
Maximizing Multithreaded Multicore Architectures through
Thread Migrations

Carmelo Acosta †, Francisco J. Cazorla †?, Oliverio J. Santana †, Ayose Falcón ‡
Alex Ramirez †?, Mateo Valero †?

† Departament d’Arquitectura de Computadors
Universitat Politecnica de Catalunya

Barcelona, Spain
{cacosta,fcazorla,osantana,aramirez,mateo}@ac.upc.edu

‡ Barcelona Research Office
HP Labs

ayose.falcon@hp.com

? Barcelona
Supercomputing

Center

Abstract

Heterogeneity in general-purpose workloads often end up in non optimal per-thread hardware resource

usage. The current trend towards multicore architectures, containing several multithreaded cores, in-

creases the need of a complexity-effective way to expose the heterogeneity in general-purpose workloads

to the underlying hardware, in order to obtain all the potential performance of these architectures.

In this paper we present the Heterogeneity-Aware Dynamic Thread Migrator (hDTM), a novel comple-

xity-effective hardware mechanism that exposes the heterogeneity in software to the hardware, also en-

abling the hardware to react to the dynamic behavior variations in the running applications. By means

of core-to-core thread migrations, the hDTM mechanism strives to perform the desired behavior trans-

parently to the Operating System.

As an example of the general-purpose hDTM concept presented in this paper, we describe a naive

hDTM implementation for a Power5-like processor and provide results on the benefits of the proposed

mechanism. Our results indicate that even this simple hDTM implementation is able to get close to

hDTM’s goal, not only avoiding losses due to bad thread-to-core assignments (up to a 25%) but also

going beyond the best static thread-to-core assignment upper limit.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/132529369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The recent advances in process technology are resulting in an increasing number of transistors on

chip. As the number of transistors on chip dramatically increases, the issue of how to employ so many

transistors in a complexity-effective way becomes even more important. In this context, clustering tech-

niques [14, 4, 16] have proved to be an efficient solution to design high-performance processors that

reduce area, energy consumption, chip temperature, and verification cost requirements with respect to

traditional monolithical designs.

There are several proposals in the prior work [6, 11, 1, 12] that propose clustering techniques. As

we apply aggressive clustering on a processor design, we cover the path between Simultaneous Mul-

tithreading Processors (SMT) [24, 25, 26], which share all the available resources between all the ex-

isting threads, and Chip Multiprocessors (CMP) [13, 7], which have separate processing elements that

just share the second level cache. Recently, the trend has lead to an hybrid approach: multithreaded-

multicore architectures, which has been reflected in industry with the appearance of SMT [15] and

multithreaded-multicore [9] processors.

However, clustered SMT processors may not be enough to obtain complexity-effective processor de-

signs. A general-purpose clustered processor statically partitions the available resources into equal clus-

ters during the design stage. The problem is that such a general-purpose clustered processor is designed

to execute a wide range of different applications, and thus it is not tuned to optimally execute any par-

ticular program. Therefore, it may not optimally cover the combined requirements of applications with

different resource requirements. Furthermore, differences in resource requirements are present not only

when comparing different applications but also within a single application, which behavior varies as the

execution flows.

In order to avoid these inappropriate per-thread hardware resource assingment, some recent work [11,

1, 10] consciously incorporate this heterogeneity-awareness into the hardware itself. Among them, the

Heterogeneous Multicore Architecture [10] is the only one that mirrors this software heterogeneity into

the hardware itself, while dynamically maintaining an appropriate software-hardware matching. Instead

2

of partitioning the processor resources into equal clusters, the heterogeneous multicore architecture par-

titions the resources into clusters having different sizes. In this way, the architecture is able to assign

each executing application to the cluster that is more suited to fulfill the application requirements and, at

the same time, maximizing the overall processor performance, just suffering from an additional cost in

terms of sampling phases. Current processor designs, such as the Power5 processor [9], involve limited

heterogeneity-awareness. The processor, comprised of homogeneous cores, is aware that there are some

specific and pathologic cases that do not benefit from SMT, and thus it supports the single-threaded (ST)

execution mode, implementing seven different thread-priority ST execution modes. However, no further

resource reassignment is made as the execution flows and workload requirements vary.

In this paper, we propose the Heterogeneity-Aware Dynamic Thread Migrator (hDTM), a novel comple-

xity-effective hardware mechanism that exposes the heterogeneity present in software to the hardware.

An approach based on fixed-time intervals avoids the need of additional and costly sampling phases.

Besides exposing the heterogeneity, our mechanism gives the hardware full control to react to dynamic

variations in running application behavior in multithreaded-multicore architectures. The hDTM is a

general-purpose mechanism, valid for any multithreaded-multicore architecture, regardless the specific

core characteristics such as heterogeneous or clustered cores. In this paper, we present both the hDTM

concept and a specific hDTM implementation, including results that show its effectiveness.

2 The hDTM mechanism

The inherent heterogeneity in typical application behaviour [17, 20] yields workloads with require-

ments difficult to be appropriately served by a static hardware. The consequences of inappropriate soft-

ware to hardware resource allocation are even more severe in multicore architectures, since hardware

has been statically partitioned into cores. The Heterogeneity-Aware Dynamic Thread Migrator (hDTM)

exposes the heterogeneity in the running software to the underlying multicore hardware. By making

the hardware heterogeneity-aware and giving it full control over the on-chip resource allocation, it is

possible to improve the hardware response to a highly heterogeneous execution workload.

3

In order to make the hardware heterogeneity-aware, it should be able to detect this heterogeneity us-

ing dynamic information. As stated in [19], we think that a single and low-complex to track metric

is required. This metric should reflect accurately the phase varying behavior in running applications.

However, we do believe that metrics independent of any individual architecture will not allow a specific

piece of hardware to optimally react to heterogeneous software behaviour. Moreover, it is highly prob-

able that our design constraints lead us to a multipurpose heterogeneity-awareness scenario, where the

hardware must be aware of multiple metrics (at least one per heterogeneity source). As an example, to

make a processor aware of the heterogeneity in both performance and temperature will require at least

two metrics, one per heterogeneity source. In this sense, the hDTM implementation presented in this pa-

per is single purpose, that is, it is strictly aimed to improve the total processor throughput. Multipurpose

implementations are out of the scope of this paper and postponed to future work.

The hDTM mechanism is depicted in Figure 1. It is implemented as a piece of hardware with T×N+1

inputs and T outputs, where T represents the number of running threads and N the number of tracked

metrics. Notice that N will coincide with the number of heterogeneity sources whenever a single metric

per source could be found. In the hDTM implementation presented in this paper, a single metric is

used to track heterogeneity in throughput, and thus N=1, while T ranges from 2 to 4. The additional

input (indicated as +1 in Figure 1) indicates the number of running threads. The hDTM first detects

and classifies the heterogeneity in each of the sources it has been designed for. This heterogeneity is

represented in terms of program phases, with specific program phases per each heterogeneity source.

In the hDTM implementation presented in this paper, the heterogeneity in throughput is represented

by running threads passing from high-ILP (ILP) to memory-bounded (MEM) phases and vice-versa.

Once detected and classified the heterogeneity in the time instant t, we need to know how this behaviour

will vary in time instant t+1. To do so, a Next Program Phase Predictor (Np3) is used. We use the

predicted behaviour as input to a microarchitecture-specific control hardware, the Thread Migration

Arbiter. This arbiter has full control over thread migrations from core to core. It is designed to react

to the heterogeneity in the running software and proceed according to the specific microarchitecture

optimal decision in each case. In order to keep the complexity-effectiveness in the hDTM, we employ

4

Program Phase
Detection &

Classification

Next Program
Phase

Predictor

Thread
Migration

Arbiter

TxN+1 T

inputs outputs

Figure 1. The hDTM mechanism.

a fixed-time-interval-based approach. This approach both reduces the amount of work done by the

mechanism (once per fixed time interval) and avoids the need of additional and costly sampling phases.

In the following subsections it is explained in detail each of the three componets that comprise the

hDTM mechanism, as depicted in Figure 1. Finally we discuss the complexity-effectiveness of the

hDTM mechanism.

2.1 Program Phase Detection and Classification

The hDTM mechanism starts detecting heterogeneity in each of the heterogeneity sources it has been

designed for (e.g throughput, chip surface temperature, etc). A program phase classification is needed

as well as an effective way of detecting variations in program phases, for each source. In order to be

appropriately monitored by a piece of hardware, the continuous time space is split into fixed intervals,

or migration intervals. For each of these intervals, a per-thread behavior classification will be obtained

by this first stage of the hDTM mechanism.

In the throughput-based implementation presented in this paper, we classify threads according to their

memory behavior. In particular, we distinguish bad memory behavior program phases, i.e. memory-

bounded (MEM), from good memory behavior program phases, i.e. high-ILP (ILP). We employ the

second level cache (L2) miss ratio of each thread as an indicator of its memory behavior. Consequently,

two metrics are monitored per thread, but resulting in a single metric per thread (N=1): the number of

L2 misses and the number of total L2 accesses, which yield the L2 miss ratio. In order to effectively

distinguish between ILP and MEM program phases, we use a fixed threshold to classify the L2 miss ratio

of each thread into ILP or MEM. Therefore, programs with an L2 miss ratio below 1% are considered

5

to go through an ILP phase, and MEM otherwise. Once each thread is classified as in an ILP or MEM

program phase, this classification is passed to the next hDTM stage, the Next Program Phase Predictor

(Np3).

2.2 Next Program Phase Predictor

In order to appropriately react to running software behaviour variations, it would be highly desirable

to know beforehand how this behaviour is going to vary in the immediate future. Prior work [5, 21]

has studied the detection of program phase changes and evaluated its importance. Basic block propor-

tions, program working sets, and conditional branch counts have proved to accurately identify large scale

program phase variations. However, they might not completely fit in an hDTM mechanism. The spe-

cific heterogeneity sources to be tracked in each case could require specific metrics to be appropriately

detected. Moreover, the granularity required for each source may differ from the large scale program

phases covered by prior work and even require a different granularity per source. Therefore, in order to

appropriately react to each heterogeneity source, the processor needs at least a specific metric per each

source, also tracking specific program phases per source. As an example, a multipurpose performance

and temperature-aware processor could experience ILP-MEM performance program phase variations, as

well as LOW-MEDIUM-HIGH temperature program phase variations. In each case, the desired hard-

ware reaction will depend on the specific combination of program phases (e.g. ILP + MEDIUM).

The Next Program Phase Predictor (Np3) comprises the second stage of the hDTM mechanism. It

predicts the heterogeneity variation in the next time interval (close future) per each heterogeneity source

covered by the hDTM mechanism. In a multipurpose hDTM, there is one Np3 per heterogeneity source.

Each of them receives T inputs and yields T outputs, where T represents the number of running threads.

When a time interval ends, the inputs reflect the per-thread program phase classification corresponding

to the time interval t, that is, the finalized interval. The outputs reflect the per-thread program phase

classification prediction for the time interval t+1, that is, the next interval. This stage of the hDTM

mechanism can be implemented in a wide range of possibilities, from simple approaches with limited

accuracy to more sophisticated approaches, having high accuracy at the cost of higher complexity. A

6

detailed study of the possible implementations and their importance to the final results is objective of

future work.

In the throughput-based implementation presented in this paper, we implement a Last Interval Np3.

The predictor statically assumes that the program phase classification during the last interval will con-

tinue during the next interval. This is the simplest Np3 implementation in which Np3 inputs are directly

connected to Np3 outputs.

2.3 Thread Migration Arbiter

Once the variations in the behavior of the running threads are predicted, it is time to react accordingly.

The Thread Migration Arbiter is the responsible for performing the desired hDTM behaviour to stand

up each specific heterogeneity source. It receives the per-thread program phase prediction for the next

interval and it yields the core in which each thread will execute during the next interval. The arbiter

is also responsible for actively migrating each thread according to both its inputs and its internal mi-

croarchitecture specific information. In a multipurpose hDTM mechanism, a Thread Migration Arbiter

is needed per each heterogeneity source. These arbiters might yield simple independent per-source re-

sponses or more complex dependent inter-source responses, depending on the desired hDTM behaviour.

The complexity of this arbiter will directly depend on the complexity involved in the desired hDTM

behaviour. So, we could design arbiter implementations ranging from simple fixed tables to complex

finite-state machines.

While the first two stages of the hDTM mechanism are independent of the specific multicore microar-

chitecture (except for the metric used for each heterogeneity source monitored), this stage is microar-

chitecture specific, that is, it is explicitly designed for a specific multicore microarchitecture. In fact,

the arbiter is designed to optimally react to program behaviour variations in a specific microarchitecture.

The thread migrations triggered by the arbiter take into account specific microarchitecture information

such as the number of cores and the number of hardware contexts in each core.

In the throughput-based implementation presented in this paper, we add an hDTM to a POWER5-

like [9] processor (see Section 4 for specific details). Our hDTM implementation bases on the fact that

7

Workload Size

same core?

yes no

Any MEM
thread?

yesno

Migrate any
thread

How many ILP threads?

1

ILP thread
alone in core

no

2

same core?

0

Migrate MEM
thread

yes no yes

3

Migrate any ILP
thread

How many ILP threads?

1 20 3

2 3 4

4

same core?

no yes

Migrate any ILP
thread & any MEM

Figure 2. The Thread Migration Arbiter Algorithm.

threads without outstanding second level cache (L2) misses, or high-ILP (ILP) threads, put high pressure

on the available functional units and issue bandwidth. However, they require fewer resources to exploit

ILP than threads with frequent L2 misses, or memory-bounded (MEM) threads. In particular, MEM

threads put pressure on instruction queues, physical registers, and the reorder buffer (ROB), while ILP

threads put pressure on issue bandwidth, functional units, and register file ports. Consequently, our

arbiter tries to avoid the ILP-ILP combination in any of the POWER5-like processor cores, as much

as possible. The full arbiter behaviour implemented is depicted in Figure 2. Round and bold nodes

represent leafs in the behavior tree.

Finally, notice that our arbiter in Figure 2 is orthogonal, or even complementary, to the specific SMT

instruction fetch policy or resource allocation policy implemented in each of the cores. In fact, it strives

to avoid multiple ILP threads sharing a single core, a non-profitable situation in most of the top-of-the-

art instruction fetch and resource allocation policies [23, 2, 3], although the specific relation between

hDTM and SMT instruction fetch and resource allocation policies is left for future work.

8

2.4 hDTM Complexity-Effectiveness

The first main issue about the complexity involved by the hDTM mechanism is the granularity,

that is, how often hDTM works. The hDTM splits the continuous time space into migration inter-

vals, and thus the hDTM will work once per interval. In other words, the hDTM cycle is Pcycle ×

migration interval length, where Pcycle is the processor cycle. Since we generally define a migra-

tion interval length over 10K cycles we can assert that the hDTM mechanism is out of the processor

critical path. This can be profited to both increasing the hDTM complexity, obtaining better results, or

to implement it in a more complexity-effective way, such as low power or multi-clock signal frequency

implementations. In this paper, we include an initial study of the impact of granularity in the hDTM

mechanism, with migration intervals ranging from 10K to 1M cycles.

The second main issue about the complexity involved by the hDTM mechanism is the number of het-

erogeneity sources. As we have already discussed in this section, an hDTM can be designed to make

the multicore processor aware of multiple heterogeneity sources (e.g. performance and chip surface

temperature). However, it should be taken into account that the more sources used by the hDTM imple-

mentation, the more complexity involved.

The third main issue about the complexity involved by the hDTM mechanism is the complexity of the

Thread Migration Arbiters. The hDTM mechanism’s complexity directly depends on the complexity

involved in the response to each heterogeneity source. Besides, the complexity of each arbiter can be

even higher if its response depends on others heterogeneity sources. In this sense, an independent arbiter

per source does not involve the same complexity rather than N arbiters combined into a single and more

complex one. Hence, the complexity of each arbiter depends on the number of interrelated heterogeneity

sources required to produce its specific output.

The fourth main issue, and probably the most important, is the core-to-core thread migration cost. In

each thread migration, all the architectural state registers (arch. Ints and FPs, program counter) have to

be moved from core to core. Additionally, all the instructions in the original core are flushed, hence they

have to be fetched again in the destination core. The contents of branch predictor and first level caches

9

are also lost when moving to a new core with its own branch predictor and first level caches, resulting

in additional misses in the destination core. All these factors comprise the core-to-core thread migration

cost, an overhead used by the Thread Migration Arbiter to decide, in each case, whether each migration

is worthwhile.

3 Related Work

Numerous prior work [17, 20] has studied the inherent heterogeneity in typical general-purpose work-

loads and have presented proposals that divide programs in phases [5, 21] to both detect and predict

the variations in these workloads. Basic block vectors, instruction working sets, and conditional branch

counts have proved to efficiently capture, classify, and predict phase-based program behavior on the

largest of time scales. However, a variable-granularity microarchitecture-specific solution could be

needed in order to allow a hardware optimal reaction to heterogeneity.

Some other work [2, 3, 22, 23] has proposed instruction fetch or resource allocation policies to dy-

namically adapt the workload hardware resource allocation. In [23, 2], MEM+ILP thread coexistence

in a single core is improved by freeing unused MEM thread resources. In [22, 3] the progress and re-

source utilization of jobs on the machine is dynamically monitored , dynamically adjusting the degree

of multithreading and the per-thread resource allocation to improve performance while still meeting pri-

ority goals. Although a deeper analysis of the hDTM impact on the specific per-core instruction fetch or

resource allocation policy is out of the scope of this paper, we believe that they can be complementary.

The hDTM covers the CMP upper layer of the hardware resource allocation while each core’s instruction

fetch or resource allocation policy cover the SMT lower layer, inner to each core.

Some recent work [11, 1, 10] introduces the heterogenity-awareness into the processor design. Each

of them present an heterogeneity-aware proposal that ranges from the statically heterogeneity-aware

SMT-based approach in [1] to the dynamically CMP-based approach in [10]. In [11] a more specific

clustered SMT-based approach is presented in which clusters (FrontEnds and BackEnds) are dynami-

cally reallocated to running application according to program behavior variations. From all these works,

10

the Heterogeneous Multicore [10] is the only one that both reflects the heterogeneity into an heteroge-

neously distributed hardware and dynamically match the varying requirements of each thread with the

heterogeneous hardware. However, the complexity involved in such a scheduling (multiple heteroge-

neous behavior matched with multiple heterogenous cores) requires additional hardware reassignment

costs (sampling phases [10]). Our proposal represents a general-purpose solution. In fact, an hDTM

can be added to each of these proposals to perform the dynamic hardware adaptability to changes in

running application behavior. In each case the Thread Migration Arbiter is in charge of performing

the desired reaction to heterogeneity. This may lead to reductions in hardware reassignment costs (sam-

pling phases [10] replaced by a complexity-effective heterogeneity monitoring) by increasing the Thread

Migration Arbiter complexity (to appropriately catch a complex heterogenous core scheduling).

Finally, mention the work in [8]. The proposed activity migration scheme is a clear example of an

specific single-purpose hDTM implementation focused on the chip surface temperature as only hetero-

geneity source. However, depending on the purpose of each specific piece of hardware (embedded,

general-purpose microprocessor, etc) both the heterogeneity sources considered and the arbiter behav-

ior can drastically change. Notice that the purpose of the hDTM implementation will depend on each

specific scenario.

4 Simulation Setup

We use a trace driven SMT simulator derived from SMT-SIM [24]. The simulator consists of our

own trace driven front-end and an improved version of the SMT-SIM back-end that provides multicore

support. Our simulator also permits simulating the impact of executing along wrong paths on the branch

predictor and the instruction cache by having a separate basic block dictionary in which information

of all static instructions is contained. With this simulation infrastructure, we simulate a POWER5-

like processor, that is, a dual-core multithreaded processor. Each core implements an ICOUNT 2.8 [24]

instruction fetch policy. Table 1 shows the main parameters of each core of the simulated CMP processor.

Regarding migration costs, each thread core-to-core migration involves a cost equal to 100 cycles

11

to communicate the architectural register state through an specific register-size interconnection bus.

Besides, since thread migrations involve flushing a thread in the original core, the time required to fetch

again the prior instruction window in the new core is also taken into account in each migration. Finally,

since a CMP processor has per-core private fetch engine and first level caches, and the hDTM does not

includes additional specific hardware to migrate this sort of thread state, additional thread migration cost

is incurred due to the warmup period required by the conditional branch predictor and the first level

caches in the destination core.

POWER5-like core
Pipeline depth 11 stages
Pipeline width 8
Hardware contexts 2
Queues Entries 64 int, 64 fp, 64 ld/st
Execution Units 4 int, 2 fp, 2 ld/st
Physical Registers 120 regs.
ROB Size* 100 entries
Branch Predictor perceptron (4K local, 256 perceps)
BTB 256 entries, 4-way associative
RAS* 100 entries
L1 I-Cache 64KB, 2-way, 8 banks
L1 D-Cache 32KB, 4-way, 8 banks
L1 lat./misspenalty 3/22 cyc.
I-TLB/D-TLB/TLB missp. 48 ent. / 128 ent. / 300 cyc.
Memory
L2 Cache 1.875MB, 10-way, 3 banks
L2 latency 12 cyc.
Main Memory Latency 250 cyc.

Table 1. POWER5-like core simulation parameters (resources marked with * are replicated per thread)

Our workloads use the SPEC2000 benchmark suite. From them, we have collected traces of the most

representative 300 million instruction segment of each benchmark, following the idea presented in [18].

Each program is compiled with the –O2 –non shared options using DEC Alpha AXP-21264 C/C++

compiler and executed using the reference input set. Since a complete study of all benchmarks is not

feasible due to excessive simulation time, we have used the workloads shown in Table 2. We have

used workloads including 2, 3, and 4 threads. Workloads are classified according to the cache behavior

of the included benchmarks: those with an L2 cache miss rate higher than 1% are considered memory

bounded (MEM); the others are considered high-ILP (ILP). A workload with a mixture of ILP and MEM

thread is considered MIX. This is a static per-thread classification. During program execution, a MEM

12

of Thread Workload Workload Workload Workload
threads type group 1 group 2 group 3 group 4

ILP gzip, bzip2 wupwise, gcc fma3d, mesa apsi, gcc
2 MIX gzip, twolf wupwise, twolf lucas, crafty equake, bzip2

MEM mcf, twolf art, vpr art, twolf swim, mcf
ILP gcc, eon, gap gcc, apsi, gzip crafty, perl, wupwise mesa, vortex, fma3d

3 MIX twolf, eon, vortex lucas, gap, apsi equake, perl, gcc mcf, apsi, fma3d
MEM mcf, twolf, vpr swim, twolf, equake art, twolf, lucas equake, vpr, swim
ILP gzip, bzip2, eon, gcc mesa, gzip, fma3d, bzip2 crafty, fma3d, apsi, vortex apsi, gap, wupwise, perl

4 MIX gzip, twolf, bzip2, mcf mcf, mesa, lucas, gzip art, gap, twolf, crafty swim, fma3d, vpr, bzip2
MEM mcf, twolf, vpr, parser art, twolf, equake, mcf equake, parser, mcf, lucas art, mcf, vpr, swim

Table 2. Workload classification based on memory behavior of threads.

benchmark can go through numerous ILP phases and vice versa. Benchmarks in each of the four groups

per workload size and type (see Table 2) have been selected randomly. In each experiment, we strictly

focus on the period of time in which all the initial threads share the processor. The objective in each case

is evaluating the behavior of each microarchitecture with workloads of two, three and four threads. This

means that each simulation finishes as soon as one thread contained in the evaluated workload finishes

executing 300 million instructions.

5 Simulation Results

Figure 3 shows the throughput results obtained, measured in instructions per cycle (IPC), after simulat-

ing the workloads in Table 2 in our processor. Each workload is simulated in all possible permutations.

Hence, a 4-threaded workload [A,B,C,D] is executed three times: (A,B)-(C,D),(A,C)-(B,D) and (A,D)-

(B,C), where threads in brackets represents threads in the same core. Each bar in Figure 3 represents the

harmonic mean of all workloads of an specific size and type (e.g. 2W+ILP), chosed according to a given

criterion. In each case, from left to right, the criteria applied are as follows: first, all best static permuta-

tions (STATIC BEST), by applying an oracle static thread-to-core assignment; next, the harmonic mean

of all possible permutations (STATIC MEAN); next, all worst static permutations (STATIC WORST);

next, the harmonic mean of all possible initial permutations using our hDTM implementation with a mi-

gration interval of 10K cycles (DYNAMIC 10K); the last two are similar to the fourth one, but varying

the migration interval length to 100K (DYNAMIC 100K) and 1 million (DYNAMIC 1M) cycles.

13

0

0,5

1

1,5

2

2,5

3

3,5

ILP

ME
M MI
X

HM
EA

N ILP

ME
M MI
X

HM
EA

N ILP

ME
M MI
X

HM
EA

N

2W 3W 4W

IPC

STATIC BEST

STATIC MEAN

STATIC WORST

DYNAMIC 10K

DYNAMIC 100K

DYNAMIC 1M

Figure 3. Throughput results.

From these results we can conclude that even a naive and simple hDTM implementation, as the one

presented herein, is able to get close to its goal, obtaining results for 2Ws, 3Ws and 4Ws within 1%, 4%,

and 15% best results in each case (STATIC BEST). Since 2-threaded workloads (2W) do not represent

a challenge, since it is enough to put each thread in a different core, we more deeply analyze 3Ws and

4Ws. The 4Ws represent a saturated case in which all hardware contexts are busy, dramatically reducing

the hDTM’s leeway. From 3Ws we conclude that hDTM allows not only avoiding losses due to bad

thread-to-core assignments (up to a 25% in 3W+MIX) but also going beyond the best static upper limit

(3W+ILP,3W+MIX), although marginally (1%) due to the naive hDTM implementation presented in

this paper.

0

50

100

150

200

250

300

350

400

450

ILP MEM MIX HMEAN ILP MEM MIX HMEAN

3W 4W

HM
EA

N m
igr

ati
on

s

DYNAMIC 10K

DYNAMIC 100K

DYNAMIC 1M

Figure 4. Migration results.

14

Finally, our results indicate that there is not a clear best granularity (migration interval length) to be

applied. Strictly focusing on throughput results, the 10K-cycle granularity appears as slightly better

than the others; although surpassed by 100K-cycles granularity in 3W+MIX by 5% in mean. However,

taking into account the harmonic mean of migrations required by each granularity, shown in Figure 4,

the higher granularity (1M) clearly appears as the best choice, involving less overhead.

6 Conclusions

In this paper we have presented the Heterogeneity-Aware Dynamic Thread Migrator (hDTM), a novel

complexity-effective proposal to expose the heterogeneity in the running software to the underlying

multithreaded-multicore hardware. This general-purpose hardware solution monitors the running work-

load behavior variations and reacts accordingly, migrating threads in the underlying multicore proces-

sor. The behavior and complexity involved will depend on each specific implementation and underlying

microarchitecture. The results presented herein indicate that even a naive and simple hDTM implemen-

tation is able to get close to hDTM’s goal, within 1-15% best static results, not only avoiding losses due

to bad thread-to-core assignments (up to a 25%) but also going beyond the best static upper limit.

Acknowledgements

This work has been supported by the Ministry of Education of Spain under contract TIN2004–07739–

C02–01, the HiPEAC European Network of Excellence, and the Barcelona Supercomputing Center.

Carmelo Acosta is also supported by the Ministry of Science and Technology of Spain grant BES–

2002–0015. The authors also want to thank Daniel Ortega for his valuable help with the simulator.

References

[1] C. Acosta, A. Falcón, A. Ramı́rez, and M. Valero. A Complexity-Effective Simultaneous Multithreading
Architecture. In Proc. of ICPP-35, 2005.

[2] F. J. Cazorla, E. Fernández, A. Ramirez, and M. Valero. Improving memory latency aware fetch policies for
SMT processors. In Proc. of ISHPC-V, 2003.

[3] F. J. Cazorla, E. Fernández, A. Ramirez, and M. Valero. Dynamically Controlled Resource Allocation in
SMT Processors. In Proc. of MICRO-37, 2004.

15

[4] J. D. Collins and D. M. Tullsen. Clustered multithreaded architectures – Pursuing both IPC and cycle time.
In Proc. of IPDPS-18, 2004.

[5] A.S. Dhodapkar and J.E. Smith. Comparing program phase detection techniques. In Proc. of MICRO-36,
2003.

[6] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. G. Vranesic. The multicluster architecture: Reducing cycle time
through partitioning. In Proc. of MICRO-30, 1997.

[7] L. Hammond, B. A. Nayfeh, and K. Olukotun. Single-chip multiprocessor. In IEEE Computer Special Issue
on Billion-Transistor Processors, 1997.

[8] S. Heo, K. Barr, and K. Asanovic. Reducing Power Density through Activity Migration. In Proc. of ISLPED,
2003.

[9] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 chip: a dual-core multithreaded processor. IEEE
Micro, 24(2):40–47, March 2004.

[10] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas. Single-ISA heterogeneous multi-
core architectures for multithreaded workload performance. In Proc. of ISCA-31, 2004.

[11] F. Latorre, J. González, and A. González. Back-end Assignment Schemes for Clustered Multithreaded
Processors. In Proc. of ICS-18, 2004.

[12] S. W. Lee and J. L. Gaudiot. Clustered microarchitecture simultaneous multithreading. In Proc. of EuroPAR-
9, 2003.

[13] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for a single-chip multiproces-
sor. In Proc. of ASPLOS-7, 1996.

[14] S. Palacharla, N. P. Jouppi, and J.E. Smith. Complexity-effective superscalar processors. In Proc. of ISCA-24,
1997.

[15] Intel White Paper. Desktop Performance and Optimization for Intel Pentium 4 Processor. 2001.
[16] S. E. Raasch and S. K. Reinhardt. The Impact of Resource Partitioning on SMT Processors. In Proc. of

PACT-12, 2003.
[17] T. Sherwood and B. Calder. Time varying behavior of programs. Technical Report CS99-630, 1999.
[18] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to find periodic behavior and

simulation points in applications. In Proc. of PACT-10, 2001.
[19] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering and exploiting program phases.

IEEE Micro, 23(6):84–93, November 2003.
[20] T. Sherwood, E. Perelman, Greg Hamerly, and B. Calder. Automatically characterizing large scale program

behavior. In Proc. of ASPLOS-10, 2002.
[21] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In Proc. of ISCA-30, 2003.
[22] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic jobscheduling with priorities for a simultaneous multi-

threading processor. In SIGMETRICS Conf. Measurement and Modeling of Comput. Syst., 2001.
[23] D. M. Tullsen and J. A. Brown. Handling long-latency loads in a simultaneous multithreaded processor. In

Proc. of MICRO-34, 2001.
[24] D. M. Tullsen, S. Eggers, and H. M. Levy. Simultaneous multithreading: Maximizing on-chip parallelism.

In Proc. of ISCA-22, 1995.
[25] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm. Exploiting choice: Instruction

fetch and issue on an implementable simultaneous multithreading processor. In Proc. of ISCA-23, 1996.
[26] W. Yamamoto and M. Nemirovsky. Increasing superscalar performance through multistreaming. In Proc. of

PACT, 1995.

16

