHUNIT and SHAREDREGISTERFILE rameter name and value, is used in the subse@ientlator
parameters allow sharing a single Fetch Unit and Registerlnitialization Phase During this phase the content of the
File respectively, among all defined system cores. Since aParameter Data Basés used to initialize the correspond-
single Fetch Unit may be shared among multiple cores, weing simulator structures and variables. Any sort of parame-
indistinctly refer to pipeline/core in the remainder of the pa- ters may be requested by the simulator developer by using
per. However, recall that the only difference is the value of theNeedValuendGiveValugunctions from theParameter
the SHAREDFETCHUNIT (i.e., pipeline = true, core = Interface Library Whenever a parameter is compulsory,
false). As a matter of example, in an hdSMT [2] processor and does not admit a deffault value, it is used Meed-
(see Figure 1) both the Fetch Unit and the Register File areValue which automatically stops the initialization phase

shared among all constituent pipelines. and prompts an error message in absence of the specified
parameter. Otherwise, it is used BéveValuefunction.
3 Parameter Interface Figure 2 illustrates the high-flexibility of thElPsim Pa-

rameter Interface In the example, 3 configuration files

stored in the simulator’s repositories are used to configure

tor includes dexical analyzeryielding a versatildParam- a Ce]l—hke processor with a simple simulator ca_II: Given
the filesPPE and SPE that include all core-specific con-

eter Interface It scans the S|mullator cal! creatmg_ pairs of figuration parameters for Cell PPE-like and SPE-like cores
parameter name and value, which are inserted in an inner

. . respectively, and the fil€ell, that include all Memory Sub-
Parameter Data BaseThere is not a fixed parameter dec- . )
. : : system related parameters and relations for a Cell-like con-
laration order, with the only assumption that every argu-

ment which begins with a dash is considered a parameterﬂgurat'on’ the simulator call shown in Figure 2 is enough to

: ) . : ; configure a Cell-like simulatioh
name and the immediate following argument is considered The Lexical Analvzerincluded in theMPsim Parame-
its value (e.g., the simulator catipsim -arg1l arg2ncludes yz§

the parameter arg1 with value arg2). Whenever a single pa_ter Interface scans the whole simulator call shown in Fig-

rameter name is declared more than once, the value in th%ure 2 autqmz_;ltlcally accessing to the corresponc_iln_g files in
he repositories. Theexical Analyzewuses the suffix infor-
Parameter Data Baseorresponds to the last parameter dec-

. . . mation included in the simulator call (i.eRxin the-pf_Px
laration. TheParameter Interface Libraryncludes func- argument, withx indicating the specific core) to create the
tions to adquire each parameter from fParameter Data g ' Y P

Baseto the simulator inner structures. This way, the ad- icnosrer:(ratse %OI:?(';][% g::;smcgtgféirgeégsg?g i i?tigt?h;eﬂi?é are
dition of new functionality benefits from an easy way to ' 9

: . . is a singleMAXTHREADSparameter declaration in PPE
adquire configuration parameters. . . . .
The special parameter narparmsfile (or simply pf) and SPE files stored in the cores repository (see Figure 2),
. P _pa rparm; Py Pty multiple MAXTHREADSpairs are inserted in thearame-
is reserved to indicate a configuration parameter file, with
e ) ter Data Baseone per each of the 9 delcared cores. Once
the parameter value indicating the file path. The use of . : : :
. . . the whole simulator call is scanned, including the parameter
parameter files permits to declare an unlimited humber of _. . e
. . . . files, the subseque®imulator Initialization Phaseses the
parameters, allowing more complex simulation configura- . :
. g . . resulting Parameter Data Basand thelnterface Library
tions. Additionally, by using parameter files, that may also . . .
) X o . ; functions to set up the simulator inner structures and pre-
include comments (using #), it is possible to kemmfig- ; . . ;
T oY . pare the subsequent simulation. Thus, during the multi-
uration file repositories Although the parameter fles may . ~. . S S S
. : o ipeline environment initialization (i.einit_multipipeline
include any sort of parameters, the main repositories use : o . .
; . see Figure 2) it is used the functibleedValudo initialize
are comprised ofores machinesandmemory subsystems

h . . ; the simulator from the information contained in tharam-
declarations. In order to ease multicore configurations andeter Data Basemodelina an heterogeneous multi-core pro-
repositories maintenance, it may be added the siffido e g 9 P

: . . o . cessor comprised of 9 cores (i.BlUMCORES$, each one
a parameter file name declaration, wittdentifying a given . :
X R . containingMAXTHREADSardware contexts (i.e., a dual-
core. This suffix indicates that all the parameters included ; o
. L o thread PPE and 8 single-thread SPESs). After the initializa-
in the corresponding file are related to the specifedre

(.9.,-pf.PO filel declares the fildile1 as input to config- o™ Phase, the simulation begins.
ure the first core in th? simulated SyStem)- Rezameter 3Although not included in the simulator call for simplicity, it should be
Interfacethen automatically adds this suffix to each param- also specified the workload to simulate.

In order to provide high-flexibility theviPsim simula-
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Figure 2. Parameter Interface Example for a Cell-like configuration.
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Figure 3. MPsim Processor Pipeline Stages.
4 The Pipeline while another 4 instructions are buffered?redecodeintil

the next simulation cycle.

The MPsimis a cycle-accurate simulator in which each
simulated system core is comprised of at least 8 pipeline  The pipeline resources and implemented policies may be
stages, as shown in Figure 3. However, each system coreasily declared using thdPsim Parameter Interfacésee
may be defined with a different pipeline depth, adding idle Section 3). Each Fetch Unit declared in a simultaneous mul-
pipeline stages in betwedbecodeand RegRenamstages.  tithreaded system (i.e., the shared Fetch Unit in an hdSMT
As a matter of example, to specify an 11-stage executionprocessor or each Fetch Unit in a CMP+SMT processor)
pipeline in any of the declared cores it is set the parametermay be configured with a different Instruction Fetch Pol-
NUM_DECODESTAGES 4 icy, which determines from which thread/s to fetch instruc-

In case of sharing the Fetch Unit among all pipelines (seetions each cycle. To define the IFetch Policy used by each
Section 2) a new pipeline stage, callecedecodeis auto- Fetch Unit we employ th&FETCH_POLICY_Px parameter,
matically added by thdPsimto each pipeline. Thére- wherex corresponds to the processor pipeline number. The
decodestage works as a buffer (with user-definable capac- user may select any from Round Robin [10], ICOUNT [10],
ity using thePREDECODEQUEUE SIZE parameter) be-  STALL [8], FLUSH [8], and FLUSHPLUS PLUS [3]. In
tween the shared Fetch Engine and the decode stage of eacnsimilar way, each Fetch Unit declared in a system may be
constituent pipeline, which may have a different pipeline configured with a different branch predictor, using te-
width. As a matter of example, in a given cycle an 8- dictor_Px parameter, where x corresponds to the processor
wide shared Fetch Engine passes 8 instructions to a 4-wideipeline number. In this case, the user may chose any from
pipeline; 4 instructions passes to that pipeline decode stagegcSHARE [6], PERCEPTRON [5] and PERFECT predictor.



4.1 Thread Migration

Multicore configurations can be simulated in ei-
ther STATIC or DYNAMIC fashion, wusing the
THREADSMIGRATION parameter.  STATIC simula-

tions assume no thread migrations, from core to core,

during the whole simulation. DYNAMIC simulations may

NUM_L2.CACHES NUMBUSES NUM.ICACHES
NUM_DCACHES NUM_ITLBS NUM_DTLBSparameters.
Once declared, the user may configure each of the com-
ponents’ characteristics individually, using command line
parameters or parameter files (e.g., a DTLB is configured
with DTLBPENALTY DPGSIZEand DTLB_SIZE param-
eters). As a consequence, not all components of the same

experience thread migrations according to the specifiedtype must have the same characteristics, allowing heteroge-

MIGRATIONINTERVAL parameter
in simulated cycles).

value (measured
The assignment of all simulated

neous memory configurations. To ease this configuration,
each memory component is associated to a sihtgeory

threads to any of the defined cores is specified by theGroup (MG) as shown in Figure 4 (e.g4$, IT LBy, Do$,

FIRST.T2P_ASSIGPOLICY parameter. It may be chosed
from NRR(Naive Round Robin) an€@USTOM using the
ASSIGTH_X_P parameter in the latter case to specify each
assignment (e.gASSIGTH_1_P 0 assigns the thread 1 to
the core 0).

In DYNAMIC simulations, the thread migrations are
triggered according to the specifistiGRATIONHEURIS
TIC parameter value. Among the available migra-
tion heuristics it can be chosed tHBESTDYNAMIC
In a BESTDYNAMIC simulation every MIGRA-
TIONLINTERVAL simulated cycles all possible thread

DTLBy, BUSy, L2y and L3, belong to the firsMemory
Group). Thus, when specifying a component characteristic
we add the suffix MGx, wherex stands for theMemory
Group to refer to a particular memory component (e.g., the
DTLB_SIZEMGO parameter value specifies the size of the
DT LBy, belonging to the firsMemory Group.

The MPsim Memory Subsystem does not assume any
implicit relation between any two componehtsllowing
the user to explicitly declare the desired relations. The
Memory Groupsused to univocally refer to each memory
component declared in the system, do not imply real mem-

migrations are considered by the simulator, chosing for ory component relations (e.i)o$ does not necessarily use

each interval the one which yields the highest throughput.

5 The Memory Subsystem

The MPsimMemory Subsystem inherits the SMTsim’s
foundations, having an event queue to manage all memor

requests in a hon-deterministic fashion. Whenever a mem-

ory request experience an L1 Cache miss it is inserted
memory request in the queue, arranged by cronological re
guest time (in simulated cycles). According to the specific

system configuration, memory hit/miss, and contention, the . . e
Jty provided by this simple grammar allows to declare com-

memory request may have to traverse the L2 Cache, the L

Cache and the L1-L2 intercomunication bus, so as accessin

to a TLB. The memory request queue is regularly accesse

a

BU S, to communicate with the second level of cache). To
specify the desired memory component relationshtie
sim Parameter Interfacprovides a simpl®egular Expres-
sion Grammar (REG)hown in Figure 5. ThiREG imple-
mented as part of thieexical Analyzeincluded in theMP-

y';im Parameter InterfacéSee Section 3), allows to establish

a relation between any two memory components. These
relations are focused on the first level of cache; the user
specifies for each first level cache (i.e., D$ and 1$) both the
execution pipeline and the remainder memory components
that are related with that specific component. The flexibil-

lex memory configurations, includirg:M relations as is
he case of first level caches and TLBs (i.e., a single Data

by the simulator, triggering each request in the correspond-CaChe may use more than one DTLB).

ing simulation cycle. As described in Section 5.2, kfe-
simstructures this memory event queue into two layers for
multicore configurations with an L2 Access Arbiter imple-
mented.

Unlike SMTsim, with a fixed Memory Subsystem
definition, the MPsim provides the user dully-flexible
Memory Subsystem. Thus, it may be configured a Mem-
ory Subsystem comprised of any number of memory
components (DTLBs, ITLBs, DCaches, ICaches, L1-L2

As a matter of example, Figure 6 shows a Memory Sub-
system example for a 3-core system. To specify all the con-
stituent memory components shown in Figure 6 it should be
used the following declaration:

-NUM_DCACHES 3 -NUMICACHES 2 -NUMDTLBS 2

-NUMLITLBS 1 -NUMBUSES 2 -NUM.2_CACHES 2
-NUM_L3_.CACHES 1
Once declared all the memory components, the relations

Buses, L2 Caches and L3 Caches) so as relations, bepetween them are declared using the memory relation gram-
tween memory components and execution pipelines. Themar shown in Figure 5, as depicted in Figure 7. For a Mem-

MPsim Parameter Interfacallows to specify the desired
number of componerftdy using theNUM_L3_.CACHES

ory Subsystem to be fully declared, every first level cache

5Unless a single component of any type was declared (e.g., in a system

4There must be at least 1 declared component of each type except forwith a single DCache all cores must access to that DCache). In that case

L3 Caches, which are optional.

the corresponding relations with other components are implicitly assumed.
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Figure 4. MPsim Memory Subsystem.

REL_ X _ Y d

with
NUM_CORES

< = {P__da} 1 =da <
Y = {DC[_dil, IC[ _dj 1} 1 =ab = NUNM_DCACHES
d = {db.,dc} 1 =dc = NUM_ICACHES
1A =ddd = NUM_DT7TILBS
or 1 =de = /NUM_ITLBS
A =ddf = /NUM_ BUSES
<X = {DbC_MGdb} 1A =dg = /NUMNM_[ 2 CACHES
Y = 4{DTLB[ _dk ], BUS, L2, L3} O =dadh = NUM_[ 3 CACHES
d = {dd.de.df,dg} > O = dai = Max. Core DCaches
> O =49 = Max. Core ICaches
or > O =dk = Max. DS DTLBs
> O =dadl < Max. IS 17T Bs

> = {IC_MGdc}
Y = {TLB[_dI], BUS, L2, L3}
d * InNn case of Multi-Relations (N: M)

= {de, df, dg, dh}

Fiaure 5. MPsim Memorv Relation Reaular Expression Grammar.

L3,

L2, L2,
BUS, I | I I — BUS,
b5 || Do || Dy | | L || Dos [DTLE, ]
ITLB “ |i L : DTLBg
Po | Py | | P |

Figure 6. MPsim Memory Subsystem Example.

(ICaches and DCaches) must be related with some pipelinerations. As a matter of example, let be POWEREM and

(or multiple pipelines), TLB (or multiple), L1-L2 bus, L2 POWERSMEM _rels the configuration files comprising all
Cache and optionally with some L3 Cache. Finally, each memory component configuration parameters and the rela-
memory component is configured using its specific parame-tions between them, respectively, to configure a POWERS5-
ters (e.g.;DTLBPENALTYMG1 300 -DPGSIZEVIG1 13 - like [1] Memory Subsystem. We would use the follow-
DTLB_SIZEMG1 512configures the DTLB number 1 with  ing declaration to fully configure a POWERS5-like Memory
512 entries, a miss penalization of 300 cycles and a 8Kb Subsystem:

virtual page size —2 to 13-). As with pipeline configuration,

the MPsim Parameter Interfacallows to maintain a Mem- -pf memHierarchies/POWERGEM
ory Subsystems & Relations RepositorpgmHierarchies

directory) and use them to declare more complex configu- -pf memHierarchies/POWERSEM._rels



Pipeline — L1 Caches
relations

REL_P_O_DC O
REL_P_O_IC O
REL_P_1_DC 1
REL_P_1_IC O
REL_P_2_DC 2

REL_P__

2_1C 1

ICache O
relations

REL_IC_O_ITLB O
REL_IC_O_BUS O
*REL_IC_O_L30

REL_IC_1_1TLB O

ICache 1 REL_IC_1_BUS 1

REL_DC_O_DTLB O
REL_DC_O_BUS O
REL_DC_O_L2 O

* REL_DC_O_L30

REL_DC_1 DTLB O

REL_DC_1 BUS O

REL_DC_1_L20
*REL_DC_1_L3 0

REL_DC_2_DTLB 1
REL_DC_2 BUS 1
REL_DC_2_ L2 1

*REL_DC_2_1L3O0

DCache O
relations

+
by
by

DCache 1
relations

DCache 2
relations

REL_IC_O_L20

relations REL_IC_1_1L2 1

*REL_IC_1_L3O0

* Optional :

Since NUM_ L3 _CACHES = 1

it is

Nno needed this relation.

Figure 7. MPsim Memory Component Relations Example.

Since it is not possible to cover allPsim functional-
ity, due to space constraints, we focus on two main Mem-
ory Subsystem functionality issues in the remainder of this
section. In Section 5.1 we describe the Multibanked and
Multiported Cache functionality and the L2 Cache Access
Arbiter in Section 5.2.

5.1 Multibanked & Multiported Caches

For each cache declared in the Memory Subsystem,
it is possible to specify the number of banks in which it
will be splitted. TheMPsim Parameter Interfacprovides
this functionality by means of the ICACHEBANKBIGX,
DCACHEBANKS_MGx, L2CACHEBANKS MGX,
L3CACHEBANKS.MGx parameters, wherex stands
for the specific Memory Group. Additionally, each
cache may be configured with a different number of
access ports, using the NUBICACHE PORTSMGX,
NUM _ICACHE_PORTSMGXx, L2ZCACHEBANKPORTM
Gx parameters, where stands for the specific Memory
Group. As a matter of example, the following declaration
configures a 4-bank 4-port L2 Cache and an 8-bank 2-port
DCache, shown in Figure 8 :

-NUM_DCACHES 1 -DCACHEBANKSIGO 8

-NUM_DCACHEPORTSMGO 2 -NUML2_CACHES 1
-L2CACHEBANKS 4 -L2CACHEBANKPORMS50 4

5.2 L2 Cache Access Arbiter

L2

Bank, Bank, Bank,

2 Port 1| HH—
2 Port 2
2 Port 3
2 Port4

BUS N N
LiPort1 || L1Port2

p) ]

L1

Figure 8. 4-bank 4-port L2 Cache and 8-bank
2-port L1 Cache Example.

L2
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L2 Access
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Select the next

queue(core) to
access the L2 bank

Np Each cycle Np (Number of
Ports) bank requests are
{ Arbiter selected by the Arbiter from
the L2 Access Queues
Entry 1
Entry 2

Entry 1
Entry 2

L2 Access
Queues
One different Entry N||Entry N Entry N
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Figure 9. L2 Cache Access Arbiter.

core sharing that L2 Cache. Each of these queues buffer the

core’s L2 Cache access requests until the user-definable L2

The MPsimallows defining multicore system configura-

Arbiter removes it from the corresponding queue and trig-

tions in which many cores may share a single L2 Cache. Ingers the L2 Cache Bank access; as many requests allowed
order to cope with the L2 Cache contention among all coresper simulated cycle as L2 Cache ports defined in the Mem-
theMPsimprovides an L2 Cache Access Arbiter, that can be ory Subsystem declaration. Whenever an L2 Access Queue

activated using the2_ ACC_ARBITERparameter. Th&1P-

gets full the corresponding core is temporarily stopped (no

simL2 Cache Access Arbiter, shown in Figure 9, manages forward progress in any pipeline stage) until some queue
the access to each L2 Cache bank using a queue per eaadntry gets empty.



6 Computational Cost or not during the simulation, each module may include
macros. Without compromising neither the code legi-

Although high-flexibility constitutes a very important bility nor modularity, a macro including a conditional
characteristic for a general-purpose simulator it may not branch to the corresponding function call may reduce
be achieved regardless its computational cost. Due to fi- the additional cost for deactivated modules; adding
nite computational resources, computer architects require only an extra conditional branch for activated ones.
simulation tools that are able to yield results in a limited Furthermore, since modules are activated/deactivated
amount of time, according to reseach deadlines. It must only durign thenitialization Phasethese branches are
be kept in mind that the results obtained from such a sim- easily predictable.

ulation tool generally constitute a first step in a multistep
evaluation process. Due to their limited accuracy, general- In order to give an idea of the computational cost in-
purpose simulators are normally used to both identify archi- volved by theMPsim simulation tool, following are in-
tectural challenges and obtain general trends. In this sensegluded some simulation results. For this set of experiments
the flexibility offered by the selected simulation tool is of we use theSPEC2000 benchmark suiteFrom them we
crucial importance. The tool’'s ability to allow simulating collected traces of the most representative 300 million in-
multiple architectural alternatives with low effort helps to struction segment of each benchmark, following the idea
both accelerate and improve this first evaluation step. Oncepresented in [7]. Each program is compiled with #@2
identified the architectural challenge and evaluated a pos—nonsharedoptions using DEC Alpha AXP-21264 C/C++
sible solution, more accurate results may be obtained em-compiler and executed using the reference input set. Fortran
ploying either a more specific (and complex) simulator or programs are compiled with the DIGITAL Fortran 90/For-
FPGASs [11]. tran 77 compilers. The fast forwards applied to each ap-
Although focused on high-flexibility, thIPsimdesign plication, in order to obtain the traces, are shown in Ta-
strives to involve the least computational cost possible. Thebles 2 and 3.
idea is to provide a flexible and easy-to-use simulation tool,  Using the resulting traces, we collected workloads com-
that allows the user to simulate a wide range of simulation prised of 1,2,4 and 8 benchmarks, shown in Table 1. The
alternatives with low effort, able to yield simulation results name of each worklo&dis xWy, wherex stands for the
in a reasonable time. Although a priori conflicting, it may number of threads involved ang stands for the work-
be found a satisfactory balance between these design goaldoad identifier (e.g.4W2 identifies the second workload
Following are enumerated some of the main design deci-with 4 threads). Each workload with size is simu-
sions employed in thBIPsimdevelopment: lated on aCMP+SMT implementation with shared L2
Cache an% two-hardware-conteX$MT cores implement-
ing ICOUNT [10] policy; both single-thread and dual-
thread workloads are simulated on a single-core implemen-
tation. Both core-specific and memory subsystem configu-
ration parameters are shown in Table 1.
All workloads were simulated on a Dual-Core 2 Intel
2. Initialization Phase The configuration parameters ac- Xeon processor with 2,333GHz, 1333MHz FSB, and 4MB
quisition, performed by a a flexible and easy-to-use cache running Linux 2.6.15. Figures 10, 11, 12, and 13,
parameter interface, should be immediately followed show the time required to simulate each workload until any
by an Initialization Phase. During this preparatory of the comprising benchmarks finish simulating 300 million
phase it should be anticipated all the work possible ac- instructions. Except for th&81.mcf with a pathological
cording to the simulation configuration. Thus, while bad memory behavior due to nested memory references, all
some simulator modules could be fully deactivated, single-thread workloads are fully simulated in about twelve
without compromosing neither memory nor process- minutes time, which constitutes a reasonably low compu-
ing in the subsequent simulation, others could be de-tational cost. As could be a priori expected, doubling the
voted enough memory to get rid of time consuming number of benchmarks in the workload (i.e., dual-thread
dynamic memory allocation/deallocation. According workloads 2Wy-) doubles the required simulation time, as
to the specific simulation configuration and the avail- shown in Figure 11. Adding more dual-thre&¥T cores,
able resources, the Initialization Phase may consider-and consequently simultaenously simulating more bench-
able reduce the subsequent simulation computationalmarks, increases the required simulation time as shown in
cost. Figures 12 and 13.

1. Parameter InterfaceProviding high-flexibility should
not interfere with the simulation itself. The parame-
ter interface should be adaptable to accommodate fu-
ture simulation improvements but it should not inter-
fere with the inner simulation structures.

3. AVOid UnnecessarylworklnStead of reqUiri_ng fu.nc- 8Except for single-thread workloads, represented by the name of the
tion calls to determine whether a module is activated corresponding benchmark.
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7 Conclusions tational costs, so as new ideas could be easily added to the
simulation tool functionality. In this paper it is put special

In this paper it is presented théPsim a highly-flexible emphasis on how this flexibility is obtained and the com-
general-purpose simulation tool. TIPsim constitutes ~ Putational cost it involves. The simulation results included
a cycle-accurate multi-purpose simulation tool which al- confirm that high-flexibility may be provided in a general-
lows simulating a wide range of processor types. Both PUrpose simulator without hardly compromising its compu-
single core (Superscalar, SMT) and multi core (CMP, tational cost.

CMP+SMT), so as homogeneous and heterogeneous con-
figurations, are available and may be employed by meansAcknowledgements
of its flexible MPsim Parameter Interface

The MPsimhas been developed, and keeps on evolving, This work has been supported by the Ministry of Educa-
to constitute a simulation tool to assist computer architec- tion of Spain under contract TIN2007-60625, the Barcelona
ture research in a wide range of scenarios. The program-SuperComputing Center(BSC) and the HIPEAC European
ming phylosophy employed in tHdPsimdevelopment fa-  Network of Excellence. The authors wish to thank Daniel
vors high-flexibility, without critically compromise compu-  Ortega, Ayose Falcon, Jeroen Vermoulen, Ruben Gran, and



[ Simulation Parameters |

Pipeline depth 11 stages

Pipeline width 6 instructions/cycle
Queues Entries 64 int, 64 fp, 64 Id/st
Execution Units 4int, 3fp, 2 Id/st
Physical Registerg 320 regs.

ROB Size* 256 entries

Branch Predictor | perceptron

(4K local, 256 perceps.

BTB 256 entries,
4-way associative

RAS* 100 entries

[ Simulation Parameters ]
L1 I-Cache 64KB, 4-way, 8 banks
L1 D-Cache 32KB, 4-way, 8 banks
L1 lat./miss 3/22 cycs.
I-TLB ,D-TLB 512 ent. Full-associative
TLB miss 300 cycles
L2 Cache 4MB, 12-way, 4 banks
L2 latency 15 cycles
Main Memory lat. | 250 cycles

Number of Threads

Name[ 2 T[4 [ 8

xW1 b,j | byag,t,j d I, b,gijcf

XW2 ne| l,npe | bpg,mn,ah,op

xW3 da| ds,rra | mnrqijeh

xW4 gf | gbmf|lbgmnrfs

xXW5 rp | rnjifp q,b,c, ke a ot

xW6 b,j | byag,t,j d I b,gijcf

XW7 ne| lLnp,e | bg,mn,ahonp

xW8 dal| ds,r,a | mn,raq,ijeh

xW9 o,f | g bmf|lbgmnrfs

XW10 | r,p | ), f,p q,b,c ke ao,t
gzip a | eon h | apsi o | facerec| v
vpr b | gap i wupwise | p | applu w
gcce c | vortex | j equake | q | galgel | x
mcf d | bzip2 | k | lucas r | ammp |y
crafty e | twolf | mesa s | mgrid z
perlbbomk | f | art m | fma3d t
parser g | swim | n | sixtrack | u

Table 1. Simulation parameters and Work-
loads. (resources marked with * are repli-
cated per thread)

Oliverio J. Santana for their support and help in khésim
development proccess.
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