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An efficient numerical iterative method is constructed for the static deflection of an infinite beam on a
nonlinear elastic foundation. The proposed iterative scheme consists of quasilinear method (QLM) and
Green’s function technique. The QLM translates the nonlinear ordinary differential equation into iterative
linear ordinary differential equation. The successive iterations of quasilinear (QL) form of ODE show
the quadratic convergence if an initial guess is chosen in the neighborhood of true solution. The Green’s
function technique converts the differential operator into an integral operator and the integral operator
is approximated by discrete summation which finally gives us an iterative formula for the resulting set of
algebraic equations.The numerical validity and efficiency is proved by simulating some nonlinear problems.
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Introduction
The accurate modeling of nonlinear deflection of an infi-
nite beam on a nonlinear elastic foundation is important
in practical engineering design application. It is always
fascinating to find the closed form solution, some authors
constructed closed-form solutions for the static and dy-
namic response of a uniform beam resting on a linear
elastic foundation [1–3] and others proposed closed-form
solution under the linearity assumption by using Green’s
function technique [4–7]. The static, dynamic and elastic
stability analysis of a beam resting on a nonlinear elastic
foundation was discussed by Beaufait and Hoadley [8],
Massalas[9], Lakshmanan [10], and Hui [11], and by the
same author and co-authors [12–15].

Jang et al. [16] used the Green’s function technique to
convert the non-linear ordinary differential equation for
the non-linear deflection into nonlinear integral equation
and translated it into system of nonlinear algebraic equa-
tions. By introducing a parameter, Jang constructed
fixed-pint iterative formula for the solution of nonlinear
algebraic equations. The author provided the conver-
gence proof of his devised iterative scheme but did not
discuss its order of convergence. Recently Park et al.
[17] proposed an iterative method with the inclusion of
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pseudo spring coefficient but numerical experimentation
shows that the rapid convergence of iterative scheme de-
pends on the careful selection of pseudo spring coefficient
and authors did not advise about the selection of pa-
rameter. In both articles, the authors constructed fixed-
point iterative methods. In the later author improved
the convergence by the inclusion of a pseudo parame-
ter. We also constructed a fixed-point iterative method
based on the Newton-Raphson iterative method for the
BVPs called the QLM which shows comparatively a bet-
ter convergence relative to the work of [16, 17] .

The Newton-Raphson is a quadratically convergent it-
erative method for a nonlinear algebraic or a system of
nonlinear algebraic equations. The QLM is developed
for nonlinear boundary value problem (BVP). Bellman
and Kalaba [18] introduced QLM and later Mandelzweig
and co-authors [19–21] provided the second order con-
vergence proof for the BVPs. Recently many authors
introduced higher order QLM methods for some specific
BVPs and coupled BVPs [22–24]. The quadratic con-
vergence of QLM provides fast convergence towards the
true solution if we provide an initial guess in the neigh-
borhood of solution curve [25]. Actually QLM is the
generalization of Newton-Raphson method for BVPS.
We used the QLM to construct the linear iterative form
of governing nonlinear fourth-order ordinary differential
equation and finally the Green’s function method ap-
plication to QL iterative form of nonlinear differential

,
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equations provides a system of nonlinear algebraic equa-
tions. It is also noted that the selection of parameter is
not crucial for the rapid convergence in the newly de-
vised numerical iterative scheme.

Mathematical Modeling
The linear deflection of an infinite beam on an elastic
foundation can be modeled by the fourth-order differen-
tial equation (the weight of the beam is not included):

EI
d4u

dx4
+ f(u) = w(x), (1)

and the reaction force is given as

f(u) = ku+N(u), (2)

where E, I , K, N (u) and w(x) are Young’s modulus,
the mass moment of inertia, a linear spring coefficient, a
nonlinear part of spring force, and external load respec-
tively. The boundary conditions are provided as

u,
du

dx
,
d2u

dx2
, and

d3u

dx3
→ 0 as |x| → ∞. (3)

The closed-form solution [4–7] of (1) by neglecting the
nonlinear part N (u) in (2) is

u(x) =
1

EI

∞?

−∞

G(x, ξ; k)w(ξ)dξ, (4)

where Green’s function G is defined as

G(x, ξ; k) =
α

2k
e−α|ξ−x|/

√
2sin

?α|ξ − x|√
2

+
π

4

?
,

α = 4
?
k/EI, (5)

where loading condition is localized i.e. |w(x)| → 0 as
|x| → ∞. In the present study we combine two methods
quasilinear method and Green’s function technique. The
QL form of (1) is written as

EI
d4un+1

dx4
+
df(un)

du
un+1 =

df(un)

du
un − f(un) + w(x).

(6)

By adding kp pseudo spring coefficient in both sides of
(6), we obtain

d4un+1

dx4
+
kp
EI
un+1 =

1

EI

?
kpun+1 +

df(un)

du
un

− df(un)

du
un+1 − f(un) + w(x)

?
. (7)

The Green’s functions solution of (6) is

un+1 =
1

EI

∞?

−∞

G(x, ξ; kp)
??
kp −

df(un)

du

?
un+1

+
df(un)

du
un − f(un) + w(ξ)

?
dξ. (8)

We select a positive number r such that u(x) ≈ 0 and
w(x) ≈ 0 if x /∈ [−r, r]. Suppose the discretization
of interval [−r, r] is {x1, x2, · · · , xnx

} then (8) can be
expressed in this way

u(xi)n+1 =
1

EI

nx?

j=1

G(xi, xj ; k)b(j)
??
kp −

df(u(xj)n)

du

?

u(xj)n+1 +
df(u(xj)n)

du
u(xj)n − f(u(xj)n) + w(xj)

?
,

for i = 1, 2, · · · , nx. (9)

By defining the diagonal matrix of a vector v =
[v1, v2, · · · , vnx

]T

diag(v) =




v1 0 0 · · · 0
0 v2 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · vnx


 .

We get the vectorial form of (9) (named as Fayyaz’s
iterative method (FIM))

un+1un+1un+1 +GGG diag(bbb)
?
diag(f ?(ununun)) − kpIIInnx×nnx

?
un+1un+1un+1

= GGG diag(bbb)
?
diag(f ?(ununun))ununun − f(ununun) +www

?
, (10)

?
IIInnx×nnx

+GGG diag(bbb)
?
diag(f ?(ununun)) − kpIIInnx×nnx

??

un+1un+1un+1 = GGG diag(bbb)
?
diag(f ?(ununun))ununun − f(ununun) +www

?
, (11)

un+1un+1un+1 =
?
IIInnx×nnx

+GGG diag(bbb)
?
diag(f ?(ununun)) − kp

IIInnx×nnx

??−1

GGG diag(bbb)
?
diag(f ?(ununun))ununun − f(ununun) +www

?
,

(12)

where

GGG =
1

EI




G(x1, x1; kp) · · · G(x1, xnx ; kp)
G(x2, x1; kp) · · · G(x2, xnx ; kp)

... · · ·
...

G(xnx , x1; kp) · · · G(xnx , xnx ; kp)


 ,

ununun =




(u(x1))n
(u(x2))n

...
(u(xnx))n


 , IIInnx×nnx

=




1 0 0 · · · 0
0 1 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1


 ,

and bbb is a weight vector to convert integral into summa-
tion e.g. in the case of trapezoidal-rule the weight vector
bbb = h[1/2, 1, 1, · · · , 1, 1/2] (h is uniform step size).

Numerical Results
For the numerical results comparison, we listed here the
iterative scheme proposed in [17] and we called it Jang’s
iterative method (JIM). The values of parameters are
taken from [17].

un+1un+1un+1 = GGG diag(bbb)
?
kpununun − f(ununun) +www

?
. (13)
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We define the relative error as follows:

Error(n) =
||u(x) − un(x)||2

||u(x)||2
,

where ||z||2 =

?
nx?

i=0

|zi|2
?1/2

. (14)

In the present study, we assume the spring force of non-
linear elastic foundation obeys the definition.

f(u) =

?
ku+ γum, if u ≥ 0

0, if u ≤ 0.
(15)

In Table 1, three test function are selected and there
corresponding loading functions are also depicted. The
analytical solution u(x) and loading function w(x) are
shown in Figure 1. In Figures 2, 3 , 4, the convergence
of iterative schemes FIM and JIM are shown for three
cases (a), (b) and (c). For the case(a) our proposed it-
erative scheme converges in three iterations and order
of absolute error is O(10−6) which is clearly superior
than absolute error order for the scheme JIM. Similarly
for other two cases in two iterations the scheme FIM
achieved the absolute error of order O(10−6). In Table
2, We compared the relative absolute error of schemes
JIM and FIM against the different combinations of pa-
rameters for the designed three study cases. We fixed
the values of different parameters for three problems
and then calculate the order of absolute relative error
for both schemes. The different combinations of linear
and nonlinear coefficients for the fixed number of itera-
tions show the superiority of our proposed scheme. Even
by including high nonlinearity in the form of power law,
results depict the fast convergence with good accuracy
for our iterative scheme FIM.

It is also interesting to test the accuracy and speed of
convergence for both iterative schemes for discontinuous
loading function w(x) against different values of param-
eter kp and k. The rectangular loading function w1(x)
and w2(x) are taken from [17]. In Figure 5 and 6 we
depicted both discontinuous loading functions. For the
discontinuous load function w1(x), we keep k = 1 fix
and check the convergence for three different values of
kp ∈ {3, 6, 10}. For each case a sequence of six iterations
is plotted in Figure 5 which clearly describe the conver-
gence of our proposed iterative scheme. For the second
case we define w2(x) with multiple discontinuities and
keep kp = 3 fix and plotted the results for different val-
ues of k ∈ {1, 1.5, 2} where rapid convergence toward
true solution can be observed in Figure 6. Note that for
the discontinuous loading function, we do not have ana-
lytical solution to calculate the order of absolute error.

w1(x) =

?
1 |x| ≤ 1

0 otherwise
(16)

w2(x) =

?
1 1 ≤ |x| ≤ 2, 4 ≤ |x| ≤ 5

0 otherwise
(17)

Figures 5, 6 show the fast convergence of iterative
scheme FIM and iterative scheme JIM.

Table 1. Three cases of exact solution and loading function

Casesu(x) w(x)

a e−x2

γe−3x2

+ ke−x2

+ EI(12e−x2 −
48x2e−x2

+ 16x4e−x2

)

b sin(x)e−x2

ksin(x)e−x2

+ γsin(x)3e−3x2

+

EI(25sin(x)e−x2

+56xcos(x)e−x2−
32x3cos(x)e−x2 −72x2sin(x)e−x2

+

16x4sin(x)e−x2

c sin(x)e−x2/4 ksin(x)e−x2/4 + γsin(x)3e−3x2/4

EI(19sin(x)/4e−x2/4 + 5xcos(x)

e−x2/4 − x3cos(x)/2e−x2/4 −
9x2sin(x)/4e−x2/4 +

x4sin(x)/16e−x2/4)

Table 2. Simulation parameter: nx = 200, E = 1, I = 1,
u0 = 0

Probs iter kp k γ m Error(n) Error(n)

JIM FIM

a 5 0.1 0.1 0.2 3 0.69927 6.5488e-007

b 5 0.1 0.1 0.2 3 2.4983e-006 2.4984e-006

c 5 0.1 0.1 0.2 3 0.00095859 1.964e-005

a 5 0.5 0.1 0.2 3 0.037064 6.5988e-007

b 5 0.5 0.1 0.2 3 0.042426 2.5213e-006

c 5 0.5 0.1 0.2 3 0.050846 1.0096e-005

a 5 1 1 2 4 0.79909 2.858e-005

b 5 1 1 2 4 4.0865e-006 2.5446e-006

c 5 1 1 2 4 0.062785 2.9007e-006

a 7 1 1 2 10 0.51141 6.0644e-007

b 7 1 1 2 10 2.522e-006 2.5264e-006

c 7 1 1 2 10 2.5667e-006 2.5744e-006

a 5 1 2 2 7 1.3661 3.005e-006

b 5 1 2 2 7 0.18156 2.4972e-006

c 5 1 2 2 7 0.59131 1.7652e-006

1. Conclusion
In this study, we validate our newly proposed iterative
scheme which is the combination of two method namely
QLM and Green’s function method. The role of QLM
is to construct an iterative scheme by linearizing nonlin-
ear terms and Green’s function method converts the lin-
earized differential equation into integral equation, and
it is an easy task to convert system of integral equations
into a system of nonlinear algebraic equations by using
any quadrature rule. The computational cost of our pro-
posed iterative scheme is higher than iterative scheme
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Fig. 1. Three cases of exact solution and loading function in
Table 1

JIM because ”in each step” the calculation of inverse of
a matrix is involved which is an expensive operation but
the convergence is much faster. we achieved accuracy of
magnitude 10−6 almost in three or two iterations. On
the other hand, the iterative scheme JIM does not re-
quire the calculation of any inverse of a matrix which
depends on the proper selection of parameter kp but the
value of kp does not much affect the convergence speed
of our proposed iterative method.
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Fig. 6. Numerical solution comparison between FIM (top) and JIM (bottom)(E = I = 1, kp = 3, γ = 0.2, m = 3, initial guess
u0 = 0, number of iterations=20, trapezoidal integration, number of grid points nx = 200 )


