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Abstract

In order to evaluate novel ideas, computer architects re-
quire simulation tools which model a target architecture.
According to the specific accuracy requirements we find
very specific simulators, which model a single architecture
with high accuracy and computational cost, like the ones
typically used in the industry, and general purpose simula-
tors with a less accurate model but requiring less compu-
tational cost, like the ones typically used in the academia.
Focusing on the latter, flexible simulation tools allow eval-
uating a wide range of system configuration, requiring low
effort to evaluate novel ideas. Consequently, the flexibility
is a main characteristic to be considered by computer ar-
chitects when selecting a general-purpose simulation tool.

In this paper it is presented a highly-flexible general-
purpose simulation tool : theMPsim. It allows simulating
a wide range of processor types, both single core (Super-
scalar, SMT) and multi core (CMP, CMP+SMT), both ho-
mogeneous and heterogeneous configurations. It is put spe-
cial emphasis on the simulator flexibility and how it is ob-
tained. The simulation results included indicate that high-
flexibility may be obtained without hardly compromising the
computational cost in a general purpose simulator.

1 Introduction

Computer Architecture has experienced great advances
in the last decades. Thus, we have witnessed the raise of
Superscalars, Simultaneous Multithreading (SMT) and on-
chip Multiprocessors (CMP) among others. All these novel
ideas had to be evaluated prior to their usage in order to
measure their benefits and potential. To perform this eval-
uation, computer architects require simulation tools which
model the corresponding idea and allow simulating its ex-
ecution results, employing a set of benchmarks. The accu-
racy of the model employed is in tune with the research re-
quirements. Thus, while in industry computer architects are

highly constrained to an specific product, requiring a highly
accurate model, in the academia computer architects gen-
erally focus on more long term and less specific research
topics. Obviously, the computational cost of the model
employed is directly proportional to its accuracy. Conse-
quently, the research in the academia generally employs
general-purpose simulation tools, closer to their research in-
terests and computational possibilities.

Among the general-purpose simulation tools typically
employed in the academia during the last decade we find
Simplescalar [4] and SMTsim [9] simulators. The Sim-
plescalar models a single-core Superscalar processor with
5 pipeline stages while the SMTsim models a single-core
Superscalar/SMT processor with 8 pipeline stages. On top
of both simulators, several branch predictors and instruc-
tion fetch policies, so as new proposals, may be added. Re-
garding the Memory Subsystem, both simulators model two
cache levels (optionally up to the third cache level), with
a single Instruction Cache, Data Cache, ITLB, DTLB, L2
Cache. However, while the Simplescalar has a very sim-
ple memory model, in which each memory access is de-
terministically resolved, the SMTsim non-deterministically
manages the memory accesses by means of an event queue,
which cronologically stores all memory requests.

In this paper we present theMPsimsimulator, a highly-
flexible simulator based on SMTsim. It allows simulating
a wide range of processor types both single core (Super-
scalar, SMT) and multi core (CMP, CMP+SMT), both ho-
mogeneous and heterogeneous configurations; so as pro-
viding a complete set of simulation alternatives. It is put
special emphasis on the simulator flexibility and how it is
obtained. TheMPsim Parameter Interfaceallows to easily
declare complex system configurations without needing to
recompile the simulator source code. Both core-specific and
memory subsystem configuration parameters may be gath-
ered into parameter files comprising reusable configuration
repositories. The simulation results included indicate that
high-flexibility may be obtained without hardly compromis-
ing the computational cost in a general-purpose simulator.
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Figure 1. MPsim Processor Types.

2 MPsim overview

TheMPsimis a cycle-accurate simulation tool based on
the SMTsim simulator. Its design focus on the simulator
flexibility andfunctionality, striving at the same time to in-
volve the least computational cost possible. The simulator’s
flexibility does not refer only to the amount of simulation
alternatives provided to the user but also to the configura-
tion easiness and adaptability to future modifications. The
MPsim Parameter Interfaceease the declaration of complex
simulation configurations. It allows to maintain configura-
tion file repositories that may be reused in different simu-
lations without needing to recompile the simulator’s source
code.

TheMPsimallows simulating a wide range of processor
types both single core (Superscalar, SMT) and multi core
(CMP, CMP+SMT). By using theNUM CORESparameter
it may be specified the number of cores in the simulated sys-
tem. All the remainder core-specific parameters will carry
the suffix Px, wherex stands for the core number (e.g.,
IFETCH POLICYP1 ICOUNTdeclares that the core num-
ber 1 use the ICOUNT IFetch Policy). These suffixes allow
to individually configure each core, making possible hetero-
geneous1 system configurations. Thus, although each simu-
lated system core is comprised of at least 8 pipeline stages,
the specific pipeline depth may be individually declared for
each constituent system core. To configure entire systems,
both homogeneous and heterogeneous, each simulated core
may be individually declared by using both the command
line or configuration files. TheMPsim Parameter Interface
allows passing text files comprising all core-specific param-
eters. These configuration files may be reused in multiple
declarations as simulation inputs to configure each simu-

1The term heterogeneous refer to different amount of processor re-
sources, like instruction queue entries and number of registers.

lated system core (e.g.,-pf P1 POWER5specifies the file
POWER5 to configure the core number 1). Figure 1 shows
the processor types that can be simulated usingMPsim.

In order to reduce computational costs, theMPsimpro-
vides a trace-driven2 front-end. Although trace-driven, the
MPsim also permits simulating the impact of executing
along wrong paths on the branch predictor and the instruc-
tion cache by having a separate basic block dictionary in
which information of all static instructions is contained.
The MPsim input traces are collected from the most rep-
resentative 300 million instruction segment of each input
benchmark, following the idea presented in [7]. Each pro-
gram is compiled with the–O2 –nonsharedoptions using
DEC Alpha AXP-21264 C/C++ compiler and executed us-
ing the reference input set. These input traces can be indis-
tinctly read from little-endian/big-endian machines, since
the MPsimautomatically detects the machine characteris-
tics and read data accordingly.

TheMPsimfunctionality, provided to the user by means
of its flexible Parameter Interface, includes a long list of
simulation alternatives. Regarding simulation itself, the
MPsim provides simulation forwarding, numerous simu-
lation statistics and histograms, so as six different simu-
lation finalization modes. Regarding computer architec-
ture alternatives, theMPsimprovides a set of branch pre-
dictors and instruction fetch policies from which select
the desired one, thread migration between cores, so as
multibanked multiported caches. All these functionality
items may be easily activated/deactivated by the user, ac-
cording to her needs, using the appropriate parameter for
each case (e.g.,STATSINTERVAL 0deactivates the in-
termediate IPC statistics). As a matter of example, by
means of theSTATSINTERVAL, MAX NUM INTERVALS,
STATSFORWARDINGandMAX NUM STATSFILES pa-

2The execution-driven functionality is currently being developed.
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rameters it may be obtained intermediate simulation IPC
statistics (interval IPC, IPC variability and in-flight L1
misses) in separate dump files.

The MPsim also allows some extent of clustering
when definining the system to be modeled. Thus, the
SHAREDFETCH UNIT and SHAREDREGISTERFILE
parameters allow sharing a single Fetch Unit and Register
File respectively, among all defined system cores. Since a
single Fetch Unit may be shared among multiple cores, we
indistinctly refer to pipeline/core in the remainder of the pa-
per. However, recall that the only difference is the value of
the SHAREDFETCH UNIT (i.e., pipeline = true, core =
false). As a matter of example, in an hdSMT [2] processor
(see Figure 1) both the Fetch Unit and the Register File are
shared among all constituent pipelines.

3 Parameter Interface

In order to provide high-flexibility theMPsim simula-
tor includes alexical analyzer, yielding a versatileParam-
eter Interface. It scans the simulator call creating pairs of
parameter name and value, which are inserted in an inner
Parameter Data Base. There is not a fixed parameter dec-
laration order, with the only assumption that every argu-
ment which begins with a dash is considered a parameter
name and the immediate following argument is considered
its value (e.g., the simulator callmpsim -arg1 arg2includes
the parameter arg1 with value arg2). Whenever a single pa-
rameter name is declared more than once, the value in the
Parameter Data Basecorresponds to the last parameter dec-
laration. TheParameter Interface Libraryincludes func-
tions to adquire each parameter from theParameter Data
Baseto the simulator inner structures. This way, the ad-
dition of new functionality benefits from an easy way to
adquire configuration parameters.

The special parameter nameparmsfile (or simply pf)
is reserved to indicate a configuration parameter file, with
the parameter value indicating the file path. The use of
parameter files permits to declare an unlimited number of
parameters, allowing more complex simulation configura-
tions. Additionally, by using parameter files, that may also
include comments (using #), it is possible to keepconfig-
uration file repositories. Although the parameter files may
include any sort of parameters, the main repositories used
are comprised ofcores, machinesandmemory subsystems
declarations. In order to ease multicore configurations and
repositories maintenance, it may be added the suffixPx to
a parameter file name declaration, withx identifying a given
core. This suffix indicates that all the parameters included
in the corresponding file are related to the specifiedx core
(e.g., -pf P0 file1declares the filefile1 as input to config-
ure the first core in the simulated system). TheParameter
Interfacethen automatically adds this suffix to each param-

eter name included in the file. Thus, a single core file may
be used to configure multiple cores in a multicore configu-
ration; or in different simulation calls.

Once scanned the whole simulator call, the resultingPa-
rameter Data Base, that comprises all declared pairs of pa-
rameter name and value, is used in the subsequentSimulator
Initialization Phase. During this phase the content of the
Parameter Data Baseis used to initialize the correspond-
ing simulator structures and variables. Any sort of parame-
ters may be requested by the simulator developer by using
theNeedValueandGiveValuefunctions from theParameter
Interface Library. Whenever a parameter is compulsory,
and does not admit a deffault value, it is used theNeed-
Value, which automatically stops the initialization phase
and prompts an error message in absence of the specified
parameter. Otherwise, it is used theGiveValuefunction.

Figure 2 illustrates the high-flexibility of theMPsim Pa-
rameter Interface. In the example, 3 configuration files
stored in the simulator’s repositories are used to configure
a Cell-like processor with a simple simulator call. Given
the filesPPE andSPE, that include all core-specific con-
figuration parameters for Cell PPE-like and SPE-like cores
respectively, and the fileCell, that include all Memory Sub-
system related parameters and relations for a Cell-like con-
figuration, the simulator call shown in Figure 2 is enough to
configure a Cell-like simulation3.

The Lexical Analyzer, included in theMPsim Parame-
ter Interface, scans the whole simulator call shown in Fig-
ure 2 automatically accessing to the corresponding files in
the repositories. TheLexical Analyzeruses the suffix infor-
mation included in the simulator call (i.e.,Px in the-pf Px
argument, withx indicating the specific core) to create the
corresponding pairs of parameter name and value that are
inserted into theParameter Data Base. Thus, although there
is a singleMAXTHREADSparameter declaration in PPE
and SPE files stored in the cores repository (see Figure 2),
multiple MAXTHREADSpairs are inserted in theParame-
ter Data Base, one per each of the 9 delcared cores. Once
the whole simulator call is scanned, including the parameter
files, the subsequentSimulator Initialization Phaseuses the
resultingParameter Data Baseand theInterface Library
functions to set up the simulator inner structures and pre-
pare the subsequent simulation. Thus, during the multi-
pipeline environment initialization (i.e.,init multipipeline,
see Figure 2) it is used the functionNeedValueto initialize
the simulator from the information contained in theParam-
eter Data Base, modeling an heterogeneous multi-core pro-
cessor comprised of 9 cores (i.e.,NUMCORES), each one
containingMAXTHREADShardware contexts (i.e., a dual-
thread PPE and 8 single-thread SPEs). After the initializa-
tion phase, the simulation begins.

3Although not included in the simulator call for simplicity, it should be
also specified the workload to simulate.
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Simulator Call
Mpsim –NUMCORES 9 –pf_P0 cores/PPE   
–pf_P1 cores/SPE –pf_P2 cores/SPE
–pf_P3 cores/SPE –pf_P4 cores/SPE
–pf_P5 cores/SPE –pf_P6 cores/SPE 
–pf_P7 cores/SPE –pf_P8 cores/SPE
–pf mem/Cell  

Memory
Repository

## Cell-like mem. config. ##

DCACHE_TOTAL_SIZE_MG0 = 32768
ICACHE_TOTAL_SIZE_MG0 = 32768
SCACHE_TOTAL_SIZE_MG0 = 524288

…

Cell

## PPE-like config. ##

MAXTHREADS = 2
FETCHLIMIT     = 2

…
## SPE-like config. ##

MAXTHREADS = 1
FETCHLIMIT     = 2

…

PPE

SPE

Cores
Repository

Lexical
Analyzer

Simulator
Initialization

Phase

Init_fetch
For i=0; i<NUMCORES; i++ {

NeedValue(FETCHLIMIT_P(i))}
…

Init_multipipeline
NeedValue(NUMCORES)

For i=0; i<NUMCORES; i++ {
NeedValue(MAXTHREADS_P(i))}

…

Init_cache
…
…

Begin Simulation

Interface Library
NeedValue()

…

(NUMCORES, 9)
(MAXTHREADS_P0, 2)
(MAXTHREADS_P1, 1)
(MAXTHREADS_P2, 1)

…

Parameter
Data Base

Figure 2. Parameter Interface Example for a Cell-like configuration.
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Figure 3. MPsim Processor Pipeline Stages.

4 The Pipeline

TheMPsim is a cycle-accurate simulator in which each
simulated system core is comprised of at least 8 pipeline
stages, as shown in Figure 3. However, each system core
may be defined with a different pipeline depth, adding idle
pipeline stages in betweenDecodeandRegRenamestages.
As a matter of example, to specify an 11-stage execution
pipeline in any of the declared cores it is set the parameter
NUM DECODESTAGES 4.

In case of sharing the Fetch Unit among all pipelines (see
Section 2) a new pipeline stage, calledPredecode, is auto-
matically added by theMPsim to each pipeline. ThePre-
decodestage works as a buffer (with user-definable capac-
ity using thePREDECODEQUEUE SIZEparameter) be-
tween the shared Fetch Engine and the decode stage of each
constituent pipeline, which may have a different pipeline
width. As a matter of example, in a given cycle an 8-
wide shared Fetch Engine passes 8 instructions to a 4-wide
pipeline; 4 instructions passes to that pipeline decode stage

while another 4 instructions are buffered inPredecodeuntil
the next simulation cycle.

The pipeline resources and implemented policies may be
easily declared using theMPsim Parameter Interface(see
Section 3). Each Fetch Unit declared in a simultaneous mul-
tithreaded system (i.e., the shared Fetch Unit in an hdSMT
processor or each Fetch Unit in a CMP+SMT processor)
may be configured with a different Instruction Fetch Pol-
icy, which determines from which thread/s to fetch instruc-
tions each cycle. To define the IFetch Policy used by each
Fetch Unit we employ theIFETCH POLICYPxparameter,
wherex corresponds to the processor pipeline number. The
user may select any from Round Robin [10], ICOUNT [10],
STALL [8], FLUSH [8], and FLUSHPLUS PLUS [3]. In
a similar way, each Fetch Unit declared in a system may be
configured with a different branch predictor, using thepre-
dictor Px parameter, where x corresponds to the processor
pipeline number. In this case, the user may chose any from
GSHARE [6], PERCEPTRON [5] and PERFECT predictor.
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4.1 Thread Migration

Multicore configurations can be simulated in ei-
ther STATIC or DYNAMIC fashion, using the
THREADSMIGRATION parameter. STATIC simula-
tions assume no thread migrations, from core to core,
during the whole simulation. DYNAMIC simulations may
experience thread migrations according to the specified
MIGRATIONINTERVAL parameter value (measured
in simulated cycles). The assignment of all simulated
threads to any of the defined cores is specified by the
FIRSTT2P ASSIGPOLICY parameter. It may be chosed
from NRR(Naive Round Robin) andCUSTOM, using the
ASSIGTH X P parameter in the latter case to specify each
assignment (e.g.,ASSIGTH 1 P 0 assigns the thread 1 to
the core 0).

In DYNAMIC simulations, the thread migrations are
triggered according to the specifiedMIGRATIONHEURIS
TIC parameter value. Among the available migra-
tion heuristics it can be chosed theBESTDYNAMIC.
In a BESTDYNAMIC simulation every MIGRA-
TION INTERVAL simulated cycles all possible thread
migrations are considered by the simulator, chosing for
each interval the one which yields the highest throughput.

5 The Memory Subsystem

The MPsimMemory Subsystem inherits the SMTsim’s
foundations, having an event queue to manage all memory
requests in a non-deterministic fashion. Whenever a mem-
ory request experience an L1 Cache miss it is inserted a
memory request in the queue, arranged by cronological re-
quest time (in simulated cycles). According to the specific
system configuration, memory hit/miss, and contention, the
memory request may have to traverse the L2 Cache, the L3
Cache and the L1-L2 intercomunication bus, so as accessing
to a TLB. The memory request queue is regularly accessed
by the simulator, triggering each request in the correspond-
ing simulation cycle. As described in Section 5.2, theMP-
simstructures this memory event queue into two layers for
multicore configurations with an L2 Access Arbiter imple-
mented.

Unlike SMTsim, with a fixed Memory Subsystem
definition, the MPsim provides the user afully-flexible
Memory Subsystem. Thus, it may be configured a Mem-
ory Subsystem comprised of any number of memory
components (DTLBs, ITLBs, DCaches, ICaches, L1-L2
Buses, L2 Caches and L3 Caches) so as relations, be-
tween memory components and execution pipelines. The
MPsim Parameter Interfaceallows to specify the desired
number of components4 by using theNUM L3 CACHES,

4There must be at least 1 declared component of each type except for
L3 Caches, which are optional.

NUM L2 CACHES, NUM BUSES, NUM ICACHES,
NUM DCACHES, NUM ITLBS, NUM DTLBSparameters.
Once declared, the user may configure each of the com-
ponents’ characteristics individually, using command line
parameters or parameter files (e.g., a DTLB is configured
with DTLBPENALTY, DPGSIZEand DTLB SIZE param-
eters). As a consequence, not all components of the same
type must have the same characteristics, allowing heteroge-
neous memory configurations. To ease this configuration,
each memory component is associated to a singleMemory
Group (MG), as shown in Figure 4 (e.g.,I0$, ITLB0, D0$,
DTLB0, BUS0, L20 andL30 belong to the firstMemory
Group). Thus, when specifying a component characteristic
we add the suffix MGx, wherex stands for theMemory
Group, to refer to a particular memory component (e.g., the
DTLB SIZEMG0 parameter value specifies the size of the
DTLB0, belonging to the firstMemory Group).

The MPsim Memory Subsystem does not assume any
implicit relation between any two components5, allowing
the user to explicitly declare the desired relations. The
Memory Groups, used to univocally refer to each memory
component declared in the system, do not imply real mem-
ory component relations (e.i.,D0$ does not necessarily use
BUS0 to communicate with the second level of cache). To
specify the desired memory component relations theMP-
sim Parameter Interfaceprovides a simpleRegular Expres-
sion Grammar (REG), shown in Figure 5. ThisREG, imple-
mented as part of theLexical Analyzerincluded in theMP-
sim Parameter Interface(See Section 3), allows to establish
a relation between any two memory components. These
relations are focused on the first level of cache; the user
specifies for each first level cache (i.e., D$ and I$) both the
execution pipeline and the remainder memory components
that are related with that specific component. The flexibil-
ity provided by this simple grammar allows to declare com-
plex memory configurations, includingN:M relations as is
the case of first level caches and TLBs (i.e., a single Data
Cache may use more than one DTLB).

As a matter of example, Figure 6 shows a Memory Sub-
system example for a 3-core system. To specify all the con-
stituent memory components shown in Figure 6 it should be
used the following declaration:

-NUM DCACHES 3 -NUMICACHES 2 -NUMDTLBS 2

-NUM ITLBS 1 -NUMBUSES 2 -NUML2 CACHES 2

-NUM L3 CACHES 1

Once declared all the memory components, the relations
between them are declared using the memory relation gram-
mar shown in Figure 5, as depicted in Figure 7. For a Mem-
ory Subsystem to be fully declared, every first level cache

5Unless a single component of any type was declared (e.g., in a system
with a single DCache all cores must access to that DCache). In that case
the corresponding relations with other components are implicitly assumed.
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…
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MEMORY GROUP 
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MEMORY RELATIONS

MEMORY RELATIONS

MEMORY RELATIONS

MEMORY RELATIONS

MEMORY RELATIONS

MEMORY RELATIONS

Figure 4. MPsim Memory Subsystem.

REL_X_Y d
where

X = {P_da}
Y = {DC[ _di ], IC[ _dj ]}
d = {db,dc}

or

X = {DC_MGdb}
Y = {DTLB[ _dk ], BUS, L2, L3}
d = {dd,de,df,dg}

or

X = {IC_MGdc}
Y = {ITLB[ _dl ], BUS, L2, L3}
d = {de, df, dg, dh}

with

1 ≤ da < NUM_CORES
1 ≤ db < NUM_DCACHES
1 ≤ dc < NUM_ICACHES
1 ≤ dd < NUM_DTLBS
1 ≤ de < NUM_ITLBS
1 ≤ df  < NUM_BUSES
1 ≤ dg < NUM_L2_CACHES
0 ≤ dh < NUM_L3_CACHES

* 0 ≤ di  < Max. Core DCaches 
* 0 ≤ dj  < Max. Core ICaches 
* 0 ≤ dk < Max. D$ DTLBs
* 0 ≤ dl  < Max. I$   ITLBs

* In case of Multi-Relations (N:M)

Figure 5. MPsim Memory Relation Regular Expression Grammar.

ITLB0

DTLB1

L30

BUS0 BUS1

P0 P2

D1$

L20 L21

D2$

P1

D0$

DTLB0

I0$ I1$

Figure 6. MPsim Memory Subsystem Example.

(ICaches and DCaches) must be related with some pipeline
(or multiple pipelines), TLB (or multiple), L1-L2 bus, L2
Cache and optionally with some L3 Cache. Finally, each
memory component is configured using its specific parame-
ters (e.g.,-DTLBPENALTYMG1 300 -DPGSIZEMG1 13 -
DTLB SIZEMG1 512configures the DTLB number 1 with
512 entries, a miss penalization of 300 cycles and a 8Kb
virtual page size –2 to 13–). As with pipeline configuration,
theMPsim Parameter Interfaceallows to maintain a Mem-
ory Subsystems & Relations Repository (memHierarchies
directory) and use them to declare more complex configu-

rations. As a matter of example, let be POWER5MEM and
POWER5MEM rels the configuration files comprising all
memory component configuration parameters and the rela-
tions between them, respectively, to configure a POWER5-
like [1] Memory Subsystem. We would use the follow-
ing declaration to fully configure a POWER5-like Memory
Subsystem:

-pf memHierarchies/POWER5MEM

-pf memHierarchies/POWER5MEM rels

6



REL_P_0_DC 0
REL_P_0_IC 0
REL_P_1_DC 1
REL_P_1_IC 0
REL_P_2_DC 2
REL_P_2_IC 1

REL_IC_0_ITLB 0
REL_IC_0_BUS 0
REL_IC_0_L2 0

* REL_IC_0_L3 0

REL_IC_1_ITLB 0
REL_IC_1_BUS 1
REL_IC_1_L2 1

* REL_IC_1_L3 0

* Optional : Since NUM_L3_CACHES = 1 it is
no needed this relation.

REL_DC_0_DTLB 0
REL_DC_0_BUS 0
REL_DC_0_L2 0

* REL_DC_0_L3 0

REL_DC_1_DTLB 0
REL_DC_1_BUS 0
REL_DC_1_L2 0

* REL_DC_1_L3 0

REL_DC_2_DTLB 1
REL_DC_2_BUS 1
REL_DC_2_L2 1

* REL_DC_2_L3 0

Pipeline – L1 Caches
relations

ICache 0
relations

ICache 1
relations

DCache 2
relations

DCache 1
relations

DCache 0
relations

Figure 7. MPsim Memory Component Relations Example.

Since it is not possible to cover allMPsim functional-
ity, due to space constraints, we focus on two main Mem-
ory Subsystem functionality issues in the remainder of this
section. In Section 5.1 we describe the Multibanked and
Multiported Cache functionality and the L2 Cache Access
Arbiter in Section 5.2.

5.1 Multibanked & Multiported Caches

For each cache declared in the Memory Subsystem,
it is possible to specify the number of banks in which it
will be splitted. TheMPsim Parameter Interfaceprovides
this functionality by means of the ICACHEBANKSMGx,
DCACHEBANKS MGx, L2CACHEBANKS MGx,
L3CACHEBANKS MGx parameters, wherex stands
for the specific Memory Group. Additionally, each
cache may be configured with a different number of
access ports, using the NUMDCACHE PORTSMGx,
NUM ICACHE PORTSMGx, L2CACHEBANKPORTM
Gx parameters, wherex stands for the specific Memory
Group. As a matter of example, the following declaration
configures a 4-bank 4-port L2 Cache and an 8-bank 2-port
DCache, shown in Figure 8 :

-NUM DCACHES 1 -DCACHEBANKSMG0 8

-NUM DCACHEPORTSMG0 2 -NUML2 CACHES 1

-L2CACHEBANKS 4 -L2CACHEBANKPORTSMG0 4

5.2 L2 Cache Access Arbiter

TheMPsimallows defining multicore system configura-
tions in which many cores may share a single L2 Cache. In
order to cope with the L2 Cache contention among all cores
theMPsimprovides an L2 Cache Access Arbiter, that can be
activated using theL2 ACC ARBITERparameter. TheMP-
simL2 Cache Access Arbiter, shown in Figure 9, manages
the access to each L2 Cache bank using a queue per each

Bank1 Bank2 Bank3 Bank4

L2

L1

Bank1 Bank2 Bank3 Bank4 Bank5 Bank6 Bank7 Bank8

BUS
L1 Port 1 L1 Port 2

L2
 P

or
t1

L2
 P

or
t2

L2
 P

or
t3

L2
 P

or
t4

Figure 8. 4-bank 4-port L2 Cache and 8-bank
2-port L1 Cache Example.

…
L2 Port 1
L2 Port 2

L2 Port Np
…

Entry 1

…
Entry N

Entry 2
Entry 1

…
Entry N

Entry 2
Entry 1

…
Entry N

Entry 2…

L2
Bank

Arbiter

L2 Access 
Queues

One different
queue per core

Each L2 Cache may
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Figure 9. L2 Cache Access Arbiter.

core sharing that L2 Cache. Each of these queues buffer the
core’s L2 Cache access requests until the user-definable L2
Arbiter removes it from the corresponding queue and trig-
gers the L2 Cache Bank access; as many requests allowed
per simulated cycle as L2 Cache ports defined in the Mem-
ory Subsystem declaration. Whenever an L2 Access Queue
gets full the corresponding core is temporarily stopped (no
forward progress in any pipeline stage) until some queue
entry gets empty.
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6 Computational Cost

Although high-flexibility constitutes a very important
characteristic for a general-purpose simulator it may not
be achieved regardless its computational cost. Due to fi-
nite computational resources, computer architects require
simulation tools that are able to yield results in a limited
amount of time, according to reseach deadlines. It must
be kept in mind that the results obtained from such a sim-
ulation tool generally constitute a first step in a multistep
evaluation process. Due to their limited accuracy, general-
purpose simulators are normally used to both identify archi-
tectural challenges and obtain general trends. In this sense,
the flexibility offered by the selected simulation tool is of
crucial importance. The tool’s ability to allow simulating
multiple architectural alternatives with low effort helps to
both accelerate and improve this first evaluation step. Once
identified the architectural challenge and evaluated a pos-
sible solution, more accurate results may be obtained em-
ploying either a more specific (and complex) simulator or
FPGAs [11].

Although focused on high-flexibility, theMPsimdesign
strives to involve the least computational cost possible. The
idea is to provide a flexible and easy-to-use simulation tool,
that allows the user to simulate a wide range of simulation
alternatives with low effort, able to yield simulation results
in a reasonable time. Although a priori conflicting, it may
be found a satisfactory balance between these design goals.
Following are enumerated some of the main design deci-
sions employed in theMPsimdevelopment:

1. Parameter Interface. Providing high-flexibility should
not interfere with the simulation itself. The parame-
ter interface should be adaptable to accommodate fu-
ture simulation improvements but it should not inter-
fere with the inner simulation structures.

2. Initialization Phase. The configuration parameters ac-
quisition, performed by a a flexible and easy-to-use
parameter interface, should be immediately followed
by an Initialization Phase. During this preparatory
phase it should be anticipated all the work possible ac-
cording to the simulation configuration. Thus, while
some simulator modules could be fully deactivated,
without compromosing neither memory nor process-
ing in the subsequent simulation, others could be de-
voted enough memory to get rid of time consuming
dynamic memory allocation/deallocation. According
to the specific simulation configuration and the avail-
able resources, the Initialization Phase may consider-
able reduce the subsequent simulation computational
cost.

3. Avoid unnecessary work. Instead of requiring func-
tion calls to determine whether a module is activated

or not during the simulation, each module may include
macros. Without compromising neither the code legi-
bility nor modularity, a macro including a conditional
branch to the corresponding function call may reduce
the additional cost for deactivated modules; adding
only an extra conditional branch for activated ones.
Furthermore, since modules are activated/deactivated
only durign theInitialization Phase, these branches are
easily predictable.

In order to give an idea of the computational cost in-
volved by theMPsim simulation tool, following are in-
cluded some simulation results. For this set of experiments
we use theSPEC2000 benchmark suite. From them we
collected traces of the most representative 300 million in-
struction segment of each benchmark, following the idea
presented in [7]. Each program is compiled with the–O2
–nonsharedoptions using DEC Alpha AXP-21264 C/C++
compiler and executed using the reference input set. Fortran
programs are compiled with the DIGITAL Fortran 90/For-
tran 77 compilers. The fast forwards applied to each ap-
plication, in order to obtain the traces, are shown in Ta-
bles 2 and 3.

Using the resulting traces, we collected workloads com-
prised of 1,2,4 and 8 benchmarks, shown in Table 1. The
name of each workload6 is xWy, wherex stands for the
number of threads involved andy stands for the work-
load identifier (e.g.,4W2 identifies the second workload
with 4 threads). Each workload with sizex is simu-
lated on aCMP+SMT implementation with shared L2
Cache andx2 two-hardware-contextSMTcores implement-
ing ICOUNT [10] policy; both single-thread and dual-
thread workloads are simulated on a single-core implemen-
tation. Both core-specific and memory subsystem configu-
ration parameters are shown in Table 1.

All workloads were simulated on a Dual-Core 2 Intel
Xeon processor with 2,333GHz, 1333MHz FSB, and 4MB
cache running Linux 2.6.15. Figures 10, 11, 12, and 13,
show the time required to simulate each workload until any
of the comprising benchmarks finish simulating 300 million
instructions. Except for the181.mcf, with a pathological
bad memory behavior due to nested memory references, all
single-thread workloads are fully simulated in about twelve
minutes time, which constitutes a reasonably low compu-
tational cost. As could be a priori expected, doubling the
number of benchmarks in the workload (i.e., dual-thread
workloads –2Wy–) doubles the required simulation time, as
shown in Figure 11. Adding more dual-threadSMT cores,
and consequently simultaenously simulating more bench-
marks, increases the required simulation time as shown in
Figures 12 and 13.

6Except for single-thread workloads, represented by the name of the
corresponding benchmark.
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Figure 13. Quad-Core Dual-Thread Simulation Cost.

7 Conclusions

In this paper it is presented theMPsim, a highly-flexible
general-purpose simulation tool. TheMPsim constitutes
a cycle-accurate multi-purpose simulation tool which al-
lows simulating a wide range of processor types. Both
single core (Superscalar, SMT) and multi core (CMP,
CMP+SMT), so as homogeneous and heterogeneous con-
figurations, are available and may be employed by means
of its flexibleMPsim Parameter Interface.

TheMPsimhas been developed, and keeps on evolving,
to constitute a simulation tool to assist computer architec-
ture research in a wide range of scenarios. The program-
ming phylosophy employed in theMPsimdevelopment fa-
vorshigh-flexibility, without critically compromise compu-

tational costs, so as new ideas could be easily added to the
simulation tool functionality. In this paper it is put special
emphasis on how this flexibility is obtained and the com-
putational cost it involves. The simulation results included
confirm that high-flexibility may be provided in a general-
purpose simulator without hardly compromising its compu-
tational cost.
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Simulation Parameters

Pipeline depth 11 stages
Pipeline width 6 instructions/cycle
Queues Entries 64 int, 64 fp, 64 ld/st
Execution Units 4 int, 3 fp, 2 ld/st
Physical Registers 320 regs.
ROB Size* 256 entries
Branch Predictor perceptron

(4K local, 256 perceps.)
BTB 256 entries,

4-way associative
RAS* 100 entries

Simulation Parameters

L1 I-Cache 64KB, 4-way, 8 banks
L1 D-Cache 32KB, 4-way, 8 banks
L1 lat./miss 3/22 cycs.
I-TLB ,D-TLB 512 ent. Full-associative
TLB miss 300 cycles
L2 Cache 4MB, 12-way, 4 banks
L2 latency 15 cycles
Main Memory lat. 250 cycles

Number of Threads
Name 2 4 8

xW1 b, j b, q, t, j d, l, b, g, i, j, c, f
xW2 n, e l, n, p, e b, g, m, n, a, h, o, p
xW3 d, a d, s, r, a m, n, r, q, i, j, e, h
xW4 g, f g, b, m, f l, b, g, m, n, r, f, s
xW5 r, p r, j, f, p q, b, c, k, e, a, o, t
xW6 b, j b, q, t, j d, l, b, g, i, j, c, f
xW7 n, e l, n, p, e b, g, m, n, a, h, o, p
xW8 d, a d, s, r, a m, n, r, q, i, j, e, h
xW9 g, f g, b, m, f l, b, g, m, n, r, f, s
xW10 r, p r, j, f, p q, b, c, k, e, a, o, t

gzip a eon h apsi o facerec v
vpr b gap i wupwise p applu w
gcc c vortex j equake q galgel x
mcf d bzip2 k lucas r ammp y
crafty e twolf l mesa s mgrid z
perlbmk f art m fma3d t
parser g swim n sixtrack u

Table 1. Simulation parameters and Work-
loads. (resources marked with * are repli-
cated per thread)

Oliverio J. Santana for their support and help in theMPsim
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