
Title: On lower bounds for circuit complexity and algorithms for
satisfiability

Author: Joaquim Casals Buñuel

Advisor: Albert Atserias Peri

Department: Computer Science

Academic year: 2016/17

Master of Science in
 Advanced Mathematics and
Mathematical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/132529326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This work is devoted to explore the novel method of proving circuit lower bounds for the class
NEXP by Ryan Williams. Williams is able to show two circuit lower bounds:

• A conditional lower bound which says that NEXP does not have polynomial size circuits
if there exists better-than-trivial algorithms for CIRCUIT SAT

• An inconditional lower bound which says that NEXP does not have polynomial size
circuits of the class ACC0

We put special emphasis on the first result by exposing, in as much as of a self-contained
manner as possible, all the results from complexity theory that Williams use in his proof. In
particular, the focus is put in an efficient reduction from non-deterministic computations to
satisfiability of Boolean formulas.

The second result is also studied, although not as thoroughly, and some pointers with regards
to the relationship of Williams’ method and the known complexity theory barriers are given.

Contents

Introduction

I Williams’ method 3

1 Preliminaries 4
1.1 Turing Machines . 4

1.1.1 Efficient Turing Machines . 5
1.1.2 Universal Turing Machines . 7

1.2 Boolean Circuits . 8
1.3 Oracle machines . 10
1.4 Propositional formulas and 3-CNF . 10
1.5 Complexity notions . 10

1.5.1 Reductions and complete problems . 11
1.5.2 Useful complexity classes . 11

2 Lower bounds via circuit satisfiability 14
2.1 Overview . 14
2.2 PSPACE = IP . 15

2.2.1 IP ⊆ PSPACE . 15
2.2.2 PSPACE ⊆ IP . 15

2.3 Pseudorandom generators from circuit lower bounds 18
2.4 Fixed polynomial circuit lower bounds for PSPACE 21
2.5 Efficient reductions to 3-SAT . 22

2.5.1 A formula for permutations . 26
2.6 Time-hierarchy for non-deterministic computations 31
2.7 Existance of small witness circuits . 33

2.7.1 Small witness circuits exist . 33
2.7.2 Small witness circuits do not exist . 35
2.7.3 Extending the method . 36

II Circuit Lower bounds & Complexity Barriers 38

3 Circuit lower bounds 39
3.0.4 AC0 lower bounds . 39
3.0.5 ACC0 lower bounds . 42

4 Showing ACC lower bounds for NEXP 45
4.0.6 Overview . 45
4.0.7 Finding the witness . 45
4.0.8 Fast algorithm for ACC-CIRCUIT SAT . 47

5 Complexity barriers 51
5.1 Overview . 51
5.2 Natural Proofs . 51
5.3 Relativization . 54
5.4 Algebrization . 55
5.5 William’s method . 56

Introduction

The question of proving circuit complexity lower bounds is one that has been present in complex-
ity theory for a long time. The appeal of circuits, as opposed to the traditional Turing machine
model, is that, while computationally equivalent, they look combinatorially simpler. Thus, if
we want to show that some function is not computable with a certain amount of resources, it
seems that it ought to be easier to prove it using circuits and, since they are computationally
equivalent to Turing machines, we would do so without loss of generality. For instance, if we
could show that some problem in NP does not have Boolean circuits of polynomial size, i.e that
it requires superpolynomial size Boolean circuits, then we would settle the P =? NP question
(with a negative answer). Unfortunately, the hope that the model of Boolean circuits would
help towards the goal of settling the main questions of complexity theory was largely unrealized.
In the 80’s, there was progress in showing circuit lower bounds for restricted classes of circuits
such as AC0 or ACC0. These are classes that are made up of polynomial size and constant
depth circuits. It was shown that any circuit that can compute the PARITY function cannot
be in AC0 ([Has86, Ajt83]) and it cannot be in ACC0 either ([Raz87, Smo87]). Another set
of important results concerned monotone circuits ([Raz85]). Progress in this line eventually
stalled. With regards to unrestricted classes of circuits, it was known since early times that
EXPSPACE (the class of languages that can be computed in O(2p(n)) space where p(n) is a
polynomial) required superpolynomial size circuits. The method to prove it was a simple count-
ing argument. Kannan ([Kan82]) managed to prove the same result for a smaller class. He
proved that NEXPNP requires superpolynomial size circuits. The hope was that researchers
would be able to keep on restricting the class for which they proved super polynomial circuits
lower bounds and eventually prove it for NP, thus settling one of the millennium problems.
Unfortunately, progress on this front halted with the work of Kannan until very recently with
the result by Williams. Williams novelty is that he is able to provide conditional superpolyno-
mial lower bounds for NEXP, which makes it the smallest “general” class for which we have
evidence of superpolynomial lower bounds. The condition upon which Williams’ result rests,
is that there exist better-than-brute-force algorithms for CIRCUIT SAT. Moreover, in later work
Williams is able to prove an unconditional superpolynomial lower bound for NEXP, although
for the restricted class ACC0.

Main contributions of this work

Williams’ method relies on quite a large number of results from complexity theory, and moreover,
some of these results are quite old and the literature is not easily accessible for these results.
One of the contributions of this work is an attempt at exposing, in as much of a self-contained
manner as possible, all the results used by Williams. In this work the focus is put on a key
result on reductions from non-deterministic computations to satisfiability of Boolean formulas.

One of the results used by Williams is the result NEXP = MIP ([BFL91]). In this present
work it is shown that we can avoid this “hard” result and instead use the more elementary
PSPACE = IP ([Sha92]). Another important ingredient in Williams’ proof is an efficient ver-
sion of Cook’s proof that Boolean formula satisfiability is NP-complete. An efficient reduction
from non-deterministic computations to Boolean formulas satisfiability is exhibitted. Further-

1

more, Williams method requires not only an efficient reduction, but also an easily computable
one. Unfortunately, for the second condition we do not have a nicely self-contained proof and
the literature seems to be silent on the topic. As a matter of fact, all consulted papers refer to
prior work as a justification for this reduction, but after thorough literature search we have not
been able to find a complete published proof of it.

Overview

The organization of the work is the following: We start by introducing the most fundamental
concepts of complexity theory in Chapter 1. Then, in Chapter 2, we study the results used by
Williams in [Wil10]. This makes up the most part of this work.

Chapter 3 is devoted to lightly survey the lower bounds for AC0 and ACC0 to help put
in perspective the novelty of Williams’ method. In Chapter 4 the Williams’ result NEXP 6⊂
ACC0([Wil14]) achieved by applying the ideas of Chapter 2 is reviewed. Finally, in Chapter 5
we quickly introduce what are known as Complexity Barriers. These are results that shows us

that certain methods will not be able to prove results as interesting as P
?
= NP. At the end

of the chapter we try to give a couple pointers as to why it is thought that Williams’ method
circumvents all three known complexity barriers.

2

Part I

Williams’ method

3

Chapter 1

Preliminaries

1.1 Turing Machines

The Turing machine will be the primary computation model. Intuitively a Turing machine is
an abstract machine which has states and a transition table that indicates how to move from
one state to another. It has tapes, divided by cells, and the machine can interact with the tape
via a header, which reads and writes one symbol at a time, and can move to adjacent cells in a
single computation step. At each computation step, the machine reads a symbol from a tape’s
cell and updates the tape and its state according to the transition table. Formally, a one-tape
(deterministic) Turing machine M is defined as a tuple M = 〈Γ, Q, δ, qstart, qaccept〉 where

• Γ is the alphabet. The set of symbols which the machine can read and write on the tape.

• Q is the set of states of the machine. It must contain at least the starting state (i.e
qstart ∈ Q), which is the state of the machine at the start of the computation and the
accepting state (i.e qaccept ∈ Q), which is the state that the machine must have at the end
of an accepting computation.

• δ : Γ × Q 7→ Γ × Q × H is the partial transition function. Given the read symbol and
the current state it maps to the symbol to be written, the next state, and the header
movement. Here H = {−1, 0, 1} means that the header goes to the left (-1), stays the
same (0), or goes to the right (1).

A k-tape Turing machine has a transition function of the form δ : Γk ×Q 7→ Γk ×Q×Hk.
Whenever k ≥ 2, we assume that there exists a read-only tape that contains the input to the
machine.

We say that a deterministic Turing machine M accepts an input x if the computation of
M on input x, denoted M(x), halts on the accepting state. Otherwise we say that M rejects
x or that it does not halt. We say that a Turing machine runs in time T (n) if for inputs of
length n the machine halts in at most T (n) steps. For any machine M , the set of strings that
are accepted by M is what we call the language of the machine, and is denoted by L(M).

The non-deterministic Turing machine differs with its deterministic counterpart in that the
transition function is non-deterministic. That is, δ is of the form δ : Γ × Q 7→ P(Γ × Q ×H)
where P(A) denotes the powerset of A. In other words, instead of outputing a single pair
(symbol, state, header), the non-deterministic δ function outputs arbitrarly many (up to the
whole set, of course). This means that at each given time, the non-deterministic Turing machine
is in arbitrarly many states, so it can run computations “in parallel” so to speak. Then, on
input x we say that M accepts x if there exists some computation path such that M(x) halts
on an accepting state. Otherwise we say that M rejects x or does not halt. Alternatively, we
could have defined a non-deterministic Turing machine as a machine equipped with a pair of

4

deterministic transition functions (δ0, δ1) that are applied simultaneously at each step. The
next proposition shows that the choice is irrelevant.

Proposition 1. Let M be a non-deterministic Turing machine whose transition function is of
the form δ : Γ×Q 7→ P(Γ×Q×H). Then, there exists a non-deterministic Turing machine M ′

such that the transition function of M ′ is a pair of deterministic transition functions (δ0, δ1)
and L(M) = L(M ′). Moreover, if M ’s running time is T (n), then M ′’s running time is at most
c · T (n) for some constant c that only depends on M .

Proof. Let δ(α, q) = X, whereX is a set of triplets of the form (symbol,state, header movement).
Without loss of generality, assume that |X| = 2k for some k. We can assume this, since we can
always fill X with copies of (α, q, 0), so that from a computational point of view, this would be
dummy transitions that just wastes time. We partition X in two sets of equal size (which we
can do since |X| is a power of 2). Repeat this process recursively until the sets are singletons.
We can see this process as generating a binary tree, whose leafs are the members of X. Call
this tree TX . It is straightforward to see that we can associate a new state to each internal
node of TX and define δ0, δ1 in such a way that one represents branching to the left and the
other to the right. This procedure generates as many states as internal nodes has TX , therefore
we get 2k new states per each original state. Therefore, M ′ has to perform, at worst, 2k steps
per each step of M . Since k depends on the machine and not on the input, this slowdown only
represents a constant slowdown.

Finally, we will introduce the probabilistic Turing machine. We define a probabilistic Turing
machine as a nondeterministic Turing machine (thus having two transitions functions (δ0, δ1)).
It also has an additional tape with a string of random bits (as long as many computation steps
are required). At each step, instead of picking the transition function non-deterministically, the
function that is used is determined by the random bits of the random tape. Then, on input x
we say that M accepts x if M(x) halts on an accepting state. Otherwise we say M rejects x.

1.1.1 Efficient Turing Machines

We start by introducing the concept of oblivious Turing machine. We say that a Turing machine
is oblivious if the header position at any given time depends only on the length of the input and
not on the contents of the tape. That is, if h(i, x) is a function that outputs the header position
at step i with input x, then the machine is oblivious if it holds that ∀i h(i, x) = h(i, 0|x|).

For the purposes of the following results we will introduce the concept of two-way infinite
tapes. Usually, Turing machines tape are assumed to be infinite in only one direction, that is,
the header can go indefinitely far to the right (for instance), but its movement to the left is
bounded (this could be enforced, for instance, forbidding left movements of the header at cell
0). For some applications, it is best to think of Turing machines tapes as being two-way infinite,
meaning that we can go as far as we want in either direction. The following proposition shows
that the only penalty that we need to pay is a constant factor slow-down

Proposition 2. Let M be a Turing machine with two-way infinite tapes. There exists M ′ with
one-way tapes such that L(M) = L(M ′) and M ′’s running time only inccurs in a constant
factor slow-down with respect to M .

Proof. Next we describe how M ′ can simulate one two-way infinite tape of M using a one-way
tape. We just need to repeat the process for each tape of M . Let Γ be the alphabet of M ,
then M ′ alphabet will be Γ′ = Γ × Γ. Let c0 be an arbitrary cell of M ’s tape which we set as
the origin. Then M ′ sets c0 to be the first cell of the tape. Whenever M reads to the left of
the origin, since M ′ symbols are pairs of symbols (α, β) of M ’s alphabet, M ′ reads the second
component of the symbol, and conversely when M reads to the right of the origin, M ′ reads the
first component of the symbol. The same reasoning applies when writing

5

Now we introduce a construction that will help us improve the previous result. The idea is
a refinement of theorem ??. We will set up buffer zones, so whenever we do a shift we don’t
have to shift the whole tape, and we will do so in a way that the amortized cost of all shifts
will only add a logarithmic factor. First, we add a symbol to the alphabet of M ′, that will fill
all the buffer zones, and will be ignored during the simulation. Hence, if Γ is the alphabet of
M then, M ′ has the alphabet Γ ∪ {�}, where � will be the buffering symbol. M ′ will divide its
tapes into buffering zones, labeled Ri/Li depending on whether they fall to the right or left of
the origin, which will be position 0 and will not be in any of the buffering zones. M ′ will keep
the following invariant:

1. A zone labeled with index i will contain 2i+1 cells

2. The number of non-� symbols in Ri ∪ Li will be 2i+1

3. Each zone will contain exactly one of three possible number of � symbols: 0, 2i or 2i+1

4. All the non-� symbols of a zone can be found at the start of it. By start we mean the cell
closest to the origin

L0︷ ︸︸ ︷L1︷ ︸︸ ︷ R0︷ ︸︸ ︷ R1︷ ︸︸ ︷0

⋄ ⋄ ⋄ ⋄ ⋄⋄1 1 0 1 0 01

Figure 1.1: A tape of M ′ divided into buffering zones that are half-full

The following algorithm summarizes the process

M ′(x) :
1. Simulate one step of M(x)
2. If M ’s header goes to the right (essentially the same process aplies when the header

goes to the left): Find the smallest i0 such that Ri0 is empty, move the left-most
symbol to the origin, and move the next 2i − 1 symbols to the Rj zones with j < i0
such that each Rj becomes half-full.

3. For each Lj with j < i0 move the 2i+1 symbols from Lj to Lj+1.
4. repeat 1-3 for the number of steps required by M(x)

First let’s argue that step 2 and 3 can be carried out without problems. Since Ri0 is the first
non-empty zone, clearly there is enough room for the 2i0 − 1 symbols, since

∑i0−1
j=0 2j = 2i0 − 1.

By the invariant we have that all Lj with j < i0 are full, hence we can have enough symbols
to fill each Lj zone. After steps 2-3, the zones {Ri0 , Li0 · · · R1, L1} are all half-full. If Ri0 was
half-full, then Li0 was half-full as well, hence after the shifting Ri0 is empty, but Li0 is full,
preserving the invariant. Likewise if Ri0 was full.

Now, let’s turn to the cost analysis of the previous operations. In order to perform the right
shift with index i0, we need to half-fill the right side of the tapewith 2i0 − 1 (remember that
one symbol goes to position 0). It is clear that this will take time O(2i0). In the second part,
we need to shift 2 · 2j symbols from Lj to Lj+1, which clearly takes time O(2j), and we need to
do this for all zones Lj with j < i, hence the total cost for this part is O(

∑i0−1
j=0 2j) = O(2i0).

Putting together both parts, we get that a shift with index i0 costs O(2i0). Now, notice that
whenever we perform a shift with index i0, the following 2i0−1 shifts must have an index smaller
than i0, because we need to consume all the symbols we have just shifted before reaching zone

6

i0 again. Therefore, the fraction of shifts with index i0 is 1/2i0 . Following this argument, the
total cost of the simulation is given by the following expression:

O(

log t∑

i=0

t

2i
· 2i) = O(t ·

log t∑

i=0

1) = O(t · log t)

Theorem 1. [AB09] Let M be a machine that runs in time O(T (n)). There exists M ′ with
L(M) = L(M ′) and M ′ oblivious which runs in time O(T (n) · log T (n))

Proof. Consider the machine M ′ described in the previous construction. We cannot say it is
oblivious, since at step 2, we look for the first non-empty zone, and this will be determined
by the shifting pattern of the execution, which in turn is determined by the contents of the
tape. For instance, maybe the machine M simulated, just shifts back and forth one square on
input 0n and just shifts always right on any other input. Therefore, we need to homogenize the
headers movement. What we can do is simulate all possible shifts but actually only perform one.
That is, The head of M ′ will first move as to perform a right shift for the indices {0 . . . imax},
and afterwards the same for left shifts. Here, imax is the maximum index required to perform
the shift, for instance, if we have simulated 2k steps of M , then we can only have possibly
reached zone k. The fact that for all but one of the shifts, the machine does not modify the
tapes contents doesn’t affect the cost, which will be the sum of all shifts (left and right) with
indices in {0, . . . , imax}. We know that a shift with index i has cost O(2i), hence the cost of the
simulating all possible shifts will be

O(2 ·
i0∑

j=0

2j) = O(2i0+2) = O(2i0)

So, asymptotically, by the price of one shift we get all of them. We just write into some register
which shift must be the real one, and simulate all of them only modifying the tape contents on
the registered one. Therefore, the heads movement are completely independent of the tape’s
content and are the same for all inputs of the same length.

1.1.2 Universal Turing Machines

One application of the efficient simulation from the previous section is the existence of efficient
Universal Turing Machines. Let {Mi | iN} be an enumeration of the deterministic Turing
machines.

Theorem 2. There exists a deterministic Turing machine U , such that for every i ∈ N and
every x ∈ {0, 1}∗ U(i, x) = Mi(x) where Mi denotes the i-th deterministic Turing machine.
Moreover, if Mi on input x halts in t steps, then U on input (i, x) halts in ci · t log t where ci
is a constant independent of x and only depends on the machine Mi

Proof. Note that this construction follows that of theorem 1. We just have made sure that we
get a working tape to perform all the shifts of the machine M to be simulated. The special
buffer zone is necessary because the machine cannot alter its alphabet depending on the machine
to be simulated. Without loss of generality assume that the symbols that denote start of tape
and blank cell are common across all alphabets and that the alphabet of U is {0, 1}. If Γ is the
alphabet of M , we need to set up a buffer zone of size log |Γ|. This construction implies that for
each step of M(x), U needs to take log |Γ| steps plus another constant number a that depends
on the transition function of M , thus in total (log |Γ| + c) · t steps to simulate M , a constant
slow down. Let b = log |Γ| + a and t′ = b · t. By theorem 1 again we have that we will need
t′ log t′ = b t · [log b+log t] ≤ ci ·t log t steps to simulate M(x) where ci is essentially b but it also
hides some constants that appear during the calculations and that are of no importance. But,
since it depends on b, we see that indeed the constant of the statement is machine dependant
but input independant.

7

Next we introduce the non-deterministic universal Turing machine. We we’ll see that the
non-determinism actually makes a huge difference. It will allow us to only have a constant
slowdown instead of the logarithmic factor we get in theorem 2. Let {Ni | i ∈ N} be an
enumeration of the non-deterministic Turing machines.

Theorem 3. There exists a non-deterministic Turing machine U , such that for every i ∈ N and
every x ∈ {0, 1}∗ U(i, x) = Mi(x) where Ni denotes the i-th non-deterministic Turing machine.
Moreover, if Ni on input x halts in t steps then, U on input (i, x) halts in ci · t steps where ci
is a constant that is independent of x and only depends on the machine Ni

Proof. In order to only have a constant slow-down in the simulation we will make use of non-
determinism. Roughly, we will guess a computation of the simulated machine and then check
that it is correct. The idea is formalized as follows: Let U be the universal nondeterministic
Turing machine. Suppose we are given i, x as input and want to simulate the Mi(x), the i-th
nondeterministic Turing machine on input x. Supose that Mi(x) halts in t steps. Define Rj a
register for the j-th step. Rj is a tuple with the following items

• Current state of Mi on step j

• Next state of Mi for step j + 1

• Symbols read by Mi on step j

• Symbols written by Mi on step j

We can assume that U has a counter so that we only guess t registers. What U does is instead
of reading the work tape, consult Mi’s transition table and act accordingly (this would be too
slow) we just guess what symbols are read, written and what is the current state and next
state. This is written in a tape, and each such guess is what we defined as Rj . We guess t such
registers. Now we have t registers R = {R1, . . . Rj} which potentially encodes an accepting
computation of Mi(x). What is left to do is check that it is indeed the case. R encodes a correct
computation if, and only if, the following three points hold:

1. Given Rj , its current state, next state and read/write symbols is consistent with the
transition function of Mi

2. Given Rj , Rj+1, the next state field for Rj is equal to the current state of Rj+1

3. The current state for Rt is qaccept

To check 1, we just need to check each Rj against all possible transitions of Mi. This takes time
ci · t. To check 2, we just need to traverse R and for each consecutive pair of registers do an
easy comparison. Again time ci · t. Finally, we just check that for Rt its current state is indeed
qaccept. For this particular register we don’t care about the next state for obvious reasons. Thus
in total we needed time ci · t to guess R and time ci · t) to check that these guesses correctly
encode an accepting computation path of Mi(x). In total ci · t where the ci is a constant that
will depend on Mi.

1.2 Boolean Circuits

Another model of computation relevant for our purposes is the Boolean Circuits. A boolean
circuit Cn is a Directed Acyclic Graph (DAG), with n especial vertices called Input with indegree
0, and a special vertex called Output with indegree 1. A circuit is defined over some basis B,
which is the set of types of gates that it can have. For instance, define the canonical base to be
B0 = {∧,∨,¬}. So in this case a circuit over B0 is one where the gates that are not input nor

8

output are either OR, AND or NOT gates. As a convention we consider the “bottom” layer
(or level 1) of a circuit to be the set of gates that only have the inputs as input and the “top”
layer (or level depth(C)) the one composed of the gates whose output is the circuits output.
The level or layer to which a gate belongs is defined as the maximum level of its inputs + 1,
where the inputs are at level 0. The justification for this “bottom” and “top” vision, is that
if we restrict the fanout of the gates to be 1, and the circuit to have only one output, then
the circuit can be represented as a tree with the output gate as the root, and the inputs as
leaves We say that a family of Boolean Circuits {Cn | n ∈ N} is uniform if there exists a Turing
machine M such that for all n, M(1n) outputs a description of Cn. Moreover, if M takes time
T (n) to output the circuit description, then we say that C is T (n)-uniform. If left unspecified
will assume that all families of circuits are non-uniform. So we can think of non-uniformity as
just a way to not specify wether the family is uniform or not. Therefore, in some sense, the
two conditions are not mutually exclusive. All uniform families can be regarded also as non-
uniform. The way to think about non-uniformity is that there may be a Turing machine capable
of describing the family but we don’t know or we don’t care As an example consider the halting
language, Lhalt = {1n | Mn(1n) halts}. We know that there is no Turing machine that accepts
this language, but there is a family of circuits that does. Indeed, for each n we can hardcode into
Cn a 1 or a 0, depending on whether Mn(1n) halts or not. Hence, {Cn | n ∈ N} is a non-uniform
(by default) family that we know is not uniform. We say that a family C = {Cn | n ∈ N} has
size S(n) if for infinitely many n, |Cn| ≤ S(n). Where |Cn| is defined as the number of gates of
Cn

Theorem 4. Let C = {Cn | n ∈ N} be a a T (n)-uniform circuit family of size S(n) over B0

(the canonical base). There exists a Turing machine M that computes the same function as C
in time O(T (n) + S(n))

Proof. Since C is a uniform family, there exists a Turing machine MC such that MC(1
n) outputs

a description of Cn ∈ C. Consider the following Turing machine:

T (x) :
1. simulate MC(1

|x|). Call C the resulting circuit
2. return C(x)

Step 1 takes, by assumption of T (n) uniformity, O(T (n)) time. Since the circuit is over B0,
clearly we can simulate any of the gates for this base in constant time. Hence, we can simulate
C(x) in time O(S(n)) and the result follows

Theorem 5. Given a 3-CNF propositional formula F (x1 . . . xn), there is a circuit Cn of size
O(|F |) such that F (x1 . . . xn) is true if, and only if, C(x1 . . . xn) = 1

Proof. Given any clause of F , it is clear that there is a circuit that computes it. Just take the
OR of the three variables appearing in the clause. Now, define Cn to be the AND of the O(|F |)
clauses

Corollary 6. Let M be a Turing machine that runs in time O(T (n)). There exists a family of
circuits {Cn | n ∈ N} of size O(T (n)2) that computes the characteristic function of L(M).

Proof. main idea As we will see in Chapter 2 (theorem 13), the resulting formula can be easily
implemented as a circuit. And the formula has the property that it is satisfiable if, and only if,
the given input x belongs to the language. Then, it can be shown that fixing some auxiliary
variables we can make a circuit that given x computes the value of the boolean formula from
theorem 13.

Remark 1. Through out this section we have assumed that Turing machines and Circuits can
be encoded by some string in an “efficient” manner. We will not give a formal proof but since

9

Turing machines like circuits are finite (family of circuits are infinite, but each single member of
the family is a finite object) it is easy to see that we can indeed work with strings that represent
them

Remark 2. All of the functions T (n) that we’ll consider to quantify execution time for TM’s
and size for circuits, are assumed to be of the form T (n) : N 7→ N and monotone

1.3 Oracle machines

Finally, although we will only discuss briefly results with oracles, we introduce here the definition
of oracle machines. An oracle Turing machine, is a Turing machine as defined in the preliminares
section with the following additions:

1. A new tape, called the query tape, where the Turing machine will write the string which
it wants to query and will read there the answer (the answer being YES or NO).

2. A new state qquery. Upon switching to this state, the Turing machine asks the oracle if
the string written in the query tape belongs to it or not. The oracle answers YES or NO
in one computational step.

Likewise, we can extend Boolean circuits to include a gate A which interprets its inputs as a
query and outputs according to whether the string described by the inputs belong to the oracle
A or not.

1.4 Propositional formulas and 3-CNF

Finally, we will close this first chapter with a result on propositional logic. In this work we will for
the most part work with a special kind of propositonal formulas called 3-CNF. For completeness
sake, here we introduce briefly the Tseitin transform, a result that allows to efficiently convert
an arbitrary propositional formula into a 3-CNF that preserves its satisfiability. We showcase
here the main idea. Given ϕ a propositional formula, for any subformula ψ we introduce an
auxiliary variable aψ. Then, define the Tseitin transform of ϕ, denoted by Φ(ϕ), by considering
the following cases:

• ϕ = ψ1 ∧ ψ2. Then introduce the auxiliary variables aϕ, b0, b1 and define the following
3-CNF Φ(ϕ) = (aϕ ∨ aψ1 ∨ b0)∧ (aϕ ∨ aψ1 ∨ b0)∧ (aϕ ∨ aψ2 ∨ b1)∧ (aϕ ∨ aψ2 ∨ b1)∧ (aψ1 ∨
aψ2 ∨ aϕ) ∧ Φ(ψ1) ∧ Φ(ψ2).

• ϕ = ψ1 ∨ ψ2. Then introduce the auxiliary variables aϕ, b0, b1 and define the following
3-CNF Φ(ϕ) = (aϕ ∨ aψ1 ∨ aψ2) ∧ (aψ1 ∨ aϕ ∨ b0) ∧ (aψ1 ∨ aϕ ∨ b0) ∧ (aψ2 ∨ ∨aϕ ∨ b1) ∧
(aψ2 ∨ aϕ ∨ b1) ∧ Φ(ψ1) ∧ Φ(ψ2).

• ϕ = ¬ψ. Then introduce the auxiliary variables aϕ, b0, b1 and define the following 3-CNF
Φ(ϕ) = (aϕ ∨ aψ ∨ b0) ∧ (aϕ ∨ aψ ∨ b0) ∧ (aψ ∨ aϕ ∨ b1) ∧ (aψ ∨ aϕ ∨ b1) ∧ Φ(ψ).

1.5 Complexity notions

In the previous sections we have introduced a couple computational models: the Turing machines
and the Boolean circuits. They are not the only ones (for instance there exists partial recursive
functions) but are the most used in complexity theory and are the ones that we will be using
throughout this work. This models all can compute the same. The notion of computation is
defined via the Turing-Church principle, which roughly states that “the notion of computation
is captured by that of Turing machines”. Thus a function is computable, if and only if is

10

computable by a Turing machine. With that settled we turn to the problem of determining what
is computable and what is not. That is the realm of Computability Theory. The Computational
Complexity theory focuses on the computable problems, and tries to classify them according
to the different resources that they need. The main resources considered are time and space.
A problem may be “Given a graph G, is it hamiltonian?” or “given n numbers, output them
in order”. The first type of problems are called decisional, and can be summarized as “Given
some input, does it have some specific property? Yes/no”. On the other hand, the other type
of problems are called functional, and are of the form “Given some input x, output f(x)” for
some function f. Note that functional problems subsume decisional problems, because in the
decisional case we just take f(x) to be a function with boolean output. We will for the most
part focus on decisional problems. In order to formalize this idea we consider sets of strings
that encode problems. For instance, we can consider a string x ∈ {0, 1}n2

as an encoding of the
adjacency matrix of some graph with n vertices and using this representation we can decide if
the graph has some property (for instance being hamiltonian).

We are interested in the characteristic function of such sets set. That is, given a set of strings
A denote it’s characteristic function by χA(x) (i.e χA(x) = 1 ⇐⇒ x ∈ A). Computational
complexity is concerned in classifying this sets A by the resources it takes to compute their
characteristic function χA(x). A Complexity class is a collection of sets {A1, A2, A3, . . .} such
that computing their characteristic functions take a “similar” amount of resources. Usually the
being “similar” is defined as “the amount of resources consumed is bounded asymptotically by
the same function (or the same type of function)”. For instance, P is the collection of all sets
such that the amount of steps required by a Turing machine to compute their characteristic
function is bounded by some polynomial. We say that a language L is decided by a Turing
machine M , if for any x we have that M(x) halts on an accepting state ⇐⇒ x ∈ L. Finally,
we will also need to introduce a modifer for complexity class. Given languages L,L′, we say
that they agree infinitely often if, and only if, L ∩ {0, 1}n = L′ ∩ {0, 1}n for infinitely many n.
Given C a complexity class, we define io-C = {L′ | L′ agrees infinitely often with some L ∈ C}

1.5.1 Reductions and complete problems

In order to study the different complexities we use what are known as reductions. The idea is
that we want to relate the difficulty of computing the characteristic function of different sets,
which we also call problems. For the purposes of this work, given two sets or problems A,B we
say that A reduces to B, denoted A ≤ B, if there exists a polynomially computable function f
such that given any input x

• x ∈ A =⇒ f(x) ∈ B.

• x 6∈ A =⇒ f(x) 6∈ B.

If B belongs to some complexity class C, and for any other A in C we have that A ≤ B,
then we say that B is a C-complete problem. The interesting property is that if B belongs also
to some other complexity class C′, then automatically we get the complexity inclusion C ⊆ C′,
provided C′ is closed under reductions, meaning that if A ≤ B and B ∈ C′ then we have
A ∈ C′.

1.5.2 Useful complexity classes

Next we introduce the definition of the complexity classes that we will work with.

Definiton 1. DTIME(T (n)) is defined as the class of languages that can be decided by a
deterministic Turing machine running in O(T (n)) steps. Likewise, NTIME(T (n)) is defined
as the class of languages that can be decide by a non-deterministic Turing machine running in
O(T (n)) steps.

11

We can also characterize computational classes by the space used in deciding their languages.

Definiton 2. SPACE(T (n)) is the class of languages that can be decided by a Turing machine
using at most O(T (n)) cells. In other words, the Turing machine tapes’ headers stay within
distance O(T (n)) from their origin.

In the case of Boolean circuits, we usually charactherize them by their size. Note that we
can translate the notion of accepting of a Turing machine to any other computational model,
in particular we can do it to Boolean circuits.

Definiton 3. SIZE(T (n)) is defined as the class of languages that can be decided by a family
of Boolean circuits of size O(T (n))

Finally we introduce what are known as Interactive Protocols. Given an input x with
|x| = n, an interactive protocol is an interaction between two players which ends up with the
acceptance of x or its rejection. The two players are the following:

• Prover: this player can be regarded as an all powerful oracle, in the sense that it can
compute any function whose output is of polynomial size (with respect to its input).
Therefore, the prover is an oracle that computes some function f : {0, 1}n 7→ {0, 1}poly(n)

• Verifier: this player is a polynomial probabilistic Turing machine which exchanges a num-
ber of messages with the prover, performs some computation for each message and finally
accepts or rejects x

Denote by (V ↔ P)(x) = 1 an interaction which on input x ends up accepting and (V ↔
P)(x) = 0 and interaction which on input x ends up rejecting.

Definiton 4. Let L be a language. We say that L has a T (n)-round interactive protocol, if for
every x with |x| = n there exists a polynomial probabilistic Turing machine (the Verifier) such
that

x ∈ L =⇒ ∃ P Pr [(V ↔ P)(x) = 1] ≥ 2

3

x ∈ L =⇒ ∀ P Pr [(V ↔ P)(x) = 1] ≤ 1

3

and the number of messages exchanged between the prover and the verifier is bounded by T (n)
with certainty (with probability 1).

We define the class IP(T (n)) as the class of languages that have a T (n)-round interactive
protocol. We define MA(T (n)) as a particular case of the previous settings, where the protocol
just consists of two steps:

1. The Prover starts by sending a message to the verifier

2. The Verifier decides whether to accept x or not, based on a deterministic polynomial
time computation that depends on the Verifiers randomness , the input and the Prover’s
message

Next we list some of the most widely used classes:

• P =
⋃
c>0

DTIME(nc).

• NP =
⋃
c>0

NTIME(nc).

• E =
⋃
c>0

DTIME(2cṅ).

12

• NE =
⋃
c>0

NTIME(2cṅ).

• EXP =
⋃
c>0

DTIME(2n
c
)

• NEXP =
⋃
c>0

NTIME(2n
c
).

• P/poly =
⋃
c>0

SIZE(nc).

• PSPACE =
⋃
c>0

SPACE(nc).

• IP =
⋃
c≥1

IP(nc).

• MA.

13

Chapter 2

Lower bounds via circuit
satisfiability

2.1 Overview

William’s theorem states that the following two possibilities are incompatible:

(A) NEXP ⊆ P/poly

(B) CIRCUIT SAT has better-than-trivial algorithms

In this context, better-than-trivial algorithms for CIRCUI SAT means algorithms that run in
time O(2n ·mc/f(n)) on circuits with n inputs and m gates where c is a constant that does not
depend on the input circuit and f(n) is superpolynomial (i.e nω(1)).

The proof can be split into two parts

(a) If (A) holds, then “small” witness circuits exist

(b) If (B) holds, then “small” witness circuits do not exist

In order to make precise this conditions we need the notion of a verifier for a language L ∈
NTIME(T (n)). A verifier V for L is a polynomial time algorithm such that if x ∈ L then
there exists y ∈ {0, 1}T (n) such that V (x, y) = 1. Otherwise, if x 6∈ L, we have that for
all y ∈ {0, 1}∗ it is the case that V (x, y) = 0. With this notion introduced we say that a
language L ∈ NTIME(T (n)) has S(n) universal witness circuits if for every polynomial time
verifier V of L, it is the case that there is a circuit C of size at most S(n) such that for every
x ∈ {0, 1}n V (x, y) = 1⇔ x ∈ L where yi = C(x, i) for i ∈ {1, . . . , T (n)}.

In this case, “small” witness circuits means witness circuits of polynomial size, that is
S(n) = poly(n). In order to prove (a) and (b), we will require several cornerstone results of
complexity theory:

(a)

1. PSPACE = IP

2. pseudorandom generators from circuit lower bounds

3. fixed polynomial circuit lower bounds for PSPACE

(b)

{
4. efficient reductions to 3-SAT

5. tight time-hierarchy results for non-deterministic computations

We will now give an idea of how (A) and (B) are used to obtain the desired lower bounds.
Suppose that given x we can generate a propositional formula Φx which is satisfiable if, and only
if, x ∈ L, for any L ∈ NTIME(2n). Then, under condition (A), there exists “small” circuits

14

that encode a satisfying assignment to Φx (if there is one). Next, given any input x the idea
will be to construct a circuit D (making use of Φx) such that D will be unsatisfiable if, and only
if, Φx is satisfiable and, additionally, D will have much fewer variables than Φx (exponentially
many fewer). D is essentially composed of two parts. First, a circuit that computes the i-th
clause of Φx . Next, D has “integrated” another circuit, called W , that encodes an assignment
of Φx (which exists if condition (A) holds). This circuit is what we call the “witness circuit”. It
is called a witness, because if the assignment encoded by W satisfies Φx, then it “witnesses” the
fact that x ∈ L. Finally the D is built such that if on input i the i-th clause of Φx is satisfied
under the assignment encoded by W , then D outputs “0”. Therefore, if D outputs “0” for
every inputs (and thus is unsatisfiable), it means that under the assignment encoded by W all
clauses of Φx are satisfied and thus x ∈ L. If D outputs “1” for some input, then some clause
is not satisfied under the assignment of W and therefore Φx is not satisfied and x 6∈ L. So we
give decided the membership of x via deciding the satisfiability of a circuit, namely D which
has much fewer variabels than Φx.

Now condition (B) comes into play. Condition (B) implies that the satisfiability of the circuit
D can be computed in time o(2n). Now, if we pick L such that O(2n) time is required to decide
it, applying the previous reasoning we can do it faster, in time 2n−ω(logn). Indeed, suppose that
L ∈ NTIME(2n) \NTIME2n−ω(logn) (which is guaranteed to exist by the non-deterministic
time hierarchy). Given x, a non-deterministic algorithm can first guess the witness circuits W ,
then build D and decide the if x belongs to L in time 2n−ω(logn) reaching a contradiction. All
the results used in constructing D are unconditional, except for one. The fact that “small”
witness circuit exists is conditioned to (A). Therefore we conclude that (A) cannot hold (thus
yielding a lower bound for NEXP) if (B) is true.

In the next sections we will inspect the difference pieces needed to prove a result such as

Theorem 7. Let f(n) be a super polynomial function. If CIRCUIT SAT on circuits of n inputs

and m gates can be solved in (co-non)deterministic time O
(2n ·mc

f(n)

)
then NEXP 6⊂ P/poly

2.2 PSPACE = IP

The first result needed is part of the PSPACE = IP ([Sha92]). We are interested in the
PSPACE ⊆ IP direction. This part requires what is known as the arithmetization of Boolean
formulas.

2.2.1 IP ⊆ PSPACE

To see this consider a protocol in IP. In this protocol, by definition, the Prover and the
Verifier exchange at most a polynomial number of messages (of polynomial length). Consider a
Turing machine that guesses the string sent by the prover, guesses the randomness used by the
Verifier, then runs the Verifier and repeats the process recursively with the Verifier’s answer.
This way the Turing machine tries all possible combinations of exchanged messages, tries all
possible randomness for the Verifier and, counts how many accepting paths there are. Since
one full simulation requires polynomially many messages of polynomial size and the verifier is
polynomially bounded, it is clear that simulating one possible interaction is in PSPACE. But
note that once we simulate one interaction, we can forget about it, we only need to remember
whether the Verifier accepted or not. Thus this Turing machine is in PSPACE and can compute
the optimal prover for the protocol. It follows then that IP ⊆ PSPACE.

2.2.2 PSPACE ⊆ IP

Here we introduce the key technique used in proving PSPACE ⊆ IP. The proof relies on the
fact that the true quantified boolean formulas problem (TQBF) is PSPACE-complete. Thus we

15

only need to exhibit an IP protocol for that problem and the result will follow.

Definiton 5. We define a Quantified Boolean Formula (QBF) as

Φ(x1 . . . xn) = Q1x1 . . . Qkxk Ψ(x1, . . . , xn)

where Ψ is a 3-CNF on the Boolean variables x1, . . . , xn and Qi ∈ {∃, ∀}.

The key idea will be that of arithmetization([LFKN90]). The idea is to “lift” boolean formu-
las to polynomials over some (finite) field and then work with the polynomials as representatives
of this formulas. We will see that polynomials give us extra power, in particular it gives us self-
correcting methods, which play a key role in the proof of PSPACE = IP. As a warmup we
will give an IP protocol for #SATd in which we count the number of satisfying assignments of
a 3-CNF formula.

Definiton 6. We define the decision problem #SATd as the set of pairs (ϕ(x1, . . . , xn), a)
where Φ(x1 . . . xn) is a 3-CNF formula in the variables x1 . . . xn and a ∈ N denotes the number of
satisfying assignments of ϕ(x1 . . . xn). The problem consists in given the pair (ϕ(x1, . . . , xn), a)
decide if the number of satisfying assignments of ϕ(x1, . . . , xn) is a

Given a 3-CNF formula Φ(x1 . . . xn) we will define a polynomial pΦ(x1 . . . xn) with the prop-
erty that Φ(a1 . . . an) = 1 ⇐⇒ pΦ(a1 . . . an) = 1 and Φ(b1 . . . bn) = 0 ⇐⇒ pΦ(b1 . . . bn) = 0

Proposition 3. Given a 3-CNF formula ϕ(x1 . . . xn) with m clauses, there exists a polynomial
pϕ(x1 . . . xn) such that ϕ(a1 . . . an) = 1 ⇐⇒ pϕ(a1 . . . an) = 1 and ϕ(b1 . . . bn) = 0 ⇐⇒
pϕ(b1 . . . bn) = 0. Moreover, the degree of pϕ(x1 . . . xn) is bounded by 3m

Proof. Let `i be a literal of the 3-CNF, that is `i = xi or `i = xi. Then trivially p`i = xi is
itself a polynomial which agrees with `i in the first case, and p`i = 1−xi is a polynomial which
agrees with `i in the second case. For a clause C = (`i ∨ `j ∨ `k) we just define pC(xi, xj , xk) =
p`i + p`j + p`k . Finally, Φ(x1 . . . xn) =

∧m
i=1Ci(`i1 , `i2 , `i3) which amounts to the product of

polynomials pΦ(x1 . . . xn) =
∏m
i=1 pCi(xi1 , xi2 , xi3). It is immediate to see that the degree can

be at most 3m

Next we introduce the key protocol in proving PSPACE ⊆ IP.

Lemma 1. The Sumcheck protocol Suppose that g(x1 . . . xn) is a degree d polynomial, p a
prime number with p > d and k an integer and suppose that

k =
∑

b1∈{0,1}

· · ·
∑

bn∈{0,1}

g(b1, . . . , bn) mod p (2.1)

and moreover suppose that there is a polytime algorithm that given integers a1, . . . , an computes
pϕ(a1, . . . , an). Then there exists a protocol which given k̂, if k̂ = k then the prover can make

the verifier accept with probability 1 and if k̂ 6= k then any prover can only make the verifier

accept with probability at most 1−
(

1− d
p

)n

Proof. [AB09] Consider the following polynomial

q(x) =
∑

b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(x, b2, . . . , bn) (2.2)

Note that q(x) is an univariate polynomial of degree d. It is clear that if k̂ = k then the
prover can make the verifier accept with probability 1, as stated. Suppose that k̂ 6= k. Suppose
that the prover can make the verifier accept with probability at most 1− (1− d/p)n−1 holds for
polynomials of degree d on n− 1 variables. We prove the case for n variables by induction.

16

If n = 1 the verifier only needs to check that g(1) + g(0) = k, and it follows easily that the
hypothesis is true.

Now suppose that n ≥ 2. The protocol starts by the Prover sending a polynomial h(x)
to the verifier. If h(x) = q(x) clearly the verifier will accept with probability 1. Therefore,
suppose that the prover sends a polynomial h(x) 6= q(x). As before, the verifier computes
h(0) + h(1) = k̂1. If k̂1 6= k the verifier rejects. Suppose that h(0) + h(1) = k̂1 = k, so the
verifier cannot reject yet. Consider the polynomial s(x) = h(x) − q(x). Since h(x), q(x) have
degree d, so does s(x). Therefore s(x) has at most d roots, and it follows that h(x) and q(x)
can agree on at most d values. Next, the verifier picks a ∈ GF (p) uniformly at random and
asks the prover to recursively prove

h(a) = k̂2 =
∑

b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(a, b2, . . . , bn) (2.3)

By the previous obseravtion, the probability that eq. (2.3) holds is d
p . Therefore, making

use of the inductive hypothesis, the probability that the Prover succeeds in fooling the Verifier
is at most(1− d/p) · (1− d/p)n−1 = (1− d/p)n

Equipped with this proposition we can now show the following result

Theorem 8. [AB09] #SATd ∈ IP

Proof. We have a pair (Φ(x1 . . . xn), a) where Φ(x1 . . . xn) is a 3-CNF formula and a ∈ N. We
need a protocol for the prover P to convince the verifier V that indeed (Φ(x1 . . . xn), a) ∈
#SATd. The number of satisfying assignments can be expressed as

∑

b1∈{0,1}

· · ·
∑

bn∈{0,1}

pΦ(b1 . . . bn)

Therefore, the prover wants to convince the verifier that this sum is exactly a. First, the
prover sends a prime p ∈ (2n, 22n]. The verifier can verify in polynomial time that indeed p
is a prime. Next, applying lemma 1 we get that the Prover can make the Verifier accept with
probability 1 if (Φ(x1 . . . xn), a) ∈ #SATd and if (Φ(x1 . . . xn), a) 6∈ #SATd then the verifier
rejects with probability at least (1− 3m/p)n and the prover can pick a suitable p in the range
stated so that the result follows.

Theorem 9. PSPACE ⊆ IP

Proof. [AB09]Sketch main idea In order to proof this inclusion, it is enough to proof that
TQBF (i.e the set of true quantified boolean formulas) has a protocol in IP, since TQBF is a
PSPACE-complete problem. Then, given a formula Ψ = ∀x1∃x2 · · · ∃xnψ(x1 . . . xn) where ψ
is quantifier free, thus using the idea from the previous case we have that Ψ ∈ TQBF if we have

0 6=
∏

b1∈{0,1}

∑

b2∈{0,1}

∏

b3∈{0,1}

· · ·
∑

bn∈{0,1}

pψ(b1 . . . bn) (2.4)

The first idea would be to reuse the sumcheck protocol used in for the #SATd case but note
that the products increase the degree of the polynomial, and so if we try to use a polynomial
similar to that in eq. (2.2) the degree could go as high as 2n which would be intractable for
the polynomial verifier. The solution is to note that we only care for those values of pψ(z) for
z ∈ {0, 1}n. Therefore we introduce an operator Lxi which on a polynomial h(x1 . . . xi . . . xm)
is defined as

Lxih(x1 . . . xi . . . xm) = xi · h(x1 . . . 1 . . . xm) + (1− xi) · h(x1 . . . 0 . . . xm)

17

We think of the quantifiers ∃xi and ∀xi as operators also in the following way:

∃xih(x1 . . . xi . . . xm) = h(x1 . . . 0 . . . xm) + h(x1 . . . 1 . . . xm)

∀xih(x1 . . . xi . . . xm) = h(x1 . . . 0 . . . xm) · h(x1 . . . 1 . . . xm)

Finally, because we are only interested in the case were the variables are {0, 1} we are free to
linearize at will. Therefore we will use the following expression where ∃, ∀ and L are regarded
as operators that act on polynomials where the order of application is from the right (i.e we
start to apply by the “end” of the quantifier stack)

∀xiLx1∃x2Lx1Lx2∀x3Lx1Lx2Lx3 · · · ∃xnLx1 · · ·Lxnpψ(x1 . . . xn)

to make sure that the intermediate polynomials that appear in the sumcheck protocol have low
degree.

We now just need to make some adjustments to the sumcheck protocol, and the correctness
follows as in the theorem 8. For a (proper) proof the reader is directed to [AB09] (Chapter 8,
proof of theorem 8.19) or [Sha92].

2.3 Pseudorandom generators from circuit lower bounds

We will need the following result of [KM02]. This result is based on work from [NW94] and
essentially guarantees the existance of a pseudorandom generator if given access to a hard
function.

Theorem 10. [NW94],[KM02] For every ε > 0 there exists δ < ε and e ∈ Z such that given
random access to a boolean function on nδ with circuit complexity at least nδ·e, there is a
pseudorandom generator G : {0, 1}ε → {0, 1}n computable in time 2O(nε) which fools circuits of
size n.

We will introduce a few definitions and prove the lemma that is key in proving theorem 10.
First we need to introduce some new concepts. Let f : {0, 1}∗ 7→ {0, 1} be a Boolean function.
The hardness of f on inputs of length n denoted Hf (n) is the largest integer k such that for
any circuit C with |C| ≤ k the following holds:

∣∣∣ Pr
x∈{0,1}n

[C(x) = f(x)]− 1

2

∣∣∣ < 1

k
.

The complexity of f on inputs of length n denoted Cf (n) is the smallest integer k such that
there exists a circuit C with |C| = k such that ∀x ∈ {1, 0}n C(x) = f(x). We will allow
ourselves to use languages in place of functions. That is, given a language L decided by some
Turing machine M (i.e, L(M) = L), the complexity of L on inputs of length n (which we will
denote by Ln) is defined as the complexity of the restriction of the boolean function computed
by M to inputs of length n. Likewise, we define the notion of hardness of L. A way to make
sense of the above two concepts is the following: The circuit complexity of a function is the
minimum size required by a circuit such that on input x the circuit produces the same answer
as f(x). For instance, if given a function f any circuit C of size n fails on at least one input
(i.e there exists x such that C(x) 6= f(x)) then f has circuit complexity at least n. Therefore,
its a notion of worst-case hardness. On the other hand, the hardness Hf as defined here, is a
notion of average hardness. If Hf ≥ n we expect that circuits of size n disagree with f often.

The work of Nisan and Widgerson ([NW94]) gives us a way to construct a pseudorandom
generator given access to a function f with Hf ≥ n2. In Williams method, the hypothesis we
can use is that there exists a language L such that for any constant k we have that CL(n) ≥ nk
for infinitely many n. Thus, we need a way extract a function from L that has the required
hardness. What we need is transformation that from a function with worst-case hardness (i.e)
The following theorem, which is extracted from [BFNW93, RW00], gives us the required tool.

18

Theorem 11.

∀c′ ∃c ∀L ∈ E ∃L′ ∈ E such that
∞
∀ n CL(n) ≥ nc =⇒

∞
∀ n HL′(n) ≥ nc′

In words: For any polynomial nc
′

we desire, we can obtain a function with hardness nc
′

for
infinitely many n if given access to a nc worst-case hard function for infinitely many n, where
c depends on c′. The hypothesis we use in Williams’ method is that we have a language with
worst-case hardness nk for any k and for infinitely many n. Thus it follows that we will be able
to achieve the necessary hardness.

Let’s focus now in proving the key lemma required in theorem 10 just to give an idea of the
kind of results needed.

We say that a collection of boolean functions G = {gn | n ∈ N} with gn : {0, 1}s(n) 7→ {0, 1}n
is a pseudorandom generator if for any circuit C with |C| = n we have that

∣∣∣ Pr
x∈{0,1}s(n)

[C(G(x)) = 1]− Pr
y∈{0,1}n

[C(y) = 1]
∣∣∣ ≤ 1

n
.

A collection of sets S1 . . . Sn with Si ⊆ {1 . . . s} is called a (k,m)-design over the universe
{1 . . . s} if the following holds:

• For all i: |Si| = m.

• For all i 6= j: |Si ∩ Sj | ≤ k.

Let S = {S1, . . . , Sn} be a (n, `)-design over the universe {1, . . . , s}. Given x ∈ {0, 1}s and
a boolean function f : {0, 1}` 7→ {0, 1} we denote by fS(x) the n bit string resulting from
concatenating f(x|Si) for all 1 ≤ i ≤ n, where x|Si denotes the restriction of x to the subset
indexed by Si.

Theorem 12. [NW94],[KM02] Let f : {0, 1}` 7→ {0, 1} be such that Hf (`) ≥ n2 and let S be
a (log n, `)-design over the universe {1, . . . , s}. Then, G{0, 1}s 7→ {0, 1}n defined as Gn(x) =
fS(x) is a pseudorandom generator.

Proof. The proof works by contradiction. Suppose that G is not a pseudorandom generator.
Then for some circuit C with |C| = n the following holds

Pr
x∈{0,1}s

[C(G(x)) = 1]− Pr
y∈{0,1}n

[C(y) = 1] >
1

n
. (2.5)

Note the lack of absolute value. We will assume that in this case eq. (2.5) holds. For the
simmetric case essentially the same reasoning applies, in one case we predict the i-th bit from
the previous ones and in the other from the posterious ones. First we will show that these
implies that the some bit of fA(x) can be predicted from the previous ones. Define for all
0 ∈ {1 . . . l} a distribution Di over {0, 1}n as follows:

Di = f(α|S1) ◦ · · · ◦ f(α|Si) ◦ β1 ◦ · · · ◦ βn−i

where α is uniformly distributed over {0, 1}s and β is uniformly distributed over {0, 1}n−i. Note
that what we are doing is some kind of “continuous” transformation, from the distribution
defined using the pseudorandom generator, to the totally random distribution wihout using the
pseudorandom generator. The i-th distribution consists of strings that agree with fS(x) up to
the i-th position and then pick the remaining bits at random. We can rewrite eq. (2.5) left hand
side as

Pr
z∈D0

[C(z) = 1]− Pr
y∈Dn

[C(y) = 1] =

n∑

i=1

Pr
z∈Di−1

[C(z) = 1]− Pr
z∈Di

[C(z) = 1]. (2.6)

19

It follows from eq. (2.5) and eq. (2.6) that for some 1 ≤ j ≤ n

Pr
y∈Dj−1

[C(y) = 1]− Pr
z∈Dj

[C(z) = 1] ≥ 1

n2
. (2.7)

We can set up a predictor P (x) for f(x):

1. Set β|Mj = x and pick the rest of β uniformly at random.

2. Set up a binary string z = ρ1 ◦ · · · ◦ρj ◦f(β|Mj+1)◦ · · · ◦f(β|Mn) where ρ1 . . . ρj are picked
uniformly at random from {0, 1} and β is picked uniformly at random from {0, 1}`.

3. Let w = C(z). Output w ⊕ ρj .

Thus, to have a compact definition, this predictor for the j-th bit is nothing more than P (x) =
C(z)⊕ ρj . We claim that:

Pr
ρ,β

[P (x) = f(x)]− 1

2
= Pr

y∈Dj−1

[C(y) = 1]− Pr
z∈Dj

[C(z) = 1]. (2.8)

Let y denote y with the j-th bit flipped. Consider now eq. (2.8) conditioned on ρ and β:

• If C(y) = C(y) then C(y) and C(z) are equally likely to accept, thus the right side vanishes.
With respect to the left hand side, the probability of having the equality P (x) = f(x)
comes down to hitting the right j-th bit which is taken at random in P (x). Thus, the left
hand side vanishes as well.

• If C(y) 6= C(y) then we have that C(z) accepts with probability 1
2 , and it is the case that

P (x) = g(x) whenever C(y) = 1.

This justifies eq. (2.8). From eq. (2.7) and eq. (2.8) follows

Pr
ρ,β

[P (x) = f(x)] ≥ 1

2
+

1

n2
. (2.9)

Since x = β|Si is distributed uniformly, by an averaging argument we can conclude that there
exists ρ, β such that

Pr
x∈{0,1}`

[P (x) = f(x)] ≥ 1

2
+

1

n2
. (2.10)

Since we have |Si ∩ Sj ≤ log n| for i 6= j each Sk j < k ≤ n can only depend on at most log n
bits of x and therefore can be computed by circuits of size at most n on inputs x. There are
at most n − 1 components and since we have fixed ρ and |C| ≤ n it follows that P (x) can be
computed by a circuit of size (n− 1)n+ n = n2. This fact in conjunction with eq. (2.10) yield
Hf < n2 contradicting the hypothesis.

Finally, the following lemma guarantees that construction such a design as the one required
for the previous result is possible.

Lemma 2. [NW94] Given n,m with log n ≤ m ≤ n there exists a (log n,m)-design over a
universe of size O(m2). Moreover, this design is computable by a Turing machine using O(log n)
space.

20

2.4 Fixed polynomial circuit lower bounds for PSPACE

Next, we need a result by [Kan82] which gives a lower bound on the size of circuits computing
PSPACE. The argument used is a diagonalizing one plus a counting argument.

Lemma 3. For any q ∈ N PSPACE * io-SIZE(nq)

Proof. First we will show that for some n, there exists a boolean function f : {0, 1}n →
{0, 1} that doesn’t have circuits of size nq.
For any given n, there are 22n different boolean functions on n variables. On the other hand,
with nq gates we have at most 3n

q · n2q·nq different circuits, which asymptotically is 2n
q+1

at
most, and 2n

q+1
<< 22n . We can find a tightest bound by considering the set S consisting

of just the first n2q binary strings of length n (in lexicographical order) instead of the set of
all possible binary string of length n. There are 2n

2q
possible boolean functions in n variables

whose domain is a subset of S, and 2n
q+1

< 2n
2q

.
Next, we will show that for any given input length n, any boolean function f : {0, 1}n →

{0, 1} has a circuit that computes it.
Let D ⊆ {0, 1}n. There is a circuit C∗ of size O(|D| · n) deciding D. Consider the following

formula ΦD(x) =
∨
α∈D

n∧
i=1

xi = αi. Seeing ΦD(x) as a circuit its size is O(|D| · n).

We can encode each gate using O(log s+ log n) bits, where s is the total number of gates of
the circuit and n is the length of the input. Therefore, any circuit with input length n and size s
can be encoded using O(s·(log n+log s)) bits. Hence, CD requires O(|D|· n·(log n+log (|D|·n)))
bits to be encoded.

From the previous point follows that a circuit C∗ whose domain is a subset of S will require
at most O(n2q · log n) bits, which is asymptotically upper bounded by n2q+1 bits. Also, any
circuit of size O(nq) can be encoded using O(nq · log n) bits, which is asymptotically upper
bounded by nq+1.

The following algorithm Turing machine finds a circuit that computes a function not com-
putable using O(nq) gates. We go through all possible circuit representations using n2(q+1) bits
and find the one whose associated function cannot be computed using O(nq) gates, which we
are guaranteed to find for large enough n.

M(x) :

1. Pick a string i with |i| ≤ 2|x|
2q+1

2. Pick a string z with |z| ≤ 2|x|
q+1

3. If ∃y Ci(y) 6= Cz(y) return Ci otherwise back to 1

The idea is that we have a first loop (step 1) that iterates over all circuits whose description
takes at most 2|x|

2q+1
bits as long as we have not verified that all circuits whose description is

smaller compute a different boolean function. Fix this circuit Ci. In the second loop, we look
for a circuit whose description is smaller than that of Ci but computes the same function (the
third loop is responsible for checking this equality). If for each smaller circuit Cj , we find that
for some z ∈ 0, 1n Ci(z) 6= Cj(z) then we let C∗ = Ci and output C∗(x)

The looping part of M has running time 2|x|
2q+1 ·2|x|q+1 ·2|x| = 2O(|x|3q). Moreover, we only need

polynomial space, since we only need to consider ,at a given time, two circuits whose description
is of polynomial size. To output C∗(x) we only require polynomial time, therefore, L(M) is in
PSPACE. By construction, C∗ requires size greater than O(nq), and therefore the function
computed by M must have circuits of size greater than O(nq) for large enough n, because M is
just simulating C∗. Since the bounds we have given are asymptotic, we have that for all n > n0

for some constant n0, we are guaranteed to find such a circuit C∗ that requires more than O(nq)
gates. Therefore, L(M) could only have circuits of size O(nc) for finitely many input lengths,
hence L(M) cannot be in io-SIZE(nq), but L(M) is in PSPACE.

21

2.5 Efficient reductions to 3-SAT

Next we discuss one of the key ingredients in Williams’ method, the efficient reduction from
non-deterministic computations to satisfiability to Boolean formulas. The main idea is based on
the proof of Cook-Levin’s theorem ([Coo71]) which shows that satisfiability of Boolean formulas
is NP-complete. We will see that the size of the formula that this method yields is quadratic.
Later on this chapter we will discuss what implications this have and why do we need an even
more efficient formula. But first to get an idea we discuss this inefficient version.

Theorem 13. [Coo71] Let L be a language in NTIME(T (n)). Deciding x
?∈L can be reduced to

the satisfiability of a 3-CNF formula Φx of size O(T (|x|)2). Moreover, given i, we can compute
the i-th clause of Φx in time O(logd(T (|x|))) for a fixed d.

Proof. For the rest of the proof we will assume that the Turing machine has only one tape. It
is straightforward to extend this proof to the multitape case, but the notation would get too
clutered.

Let the following tableau represent the computation of the Turing machine M that decides
L. Let x be an input with |x| = n and T (n) = t. From this tableau, we can define a propositional

Y 0 j − 1 j j + 1 n t-1 State

0 y0 x0 . . . xn−1 B . . . B qstart

i yi α q
i+ 1 yi+1 ρyi+1 σyi+1 γyi+1 qyi+1

t− 1 yt−1 1 B . . . B qaccept

Table 2.1: The Turing’s machine tableau of computation. Y is the non-deterministic bit

Φx, such that it is satisfiable if, and only if, there exists an accepting path in M on input x. Let
δi for i ∈ {0, 1} be the non-deterministic transition function. Define the following propositional
variables:

• S(i,j)
α meaning that symbol α is at cell j on step i.

• Eiq meaning that the machine is on state q on step i.

• H(i,j) meaning that the machine’s header is at cell j on step i.

• Ci meaning that at step i we choose δ1 (if false, means that we choose δ0 instead).

Let δi be of the following form:

• δ0(α, q) = (β0, q0,∆0).

• δ1(α, q) = (β1, q1,∆1).

Where ∆i ∈ {−1, 0, 1} is where should the machine’s head move represented as an offset
from the actual position. Then for i ∈ {1, . . . , t− 1} We define the propositional formulas that
describe the tableau of M . We start by the “non-degenerate”case, which is the case for the
cells that fit the “T shape”, i.e, for those that j ∈ {1, . . . , t − 2}. For these cells we define the

22

following formulas:

∀(i, j)∀(α, q) ∈ dom(δ0)

H(i,j) ∧ S(i,j)
α ∧ Eiq ∧ Ci0 → S

(i+1,j)
β0

H(i,j) ∧ S(i,j)
α ∧ Eiq ∧ Ci0 → Ei+1

q0

H(i,j) ∧ S(i,j)
α ∧ Eiq ∧ Ci0 → H(i+1,j+∆0)

(2.11)

∀(i, j)∀(α, q) ∈ dom(δ1)

H(i,j) ∧ S(i,j)
α ∧ Eiq ∧ Ci1 → S

(i+1,j)
β1

H(i,j) ∧ S(i,j)
α ∧ Eiq ∧ Ci1 → Ei+1

q1

H(i,j) ∧ S(i,j)
α ∧ Eiq ∧ Ci1 → H(i+1,j+∆1)

(2.12)

¬S(i,j)
α ∨ ¬S(i,j)

β ∀(i, j)∀(α, β) α 6= β

¬Eiq ∨ ¬Eir ∀i∀(q, r) q 6= r

¬H(i,j) ∨ ¬H(i,k) ∀i∀(j, k) j 6= k

¬Ci0 ∨ ¬Ci1 ∀i
Ci0 ∨ Ci1 ∀i

(2.13)

Note that if j = 0 and the transition has ∆i = −1, then we will not define the implications in
(2.11) (since we would be moving the header out of bounds). Likewise, if j = t then we will not
define the implications in (2.12) if the transition has ∆i = 1.

Finally, we miss the cases i ∈ {0, t}. When i = 0 we just set to true the variables {S0,j
xj } for

j ∈ {0, . . . , n − 1} and the rest of symbol variables with index (0,) are set to false, to ensure
that the only thing in the tape at the start is the input. Finally, the case i = t correspond to
the end of the execution, and so these variables are defined by the previous formulas concerning
the correct execution of M .

We need to ensure that the computation accepts, hence we set Etqaccept to true. We also
need that the initial conditions of the computation are correct. Therefore, on input x of length

n, we set as true H(0,0) because the machine’s head must start at position 0, S
(0,i)
xi for all

i ∈ {0, . . . , n−1} to correctly represent the contents of the input tape and finally E0
qstart because

the very first state must be the starting one.
All the formulas are easily transformed into a 3-CNF with only increasing the formulas size

by a constant factor. Note that the formula has a very regular structure. The formula has
three main parts. We can assume that the first d clauses, for some constant d that depends on
the length of the input, correspond to the initial and final conditions. The remaining clauses
correspond to “packs” of clauses. Each pack corresponds to the previously defined formulas
for each possible pair (i, j). Therefore, given and index of a clause k, we can easily output the
clause by determining to what part of the first d clauses or if it belongs to the other part of
the formula, to what pair (i, j) it corresponds. Once this is known (which we can know by just
doing arithmetic with the index) we can output the appropriate clause. Thus we only require
time proportional to doing arithmetic with the index, thus time O(logO(1) t).

The problem of theorem 13 is that we need to ensure the consistency of the tape contents at
all steps. This ends up making the formula have quadratic size. The idea will be to delay this
checking. We will first ensure that the headers and the state transitionsa are valid, and after we
will ensure that the tape contents are consistent. Instead of taking snapshots of the whole tape,
we will just take snapshots of what each header can “see”. Then, to enforce the consistency of
the tapes we just need to make sure that the accesses to the tape cells are consistent. This will
be made formal in theorem ??

The key theorem that yields this efficient propositional formula, which is also efficiently
computable is the following

23

Theorem 14. Let L be such that L ∈ NTIME(T (n)). Let M be a non-deterministic Turing

machine such that L(M) = L. Then given x deciding if x
?∈ L can be reduced to the satis-

fiability of a propositional formula Φx with |Φx| = O(T (n) logO(1) T (n)). Moreover, given i ∈
{1, . . . , log (c · T (n) logO(1) T (n))} we can compute the i-th clause of Φx in time O(logO(1) T (n)).

In [Wil10] this result is credited to [Tou01] and [FLvMV04]. We have not been able to find a
published complete proof of theorem 14. The best we have managed is to follow the line of work
suggested by [Tou01] and reuse a result on the simulation of random access Turing machines by
[Rob91]. Unfortunately, we have only been able to proof the first part of theorem 14. Namely,
the fact that there exists such formula of the given size, but we haven’t been able to give a
formal proof of its efficient computability. It seems like it is indeed true, because the Φx is very
“regular”. Therefore, for the rest of the work we will work with ??, although at the present
time we cannot offer a complete poroof.

Next, we will proof the first half. We will proof that such Φx exist and that indeed it has size
quasi-linear. First we will study what is known as a permutation network. For the purposes
of this section, n will be assumed to be of the form n = 2k for some k ∈ N.

Definiton 7. A permutation network can be defined as a circuit, with inputs u = (u1 . . . un),
outputs v = (v1 . . . vn) and a set of auxiliary variables, with the property that we can force the
outputs to be any permutation of the inputs by some setting of the auxiliary variables.

u1 u2 un−1 unu2i u2i+1
.

v1 v2 vn−1 vnv2i v2i+1
.

A B

X1 Xi Xn/2

Y1 Yi Yn/2

Figure 2.1: Depiction of a permutation network

In the picture, A,B are permutation networks for n/2 elements, and the boxes with dotted
lines connected to the pairs of inputs/outputs are “switching gates”. The “switching gates”
are circuits with auxiliary inputs that allow to flip the inputs/outputs. In order to build
a a permutation network, we will use a couple lemmas on permutations by [Wak68]. This
lemmas will give us a “decomposition” of the permutation that will allows us to build the
permutation network. To develop an intuition, what we need is some kind of “decomposition”
of the permutation that is “rigid enough” so as to be implemented as a circuit. To that end,
we will prove a theorem stating, roughly, that any permutation can be “rigidly” decomposed.

Before we prove this results on permutations we need a few definitions:

Definiton 8.
Define Xi = {2i, 2i+ 1} and Yj = {2j, 2j + 1} for i, j ∈ {1, . . . , n

2
}.

Given a permutation π ∈ Sn, define Ki = {π(2i), π(2i+ 1)}

24

Essentially, what we do is “pair up” consecutive inputs and consecutive outputs and give it
a name (Xi, Yj). What we will see is that given π we can find a restriction of it which permutes
the Xi. More formally, we will construct a permutation σ ∈ Sn/2 of the Xi’s with the property
that if σ(i) = j then there exists a ∈ Xi and b ∈ Yj such that π(a) = b. So, we have a permu-
tation of the “pairings” that is embedded in the original permutation.

Let’s state and prove formally this theorem:

Theorem 15. [Wak68] For every π ∈ Sn there exists σ ∈ Sn/2 such that if σ(i) = j then
∃a, b ∈ {0, 1} such that π(2i+ a) = 2j + b

Proof. Consider the family of sets K = {K1, . . . ,Kn/2}. We need to pick a set of representatives
for this family. Suppose that A = j1, . . . , j|K| is a set of representatives for K. Then, we can
construct σ as follows:
Fix i. Let ji ∈ A be the representative for Ki. We define σ(i) = ji. By definition of Ki there
exists i0 ∈ Xi with π(i0) = j0 with j0 ∈ Yj , therefore we have a function that maps each Xi

to some Yj while having the property of “preserving” π in the sense above descrived. We now
need to see that σ is indeed a bijection between X =

⋃
i
Xi and A and thus a permutation.

Consider two Xp, Xq. Suppose p 6= q and let ` = σ(p) = σ(q). This would mean that p and
q are represented by the same `, which is a contradiction with the definition of representative.
Let’s see now that σ is surjective. This follows easily from the fact that σ is injective and its
image (the set A) has the same cardinality as its domain, which is X.

The only thing left to show is that indeed there exists a set A of representatives for K. To
do that, we will show that K fulfills the marriage condition and thus by Hall’s theorem we will
have the desired set A.
Let W ⊆ K, we want to see that

|W | ≤
∣∣∣
⋃

Ki∈W
Ki

∣∣∣ (2.14)

To see it, first note that Ki either has one element or exactly two. Fix Xi and consider
the image of its elements under the permutation, that is consider (π(2i), π(2i + 1)). Either
σ(2i), σ(2i + 1)) both belong to the same Yj or not. If they belong to the same Yj , then
Ki = {j}. Otherwise, Ki = {j1, j2} for j1, j2 according to σ. Let’s distinguish both cases when
considering the union of Ki’s. Define S = {Ki | Ki is a singleton} and D = W \ S. Rewrite⋃
Ki∈W

Ki as
⋃

Ki∈S
Ki ∪

⋃
Ki∈D

Ki

• If Ki ∈ S, thus of the form Ki = {j}, then it will contribute with j to the union because
for any other i′ 6= i j 6∈ Ki′

• If Ki ∈ D, thus of the form Ki = {j1, j2}, in principle we don’t know if it contributes with
some element to the union, because it could overlap with some other Ki′ in D. But we
know for any arbitrary j′, it can only belong to two different sets Ki. Therefore, if we are
taking the union of sets with exactly two elements, and each element can at most appear
twice, we have that each set of the union contributes at least one element to the union.

It follows then that eq. (2.14) holds for the family K and thus by Hall’s theorem the result
follows.

Corollary 16. Given π ∈ Sn there exists σ0, σ1 ∈ Sn/2 such that

⋃

i

{
(i, π(i))

}
=
{⋃

j

{
(j, σ0(j))

}}
∪
{⋃

j

{
(j, σ1(j))

}}

25

Proof. First, note that the construction in theorem 15 has the property that for each Xi only one
of the two elements belong to the domain of σ and for each of the Yj only one of the two elements
belong to the image of σ. Now, let σ0 = σ. We will construct σ1. For each Yj let vb denote the
unused element (i.e b 6∈ im(σ)). Then, there is some Xi such that a ∈ Xi, and a 6∈ dom(()σ).
Thus, define σ1(i) = j. It is straightforward to see that we can keep pairing them off with the
same reasoning, and we get a permutation of σ1 ∈ Sn/2 such that

⋃

j

{
(j, σ1(j))

}
=
⋃

i

{
(i, π(i))

}
\
⋃

j

{
(j, σ0(j))

}

The theorem 15 and corollary 16 are the foundation for the construction of a permutation
network. As before u = (u1, . . . , un) and v = (v1, . . . , vn) will be the inputs and ouputs of
the circuit. By corollary 16 we can split any permutation into two permutations that permute
the Xi. Therefore, we only that for each u2i, u2i+1 ∈ Xi we need to choose which elements
goes to π1 and which one goes to π2. The same must be done for each v2j , v2j+1 ∈ Yj . Once
this is done, we just apply corollary 16 recursively. This gives raise to the circuit depicted in
fig. 2.1. Where A,B are permutation networks for n/2 inputs. The depth of the circuit is easy
to see that is O(log n). If S(n) is the size of the permutation network for n inputs, it is easy
to see that S(n) = 2 · S(n/2) + c where c is the constant size of the “switching” gates. Thus,
S(n) = O(n log n)

2.5.1 A formula for permutations

Based on the permutation network introduced before, Stearns and Hunt ([SHH86]) devise a
formula which fixed the inputs {u1, . . . , un} and outputs {v1, . . . , vn} is satisfiable if, and only
if, there exists an assigment to the auxiliary variables corresponding to some permutation π ∈ Sn
such that for all z ∈ {1, . . . , n} uz = vπ(z). Here we will reproduce their main result. First some

notation. Bold face letters will indicate a vector. Moreover xk will indicate a vector with 2k

vectors as components, that is xk = (x1, . . . , x2k). Moreover, let xi = (xi,1, . . . , xi,m).

Lemma 4. [SHH86] Let ai,j and bi,j be boolean variables with 1 ≤ i ≤ 2k 1 ≤ j ≤ m for some
m, k. There exists a formula Fk such that:

1. Fk has ai,j , bi,j as variables along with 2 ·m(k − 1) · 2k auxiliary extra variables

2. |Fk| = 2c(2k − 1) · 2k where c is the size of the “switching” gate

3. For all possible assignaments α of the variables (ai,j , bi,j), F |α is satisfiable if, and only
if, there exists a permutation π such that:

ai,j = bπ(i),j

for all i, j

In vector notation this translates to ai = bπ(i). Note that the permutation is defined at the
vector “level”. That is we permute the whole vector leaving its components as is.

Proof. Define xi = (xi,1 . . . xi,m). If we only had 2 vectors to permute then the formula

P (x1,x2,y1,y2) = ((x1 = y1) ∧ x2 = y2)) ∨ ((x1 = y2) ∧ x2 = y1))

Equality between vectors is defined as equality component wise as one could expect. We will
work by induction on k. First, if k = 1, then the formula

F1(x1,y1) = P (x1,x2,y1,y2)

26

For k = i+ 1, assume that Fi(x
i,yi) is satisfiable if, and only if, yi is a permutation of the xi.

Define:

Fi+1(xi+1,yi+1) =

2i∧

m=1

P (x2m,x2m+1,pm, rm)

2i∧

m=1

P (qm, sm,y2m,y2m+1)

∧ Fi(pi, qi) ∧ Fi(ri, si)

Notice that the formula P corresponds to the “switching gates” of the permutation network.
That is, P is true, if and only if, the assigments to its parameters behave like the “switching
gate”. Let’s verify the correctness of this construction, in other words, let’s verify that property
3 is fulfilled. Suppose that we have an assigment to the a’s and b’s vectors that follows a given
permutation π, in other words we have

ai,j = bi,π(j) ∀i, j

First, suppose that k = 1. Suppose that we have an assignment to (a1, . . . ,am) and
(b1, . . . , bm) such that each bi is a permutation of the corresponding ai. By definition,
F1(a1, b1) = P (a1,a2, b1, b2) and clearly we have a permuting assignment for the a’s and
b’s if, and only if, P (a1,a2, b1, b2) is true. Suppose that K = i+1 and that property 3 holds for
K = i. Let α be an assigment to Fi+1 fulfilling property 3 for ai+1, bi+1. By induction, we have
that Fi(p

i, qi) and Fi(r
i, si) are satisfiable if, and only if, the assigments to the vectors pi, qi

and ri, si are permutations, which is plausible since we are free to extend α for these vectors
because Fi = Fi|α since α only assigns a’s and b’s. Therefore we can extend α to whatever
assignment that fullfils property 3 for pi, qi and ri, si, which is easy to see that it exists. Hence,
what is left to see is that under the assignment α

F ′|α(ai+1, bi+1) =
2i∧

m=1

P (a2m,a2m+1,pm, rm)
2i∧

m=1

P (qm, sm, b2m, b2m+1)

is true if, and only if, α indeed fulfills property 3. Note that the pairs (z2m, z2m+1) are the Zm
defined in theorem 15. Therefore, ai+1, bi+1 are permuted under α if, and only if, each of the
P formula is true because of corollary 16. Therefore, if all conjunctants are true, F ′|α is true
and the result follows.

Let’s see now how many new variables (i.e those that are not a, b) does the Fk construction
need. It is easily verifiable that the number of new variables in Fk responds to the recurrence

N(k) = 2 ·m · 2k + 2 ·N(k − 1)

and N(1) = 0 since we don’t need auxiliary variables for the base case. It can be shown
that the solution to this recurrence is N(k) = 2k · 2m · (k − 1) as property 1 states. Finally,
let’s see what is the length of Fk (|Fk|). First, note that |P | = 4 · c where c is the size of
the formula that asserts equality between two vectors which is easily constructed. Therefore,
|Fk| = 2 · 2k−1 · 4c + 2 · |Fk−1| and |F1| = 4c since F1 = P . We have that the solution to this
recurrence is |Fk| = 2k · 2c(2k − 1)

Finally we will introduce encodings for three predicates that will be of key importance in the
reduction to satisfiabiliy that we will use. Suppose that x = (x1, . . . , xm) and y = (y1, . . . , ym)
are Boolean vectors. We will show how to encode the predicates A=(x,y), A<(x,y), A+1(x,y)
that indicate that x = y,x < y and x = y + 1 respectively.

27

Lemma 5. [SHH86] Let x1, . . . , xm and y1, . . . , ym be Boolean variables. Let α =
m∑
i=1

xi2
i−1

and β =
m∑
i=1

yi2
i−1 be the integers they represent in binary code, then there exist propositional

formulas F such that

1. F satisfiable if, and only if, α = β with |F | = 4m

2. F satisfiable if, and only if, α+ 1 = β with |F | = m2 + 5m− 4

3. F satisfiable if, and only if, α < β with |F | = 6m− 4

Proof. of 1 We have the obvious formula

F (x,y) =

m∧

i=1

((x1 ∨ y1) ∧ (y1 ∨ x1))

Proof. of 2 Let F1(x, y) = x ∧ y. Then build inductively

Fm(x,y) = (xm ↔ ym ∧ Fm−1(xm−1, . . . , x1, ym−1, . . . , y1)) ∨ ((xm ∧ ym) ∧
m−1∧

i=1

(xi ∧ yi))

The above formula says that either the most significant bits are equal and for the rest of bits
it is the case that they differ by one, or we have the case where α = 2m − 1 and β = 2m. We
have that |F1| = 2 and |Fm| = 6 + 2(m− 1) + |Fm−1|. Thus, |Fm| = m2 + 5m− 4

Proof. of 3 Let F1(x, y) = x ∧ y . Then build inductively

Fm(x,y) = (xm ↔ ym ∧ Fm−1(xm−1, . . . , x1, ym−1, . . . , y1)) ∨ (xm ∧ ym)

Similar to the previous case, either the most significant bits are equal an the property is fulfilled
by the other m − 1 bits or the most significant bit of y is 1 and that of x is 0. We have that
|F1| = 2 and |(|Fm) = 6 + |Fm−1|. It is easy to verify that this yields |Fm| = 6m− 4

Theorem 17. Let L be such that L ∈ NTIME(T (n)). Let M be a non-deterministic Turing

machine such that L(M) = L. Then given x deciding if x
?∈ L can be reduced to the satisfiability

of a propositional formula Φx. Moreover, |Φx| = O(T (n) logO(1)(T (n))).

Proof. Let x be the input with |x| = n and let T (n) = t. We will describe a propositional
formula which will be satisfiable if, and only if, M(x) has at least one accepting computation
path.

Define the following propositional variables:

• Ii(j,k) to encode (in binary) the position of the header of the k-th tape at step i.

• Si(α,k) meaning that the cell being read by the header at step i contains symbol α at the
start of step i.

• Eiq meaning that the machine is at state q at the start of step i.

• Cij meaning that the machine picks δj as a transition function at step i.

With this variables we will encode each computational step. For each step i and tape k we will
have a register, call it Rki which will describe, using the previous variables, the state of the k-th
tape of the machine M when computing M(x). Therefore, Rki will describe:

28

1. The position of the header of the k-th tape, i.e, the address of the cell being read on the
k-th tape.

2. The state of the machine at the start of step i.

3. the content, at the beginning of step i, of the cell that is being addressed.

Now let’s describe in more detail how are the previous items described using the variables
introduced before. Keep in mind that this registers are just an abstraction, a way of grouping
the propositional variables, that we do in order to reason about them.

Rki =

{Ii(j,k) | j ∈ {1, . . . , dlog te} } encoding the address of the cell being read by the header

{Si(α,k) | α ∈ Γ} All possible symbols that can be on a tape

{Eiq | q ∈ Q} All possible states that the machine can have at step i

First, we impose the obvious restrictions. Such as that we can only have one symbol read per
step, only one state true per step, that we can only pick one transition function per step, etc...
We call the conjunction of all this formulas αx.

¬Si(α,k) ∨ ¬Si(β,k) ∀(i, k) ∀(α, β) α 6= β

¬Eiq ∨ ¬Eir ∀i ∀(q, r) q 6= r

¬Ci0 ∨ ¬Ci1 ∀i
Ci0 ∨ Ci1 ∀i

(2.15)

After the obvious conditions are imposed, we will make sure that this registers encode valid
headers movement, and valid transitions between the machine states. We will postpone for now
to check the consistency of the symbols read/written on the tape. Therefore, we just want to
make sure that between register i and i + 1 the header movement and the state transition is
valid according to M ’s transition functions. To that effect we will make use of lemma 5. Define
(where X,Y denote registers):

• A=(X,Y) which is true if, and only if, the address encoded in the register X is equal to
that of Y .

• A+1(X,Y) which is true if, and only if, the address encoded in the register X, when added
1 (in binary) yields address encoded in register Y .

• A<(X,Y) which is true if, and only if, the address encoded in register X is less than that
of Y .

• T<(X,Y) which is true if, and only if, the execution step encoded in register X is less
than that of Y .

In order to have a more compact notation, suppose that the transition functions are of this
form (for i ∈ {0, 1}) δi(α, q) = (βi, qi, hi) where α, βi ∈ Γ q, qi ∈ Q and hi ∈ {−1, 0, 1}. Define
also

Ah(X,Y) =

A=(X,Y) if h = 0

A+1(X,Y) if h = 1

A+1(Y,X) if h = −1

We can think of this predicate as a “macro” to get a bit more compact notation. Note that
all of this is fixed per machine so all this “macros” can be thought of being expanded when
defining the Turing machine that computes the reduction.

29

Using this predicates we impose that the headers movement and the states transitions are
correct. We call the conjunction of all this formulas βx.

∀i∀(α, q) ∈ dom(δ0)

{
Si(α,k) ∧ Eiq ∧ Ci0 → Ah0(Ri, Ri+1)

Si(α,k) ∧ Eiq ∧ Ci0 → Ei+1
q0

(2.16)

∀i∀(α, q) ∈ dom(δ1)

{
Si(α,k) ∧ Eiq ∧ Ci1 → Ah0(Ri, Ri+1)

Si(α,k) ∧ Eiq ∧ Ci1 → Ei+1
q1

(2.17)

Now we have a set of registers {Rki } to which we have imposed the condition of encode
valid headers movements and valid states transitions. We will know proceed to enforce the
consistency of the tape contents. Once this is done it will follow easily that the resulting
formula will be satisfiable, if and only if there exists an accepting computation path in M(x).
Now we introduce a “copy” of the registers, denoted R∗i (we drop the k superscript. We could
keep it but we want to keep somewhat light notation). This registers are a copy of the previous
ones. So we introduce Ii

∗
j , Si

∗
α , Ei

∗
q and Ci

∗
j for j ∈ {0, 1}.

The meaning is the same, but we will use the formula defined in ??, and this ∗ registers
will be the output to the permutation network, and the non ∗ registers will be the input. Let
R = {R1, . . . , Rt} and R∗ = {R∗1, . . . , R∗t }. Thus, we will use Fdlog te(R,R

∗). Note that in order
to use ?? we need to pad the variables to be a power of 2, but we can make the machine loop
as many steps as necessary on the accepting state. At this point we can assume that R∗ is a
permutation of R. Lets first assume more, and assume that R∗ is not only a permutation of R
but an ordering with respect to the cell address in each register. Moreover, suppose that within
each subsequence sharing the same cell address, the registers Rj∗ are ordered by execution
step. Then, we can impose the correctness of the tape contents. In order to do so first let
∆(Ri

∗
, R(i+1)∗) be defined as the conjunction of following formulas:

∀i∀(α, q) ∈ dom(δ0)
{
Si
∗
α ∧ Ei

∗
q ∧ Ci

∗
0 → S

(i+1)∗

β0
(2.18)

∀i∀(α, q) ∈ dom(δ1)
{
Si
∗
α ∧ Ei

∗
q ∧ Ci

∗
1 → S

(i+1)∗

β1
(2.19)

Intuitively, ∆(Ri
∗
, R(i+1)∗) is true if, and only if, the symbol true in R(i+1)∗ follows from a

valid transition of M , considering the variables true in Ri
∗
. With this predicate we can finally

impose the consistency of the tape contents.
For all i define the following formula, whose conjunction for all i we call γx:

(¬A=(Ri
∗
, R(i+1)∗) ∨∆(Ri

∗
, R(i+1)∗)) ∧ (A=(Ri

∗
, R(i+1)∗)) ∨ (S

(i+1)∗

� ∧ E(i+1)∗
qstart)) (2.20)

The first disjunctant is clear, if they have the same address, then we need the predicate
∆(Ri

∗
, R(i+1)∗) to be true, which will ensure that the contents that were written at step i

were consistent with the transitions of M . If they don’t have the same address, since they
are adjacent in the ordering, this means that here we change subsequence, and we start a new
subsequence with another address. Therefore, the i+1 register must correspond to a one with a
blank symbol (since it would be the first time we access it). Recall that each subsequence with
the same address they are ordered by execution step. The correctness of this formulas follow
easily, keepin in mind the idea of theorem 13. Finally, in order to enforce the ordering of the
R∗ we add the following formulas:

{
A=(Ri

∗
, R(i+1)∗) ∨A<(Ri

∗
, R(i+1)∗)

¬A=(Ri
∗
, R(i+1)∗) ∨ T<(Ri

∗
, R(i+1)∗)

(2.21)

30

Which force the permutation to become an ordering. Call the conjunction for all i of 2.21
formulas ζx. Recall that the size of the formula in lemma 4 was |Fm| = 2c(2m−1)·2m = O(m2m)
where m was the logarithm of the input, thus |Flog t| = O(t log t). Therefore, the final formula
of the reduction is

Φx = αx ∧ βx ∧ γx ∧ ζx ∧ Flog t(R1 . . . R2dlog te)

and |Φx| = O(t) +O(t logO(1) t) +O(t) +O(t logO(1) t) +O(t log t) = O(t logO(1) t).

Sorting Network for the k-th tape

Rk
1 Rk

nRk
i

.

S1
(α,k)

. . . Sn
(α,k)

Ei
q1

. . . Ei
qc

Rk∗
1 Rk∗

nRk∗
i

.

Ii
(1,k)

. . . Ii
(log n,k)

Figure 2.2: Depiction of a permutation network for the k-th tape with c = |Q|

It is worth pointing out that we could have used a sorting network instead of a permutation
network. The proof is roughly the same, the sorting network guarantees us the ordering, so we
can get rid of ζx and Flog t, but to get efficient sorting networks one must resort to the more
involved proof of [AKS83] to get an O(n log n) sorting network. A proof using “easy” sorting
networks can be found in [vM07]. It would be worth to check in detail both methods and assess,
in detail, which are the benefits of one and the other, since there seems to be no detailed proof
of either method in the literature. Unfortunately, this is something we had to skip during this
work but it is an interesting question.

2.6 Time-hierarchy for non-deterministic computations

An important thing to discuss is that of time hierachies. In this subsection we will first see the
deterministic time hierarchy and afterwards the nondeterministic time hierarchy. The former
will not be specially relevant for this work, but it is easily proven and the main idea used to
proof it is then tweaked to get the nondeterministic one.

Theorem 18. Let f(n), g(n) be time-constructible functions and f(n) log f(n) = o(g(n)). Then

DTIME(f(n)) ⊂ DTIME(g(n))

Proof. Let {Mj | j ∈ N} be an enumeration of the deterministic Turing machines such that
L(Mj) ∈ NTIME(f(n)) for any j. We will build a diagonalizing machine D. We will make
use of the efficient universal Turing machine U built in theorem 2.

31

D(x) :
1. run U(Mx, x) for g(|x|) steps
2. return 1-U(Mx, x)

It is clear that L(D) ∈ DTIME(g(n)). Suppose for a contradiction that there exists D′ such
that L(D′) = L(D) and L(D′) ∈ DTIME(f(n)). In order to do the opposite of machine Mx

we need that Mx have enough time to compute, which means that the following inequality must
hold

g(|x|) > cx · f(|x|) log f(|x|)
where cx is the constant dependant on Mx as seen in theorem 2. By assumption, for fixed
cx there exists nx such that the previous inequality holds for n ≥ nx. Since each machine is
represented by infinitely many strings, pick a representation d = bD′c with d ≥ nd. Therefore,
we have that D(d) = D((D′, d)) = 1−D′(d) by construction, and by assumption D(d) = D′(d)
a contradiction

The analogous theorem for the non-deterministic setting is a bit different. The first idea
one could have is just to replace the DTIME in theorem 18 with NTIME. But this runs in
the problem of doing the opposite of a non-deterministic machine. To do that, we need to see
what is the behaviour in all possible execution paths, which would take time O(2f(n)), assuming
the machine runs in time O(f(n)). Even with this exponential, we could get a hierarchy, but
it would be a very coarse separation (exponential). In order to get an interesting result we will
apply what is called “lazy diagonalization” or “delayed diagonalization”, and it will consist in
instead of diagonalizing for each input, we will just restrict ourselves to a smaller subset, which
will give us enough time to explore all paths. This “delayed diagonalization” idea origins from
[Coo72].

Theorem 19. nondeterministic time hierarchy [Zak83] Let f, g be time constructible func-
tions satisfying f(n+ 1) = o(g(n)) then

NTIME(f(n)) ⊂ NTIME(g(n))

Proof. [AB09] The general proof is a bit involved, so we will showcase the idea as in [AB09]
and show the case f(n) = n1.1, g(n) = n1.5. As stated, for this proof we will use “delayed
diagonalization”. Let {Mj | j ∈ N} be an enumeration of the nondeterministic Turing machines
such that L(Mj) ∈ NTIME(g(n)) for any j. Define h(n) to be:

h(n) =

{
1 if n = 0

2h(n−1)1.1 otherwise

D(z) :
1. check that z = 1|z|, let |z| = n; reject otherwise.
2. find i such that h(i) < n ≤ h(i+ 1).
3. if n < h(i+1) return UN (Mi, 1

n+1) (if it has not halted in n1.1 steps halt and accept).
4. else if n = h(i+1) return 1−Mi(1

h(i)+1) by simulating Mi on all computation paths.

The machine D runs in time O(n1.5). First, notice that we can find i in time O(n1.5). If we
run the non-deterministic universal Turing machine (step 3) then by theorem 3 it runs in time
O(n1.1) ≤ O(n1.5). For step 4, to return the contrary of Mi we need to explore all paths to
see if it accepts or rejects. Thus, we need time O(2(h(i)+1)1.1) = O(h(i+ 1)) = O(n) thus D(z)
runs in time O(n1.5) . Now suppose for a contradiction that L(D) ∈ NTIME(n1.1). Then
it follows that for some i0, L(Mi0) = L(D). Since each machine is represented by infinitely
many indices, pick i0 such that UN (Mi, 1

n+1) takes less than n1.1 steps. By assumption, we
have that Mi0(1a) = D(1a) for h(i0) < a ≤ h(i0 + 1) and by construction we have that
Mi0(1h(i0)+1) 6= D(1h(i0+1)) which contradicts the previous statement.

32

2.7 Existance of small witness circuits

Recall that at the start of this chapter, Williams’ method was split into two:

(a) If (A) holds, then “small” witness circuits exist

(b) If (B) holds, then “small” witness circuits do not exist

We are now ready to prove both implications. We will first prove (a), namely that if NEXP ⊆
P/poly then there exist “small” witness circuits and after we will prove (b), which said that if
CIRCUIT SAT has better-than-trivial algorithms then “small” witness circuits do not exist.

2.7.1 Small witness circuits exist

Lemma 6. If PSPACE ⊆ P/poly then PSPACE ⊆MA

Proof. To show that PSPACE is in MA, it suffices to show that the True Quantified Boolean
Formulas(TQBF) problem is in MA, since TQBF is PSPACE-complete. Hence, we must
show that given a true quantified boolean formula there exists an MA protocol which con-
vinces Arthur of the truth of the formula. . The protocol goes as follows:

• Merlin guesses the polynomial representation of the polynomial circuit of the optimal
prover for TQBF and sends it to Arthur

• Arthur probabilistically verifies the validity of the boolean formula using the circuit sent
by Merlin, without any more interaction.

Clearly, this is a MA protocol. Since PSPACE ⊆ IP by the construction in section 2.2.1, there
exists an IP protocol for TQBF. By hypothesis PSPACE ⊆ P/poly, therefore there must be
a family of polynomial circuits which computes the optimal prover for the TQBF IP protocol.
Hence, Merlin can send this circuit to Arthur, and Arthur can probabilistically verify the truth
of the QBF using the prover sent by Merlin.

Lemma 7. If NEXP ⊂ P/poly, then there is q ∈ N, such that NTIME(2n)/n ⊂ SIZE(nq)

Proof. Fix some enumeration of the non-deterministic Turing machines {Mj |j ∈ N} and consider
the following non-deterministic Turing machine:

U(z) :
1. check that z is of the form (i, x) where i codes a natural number. Reject otherwise
2. run Mi(x) for 22|x| steps
3. accept iff Mi(x) halts and accepts in the time given

By theorem 2, if Mi on input x runs in time t(|x|), then U simulates Mi in time ci · t(|x|)2,
where ci is a constant depending on Mi. Hence, U runs in time at most O((22|z|)2) = O(24|z|),
which makes the language decided by U be in NEXP

By hypothesis, since L(U) is in NEXP there is a family of circuits {Cn|n ∈ N} of size
O(nq), for some constant q, that decides L(U). We show that every L ∈ NTIME(2n)/n is also
decided by a family of circuits {C ′n|n ∈ N} of size O(nq).
Let M and {yn|n ∈ N} be the non-deterministic Turing machine and the sequence of advice
strings that witness that L is in NTIME(2n)/n. That is, M runs in time O(2n), and for every
n ∈ N and every x ∈ {0, 1}n it holds that x ∈ L if and only if M accepts (x, yn), and yn is a
binary string of length n. Let i be such that M = Mi.

By definition the running time of M on input (x, yn) is bounded by a · 2|(x,yn)| for some
constant a as long as |(x, yn)| ≥ n0 for some constant n0. Now, for every n and x, with x

33

having length n, we have that x is in L if, and only if, M accepts on input (x, yn). In turn, for
sufficiently large n, this happens if, and only if, M accepts (x, yn) in a · 2|(x,yn)|, and hence in
time at most 22|(x,yn)|. Therefore, x is in L if, and only if, U accepts (i, (x, yn)).

Next, we show that L can be decided by a family of circuits {C ′n|n ∈ N} of size O(nq). For
inputs x of length n, define C ′n(x) = Cm((i, (x, yn))) where m is the length of (i, (x, yn)). We
claim that the family of circuits {C ′n|n ∈ N} decide L and have size O(nd). By definition, C ′n
decides L. Next we show that C ′n has size O(nq). Indeed, If n ≥ n0, by definition we have that
Cn(x) = Cm(i, (x, yn)) with m = (i, (x, yn)). Now, as we have previously stated, {Cm|m ∈ N}
has circuits of size O(nq), therefore C ′n has size O((|(i, (x, yn))|)q) = O((2n)q) = O(nq) since i
is the constant size description of Mi and |x| = |yn| = n.

Therefore {C ′n|n ∈ N} is a family of circuits that decide L and have size O(nq).

Lemma 8. If NEXP ⊆ P/poly then for any L ∈ NEXP, L has universal witness circuits of
polynomial size

Proof. We will assume that NEXP ⊆ P/poly and that for some L ∈ NEXP, L does not have
universal witness circuits of polynomial size and derive a contradiction. Since NEXP ⊆ P/poly
we have classPSPACE ⊆ P/poly which implies that PSPACE ⊆MA by lemma 6. We use
this to reach a contradiction with lemma 3. From this contradiction will follow that L must
have universal witness circuits of polynomial size.

Thus, let L ∈ NEXP be such that it does not have universal witness circuits of polynomial
size. Therefore, for some correct verifier V of L, there exists an infinite sequence {xi|i ∈ N}
such that for every xi, and for every y of length 2|xi|

c
, V (xi, y) = 1 implies that yk (the k-th bit

of y) cannot be computed by any circuit of size O(nd) for any constant d.
Let P be a MA protocol. Let Arthur’s computation in P have circuit size na for some

constant a. We can simulate P infinitely often as follows: For inputs z of length n, set as advice
some xm of length n. If there is no such xm of the appropriate length, set as advice the string
0n.

M(z) :
1. guess a witness w of length 2|xm|

c
, and check that V (z, w) = 1. Reject otherwise.

2. guess Merlin’s polynomial string
3. Simulate arthur by evaluating G on all seeds of length nεa and take the majority

vote.

Let ε =
1

a
, then n = nεa. Since |w| = 2n

εac
, we can treat it as a boolean function on nεac

variables. By hypothesis, w has circuit complexity at least nεad for any d. Therefore, w has
circuit complexity at least nεad

′
> nδe for appropriate d′. By theorem 10, G evaluated on seeds

of length nεa along with random access to w, fool circuits of size na, hence they fool Arthur.
The simulation takes O(2n

εac
) to guess the witness w and verify that V (z, w) = 1, polynomial

time to guess Merlin’s string, and O(2n
εa

) to evalute Arthur on all possible seeds of length nεa,
hence, the total runtime is O(2n

εac
+ 2n

εa
) = O(2n

εac
) We have shown that we can simulate any

MA protocol, for inifinitely many input lengths, in time O(2n
β
) with advice of length nβ where

β = εac. Hence, MA ⊆ io-NTIME(2n
β
)/nβ for β > 0, since ε is not fixed. Now we can show

the following classes inclusions for a fixed q

PSPACE ⊆MA ⊆ io-NTIME(2n
β
)/nβ ⊆ io-SIZE(nq)

Which by lemma 3 is false, thus we reach a contradictions, meaning that indeed L does have
polynomial universal witness circuits. The class inclusions are justified in the following way:
The first inclusion is given by lemma 6 and the third inclusion is given by lemma 7.

34

2.7.2 Small witness circuits do not exist

A key part in the lower bound method exposed [Wil10] is the fact that given a language
L ∈ NTIME(2n), on input x we can generate a propositional formula (call it Φx) such that
deciding its satisfiability is equivalent to deciding the membership of x to L. The method pro-
ceeds by exhibiting an algorithm that assuming that “small” witness circuits exists, decides
the satisfiability of Φx in time o(2n), thus reaching a contradiction with the non-deterministic
time hierarchy. In order to get this algorithm to run in time o(2n) we need to exhibit an
algorithm that decidesCIRCUIT SAT algorithm in the same time (or less). Now we will argue
why the quadratic size of the formula yielded by theorem 13 is not enough. The inputs of this
circuit will be determined by the number of clauses that the formula has. Thus, if |Φx| = n2

we essentially need that the CIRCUIT SAT can be solved in time o(2n/2) which is a very strong
condition, and it is unlikely to exist such algorithms. After seeing the general construction, we
will introduce the necessary tools to generate Φx with |Φx| = O(n logO(1)(n)) which only forces
the CIRCUIT SAT algorithm to run in time o(2n), a more feasible endeavour.

Theorem 20. Let c ≥ 1 and d be a constant that only depends on the computation model.If
CIRCUIT SAT on circuits of n inputs and m gates can be solved in (co-non)deterministic time

O
(2n ·mc

f(n)

)
with f(n) = Ω(nda(n) · (S(n) + n2d)c), and a(n) strictly positive monotone and

n ≤ S(n) ≤ 2n

n · a(n)
, then NTIME(2n) does not have S(n) universal witness circuits.

Proof. The proof works by contradiction. We fix a language L ∈ NTIME(2n) and consider a
verifier V (x, y) for L which on input (x, y) calculates Φx and checks if y encodes a satisfying
assignment of Φx. Since we will assume that L has universal witness circuits of size S(n), it will
be the case that y can be encoded by circuits of this size. Finally, we will proof from this that
we can decide L in time o(2n) contradicting the non-deterministic hierarchy theorem.

Let x be the input with |x| = n. By theorem 14, we have that Φx is satisfiable if, and only if,
x ∈ L. Moreover, we have that the i-th clause of Φx can be computed in time O(nd), therefore
there is a circuit that computes the i-th clause with size O(n2d). In particular, given the index
i of a clause, this circuit outputs the index of its three literals, and their sign (whether they are
negated or not). Call this circuit Cx. Next, we can guess a circuit W of size S(n) that witnesses
the satisfiability of Φx. This circuit W exists by hypothesis. Now, with these two circuits we
construct a third circuit, in such a way that it will be unsatisfiable if, and only if, x ∈ L. We
call this circuit D(x,W). D(x,W) is built as follows: Its input will be the index of a clause of Φx.

Note that Φx has at most O(2n · nd) clauses, therefore, D(x,W) has log(c2n · nd) = n + d log n
inputs.

We set up three copies of W and we feed to each copy one of the variables appearing in the
i-th clause. Finally, we evaluate the circuit H with the inputs shown in the figure. H is 0 if,
and only if, there is some literal satisfying the i-th clause. Therefore, D(x,W) = 0 ⇐⇒ x ∈ L.
Denote by A(x) the algorithm that solves CIRCUIT-SAT in O(2n ·mc/f(n)) co-nondeterministic
time, which exists by hypothesis. The following machine decides L:

M(x) :
1. Guess W
2. Build D(x,W)

3. Return A(D(x,W))

Let V (x, y) be a verifier for L that given x constructs Φx and checks if y encodes an assigment
making Φx true. Also, denote by Φkx the k-th clause of Φx and let R(x, y) be a verifier for

35

m = n+ d log n

Cx

i︸︷︷︸

¬[(b1 ⊕ ℓ1) ∨ (b2 ⊕ ℓ2) ∨ (b3 ⊕ ℓ3)]

W W W

Dx,W

ℓ1b1 ℓ2b2 ℓ3b3

m m m

H

Figure 2.3: Depiction of circuit D(x,W)

CIRCUIT-SAT. The correctness of M follows from the following chain of double implications:

x ∈ L ⇐⇒ ∃y s.t V (x, y) = 1 ⇐⇒ ∃W |W | ≤ S(|x|) ∧ yi = W (i)

⇐⇒ ∃W s.t ∀γ Φγx = zk ∨ . . . ∨ zk+l → Φγx(W (zk) . . .W (zk+l)) = 1 ⇐⇒
∃Dx,W s.t ∀z Dx,W (z) = 0 ⇐⇒

∃W s.t Dx,W is UNSAT ⇐⇒ ∃W∃ω |ω| = O
(2n ·mc

f(n)

)
∧R(D(x,W), ω) = 0

Let’s analyze the running time of M(x). To guess W we need to guess a representation of W .
We can represent a circuit of size S(n) with O(S(n) · log(S(n))) bits, hence, since S(n) ≤ 2n

n·a(n)

we have that O(S(n) · log(S(n))) ≤ 2n

n · (n− log n) = O(2n

a(n)) is an upper bound for the number

of bits needed for a representation of W . For step 2, we have that |D(x,W)| = n2d + 3S(n) +H

which certainly is bounded by O(2n

a(n)). Finally, for step 3, we have by hypothesis that A(D(x,W))
takes time

O
(2n · (n2d + 3s(n) + |H|)c

f(n)

)
= O

(2n

a(n)

)

where this last equality follows by the hypothesis on f(n). The running time of M(x) in total

is O
(2n

a(n)
+

2n

a(n)

)
= O

(2n

a(n)

)
. Since M(x) decides L and L was an arbitrary language in

NTIME(2n), we conclude that NTIME(2n) ⊆ NTIME(2n/a(n)), but since
2n+1

a(n+ 1)
= o(2n)

this inclusion contradicts the non-deterministic time hierarchy theorem. Thus, we conclude that
NTIME(2n) cannot have S(n)-size universal witness circuits.

2.7.3 Extending the method

Here we give a way to generate witnesses if we want to prove circuit lower bounds for another
class C of circuits which may be more restrictive than just P/poly. This method requires
stronger conditions, but it is interesting to briefly study it because it will make an appearanece
in chapter 4 when we go over Williams’ proof that NEXP 6⊆ ACC0.

36

We have given a method which would yield (unrestricted) polynomial circuit lower bounds
for NEXP. The method can be extended to other (more restricted) classes of circuits, other
than P/poly. Let C be a class of circuits such that it is closed under composition and it includes
the class of circuits AC0. Then, [Wil10] gives a method to extend the previous method so that if
there exists a slightly more efficient algorithm for C-CIRCUIT SAT (i.e satisfiability of C circuits),
then we can prove that NEXP does not have polynomial size C circuits. The argument makes
use of the same ingredients as before, but with slight modifications. In particular, since we
cannot guarantee that theorem 14 has AC circuits we have to use a weaker reduction, which
leads to a less sharp result. In the next chapter when we go over the proof that NEXP 6⊂ ACC
we will be able to circumvent this limiting factor by making use of nondeterminism. For the
time being, let’s see how to extend the method to other classes of circuits C.

First, we need a method to produce C witness for NEXP.
Consider a language L in NTIME(2n) and let VL(x, y) be its verifier.Consider the following

ENP machine

ML((x, i)) :
1. Let w = (x, y) where y is a the binary string of all ones, with |y| = d · 2|x| for some

constant d
2. Query to the oracle if given w, there exists a binary string z with z < y such that

VL(x, z) accepts
3. If YES set y = z and go to step 1, if NO output the i-th bit of y

It is straightforward to see that this machine computes the smallest binary string that can
witness the membership of x to L. Note that each query can be performed in NP: given (x, y)
and a candidate z we have time to compute V (x, z) since |y| = O(2|x|).

With this in mind we can introduce the following theorem

Theorem 21. If ENP has C circuits of size S(n) then NTIME(2n) has universal witness
circuits from class C of size S(n)

Proof. Fix L ∈ NTIME(2n). Let ML be the machine previously introduced. By hypothesis
there is a family of (non-uniform) C circuits {Cn |n ∈ N} which computes the same function as
ML. It follows that there is a family of C circuits of size O(S(n)) that witnesses the membership
to L

Theorem 22. If C-CIRCUIT SAT can be solved in O(2nnc

S(n)) time, then ENP does not have poly-
nomial C circuits.

Proof. As before, fix L ∈ NTIME(2n). Given an input x, by ?? we know that there exists
a propositoinal formula Φx such that Φx is satisfiable if, and only if, x ∈ L. We have that
|Φx| = 23n · n2. We need to use the weaker theorem 13 instead of theorem 14 because for the
former we can compute the i-th clause with circuits in AC. Indeed, given (i, j) that index
a cell of the computation tableau, we just need to add them as some offset to the variables.
For the latter it is not clear that it is that easy. By theorem 21, if ENP has polynomial C
then it has polynomial universal witnesses. By the same construction as in theorem 20, we get

that if C-CIRCUIT SAT on n inputs and poly(n) gates is solvable in O(2n/3poly(n)
S(n)) time, then the

machine carrying out this process as in theorem 20 runs in time O(2n

S(n)) contradicting again
the nondeterministic time hierarchy

Note that we get 23n size in the formula which forces us to devise a C-CIRCUIT SAT algorithms
that kills that 3 factor, so something of the sort O(2n/3) which is more difficult than just o(2n)
as in the “general” method. If i-th clause of the formula yield by theorem 14 were to have AC
circuits, then theorem 20 would apply, and we would avoid this problem.

37

Part II

Circuit Lower bounds & Complexity
Barriers

38

Chapter 3

Circuit lower bounds

In this chapter we want to go over two techniques used to prove circuit lower bounds to have
a feeling for the novelty of the method introduced by [Wil10]. The first technique is what is
known as the switching lemma by H̊astad. This technique is used to give lower bounds on the
size of a particular class of circuits that compute the PARITY problem. The other technique, due
to Razborov and Smolensky, is based on working with polynomials that approximate functions
computed by circuits. Again, with this technique we prove lower bounds for PARITY. The main
complexity classes important for the discussion of this techniques are:

• AC0 is the class of languages decidable by a family of circuits of polynomial size and
constant depth with AND/OR gates of unbounded fan-in and NOT gates only at the first
level.

• ACC0 is an extension of the previous class, where we add a gate that computes the
modulus function for some integer q.

3.0.4 AC0 lower bounds

We start by surveying the main ideas of [Has86, FSS84] that show lower bounds against AC0.
We start by introducing the necessary notions regarding Boolean formulas and restrictions over
them.

Given a formula f with n variables we call a partial assignment ρ on n−m variables an m
restriction on f and we denote by f |ρ the result of applying ρ to f . Let f be a k-DNF formula
and α some restriction. Assume that we have an ordering {Ti |i ∈ {1 . . . |f |}} of the clauses,
and within each clause we have some order for the literals. We denote by C(f |α) the canonical
decision tree of f |α. This tree is built as follows: Take the first Tj1 in the ordering that is not
killed by α. Denote by U1 the clause resulting from taking out the restricted literals of Tj1 .
Suppose that α only leaves d1 literals in U1. Now build the complete d1-depth decision tree
over the variables of U1. Denote by γ1 the unique path that leads to U1 being satisfied and thus
makes f |α◦γ1 = 1. For all other paths p, repeat the process with f |α◦p where α ◦ p denotes the
concatenation of the original restriction plus the one induced by the path p. The resulting tree
is the canonical decision tree of f |α.

Lemma 9. H̊astad’s switching lemma [Has86] Let f be a k-DNF formula over n variables.

Let α be a random restriction of s = σ · n variables. Then for any 0 ≤ d ≤ s and σ ≤ 1

5

Pr
α

[DTdepth(f |α) > d] ≤ (10σk)d.

Proof. Let B be the set of bad restrictions, that is those such that if β ∈ B then DTdepth(f |β) >
d. Given β ∈ B we will generate two things:

39

• an s− d restriction.

• a binary string A encoding auxiliary information.

The proof goes as follows: Given β ∈ B we will generate a pair (r,A) ∈ Rs−d × {0, 1}c where c
is a constant which will be made explicit during the proof. Next we will show that from (r,A)
we can recover β, thus finding an injection. This will allow us to bound the cardinality of B via
counting that of Rs−d × {0, 1}c which is

(
n

s− d

)
2n−(s−d) · 2c

This proof of the switching lemma is due to Razborov. In particular this proof is an adaptation
of that of [O’D].

As stated, take β ∈ B and consider C(f |β). Let π∗ be the leftmost path with length > d,
and let π be its prefix of length d. Thus, π is a path in C(f |β) of length exactly d. We let γ1

be the restriction that makes U1 = 1. By using d1 log k + d1 bits we can encode which are the
literals used in γ1 and whether they are set to true or false. Let π1 be the assignation made by π
to the variables appearing in γ1. We add d1 additional bits to specify how π1 sets the variables
in γ1, d1 log k + 2d1 in total. Now consider the restriction β ◦ π1, which we know kills Tj1 .
Now, consider the restriction β ◦ π1. We can again consider the first term Tj2 not killed by this
restriction and generate γ2 and π2. At step i we are considering f |β◦π1···◦πi−1

and we have built
a restriction β ◦γ1 ◦ · · · γi−1. We iterate this procedure until we exhaust π (say it takes ` steps).
During this process we have generated the pair (r,A) where r = β ◦ π1 ◦ π2 ◦ . . . ◦ π` ∈ Rs−d is
the s−d restriction and A is the binary string encoding the auxiliary info γ1 . . . γ` and π1 . . . π`.
Note that in total we needed d1 log k + 2d1 + d2 log k + 2d1 + . . . + d` log k + 2d` bits, thus in
total we need d log k + 2d bits. Thus, we have found the unknown constant c that was to be
defined. We have c = d log k + 2d. Therefore, we now know the cardinal of the image of the
injection we want to construct, it is

(
n

s− d

)
2n−(s−d) · 22 log k+2d

Now we want to see that given (r,A), we can invert the process uniquely to get β proving that
this mapping is indeed an injection. So suppose we have f and (r,A). The only way to start is
to consider f |r. By construction (while generating the successive πi we keep the invariant that
all the previous clauses in the ordering are killed), we know that the first term killed under this
restriction is Tj1 . We can lookup γ1 in A so that we know which variables to unset. Then, by
looking up π1 we can consider β ◦ π1 ◦ γ2 ◦ γ` and again consider the first clause fixed, which by
construction will be Tj2 . In this way we keep undoing the restriction r until we recover β.

Lemma 10. Given a circuit C of size s and depth k, there exists an equivalent circuit C∗ of
depth k and size at most (2s)k such that:

1. C∗ has all the negation gates at the input level.

2. C∗ has its gates “layered”, meaning that at any level there are only AND or OR gates.

3. All gates in C∗ have fanout 1 (except the inputs) thus forming a tree.

Proof. Let gi = (a1 ∧ . . . ∧ ak) be an AND gate of the circuit (the OR case is just the same).
Suppose that its output is negated, thus we have ¬gi = ¬(a1 ∧ . . . ∧ ak) = (¬a1 ∨ . . . ∨ ¬ak) by
De Morgan’s. What we have done is just push the NOT gate down one level by pushing it to
the inputs of the gate. It is clear that we could proceed from the top of the circuit down to the

40

bottom but since we have unbounded fanout, it could be the case that on of the gates that use
gi as input pushes a negation and the other not. Therefore, in order to solve this “clashing” we
just add a negated copy of gi, thus we have a gate computing ¬gi and the original gate gi. This
gives us a C ′ circuit with at most double the number of gates, equivalent to C. Now we want to
“layer” C ′. Assume that the i + 1 and above levels are correctly layered, and assume without
loss of generality, that the i level is supposed to be an AND level. For any gate in the i-th level,
if its an AND gate we do not need to do anything. Therefore, suppose g is an OR gate at the
i-th level. We would like to just reassign g’s level to i + 1 and be done. Clearly, g’s output
can only go to some gate at the level i + 1 or above. If it goes to some gate above level i + 1
we can safely reassign g. If g’s output goes to some gate g′ at the i + 1 level, since the circuit
is in AC0, it has unbounded fan in, so we can connect directly the inputs of g to g′ which is
also an OR gate (by virtue of being at the i+ 1 level) and then we can safely reassign g. This
modification produces a circuit C ′′ . Note that this last modification doesn’t modify the size or
depth of C ′. Finally we want to make all non-input gates of C ′′ have fanout 1. Consider the
following process: Start from the k − 1 level of the circuit. We know that the output gate(s)
have fanout 1, thus the k-th level can be left alone. Now, for each gate at the k− i-th level take
the worst case (very rough bound) and suppose they each have fanout si. If we add s copies of
each gate, by properly increasing (if needed) the fanout at the k − (i + 1) level, we can make
each gate at the k − i level have fanout 1. We can repeat the process, and then at level j we
may get as many as sj gates. Thus, when we are done we have at most sk gates. Since AC0

has constant depth, this k is a constant, thus applying this transformation yields C∗. Note that
the previous properties are preserved by this operation.

Before we use lemma 9 to prove a lower bound for PARITY we will discuss briefly the necessary
width of a DNF or CNF that computes the PARITY function. We argue that PARITY on n
variables requires a n-DNF or n-CNF. We start by noting that if the width of a DNF is k, then
under a suitable restriction of k variables, the DNF becomes a constant 1. Likewise, if the width
of a CNF is k, then under a suitable restriction of k variables, the CNF becomes the constant
0. Suppose we have n variables and we restrict n− 1 of them. By flipping the last variable we
flip the value of PARITY, thus PARITY requires width n CNF or DNF.

Definiton 9. The PARITY problem can be formalized as the problem of given n boolean inputs
x1, . . . , xn, compute the following function

PARITY(x1, . . . , xn) =
n∑

i=1

xi mod 2.

Theorem 23. If C is a circuit of depth k in canonical form with the gates at the second level

having at most 20 log s inputs that computes PARITY then log |C| ≥ Ω(n
1

k−1).

Proof. Suppose that Cn is a family of circuits in canonical form that compute the PARITY

function. We overload the notation and denote by Cn the circuit of the family that computes
PARITY for inputs of length n. Suppose that the bottom layer (the one following the inputs)
is an AND layer. Suppose further that each gate at layer 2 (that is, each OR gate at level
2) represent a DNF of width w = 20 log s (for the other case we would just get a CNF of

the same width). Apply a random restriction α1 with |α1| =
n

20w
. By lemma 9, if we let

d = 20 log s the probability that any of these DNFs is not expressable as a w-CNF is bounded

by (
1

2
)20 log s hence, by the union bound, the probability that some OR gate at the second level

is not representable by a w-CNF is at most
s

s20
=

1

s19
. Therefore we conclude that there exists

a nonzero probability (in fact, quite high) that all OR gates at the level 2 are representable
by a w-CNF. If we plug this CNFs, note that the top gate of a CNF is an AND, which will

41

be connected to another AND at the level 3 (where the OR gate was previously connected).
Therefore, since the fanin is unbounded, we can merge level 2 and 3, thus reducing the depth
of Cn by 1. Now, repeat this process k − 2 times, until we have a circuit of depth 2. Since at
each step the circuit preserves the property of computing PARITY, we end up with a circuit of
depth 2, which can be represented as a CNF or DNF that computes PARITY of the inputs (keep
in mind that some of this inputs have been restricted along the process).

Now, we want to compute how many inputs are still unset. At each step we restrict a
1

20 log s

part of the inputs, thus after k−2 steps we have mk−2 =
n

(20 log s)k−2
unrestricted inputs. It is

easy to see that if a function computes PARITY, then under any restriction of its inputs, it still
computes PARITY or it computes its negation. We don’t really care since both require m-DNF
(m-CNF) on m inputs. Since for m inputs we have that PARITY requires a 2m size DNF (or
CNF). Since after k − 2 iterations we have that Cn only has mk−2 inputs it follows that

s ≥ 2mk−2 =⇒ log s ≥ n

(20 log s)k−2
=⇒ c log sk−1 ≥ n =⇒ O(log s) ≥ n 1

k−1 .

The previous proof showcases the idea behind the proof that PARITY 6∈ AC0. Bear in mind
that the main goal was to showcase the idea and get the flavour of one technique used in proving
circuit lower bounds.

3.0.5 ACC0 lower bounds

Next, keeping within the theme, we will showcase the idea behind the theorem by Razborov
and Smolensky ([Raz87, Smo87]), as in [AB09], that the function MODp cannot be computed by
ACC0[q] circuits, where p, q are primes. We will look at the special case with p = 2, q = 3.
Recall that ACC0[q] denotes the ACC0 circuits that have the mod q gate.

Theorem 24. [AB09] PARITY 6∈ ACC0[3]

The idea will be the following: Given a ACC0[3] circuit C on n inputs, we will show that
by using polynomials of degree (2`)h where h is the depth of C, we can approximate it up to

a 1 − |C|
2`

factor. In particular we will pick ` so that (2`)h = n
1
2h so that we get a

√
n degree

polynomial. Then we show that no
√
n polynomial agrees with the PARITY function on more

than a 49/50 fraction of the inputs.

Proof. We use induction on h the depth of C. For the base case (inputs) it is clear that the
polynomial xi trivially computes it without error. Suppose that we have built a polynomial
that approximates all gates of heigth h−1 and let g(x1 . . . xn) be the function computed by the
gate g at level h. We let GF (3) = {0, 1,−1}. Thus, to make sure that we have boolean output
we just need to square whatever we want to be boolean since 02 = 0, 12 = 1 and (−1)2 = 1.

• Suppose g(gj) is a NOT gate. By inductive hypothesis there exists a polynomial
∼
fj that

approximates gj . Thus, a polynomial approximating g can be defined as
∼
f = 1−

∼
fj . The

degree of
∼
f is the same as

∼
fj and we do not introduce any error.

• Suppose g(gj1 , . . . , gjk) is a mod 3 gate. We define
∼
f = (

∑k
i=0

∼
fji)

2. By inductive

hypothesis the
∼
fji have degree (2`)h−1. Thus,

∼
f has degree 2 · (2`)h−1 < (2`)h. We do not

introduce any error since 02 = 0 and (−1)2 = 1.

42

• Suppose g(gj1 , . . . , gjk) is an OR (if it were an AND we just apply De Morgan’s). By

inductive hypothesis we have a set of polynomials {
∼
f1, . . . ,

∼
fk} of degree (2`)h−1 each,

that approximate the functions computed by the gates {gj1 , . . . , gjk} that are the input to

gi. Consider the following polynomial p(
∼
f1 . . .

∼
fk) = 1 −∏k

i=1 1 −
∼
fi. Clearly p(

∼
f1 . . .

∼
fk)

computes the OR function of {
∼
f1 . . .

∼
fk} but the degree of p(

∼
f1 . . .

∼
fk) would exceed (2`)h.

The strategy will be to generate a polynomial
∼
gi of the required degree, but at a cost of

introducing some error. Thus,
∼
gi will approximate gi but will miscalculate for a fraction

of the inputs. We have that gi = f1∨ . . .∨ fk = 1 ⇐⇒ ∃i fi = 1. By the random subsum
principle if one element of the set {f1, . . . , fk} is 1, then the sum of any random subset is
non-zero MOD2 with probability 1

2 . Since here we sum MOD3 we have that the sum of
a random subset is non-zero with probability at least 1

2 (since it could be either 1 or −1).
With this in mind, let T = (T1, . . . , T`) be a collection of sets where we have for 1 ≤ j ≤
` Tj ⊆ {1, . . . , k} and define ` polynomials (

∑
i∈T1

∼
fi)

2, . . . , (
∑

i∈T`

∼
fi)

2. Now, we compute

the OR in the “naive” way of this ` polynomials
∼
gi(
∼
f1, . . . ,

∼
fk) = 1 −∏T ′∈T (

∑
i∈T ′

∼
fi)

2.
Note that the degree will be 2`·(2`)h−1 = (2`)h. Fix x ∈ {0, 1}n. When computing C(x) we

can find two cases. If gi = 0 then
∼
gi = 0, if gi = 1 then for some j ∈ {1, . . . , k}

∼
fj = 1. Now

if ∀i ∈ {1, . . . , k} j 6∈ Ti then it could be that gi 6=
∼
gi. Denote by

∼
gi
s

the polynomial induced

by s where s ∈ {0, 1}k denotes a subset of {1, . . . , k}. We have that Pr
s∈{0,1}k

[
∼
gi
s 6= gi] ≤ 1

2`

by the random subsum principle. Thus, for a given x, there are 2k−` “bad” subsets.
Suppose that “bad” subsets are distributed uniformly on {0, 1}n. Then, each subset is
expected to be “bad” for 2k−` inputs x, which means that there is some choice of subsets
that is “bad” for at most 1

2`
fraction of the input. We pick this set of subsets as our choice

to build
∼
gi.

By the above procedure, we end up generating a polynomial
∼
gs which approximates the

output gate of the circuit. By construction, the degree of
∼
gs is (2`)h where h is the depth of C.

Since each gate introduces an error for at most a 1
2`

fraction of the input, we have that in total
∼
gs is wrong in at most |C|

2`
inputs.

Let f be a polynomial agreeing with MOD2 = PARITY(x1, . . . , xk) for all inputs in G ⊆
{0, 1}n. Suppose that the degree of f is bounded by

√
n. Then, |G| ≤ 49

502n. Let f(x1, . . . , xk)
be such polynomial. Consider the change of variable yi = 1 + xi mod 3 which takes val-
ues on {−1, 1}. Therefore, we have another polynomial f ′(y1, . . . , yk) of degree still

√
n with

f(x1, . . . , xk) = 1 ⇐⇒ f ′(y1, . . . , yk) = 1 and f(x1 . . . xk) = 0 ⇐⇒ f ′(y1, . . . , yk) = −1. This
transforms G ⊆ {0, 1}n into G′ ⊆ {−1, 1}n. The interesting thing about this transformation is
that the following polynomial p(y1 . . . yk) =

∏k
i=1 yi computes the function PARITY(y1, . . . , yk).

Therefore for any z ∈ G′ we have that p(z) = f ′(z). The last step will be to show that this im-
plies that G′ must have small cardinality. Let FG′ denote the set of functions S : G′ 7→ GF (3),

we will show that |FG′ | ≤ 3
49
50
·2n .

Let
∼
S : GF (3)n 7→ GF (3) be any function that agrees with S on G′. Then

∼
S can be written

as a polynomial in y1 . . . yn. Since we are interested in the case yi ∈ {−1, 1} and (yi)
2 = 1 we

can assume, without loss of generality, that the for any monomial
∏
i∈I(yi)

ri we have ri ≤ 1.
Now consider any monomial with multidegree |I| > n

2 . We can rewrite it as

∏

i∈I
yi =

n∏

i=1

yi
∏

i∈I†
yi = f ′(y1, . . . , yk)

∏

i∈I†
yi

43

where I† = {1, . . . , n} \ I and the last equality follows because

f ′(y1, . . . , yk) =
n∏

i=1

yi = PARITY(y1, . . . , yk).

Note that the degree becomes n
2 +
√
n. Therefore, we have that any function in FG′ is equal

to some polynomial of degree n
2 +
√
n. But how many such polynomials are there? Well,

each monomial has to be multiplied by some element of GF (3), thus the number of possible
polynomials is 3#monomials. The number of monomials with the above characteristics responds
to the following expression

|{I ∈ {1, . . . , n} | |I| ≤ n

2
+
√
n}| =

n
2

+
√
n∑

i=0

(
n

i

)

which can be shown to be bounded by 49
502n.

44

Chapter 4

Showing ACC lower bounds for
NEXP

We will briefly comment how the ideas of [Wil10] are applied in [Wil14] to get circuit lower
bounds for NEXP. It is shown that NEXP 6⊆ ACC0.

4.0.6 Overview

The normal course of action would be to apply the general method described in chapter 2. The
first problem that Williams’ encounters is that the reduction in theorem 14 yields a formula
whose i-th clause is computable in polynomial time, but here we only have ACC0. In chapter
2 when we showed the condition under which there exist witness circuits we saw that we can
relax this condition and find a formula whose i-th clause is computable by AC0 circuits, but it
yields a O(22n) formula which translates in that the circuit built in theorem 20 has 2n+O(log n)
inputs, thus instead of requiring a CIRCUIT SAT algorithm with o(2n) running time, we need
o(2n/2) which seems too hard of a condition. In order to solve this problem we will make
use of the assumptions that are made to prove the lower bound. Since the proof works by
contradiction, we can assume that P ⊆ ACC0. This might seem to solve the problem, but
recall the concept of a non-uniform circuit family introduced in the preliminaries which meant
that although there is a family of circuits that compute a given function, this circuits may not
be constructable using Turing machines (as an example we saw the HALT language which has
a non-uniform family of circuits). Therefore, under the assumption that P ⊆ ACC0 we know
that the circuit Cx from theorem 20 is in ACC0, but we don’t know how to construct it. But,
we want to proof lower bounds for NEXP, which is a non-deterministic class. We can use the
non-determinism to guess the equivalent circuit to Cx that is in ACC0. Now, once the circuit
is guessed and we are sure that is equivalent to Cx we can just carry on with the construction
in theorem 20 and apply the fast algorithm for ACC-CIRCUIT SAT to obtain the desired lower
bounds.

In the rest of the chapter we will just look at the two parts needed to apply William’s
method without getting into too much detail: Finding witnesses and exhibiting a better-than-
trivial algorithm for CIRCUIT SAT (in this case for ACC0-CIRCUIT SAT).

4.0.7 Finding the witness

Lemma 11. Suppose P has ACC0 circuits of depth d′ and size at most S(n). Assume that
ACC-CIRCUIT SAT on circuits with cn + log n inputs, depth 2d′ + O(1) and at most O(S(3n) +
S(2n)n) size can be solved in O(2n

nc) for sufficiently large c > 2d. Then it is the case that for
every L ∈ NTIME(2n) there is a nondeterministic algorithm A such that:

• A runs in O(2n

nc + S(3n) · poly(n)) time.

45

• for every x of length n, A(x) has some computation path that outputs an ACC0 circuit
C ′x with n+ d log n inputs, depth d′ and S(c(n+ log n)) size, such that x ∈ L if, and only
if, C ′x is the compression of a satisfiable 3-CNF formula of 2npoly(n) size.

Proof. Fix L ∈ NTIME(2n). Let Cx be the circuit that witnesses x
?∈ L (by theorem 20).

Recall that this circuit can be computed in polynomial time. Thus, the problem

Given x and j output the j-th gate of Cx. That is, output a triplet (g, j1, j2) where g is the
gate type (OR, AND or NOT), and j1, j2 the gates whose output is the input for j (suppose

that for the NOT gate, j2 is set to some value which we agree denotes an “ignore” gate)

is also computable in polynomial time, and thus by assumption there is an ACC0 circuit
Di(x, j) for i ∈ {1 . . . O(log n))} which outputs the i-th bit of the gate description with size
. Let D(x, j) be the circuit obtained by putting together all Di(x, j). Thus, D(x, j) outputs
the j-th clause of Cx. By construction D(x, j) has size S(n + d log n) · O(log n). A checks
that indeed D(x, j) describes Cx, by checking for every possible input z, that D(x, z) outputs
a consistent gate description with Cx, otherwise rejects. To perform this checking A takes time
O(S(n+d log n) · log n · logS(n+ d log n+ log log n) to guess a representation for circuit D(x, j).
Then A takes time O(nd) ·S(n+ d log n) to evalute D(x, z) for all z ∈ {1 . . . O(nd)} and check
that the output gate is consistent with Cx. Therefore, for this part A takes time in total

O(S(n+c log n)·log n·logS(n+ c log n+ log log n))+O(nd ·S(n+c log n) = O(nd ·S(n+c log n)).

Now consider the following problem:

Given (x, i, j) output the value of the output of gate j on Cx(i).

By assumption there is an ACC0 circuit for this problem also since again this problem is
computable in polynomial time. Call this circuit E(x, i, j). E has size S(n + (n + d log n) +
d log n) ≤ S(3n) and depth d′. Now, A can construct a circuit VALUE(i, j) which outputs the
value of the j-th gate of Cx(i). The circuit VALUE(i, j) is made with D and E. On input
(i, j), VALUE(i, j) feeds j to D(x, ·) which outputs j1, j2, g. Then, VALUE(i, j) calculates v1 =
E(x, i, j1), v2 = E(x, i, j2) and v = E(x, i, j). Finally the output value of VALUE(i, j) is defined
depending on g:

• If g = ∧ then VALUE(i, j) = 0 ⇐⇒ v1 ∧ v2 = v.

• If g = ∨ then VALUE(i, j) = 0 ⇐⇒ v1 ∨ v2 = v.

• If g = ¬ then VALUE(i, j) = 0 ⇐⇒ v1 = ¬v.

The three checks above can be implemented with a constant number of gates and D,E are
ACC0 circuits, thus VALUE(i, j) ∈ ACC0. The circuit VALUE(i, j) has n + d log n + d log n +
O(1) = n + 2d log n + O(1) inputs, depth 2d′ + O(1) and size O(S(3n) + S(n + d log n) ·
O(log n)) ≤ O(S(3n) + S(2n)n). By assumption, we can run ACC-CIRCUIT SAT on VALUE(i, j)
in time O(2n

nc) for c > 2d. Hence, A checks with the efficient ACC-CIRCUIT SAT algorithm that
∀i, j VALUE(i, j) = 0 which means that it is an unsatisfiable circuit. Finally, we can set up a
circuit SAME(z) which just outputs 0 if, and only if, Cx(z) = E(x, z, α) where α denotes the
index of the output gate. Then, by the three conditions above, SAME(z) is unsatisfiable if, and
only if, ∀z Cx(z) = E(x, z, α), thus C ′x(z) = E(x, z, α). Now, A runs the efficient circuit sat
algorithm for ACC0 to determine the unsatisfiability of SAME(z) and thus the correctness of
E(x, i, α). Since SAME(z) has n + d log n inputs, d′ depth and size O(S(n + d log n)), the sat-
isfiability algorithm again runs in time O(2n

nc). Now A just rejects if SAME(z) is satisfiable and
otherwise prints the circuit C ′x.

46

4.0.8 Fast algorithm for ACC-CIRCUIT SAT

Now we only need an efficient algorithm for ACC-CIRCUIT SAT. We will only give an idea of
how it works. For a detailed proof the reader is directed to [Wil14]. The first part involves a
reduction from ACC circuits to SYM+ circuits.

Definiton 10. A SYM+ circuit, is a circuit of depth 2 which at the output level computes a
symmetric function, and at the first layer just computes ANDs of the inputs.

As explained in [Wil14], we can transform any ACC0 circuit into a SYM+. As it turns out,
SYM+ circuits allow for a faster method to evaluate them on all inputs, which leads to an efficient
CIRCUIT SAT algorithm for this type of circuits. The transformation is rather technical and will
be skipped. For a detailed exposition of the transformation the interested reader is directed to
[Wil14] Appendix A.

The transformation from ACC0 circuits to SYM+ is formalized with the following theorem:

Theorem 25. There is an algorithm and function f : N 7→ N with f(c) ≤ 2O(c) such that
given ACC0 circuit of depth d and size s, the algorithm outputs an equivalent SYM+ circuit of

sO(logf(d) s) size. The algorithm takes at most sO(logf(d) s) time. Furthermore, given the number
of ANDs in the circuit that evalute to 1, the symmetric function itself can be evaluated in

sO(logf(d) s) time

Next, we present the method to compute SYM+-CIRCUIT SAT fast.

Lemma 12. Evaluation lemma ([Wil14]) There is an algorithm that, given a SYM+ circuit of
size s ≤ 2.1n) and n inputs with a symmetric function that can be evaluated in poly(s) time,
runs in 2n · poly(n) time and computes a 2n bit vector V such that V [i] = 1 if, and only if, the
SYM+ circuit outputs 1 on the i-th assignment.

There are two proofs for this lemma. One uses a fast matrix multiplication and the other
uses dynammic programming.

Proof. Matrix Multiplication Let C be a SYM+ circuit with |C| ≤ 2.1n. Partition the inputs

of C into two sets A,B of size at most m =
n+ 1

2
each one. Define two matrices MA,MB of

dimensions 2m× |C| and |C| × 2m respectively. MA’s rows represent all the possible assigments
to the variables in A, and it’s columns represent the AND gates of C. The meanings are
transposed for MB. Therefore, we define the contents of both matrices as follows:

MA(i, j) =

{
1 if the i-th assignment does not force the j-th AND to be 0

0 otherwise
(4.1)

MB(r, s) =

{
1 if the s-th assignment does not force the r-th AND to be 0

0 otherwise
(4.2)

The time required to produce one of this matrices is O(2m · |C| ·poly(m)) = O(2m+.1n ·poly(m)).
Therefore, in total to produce both matrices we need time O(2n/2+.2n). Let M = MA ×MB.
Note that, M is a 2m × 2m matrix. Denote by α(i,j)(k) the value of the k-th AND gate under
the assignment encoded by the i-th row of MA with the j-th column of MB. From the previous
definition follows that:

M(i, j) =

|C|∑

k=1

MA(i, k) ·MB(k, j)︸ ︷︷ ︸
=α(i,j)(k)

.

47

Thus, M(i, j) counts for how many indices k we have α(i,j)(k) = 1, in other words, how many
AND gates are true under the assigment given by i, j. Therefore, the question of the satisfiability
of C is the same as asking whether there exists i, j that makes the symmetric function computed
at the output of C true.

By [Cop82] we have that we can produce the matrix M in time O(22m · poly(m)). Finally,
we need a way to calculate if indeed some of the assignments make the symmetric function at
the output equal to 1. In order to do that, initialize a bit vector T with |T | = |C|. Then, for
each i ∈ {0, . . . , |C|} set T [i] = 1 if, and only if, the symmetric function at the output of C
outputs 1 when given i 1’s as input. Here we make use of the symmetry of the function, since
we only evaluate it for inputs of the form 1i0|C|−i. Since the symmetric function requires time
poly(|C|) to be evaluated we need in total poly(|C|) to generate the bit vector T . In total, to
generate the matrices MA and MB, multiply them to get M and generate the bit vector T we
need time

O(2n/2+.2n + 2n · poly(n) + poly(|C|)) = O(2n · poly(n)).

Note that to determine the satisfiability of the circuit C, we just loop over all paires i, j
with i, j ∈ {0, . . . , 2m}. If T [M(i, j)] = 1 then we can say that C is satisfiable. If we go over
all pairs and we don’t find the circuit to be satisfiable, then it is unsatisfiable. We need time
O(22m) = O(2n) to do these procedure.

As noted in [Wil14], it might be the case that the hidden constant in Coppersmith’s mul-
tiplication algorithm is astronomical. William’s presents an alternative proof of the evaluation
lemma via dynamic programming. In particular we will use Yate’s fast algorithm for the zeta
transform.

Lemma 13. Yate’s fast zeta transform Let N = {1, . . . , n} be a set and let f : 2N 7→ R
(where R is some ring) . The function f̂ : 2N 7→ R defined as

f̂(A) =
∑

X⊆A
f(X)

is called the zeta transform of f . We can compute the set {f̂(A) | A ∈ 2N} with O(n2n+t(n)2n)
time where t(n) is the running time of f({1, . . . , n}).
Proof. Let ρi(T) denote the collection of subsets that include the subset {i+ 1, . . . , n}∩T . For
instance, if T = {1, 2, 3, 4} then ρ2(T) = {{2, 3, 4}, {1, 3, 4}, {1, 2, 3, 4}}. Then given T we have:

∑

Z∈ρi(T)

f(Z) =

∑
X∈ρi−1(T)

f(X) +
∑

Y ∈ρi−1(T\{i})
f(Y) if i ∈ T

∑
X∈ρi−1(T)

f(X) otherwise

This expression doesn’t make much sense in this way, but if we consider the case i = n then we
get ∑

Z∈ρn(T)

f(Z) =
∑

Z⊆T
f(Z)

because if n 6∈ T then n is irrelevant and if n ∈ T then the sum over the subsets of T can be
divided by the subsets that contain n and those that do not. Also we have ρ0(T) = T . The
interesting thing is that for any i, the result only depends on i − 1. Therefore, we define the
following function g0(T) = f(T) and for i ∈ {1 . . . n}:

gi(T) =

{
gi−1(T) + gi−1(T \ {i}) if i ∈ T
gi−1(T) otherwise

48

We have that g0(T) = f(T) =
∑

X∈ρ0(T)

f(X). Suppose that gi−1(T) =
∑

X∈ρi−1(T)

f(X), then

gi(T) =

∑
X∈ρi−1(T)

f(X) +
∑

Y ∈ρi−1(T\{i})
f(Y) if i ∈ T

∑
X∈ρi−1(T)

f(X) otherwise
=

∑

Z∈ρi(T)

f(Z).

Now consider the following machine:

M(N = {1, . . . , n}) :
1. Compute g0(T) = f(T) for T ⊆ N // This takes O(2n) invocations of f
2. for i ∈ {1, . . . , n}: For all A ⊆ N compute gi(A) // this takes O(n · 2n) time
3. output a table with gn(A) for every A ⊆ N

Thus, in total it takes O(n · 2n + t(n) · 2n) time where t(n) is the running time of f .

Note that we assume unit time for the ring operations, but as we will see in our case, f will
take polynomial time, thus will dominate the ring operations. We can now prove the evaluation
lemma using lemma 13.

Proof. Dynamic programming As before we are given a SYM+ circuit C of size s. Define a
function f : 2n 7→ N f(S) = “number of gates such that their inputs are exactly S” . Suppose
that T ⊆ {1, . . . , n} denotes an assignment of the input variables, where xi = 1 if i ∈ T and
xi = 0 if xi 6∈ T . Then it can be checked that the number of AND gates that are satissfied by
the assignment T are exactly ∑

X⊆T
f(X).

We can compute f as a table with 2n entries. We go over all AND gates (at most s) and update
add 1 to each entry corresponding to an assignment that sets all input variables of the AND
gate to 1. In total, this takes time O(2n · s). Note, that the zeta transform of f gives us, for
any possible assignment T , how many AND gates are satisfied. We have by lemma 13, that we
can compute it in time O(2npoly(n)) because f has been precomputed, thus the computational
cost is just looking up the answer. Finally we generate the bit vector evaluating the symmetric
function for any possible input of the circuit making use of the zeta transform computed.
Since we can compute h in time poly(s), the total time required is O(2npoly(n) + poly(s)) =
O(2npoly(n)).

Now we lay out the general idea of how the lower bounds are proved. We have not gone
over all steps, but from the transformation to SYM+ and lemma 12 we can exhibit a better-
than-trivial ACC0-CIRCUIT SAT algorithm. We have the witnesses W so that we can build Dx,
but recall that in order to exhibit witnesses of a more restricted class of circuits (other than
P/poly) we needed a stronger assumption (theorem 21). We needed the assumption that ENP

had ACC0, which would yield circuit lower bounds against ENP and not NEXP. In order to
solve this we need the following lemma:

Lemma 14. [Wil14] Let C be any circuit class. If P has non-uniform C circuits of polynomial
size, then every circuit family of size T (n) has an equivalent circuit family of size poly(T (n)).

Proof. Consider the CIRCUIT EVAL problem, which consists of given a description of a circuit
C and an input x, return C(x). Clearly, this problem is in P. Thus, there exists a polynomial
sized family of circuits {En | n ∈ N} that computes CIRCUIT EVAL. Let {An | n ∈ N} be a family
of C-circuits of size T (n). It can be shown that the circuit Gn(x) = En0(A|x|, x) is equivalent
to An where n0 ≥ n+O(T (n) · log T (n)).

49

Therefore, with “only” assuming NEXP ⊆ ACC0 we also have P ⊆ ACC0 and thus we
can construct Dx. Finally we lay out how the method goes. We assume that NEXP ⊆ ACC0

and we fix L ∈ NTIME(2n) \ NTIME(2n−ω(logn)) (which again is guaranteed to exist by
[Zak83]). Then, from lemma 8 and lemma 14 we conclude that there exists ACC0 witness
circuits. By lemma 11, we generate such witnesses to construct the circuit Dx from theorem 20.
Here there is a small technicality. If we were to transform Dx to a SYM+ circuit, the method
described to get a fast CIRCUIT SAT algorithm would not work. Essentially, for it to work we
need to reduce slightly the number of inputs. Define D′x to be 2` copies of Dx which have `
inputs randomly fixed each and each copy is the input of an OR gate. Clearly this new circuit
is satisfiable if, and only if, Dx is. Note that D′x has n − ` inputs and size 2` · |Dx|. We now
generate an equivalent circuit D∗x which is SYM+ and with the help of lemma 12 we determine
its satisfiability in time o(2n). Therefore, we have decided the membership of x in L in time
o(2n), a contradiction, which means that the assumption NEXP ⊆ ACC0 must be false, thus
it must be the case that NEXP 6⊆ ACC0.

50

Chapter 5

Complexity barriers

5.1 Overview

In this section we want to introduce the known hurdles that complexity theory is to clear in

order to settle questions such as P
?
= NP. Most of the interest that Williams’ method has

drawn is because it is likely that this method is capable of clearing the three known complexity
barriers. The first complexity barrier was introduced in the 70’s by [BGS75]. This barrier,
called relativization, showed that there exist oracles A,B such that

• PA = NPA

• PB 6= NPB

What this meant is that any method that were to show P = NP or P 6= NP could not be
sensitive to oracles, that is it could not relativize. This meant that although computations with
oracles may be impractical, it is a great tool to classify and study the relationships between
different complexity classes. After this first barrier, in the 90’s, a paper by Razborov and
Rudichs ([RR97]) introduced another barrier called Natural Proofs. They showed that under
the hypothesis that there exist strong enough pseudorandom generators (a plausible hypothe-
sis) most of the known methods to prove circuit lower bounds, such as the ones discussed in

chapter 3, could not solve the question P
?
= NP. Roughly, this barrier says that if we were to

isolate some property of Boolean circuits which make them unable to compute some function,
then, this property can be used to distinguish between true random strings and pseudorandom
strings “efficiently”, thus contradicting the hypothesis that those pseudorandom generators do
exist. Finally, the proof that PSPACE = IP seemed to circumvent both barriers because it
used the arithmetization of Boolean formulas. But in 2009, work of Aaronson and Widgerson
([AW08]) “extended” the relativization barrier with what is known as algebrization. Then, the
arithmetization technique was shown to not relativize but to algebrize.

In this chapter we will briefly introduce the three barriers.

5.2 Natural Proofs

Let Fn denote the set of all boolean functions on n variables. We define a boolean property as
a collection {Cn ⊆ Fn | n ∈ N} and say that a given boolean function fn has said property if,
and only if, fn ∈ Cn. We say that the boolean property is natural if there exists a collection of
subsets {C∗n ⊆ Cn | n ∈ N} such that the following two criteria are met:

• Constructivity: the predicate fn
?∈C∗n is computable in time polynomial in the truth table

of fn.

51

• Largness: |C∗n| ≥
|Fn|
2O(n)

.

A combinatorial property is useful against P/poly if for any sequence of functions {fi | i ∈
N∧ fi ∈ Ci} the circuit size for any fi is super-polynomial, i.e for any constant c the circuit size
of fn is greater than nc.

Definiton 11. [AB09] Let {fk | k ∈ {0, 1}∗} be a family of boolean functions fk : {0, 1}|k| 7→
{0, 1}|k| and suppose that there is a polynomial-time algorithm that computes fk(x) given k ∈
{0, 1}∗ and x ∈ {0, 1}|k|. We say that the family is pseudorandom if for every probabilistic
polynomial time oracle Turing machine M there is a negligible function ε : N 7→ [0, 1] such that

∣∣∣ Pr
k∈{0,1}n

[Mfk(1n) = 1]− Pr
g∈Fn

[Mg(1n) = 1]
∣∣∣ < ε(n)

.

A function ε(n) is a negligible function if for any polynomial q(n) we have that |ε(n)| < 1/q(n)
with n > n0 for sufficiently large n0.

For the purposes of showing the limitations of natural proofs, we will need the following
theorem:

Theorem 26. Suppose there exists a pseudorandom generator G : {0, 1}` 7→ {0, 1}2`. Then,
there exists a pseudorandom family of functions.

Proof. sketch of the main idea [GGM86] If z = G(x), let G0(x) denote the first ` bits of
G(x), i.e z1 ◦ · · · ◦ z`. Likewise let G1(x) denote the last ` bits of G(x). Define then hk with
k ∈ {0, 1}` as

hk(x) = Gx`(Gx`−1
(· · ·Gx`(k)) · · ·)

We can visualize hk as a labeled binary tree of depth `. The root is labeled by k. For any node
v with label m, we define its right and left child v0, v1 as Gm◦0(k) and Gm◦1(k) respectively.
Note that each node is naturally labeled by the binary string described by path from the root
to it. Thus, for any x ∈ {0, 1}` we just need to traverse the path defined by x until we reach a
leaf. There we will get Gx`(Gx`−1

(· · ·Gx`(k)) · · ·) = hk(x). Regarding the resources needed to
compute hk(x) notice that we need ` invocations of G, thus hk takes polynomial time. We show
now that H` = {hk | k ∈ {0, 1}`} is indeed a pseudorandom family of functions. Suppose for
a contradiction that it is not. By definition, there exists a probabilistic polynomial time oracle
Turing machine T such that

∣∣∣ Pr
k∈{0,1}`

[T hk(1`) = 1]− Pr
g∈F`

[T g(1`) = 1]
∣∣∣ ≥ ε(n) (5.1)

Using this fact, we will construct a statistical test that will distinguish between a set of truly
random strings and a set of strings generated by G, thus arriving at a contradiction because G is
assumed to be a pseudorandom generator. Consider the following probabilistic Turing machine
Aki which we will be restricted to inputs 1`. Let pz z ∈ {0, 1}∗ be the path in the binary tree
induced by z

A`i(y) :
1. Let y′ = y1 ◦ · · · ◦ yi be the i length prefix of y
2. If y′ has never been processed before select a random string r with |r| = `, label the

node py′ with r and output Gyi+1···y`(r)
3. Otherwise let w be the label of node py′ . Output Gyi+1···y`(w)

52

We can finally introduce the statistical test for strings AT . It first picks i ∈ {0, `− 1} uniformly
at random. Then, AT simulates T and answer the queries of T with the corresponding Ai`
machine.

Now, define pi` the probability that TA
`
i (1`) = 1 where 0 ≤ i ≤ `. Let pH` , p

F
` be the

probability that T h(1`) = 1 and T f (1`) = 1 respectively, where h is picked uniformly at random
from H and f is picked uniformly at random from F` . By assumption F does not pass the test
defined by T , so there exists some polynomial q(x) such that

|pF` − pH` | >
1

q(`)

Consider now a set U of strings of length 2k. If U is a set of pseudorandom strings generated
by the pseudorandom generator, when AT is ran feeding it pseudorandom strings, the probability
that AT outputs 1 is

`−1∑

i=0

1

k
· pi`

On the other hand, if U is a set of truly random strings, then, when running AT on this set,
the probability that AT outputs 1 is

`−1∑

i=0

1

k
· pi+1
`

The difference is the pi+1
` we get in the truly random case. Recall, that the idea is that AT

fills the tree with random functions up to the i-th level. But when strings are truly random,
when we return the node at level i+1 we are returning a truly random string, thus it is equivalent
to having filled the i+ 1 level with random strings.

If we calculate what is the probability difference to output 1 in one case or the other, we
get that this is

`−1∑

i=0

1

`
· pi+1
` −

`−1∑

i=0

1

`
· pi+1
` ≥ 1

`
· (p0

` − p``) >
1

` · q(`)
.

Next we show that natural proofs are self defeating:

Theorem 27. There is no natural property against P/poly unless Hg(k) ≤ 2k
o(1)

for every
pseudorandom generator g : {0, 1}k 7→ {0, 1}2k in P/poly.

For the purposes of this proof, Cn will denote {Cn | n ∈ N}.

Proof. Suppose for the sake of contradiction that Cn is a natural property against P/poly.
Without loss of generality assume that C∗n = Cn. Let Gk : {0, 1}k 7→ {0, 1}2k be a pseudorandom
generator and fix ε > 0. Let n = dkεe. We can generate a family of pseudorandom functions
F = {fz | z{0, 1}k} similar to that of theorem 26. We skip the details, but essentially the
difference is that for this proof we are only interested in the first bit of fz(x). As we have seen
in theorem 26 , fz(x) is computable in polynomial time, thus since Cn is a natural property
against P/poly we have that fz(x) 6∈ Cn, this fact will provide us with an statistical test, thus
reaching a contradiction. Consider the following Turing machine with oracle access to some
function h which will be either a pseudorandom function or a random function:

T (z) :
1. let n = zε/2.
2. Define a function g : {0, 1}n 7→ {0, 1} as g(x) = h(x0z−n).
3. Construct the truth table of g(x).

53

4. Run the combinatorial property Cn test to g(x) and output the same as the test.

Note that generating the truth table of g(x) takes time 2O(n). Now, if the oracle function
(h) is really a random function, then T outputs 1 with probability 1

n (By the largeness of
the combinatorial property Cn). Otherwise, if h is a pseudorandom function, since it can be
computed in polynomial time, then h 6∈ Cn as we stated at the start of the proof. Thus,
the probability that T outputs 1 when given oracle access to a pseudorandom function is 0.
Therefore, we contradict the fact that {fz | z ∈ {0, 1}k} was a pseudorandom family of functions.

5.3 Relativization

In [BGS75] it is shown that there are oracles A,B such that PA = NPA and PB 6= NPB.
Note that for an arbitrary oracle C, we will be interested in the case NPC ⊆ PC, since it is
straightforward to see that ∀C PC ⊆ NPC. Thus we start by showing an oracle that makes
them equal.

Theorem 28. [BGS75] There exists an oracle A such that NPA ⊆ PA.

Proof. Let A be any PSPACE complete language, for instance TQBF (True Quantified Boolean
formulas). Given a language L ∈ NPA, we first show that L ∈ PSPACE. Indeed, let MA be
a non-deterministic oracle Turing machine such that L = L(MA). There exists a deterministic
machine M ′ that explores al possible configurations of MA and whenever MA makes a query
to A. M ′ answers it itself. Thus NPA ⊆ PSPACE. Now, see that given a an instance x we
can compute the reduction of it to the PSPACE complete problem that we put as oracle in
polynomial time and ask then just ask the oracle whether it belongs or not. Thus, we have
shown that NPA ⊆ PSPACE ⊆ PA.

In order to show an oracle separating both classes, we need a construction a bit more
complicated. Given an oracle B define LB = {1n | B ∩ {0, 1}n 6= ∅}.

Theorem 29. There exists an oracle B such that NPB * PB.

Proof. Let {Mi | i ∈ N} be an enumeration of the deterministic polynomial time Turing ma-
chines and let {pi | i ∈ N} be the corresponding polynomials, i.e Mi on input x with |x| = n
runs in time pi(n). We will build an oracle B inductively. On step i construct Bi as follows:

1. let ni be such that 2ni > pi(ni) and ni > pj(nj) for all 0 ≤ j < i.

2. simulate Mi(1
ni) responding with “0” to all queries. Let Mi(1

ni) = b.

3. Let Q = {q1, . . . , qk} be all the queries done by Mi(1
ni). Pick w ∈ {0, 1}ni \Q.

4. If b = 0 then define Bi = w ∪Bi−1. Otherwise define Bi = Bi−1.

For correctnes sake assume that the enumeration starts at 1, and define B0 = ∅. Now we check
that B = {⋃Bi | i ∈ N} is such that NPB ⊆ PB. In particular, it is the case that LB ∈ NPB

but LB ∈ PB. Consider the execution of MB
i (ni). First thing to note is that by construction,

the only queries that in B that Mi can ask are those in Bi since those in Bj for j > i are too

long to be queried by Mi (by construction). Thus we focus on the case MBi
i (1ni). Pick x ∈ Bi.

By construction, if the machine accepts x, then x is not in B and thus not in LB. Likewise,
if the machine rejects x then x is in B and thus in LB. It follows that LB cannot be decided
by any polynomial time oracle Turing machine, thus LB 6∈ PB. Whereas LB ∈ NPB since on
input 1n we can guess the string z ∈ {0, 1}n and query the oracle.

54

5.4 Algebrization

Here we briefly discuss the barrier of algebrization introduced by [AW08].
Given a boolean function fm : {0, 1}m 7→ {0, 1} and a finite field F, we say that a polynomial

p(x1 . . . xm) is an extension of f over F if for every x ∈ {0, 1}m we have fm(x) = p(x). Such

polynomial is denoted by
∼
fm,F. Recall that an Oracle can be regarded as a collection of boolean

functions A = {An |n ∈ N}, where An : {0, 1}n 7→ {0, 1}. We define an Oracle extension,

denoted by
∼
AF, as a collection of extensions of An (each denoted by

∼
An,F) for n ∈ N and for any

finite field F such that there exists a constant c such that the mdeg(
∼
An,F) ≤ c for all n and for

any finite field F. This way we can extend naturally the concept of relativized class, where if C
is a complexity class and CA is the same class where the underlying computational model can

query the oracle A, we have that C
∼
A is the class where the underlying computational model

can query an algebraic extension of A as per defined in ??.

Also, C
∼
A[poly] is the same as C

∼
A except that we only allow to query the extension

∼
Am,F for

m = poly(n) and |F| = 2O(m).
With this basic concepts we can introduce, as in the last section, the notion of algebrization:

Definiton 12. Algebrization [AW08] We say that a complexity classes inclusion C ⊆ D

algebrizes, if C
∼
A ⊆ DA for any oracle A and any extension

∼
A of A over any finite field. On

the other hand, we say that C ⊆ D does not algebrize if there exists A,
∼
A such that CA 6⊆ D

∼
A.

Likewise, for a complexity classes separation C 6⊆ D we say that the separation algebrizes if

CA 6⊆ D
∼
A for any oracle A and any extension

∼
A of A over any finite field. On the other hand,

we say that C 6⊆ D does not algebrize if there exists A,
∼
A such that C

∼
A ⊆ DA.

Theorem 30. [FS88] There exists an oracle A and a language L ∈ co-NPA such that L 6∈ IPA.

We just state the theorem since the way it is proved is quite similar to theorem 29.
This theorem implies that the arithmetization technique is nonrelativizing since it is able to

proof a nonrelativizing result. Suppose we want to relativize the inclusion PSPACE ⊆ IP, that
is we want to show PSPACEA ⊆ IPA. It can be shown that TBQFA is PSPACEA-complete.
Thus, we can proceed and try to adapt the sumcheck protocol (lemma 1) with the inclusion of the
oracle A. But what we mean by a formula Φ in TBQFA? This formula must be augmented with a
special predicate A(x1, . . . , xk), which is true if, and only if, the string represented by x1, . . . , xk
belongs to A. The problem comes when we want to arithmetize Φ. In order to arithmetize Φ,
we need a polynomial p(x1, . . . , xk) such that p(x1, . . . , xk) = 1 ⇐⇒ x1, . . . , xk ∈ A and it
must have low degree. The problem is that A can be arbitrary, which means that we cannot
stablish a bound on the degree of p(x1, . . . , xn) which could be as high as exponential in n.
That’s why we can see algebrization as a natural extension of relativization, where we just not
only do we assume some oracle, but we also assume some structure for this oracle (namely a
set of polynomials which extend it).

In the work of [AW08] where algebrization is introduced, the following theorem is proved:

Theorem 31. [AW08] There exists A,
∼
A such that NTIME

∼
A(2n) ⊆ SIZEA(n).

Which by a standard padding argument yields the following corollary:

Corollary 32. There exists A,
∼
A such that NEXPA ⊆ P

∼
A/poly.

Since [Wil14] shows that NEXP 6⊆ ACC0, if corollary 32 could be improved to show that

NEXP
∼
A ⊆ ACC0A, we could conclude that William’s method does not algebrize, at least as

applied in [Wil14].

55

There is another important concept related to algebrization introduced in [AW08], and that
is the concept of k-algebrizing. Suppose that we have a relativized class inclusion CA ⊆ DA

for alla A. It can be seen easily, that if DA ⊆ FA for all A, then we have CA ⊆ FA for all
A. In other words, relativization is transitive. This does not hold for algebrization because if

CA ⊆ D
∼
A for all A,

∼
A and DA ⊆ F

∼
A for all A,

∼
A, it does not necessarily follow that CA ⊆ F

∼
A

for all A,
∼
A. In [AW08] this is left as an open problem, but there is an algebrization notion that

exhibits some kind of transitivity. We say that

∼
∼
A is a double-extension of A and is defined by:

1. Take a low-degree extension
∼
A of A.

2. Define f(x, i) to be the function that returns the i-th bit of the binary representation of
∼
A(x).

3. Take a low-degree extension of

∼
∼
A of f .

It is clear that we can extend this method to get a k-extension of any oracle. Under this notion

we have that for the classes C,D,F if CA ⊆ D
∼
A and DA ⊆ F

∼
A then CA ⊆ F

∼
∼
A for all A,

∼
∼
A. In

[AW08] it is shown that any proof that settles P
?
= NP cannot be k-algebrizing for any constant

k.

5.5 William’s method

We have not been able to study carefully how is Williams’ method affected by the complexity
barriers previously introduced, but we can briefly discuss how William’s method may be affected
by the complexity barriers. First let’s recall the general idea behind William’s method. We

had a circuit Dx such that deciding its satisfiability was equivalent to deciding if x
?∈ L for an

arbitrary L ∈ NTIME(2n). Then the proof split in two parts

1. We assume that the separation we want to show is not true. In [Wil10] we assumed
NEXP ⊆ P/poly, and from this assumption we prove the existance of “small” witness
circuits.

2. We exhibit a better-than-trivial algorithm for CIRCUIT SAT.

First off, it doesn’t seem that Williams’ method should be affected by Natural proofs. We
don’t exploit a property of boolean functions to show the circuit lower bounds, we essentially
focus on particular functions. We use mainly diagonalizing arguments to get witnesses, which
is a technique known to avoid the natural proofs barrier. With respect to exhibitting a better
CIRCUIT SAT algorithm, clearly, this part is unaffected by the natural proofs barrier.

The method seems to also avoid relativization and algebrization. For the relativization
barrier, we have that in order to get the conditional proof of “small” witnesses we make use
of the result PSPACE = IP by [Sha92] which is known to not relativize. Moreover, a better-
than-trivial algorithm for CIRCUIT SAT seems to avoid both relativization and algebrization.

Consider a circuit augmented with gates for an oracle A or for a low-degree extension
∼
A of

it. An oracle can be any arbitrary boolean function, so the oracle gates are substantially more
complex than the general basis we use for circuits, i.e the basis over NOT, AND and OR gates.
For instance, the better-than-trivial algorithm given to show NEXP 6⊆ ACC0 makes heavy
use of the structure of the circuit. In particular, it makes use of the fact that any ACC0 circuit
can be transformed to a SYM+ which only has AND gates and a symmetric gate at the output.

All this reasons leads to believe that Williams’ method indeed is able to circumvent this
barriers and hopefully help researchers in complexity theory two produce new results.

56

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A modern approach.
Cambridge University press, 2009.

[Ajt83] M. Ajtai.
∑1

1-formulae on finite structures. Annals of Pure and Applied Logic,
24(1):1 – 48, 1983.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An o(n log n) sorting network. ACM, 1983.

[AW08] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity
theory. In Proceedings of the Fortieth Annual ACM Symposium on Theory of
Computing, STOC ’08, pages 731–740, New York, NY, USA, 2008. ACM.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols. computational complexity, 1(1):3–40,
Mar 1991.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. Bpp has subexpo-
nential time simulations unless exptime has publishable proofs. Comput. Complex.,
3(4):307–318, October 1993.

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =?NP
question. SIAM J. Comput., 4(4):431–442, 1975.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. Proceedings of
the Third Annual ACM Symposium. Theory of Computing, 1971.

[Coo72] Stephen A. Cook. A hierarchy for nondeterministic time complexity. Journal of
Computer and System Sciences, 1972.

[Cop82] D. Coppersmith. Rapid multiplication of rectangular matrices. SIAM, 1982.

[FLvMV04] Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios Viglas.
Time-space lower bounds for satisfiability, September 2004.

[FS88] Lance Fortnow and Michael Sipser. Are there interactive protocols for co-np lan-
guages? Inf. Process. Lett., 28(5):249–251, August 1988.

[FSS84] Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, (17):13–27, 1984.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, August 1986.

[Has86] J Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86,
pages 6–20, New York, NY, USA, 1986. ACM.

57

[Kan82] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Infor-
mation and control, (55):40–56, 1982.

[KM02] Adam R. Klivans and Dieter Van Melkebeek. Graph nonisomorphism has subex-
ponential size proofs unless the polynomial-time hierarchy collapses. SIAM J.
Computing, 31(5):1501–1526, 2002.

[LFKN90] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic meth-
ods for interactive proof systems. Technical report, Chicago, IL, USA, 1990.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, October 1994.

[O’D] Ryan O’Donnel. Complexity lecture 14. https://www.cs.cmu.edu/ odonnell.

[Raz85] A. A. Razborov. Lower bounds for the monotone complexity of some boolean
functions. Soviet Math. Dol., 31(2), 1985.

[Raz87] A. A. Razborov. Lower bounds on the size of bounded depth network over a com-
plete basis with logical addition. Mathematical Notes of the Academy of Sciences
of the USSR, 4(41):333–338, 1987.

[Rob91] J. M. Robson. An o(t log t) reduction from ram computations to satisfiability.
Theor. Comput. Sci., 82(1):141–149, May 1991.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer
and System sciences, (55):24–35, 1997.

[RW00] Steven Rudich and Avi Widgerson, editors. Computational Complexity Theory,
volume 10. American Mathematical Society and IAS/Park city Mathematics In-
stitute, 2000.

[Sha92] Adi Shamir. Ip = pspace. J. ACM, 39(4):869–877, October 1992.

[SHH86] R.E Stearns and III H.B. Hunt. On the complexity of the satisfiability problem
and the structure of NP. Technical report, Computer Science Department, State
University of New York at Albany, 1986.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, STOC ’87, pages 77–82, New York, NY, USA, 1987. ACM.

[Tou01] Iannis Tourlakis. Time-space tradeoffs for SAT on nonuniform machines. Journal
of Computer and System Sciences, (63):268–287, 2001.

[vM07] Dieter van Melkebeek. A survey of lower bounds for satisfiability and related
problems. Foundations and Trends in Theoretical Computer Science, 2(3):197–303,
2007.

[Wak68] Abraham Waksman. A permutation network. J. ACM, 15(1):159–163, January
1968.

[Wil10] Ryan Williams. Improving exhaustive search implies superpolynomial lower
bounds. In Proceedings of the Forty-second ACM Symposium on Theory of Com-
puting, STOC ’10, pages 231–240, New York, NY, USA, 2010. ACM.

[Wil14] Ryan Williams. Nonuniform acc circuit lower bounds. J. ACM, 61(1):2:1–2:32,
January 2014.

58

[Zak83] Stanislav Zak. A turing machine time hierarchy. Theoretical Computer Science,
26:327–333, 1983.

59

