
Scale Characterization and Correction of Diurnal Cycle Errors in MAPLE

AITOR ATENCIA
a
AND ISZTAR ZAWADZKI

Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

MARC BERENGUER

Centre de Recerca Aplicada en Hidrometeorologia, Universitat Politècnica de Catalunya, Barcelona, Spain

(Manuscript received 17 October 2016, in final form 6 July 2017)

ABSTRACT

The most widely used technique for nowcasting of quantitative precipitation in operational and research

centers is the Lagrangian extrapolation of the latest radar observations. However, this technique has a limited

forecast skill because of the assumption made on its formulation, such as the fact that the motion vectors do not

change and, evenmore important for convective events, neglect any growth or decay in the precipitation field. In

this work, the McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) errors

have been computed for 10 yr of radar composite data over the continental United States. The study of these

errors shows systematic bias depending on the time of day. This effect is related to the solar cycle, whose heating

energy results in an increase in the average rainfall in the afternoon. This external forcing interacts with the

atmospheric system, creating local initiation and dissipation of convection depending on orography, land use,

cloud coverage, etc. The signal of the diurnal cycle inMAPLEprecipitation forecast has been studied in different

locations and spatial scales as a function of lead time in order to recognize where, when, and for which spatial

scales the signal is significant. This information has been used in the development of a scaling correction scheme

where the mean errors due to the diurnal cycle are adjusted. The results show that the developed methodology

improves the forecast for the spatial scales and locations where the diurnal cycle signal is significant.

1. Introduction

Lagrangian extrapolation of the latest radar pre-

cipitation (e.g., Germann and Zawadzki 2002; Seed

2003; Berenguer et al. 2005) has shown skill in fore-

casting the precipitation field with high resolution for

lead times up to 6 h (known as nowcasting) or even for

longer lead times up to 12 h [known as very short-range

forecasting (VSRF)]. This technique estimates the

motion of the precipitation field with a tracking algo-

rithm and generates the forecasts by using the esti-

mated motion field to advect the last available radar

precipitation observations.

Tracking algorithms capture the motion resulting

from the combined effect of (i) the movement of the

precipitation transported by the steering-level winds

and (ii) the apparent displacement due to systematic

growth and decay at the edges of the precipitation sys-

tems (Germann et al. 2006).

These authors and, at the same time, Bowler et al.

(2006) found that the largest errors in nowcasting tech-

niques based on the advection of the latest observations

are due to the evolution of storms, including the devel-

opment of new ones. These processes are not explained

by the apparent motion field.

Initiation and decay of new thunderstorms linked to

the diurnal cycle of radiation have a dominant role in the

precipitation activity of the warm season in the central-

east United States. This diurnal cycle of precipitation

shows a maximum in the afternoon across the continent

because of the initiation and dissipation of convection

(e.g., Wallace 1975; Dai et al. 1999; Carbone et al. 2002;

Janowiak et al. 2005; Parker and Ahijevych 2007;

Carbone and Tuttle 2008; Surcel et al. 2010) and has a

secondary maximum in the central Plains in the late

evening caused by the arrival of long-lived mesoscale

convective systems traveling from the RockyMountains
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(and, thus, showing a semidiurnal cycle; e.g., Carbone

et al. 2002; Carbone and Tuttle 2008; Surcel et al. 2010).

Berenguer et al. (2012) studied the mean performance of

the McGill Algorithm for Precipitation Nowcasting

based on Lagrangian Extrapolation (MAPLE; Germann

and Zawadzki 2002) and its dependence on the time of

day. They found a relation between MAPLE’s skill and

the diurnal cycle of precipitation: MAPLE is unable to

forecast the initiation of new convection, resulting in its

worst performance around 1900UTC, coincidingwith the

beginning of thunderstorm development in the foothills

of the Rockies; the best performance is achieved at 0100

UTC, when precipitation systems show greater organi-

zation and their evolution can be better explained by

their motion.

Themain goal of this paper is to adaptively correct the

nowcasts and VSRFs obtained with a Lagrangian per-

sistence algorithm for the systematic errors introduced

by the diurnal cycle of precipitation during the warm

season in the east-central United States. The correction

has to be adaptive because of the geographical and

temporal variability of the diurnal cycle. The main dif-

ficulty of the correction is precisely to compensate for

the variability in space and time of this diurnal cycle.

The study is carried out with 10 yr of radar rainfall maps

(section 2), which have been used to characterize the

dependence ofMAPLE errors on time of day, lead time,

spatial scale, and location (section 3). The approach

used to correct the biases introduced by the diurnal cycle

is presented and tested in section 4; finally, the main

results are summarized in section 5.

2. Precipitation data and importance of the diurnal
cycle

In this section, detailed information about the dataset

used in this study to characterize the diurnal cycle of

precipitation is provided (section 2a). The importance of

the diurnal cycle has been determined by means of the

signal (mean error)-to-noise (standard deviation of errors)

ratio. Section 2b examines the significance/robustness of

these statistics and their dependence on the length of the

dataset.

a. Precipitation observations and nowcasts

A requirement for computing significant and robust

statistics from the errors of nowcasting techniques is the

use of a large dataset. With this purpose, a dataset pre-

viously created and employed in previous works such as

Atencia and Zawadzki (2014, 2015) is also used in the

present study. This dataset is built bymerging two radar-

based precipitation composite products over North

America; the first one is the National Operational

Weather Radar (NOWrad) mosaic produced by the

Weather Services (WSI; available from 1998 to 2007),

and the second dataset is produced byWeatherDecision

Technologies (WDT; available from 2004 to 2007).1

Details about these two products, and the corrections

applied to the radar data such as ground clutter removal,

reflectivity discretization (5 and 2 dBZ, respectively),

etc., can be found in Atencia and Zawadzki (2014) or in

the original paper by Zhang et al. (2015).

A common grid has been defined for the two datasets

used in this study (Fig. 1). The 512 3 512 points grid

has a 4-km mesh length2 and avoids the mountainous

western United States to prevent bad coverage in the

study domain. The procedure for resampling the two

reflectivity products into the common grid can be found

in Atencia and Zawadzki (2014). The temporal resolu-

tion of the dataset is 15min with a length of 10 yr from

1998 to 2007. The month of July has been selected to

study the effect of the diurnal cycle because of the

stronger influence of solar heating on the diurnal cycle

of precipitation in comparison with other months.

The nowcasting algorithm used in this study is

MAPLE. This algorithm computes the advection mo-

tion field by applying the variational echo tracking

(VET) technique developed by Laroche and Zawadzki

(1994). The latest available radar image is advected by

using a modified semi-Lagrangian backward scheme to

keep a quasi-constant power spectrum of the extrapo-

lated images as shown by Germann and Zawadzki

(2002). The algorithm has been run simulating opera-

tional conditions (i.e., no future data have been used in

the computation of the motion field or the reflectivity

forecast) to recreate the results that would have been

obtained in real time. Nowcasts have been generated

every 15min for a maximum lead time of 10 h and

with a temporal resolution of 15min for the same time

period as observations are available (a total of 26 957

valid Lagrangian forecasts, or around 2700 forecasts

per month, were obtained).

b. Statistical significance

We have first assessed the importance of the diurnal

cycle of precipitation present in the radar observations

and in the errors of MAPLE forecasts. To quantify the

importance of the diurnal cycle, the mean error as a

function of the time of day is compared with the

1 The data have been obtained directly from these two private

companies.
2 The resampling is carried out in rainfall rate units obtained by

using the relation Z 5 300 3 R1.5 by Joss and Waldvogel (1969)

because it produces a bit more of light precipitation and with a

minimum reflectivity threshold of 10 dBZ.
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variability of these errors. For this reason, it is important

to test the robustness of the computed moments.

The robustness has been studied by resampling the

entire dataset into different samples with different

numbers of points by random bootstrapping (with

replacement). From this bootstrapped dataset, the

mean reflectivity is computed; 1000 different means are

computed from 1000 different bootstrapped datasets

as a function of the number of points in the range be-

tween 5 and 1240 (4 values at a given hour3 31 days in

July 3 10 yr). Figure 2a shows the value of the mean

reflectivity obtained (at a random location and hour)

as a function of the number of samples used in its

computation. For each given sample size, a statistical

significance test of the mean is done by comparing

the mean computed with the whole dataset with

the distribution of means obtained from the differ-

ent subsamples (Hope 1968). The significance value

as a function of the total number of points in the

bootstrapped dataset is plotted in Fig. 2b. In this

FIG. 1. Location domain. The red rectangle corresponds to the domain on which all the re-

flectivity fields are smoothed. The blue contours represent the coverage of the reflectivitymosaics.

FIG. 2. Results of theMonteCarlo analysis of the significance of themean reflectivity obtained in a given point of the

study domain as a function of the number of samples used in its computation. The original dataset is all the reflectivity

values of July from 1998 to 2007 at a random point (4 3 4 km2) in the domain with a temporal resolution of 15min.

(a)Mean reflectivity computed based on bootstrapping (N5 1000 realizations) as a function of the number of samples

used (M). From these 1000 realizations, an empirical probability distribution function (pdf) of themean reflectivity can

be obtained for each number of samples. These pdfs are compared with the pdf of the mean reflectivity obtained with

M5 1240. (b) The significance (Hope 1968) of the two means (number of samplesM vs the whole dataset) belonging

to the same process as a function of the number of samples used to compute the first mean.
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study, a 95% value of significance is chosen to de-

termine the number of points needed for computing the

mean. The H0 hypothesis is that the mean (or standard

deviation) of a subset with M samples is equal to the

mean (or standard deviation) obtained with the whole

dataset. Contrarily, the H1 hypothesis corresponds to

the hypothesis that these two means are different.

By repeating this exercise at different locations, it has

been observed that the number of points required to

obtain a significance at the 95% level depends on the

value of the computed mean. Several locations, and also

several times of the day, have been used to compute the

minimum number of samples needed for a 95% signifi-

cant mean. Figure 3 shows the relation between the

number of points needed to obtain a statistically signif-

icant mean and the computed mean. It can be seen that

the minimum number of points needed to obtain a sta-

tistically significant mean independently of the value of

themean is 264 (dashed line in Fig. 3). In this study, 10 yr

of data for the whole month of July have been used; this

corresponds to a total of 1240 values, which exceeds the

number of points required for significance. Thus, the

mean and standard deviation obtained in this work are

statistically significant and can be used to assess the

importance of the diurnal cycle.

3. Diurnal cycle and errors in MAPLE

For every time step t, MAPLE nowcasted reflectivity

fields xf (t, lt)[i, j], where [i, j] stands for the spatial lo-

cation, have been generated with the same resolution as

radar observations and for lead times lt up to 10h. The

error in MAPLE forecasts [dB(Z)] is defined3 as

«(t, lt)[i, j]5 x
o
(t)[i, j]2 x

f
(t, lt)[i, j], (1)

where t is the time of day and lt is the lead time of

the MAPLE reflectivity forecasts {xf (t, lt)[i, j]}, and the

errors are defined by comparison with the observed

radar reflectivity field {xo (t)[i, j]}.

These errors have been analyzed as a function of the

lead time (lt) by pooling all the times of the day (t)

together. Figure 4 shows the bias, defined as the mean

(for the dataset) of the errors (averaged over the whole

domain

«(t, lt)5 �
i
�
j

«(t, lt)[i, j]/(N
i
3N

j
)

for i5 1, . . . , toNi5 512 and j5 1, . . . , toNj5 512), and

the root-mean-square error (RMSE). It can be ob-

served that, even though the RMSE increases as a

function of the lead time, the bias is very close to 0 for

all lead times.

The results are completely different when MAPLE

forecast errors are analyzed also as a function of the time

of day. Themean error (additive bias as a function of the

lead time and time of day) of the whole dataset (V) can

be defined as

h«(t, lt)i
V
5 hb(t, lt)i

V
5 b(t, lt). (2)

Then the errors can be decomposed into two terms:

«(t, lt)5 «̂(t, lt)1 b(t, lt) where h«̂(t, lt)i
V
5 0, (3)

where b(t, lt) stands for the additive bias (or mean

error) of the forecast and «̂(t, lt) is the unbiased error

in MAPLE forecasts.

Figure 5 shows the dependence of the mean ob-

served reflectivity, MAPLE bias [b(t, lt)], and the

standard deviation of the unbiased errors [sV
«̂ (t, lt)]

with the time of day. The most noticeable (and also

expected) fact is the strong correlation between

the MAPLE forecasts’ bias (colored solid lines) and

the mean observed reflectivity for different times

of the day (gray solid line). The timing of the maximum

bias occurs at the same time as the maximum mean

precipitation in the domain, which is due to the solar

heating forcing. Keeping in mind our goal of correcting

these biases associated with the diurnal cycle, differ-

ent questions can arise: Are these averaged errors

FIG. 3. Number of samples needed to estimate the mean with

a significance of 95% vs the value of the mean. These points cor-

respond to a total of 250 random points in random locations and

times of the day. A strong correlation can be observed between the

number of samples and the mean reflectivity in dBZ. The maxi-

mum number of samples needed for significance is 264.

3 Error is usually defined as forecast minus observation, but this

definition has been adopted to have a positive correlation between

the mean error and the diurnal cycle of precipitation.
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significant? Is the standard deviation larger than the

range of variation of the bias for short lead times? Do

these results show a spatial-scale dependence? Does

the importance of the bias depend on the location? In

this section, we analyze the dependence of MAPLE

errors with spatial scale, location, lead time, and time

of day.

a. Spatial scale and lead time

This section analyzes the question of when and for

what spatial scales the mean signal of MAPLE errors

is larger than its variability. In other words, the stan-

dard deviation of the reflectivity errors of MAPLE

forecasts for a given scale and lead time measures the

variability of the process not associated with the mean

diurnal cycle,4 whereas the amplitude of the mean

error (or bias) represents the influence of the diurnal

cycle on these errors. A way to measure the strength

of the signal is by the signal-to-noise statistic (Dsn;

Pomeroy et al. 2002), which is defined as the ratio

between the difference of the maximum (mmax) and

the minimum (mmin) value of the signal and the sum of

the standard deviations (s) at the time the maximum

and minimum values of the signal are registered. In

our analysis of the MAPLE errors, the signal corre-

sponds to the mean error or bias associated to the

diurnal cycle [b(t, lt)] and the noise is the unbiased

errors [«̂(t, lt)]. Consequently, signal-to-noise statistic

can be written as

D
sn
(lt)5

m
max

2m
min

s
max

1s
min

5
max

t
[b(t, lt)]2min

t
[b(t, lt)]

sV
«̂ (t5 t

max
, lt)1sV

«̂ (t5 t
min

, lt)
,

(4)

where maxt[b(t, lt)] is the maximum value of the mean

error within the time series of a day and sV
«̂ (t 5 tmax, lt)

corresponds to the standard deviation of the unbiased

errors for the whole dataset at the time of the maximum

value of b(t, lt).

FIG. 4. Errors in MAPLE nowcasts as a function only of the lead time for the whole domain. (a) Mean error over

the 10 yr of data (black solid line); the maximum and the minimum are shaded. (b) RMSE as a function of the lead

time for the same period over the whole domain. The mean (solid line), standard deviation (dashed–dotted line),

and interquartile range (dashed line) are plotted.

FIG. 5. Mean MAPLE error (averaged over the whole domain)

and standard deviation as a function of the time of day. The x axis is

doubled (48 h) for an easy visualization. The solid colored lines

show the mean errors (different colors represent the lead times

from 15min to 10 h). The time of day represents when the forecast

is valid; so a 5-h lead-time forecast at 2000 UTC was initiated at

1500 UTC. The solid dark gray curve represents the mean re-

flectivity as a function of the time of day. The standard deviations

of the unbiased MAPLE errors are plotted as vertical lines for the

left half of the figure.

4 Local effects of the diurnal cycle could be accounted for in the

standard deviation.
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When Dsn is larger than 1, it is worthwhile correcting

the bias error associated with the diurnal cycle. On the

other hand, if Dsn is smaller than 1, the correction of the

bias has little influence because the errors of theMAPLE

forecast are dominated by other factors. Consequently,

the relevance or importance of correcting the bias is

associated to the signal-to-noise statistic.

The next step is to analyze for what lead times and

for what spatial scales it is relevant to correct for the

biases related to the diurnal cycle of precipitation. For

this, a relevance analysis has been carried out at pixel

level for all the points of the domain h«(t, lt)[i, j]iV) and
for different lead times. The analysis has been done for

different spatial scales by low-pass filtering [as in

Denis et al. (2002), a squared cosine smooth function is

chosen] the observed and forecasted reflectivity fields

in the Fourier domain. The reflectivity error field at

each lead time is transformed to the frequency space

using a discrete cosine transformation (DCT; Denis

et al. 2002). The local biases and standard deviations in

time have been obtained from the resulting filtered

error fields {«fFFT (t, lt)[i, j]} to carry out the same

analysis as the one described above (beginning of this

section) for the unfiltered error fields.

Figure 6 shows Dsn associated with the diurnal cycle

as a function of cutoff scale and lead time for the whole

domain. It can be observed that the importance of the

diurnal cycle increases with cutoff scale. However, for

the shortest lead time (15min), the errors do not show

significant diurnal cycle signal for any of the scales. For

spatial scales around 150km, the averaged error starts to

have a range that is larger than the random component.

Consequently, correcting for this bias would improve

the root-mean-square error of MAPLE forecasts. For

the 30-min lead time, the scale where the diurnal cycle

signal is relevant is larger than 256 km, while for the 10-h

lead time, the relevance appears at scales around

100 km. Hence, the correction for the diurnal cycle error

for scales smaller than 64km has a small impact and the

errors are dominated by the random component, even

for lead times of 10 h.

b. Spatial scale and location

The previous results do not take into account the

dependence on location of the bias. Significant spatial

variability of the diurnal cycle of precipitation was

described by Carbone and Tuttle (2008) and Surcel

et al. (2010). MAPLE skill depends on spatial scale and

location, as was shown by Germann et al. (2006). Here,

only the location and scale dependence are shown for

the 10-h lead time.

Since our interest is the dependence on location,

we will now use wavelet scale decomposition instead

of Fourier scale analysis. The main difference in

general is that wavelets are localized in both location

and frequency (wavelength), whereas the standard

Fourier transform is only localized in frequency

(Addison 2002). The nonredundant Haar wavelet has

been selected for this study (Haar 1910). This wavelet

in a 2D field is composed by three mother functions

(not analyzed) and one scaling function, which is the

one applied to perform a low-pass filtering of the field

{«fWAV(t, lt)[i0, j0]}. Figure 7 shows an example of the

original error field {« (t, lt)[i, j]} and the wavelet

low-pass filtered field {«fWAV564 km(t, lt)[i0, j0]} for the

cutoff scale of 64 km. New coordinates (i0 and j0) are
obtained because the wavelet filtering has been

applied in a nonredundant framework to avoid the

introduction of small-scale features during the

filtering process (Addison 2002). The scaling process

carried out using this procedure divides the domain

in 1 box centered for the 2048-km scale, 4 boxes for

the 1024-km scale, and so on, to a total of 65 536

boxes for the smallest scale. A total of nine levels of

this scaling process are obtained (these are equiva-

lent to the scales of 2048, 1024, 512, 256, 128, 64, 32,

16, and 8 km) for each error field of the 10-h lead-time

MAPLE forecast.

The importance of the diurnal cycle signal has been

analyzed. At each wavelet scaling component, the

bias has been computed as a function of the time of

day and lead time. From the filtered MAPLE error

fields, DfWAV
sn [i0, j0] has been obtained as a function of

FIG. 6. Analysis of the importance of the introduction of the bias

as a function of the spatial scale and lead time. The gray area cor-

responds to the values of the signal-to-noise statistic [Eq. (4)] , 1.

The upper region (white background) represents the valuewhere the

signal is larger than the variability so that the correction of the bias

(related to the diurnal cycle) is relevant. The different colors of the

curves stand for the lead time. The x axis is the scale selected in the

cutoff filter applied to the original error field.
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location (i0 and j0) and scale (fWAV). The wavelet

scaling components where the signal-to-noise statis-

tic is larger than 1 are selected as locations with rel-

evant bias associated with the diurnal cycle for that

spatial scale.

Figure 8 shows the result of this analysis for the se-

lected locations at seven levels of spatial scales (the

study was carried out at nine levels, but only the seven

levels withDfWAV
sn . 1 are plotted in the figure). The first

result is that the diurnal cycle for the largest scales

(2048 and 1024 km) are significant. These findings are

consistent with the scale–lead time results shown in

Fig. 6 based on Fourier scale analysis. It can be ob-

served that only the area with a poor radar coverage

(around the Great Lakes) shows no significance for the

512-km scale. The southeastern coast shows a signal for

the scale of 256 km. The same is observed in the east

area of the Rocky Mountains, where there is a location

that relevance is found at the 128-km scale (possibly

due to thunderstorm initiation in the mountainous

area). Finally, Florida and some spots in the Gulf of

Mexico showDsn. 1 for a cutoff scale of 64 km (mostly

driven by land–sea breeze effects). The dependence

with lead time was similar to the observed in the pre-

vious section (not shown).

4. Incorporation of the diurnal cycle in MAPLE

To introduce the diurnal cycle in MAPLE, we need to

correct for the bias analyzed above. In this section, two

approaches are tested. In section 4a, we focus on the

potential for error correction associated with the diurnal

cycle when the effect is detected a priori. In section 4b,

we introduce a technique to predict and correct the

presence of the diurnal cycle.

a. Bias correction

To illustrate the potential for correcting the diurnal

cycle errors on MAPLE forecasts, a day with a strong

diurnal cycle influence has been selected. The scales

larger than 512 km for the region of Florida (solid black

square located around 308N and 858W in Fig. 8) have

been selected for carrying out this experiment. The

spatially low-pass (wavelet) filtered reflectivity for

25 July 1998 and the low-pass filtered (wavelet)MAPLE

forecasts are shown in Fig. 9. It can be observed that the

actual radar reflectivity shows minimum precipitation

FIG. 7. Examples of the error (2-h lead time) for 0145 UTC 1 Jul 2003 for the (a) original-resolution (4 km)

field, «(t, lt)[i, j], and (b) wavelet low-pass filtered (cutoff scale of 64 km) field, «fWAV564 km(t, lt)[i0, j0].

FIG. 8. Analysis of the importance of the introduction of the bias

as a function of the scale and location for the 10-h lead time. The

shaded rectangles correspond to those scaling components whose

values of DfWAV
sn [i0, j0] are .1. The different colors of the rectangles

stand for the scale filtered by the Haar wavelet scaling function.

The relevant locations are represented by the position of the black

rectangle over the map. The four boxes of the 1024-km scale have

a significant diurnal cycle signal, and for this reason the color of the

2048-km scale cannot be seen, although it is relevant too.
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activity around 1000 UTC (corresponding to the morn-

ing) and the precipitation starts developing around noon

local time (1700 UTC) and peaks around 2200 UTC.

In Fig. 9, it is clear that the two solid lines follow a similar

evolution, indicating the diurnal cycle influence. The

amplitude is different because the lower solid line is the

average for the whole dataset, while the upper one is

the reflectivity for a particular case. This event can thus be

considered a day with an important influence by the di-

urnal cycle. MAPLE forecasts do not have any source or

sink term5 in its formulation, so the nowcasted reflectivity

stays constant over the domain (the variations shown in

Fig. 9 can be attributed to some precipitation leaving the

subdomain). In the afternoon, the storms developed are

quasi stationary. The VET velocities are small, and con-

sequently the forecasted reflectivity is almost constant.

The development of convective storms in the afternoon

associated to the solar forcing causes large errors in the

MAPLE forecasts.

The errors in MAPLE forecasts can be seen in the

bottom left panel of Fig. 10. These errors show some

agreement with the average behavior observed in Fig. 5;

in other words, the longer the lead time, the larger the

spread of the forecast error. This behavior lasts until the

second part of the day as well.

The goal of this section is to correct the error caused

by the diurnal cycle. The statistical mean of diurnal cycle

error [the bias in Eq. (2)] can directly be corrected from

the forecasts according to the following equation:

x
fWAV5512 km

cf (t, lt)[i0 5 3, j0 5 1]

5 x
fWAV5512 km

f (t, lt)[i0 5 3, j0 5 1]

1 bfWAV5512 km(t, lt)[i0 5 3, j0 5 1], (5)

where x
fWAV5512 km
f (t, lt)[i05 3, j0 5 1] is the MAPLE fore-

casts over the region of Florida [i05 3, j0 5 1] filtered to the

cutoff scale of 512kmbyusing thewavelet scaling function;

bfWAV5512 km(t, lt)[i05 3, j0 5 1] represents the MAPLE bias

associated to the diurnal cycle for the same location and

scale as the MAPLE forecast; and xfWAV5512 km
cf (t, lt)[i05 3,

j0 5 1] stands for the corrected forecasts.

By construction, the formulation of Eq. (5) would

suppress the bias when applied over the entire dataset.

However, the error of the new forecast for a specific

event could increase. To avoid this, an alternative for-

mulation has been applied by introducing an adaptive

parameter or weight, WfWAV5512 km(t, lt)[i05 3, j0 5 1]:

x
fWAV5512 km

cf (t, lt)[i0 5 3, j0 5 1]5 x
fWAV5512 km

f (t, lt)[i0 5 3, j0 5 1]1WfWAV5512 km(t, lt)[i0 5 3, j0 5 1]

3 bfWAV5512 km(t, lt)[i0 5 3, j0 5 1]. (6)

To demonstrate the utility of this approach, the

weights have been computed with Eq. (6) assuming the

perfect forecast, i.e.

x
fWAV5512 km

cf (t, lt)[i0 5 3, j0 5 1]

5 x
fWAV5512 km
o (t)[i0 5 3, j0 5 1].

The optimal weights obtained for the event of 25 July

1998 are shown in the right panels of Fig. 10. The weights

have a larger variability for the longer lead times than for

the shorter ones. Note that the variation with time of day

disappears in the afternoon. When the solar heating is

driving the increase of rainfall intensity, the weights do not

depend on the time of day, which explains the overlapping

lines in the upper-right panel in Fig. 10. Thus, previously

computed weights can be used to correct future MAPLE

forecasts. In other words, if in Eq. (6) the time dependence

of the weight is removed, that is,

FIG. 9. Example of filtered reflectivity (scale of 512km) for the event

of 25 Jul 1998. The observations (gray thin line) show a strong diurnal

cycle when compared with the mean reflectivity for July 1998–2007

averaged as a function of the time of day (black thick line). The

MAPLE forecasts are plotted as dashed gray thin lines every hour. An

important error in the MAPLE is observed from 1200 UTC until the

end of the day. This error is related to the increase of the observed

rainfall intensity that is caused by the solar heating.

5 Except for the consistent growth and decay captured by the

motion of the precipitation field.

2568 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 56



WfWAV(t, lt)[i0, j0]5WfWAV(lt)[i0, j0],

then we get an equation to correct future forecasts. It

can be formulated in a general way for different scales

and location as

x
fWAV

cf (t, lt)[i0, j0]5 x
fWAV

f (t, lt)[i0, j0]

1WfWAV(lt)[i0, j0]

3 bfWAV(t, lt)[i0, j0]. (7)

Figure 11, left panel, shows the results obtained

using the weights computed 3 h before the initializa-

tion of MAPLE, and the right one is using the weights

obtained 6 h before. The red curves are the corrected

forecasts obtained by applying Eq. (7). The im-

provement of the MAPLE forecasts can clearly be

seen in the two panels of Fig. 11 where the corrected

forecasts actually follow the observed increase of

reflectivity in an event with a strong diurnal heating

influence.

These results suggest that it is possible to correct

the effect of the diurnal cycle on precipitation

nowcasts when and where it is relevant. However,

the relevance of this signal is not only dependent on the

spatial scale, lead time, and location, as shown in the

previous section 3 (and Fig. 8), but it also varies fromday

to day, as can be observed in Fig. 12. Some days have a

strong correlation with the diurnal cycle (maximum

correlation around 0.7); other days have a small corre-

lation (lower than 0.1). Only MAPLE forecasts for the

days with a strong diurnal cycle component (high cor-

relation) would be improved by removing the bias as-

sociated with the diurnal cycle.

b. Adaptive correction

In this section, a formulation to adaptively compute

the weights in Eq. (7) is proposed. This method has to be

FIG. 10. (bottom left) The errors of the event (25 Jul 1998) plotted in Fig. 9 as function of the lead time for the

whole event. The different colors represent the time of initialization of the MAPLE forecast. (bottom right) The

weights associated with the correction of this error according to Eq. (6) as a function of the lead time. (top) As in

the bottom panels, but for only the afternoon-until-midnight period to emphasize that, even though the errors

vary as a function of the initiation time of the MAPLE forecast, the weights are (quasi) constant during the

second half of the day.
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able to detect when the weights could be used to im-

prove the forecast. As shown above (Fig. 10), this im-

provement is effective when weights vary little in time.

Accordingly, the new weights should account for the

temporal variation of the old weights and, at the same

time, for the strength of the diurnal cycle. IfWfWAV(lt)[i0, j0]
is consistently large in time, the diurnal cycle is consistent

in time, and consequently, the introduction of the cor-

rection of the diurnal cycle mean error is improving the

forecast. What is the value of WfWAV(lt)[i0, j0] that we

should retain as a measure of the diurnal cycle? It is a

value that has to be at least that of the climatology of

the diurnal cycle, and therefore, it depends on the geo-

graphical region. Taking into account that the adaptive

weight only depends on the lead time {WfWAV(lt)[i0, j0]},N
past observations are used to measure the variability of

the weights as an indicator of the robustness of the

weights. From Eq. (7), and using N past forecasts for a

given lead time (lt), the following system of equations

can be obtained:

8>>><
>>>:

x
fWAV

cf (t5 t
1
, lt)[i0, j0]5 x

fWAV

f (t5 t
1
, lt)[i0, j0]1WfWAV(lt)[i0, j0]3 bfWAV(t5 t

1
, lt)[i0, j0]

x
fWAV

cf (t5 t
2
, lt)[i0, j0]5 x

fWAV

f (t5 t
2
, lt)[i0, j0]1WfWAV(lt)[i0, j0]3 bfWAV(t5 t

2
, lt)[i0, j0]

. . .

x
fWAV

cf (t5 t
N
, lt)[i0, j0]5 x

fWAV

f (t5 t
N
, lt)[i0, j0]1WfWAV(lt)[i0, j0]3bfWAV(t5 t

N
, lt)[i0, j0] :

(8)

To obtain the optimum value of WfWAV(lt)[i0, j0], the
sum of squared distances, S{WfWAV(lt)[i0, j0]}, between
observations, xfWAV

o (t 5 tk)[i
0, j0], and the corrected

forecast, xfWAV

cf (t 5 tk, lt)[i
0, j0], is minimized, leaving

WfWAV(lt)[i0, j0] as the only unknown. This is possible

because the corrected forecasts are replaced by the

observations in this system of equations. When this

replacement is done, future information is used, and

it is called analysis mode. This mode would give us

the optimal weights and would, therefore, produce

the optimal forecast that can be obtained with this

technique. The squared distances between observa-

tions and corrected forecasts (analysis mode) are

computed as

SfWfWAV(lt)[i0, j0]g5�
k51

N

fxfWAV
o [i0, j0]2 x

fWAV

cf (t5 t
i
, lt)[i0, j0]g2

5�
k51

N �
x
fWAV
o (t5 t

k
)[i0, j0]2

n
x
fWAV

f (t5 t
k
, lt)[i0, j0]1WfWAV(lt)[i0, j0]3 bfWAV(t5 t

k
, lt)[i0, j0]

o�2

. (9)

FIG. 11. Mean observed reflectivity (solid thin gray line) as a function of time for the event of 25 Jul 1998. The mean

observed reflectivity for the whole dataset (Julys from 1988 to 2008) is plotted as an example of the diurnal cycle of

precipitation (solid thick black line) averaged over the Florida box of 512 km3 512 km. TheMAPLE forecast is plotted

every hour (dashed gray lines). The weights are computed using previous observations. The weights obtained with

observation from (a) 3 and (b) 6 h ago are used to correct theMAPLE forecast. The bright/colorful dashed red lines are

the corrected forecast for the initialization times where the weights were quasi constant in time (after 1400 UTC); the

pale/light dashed red lines are the corrected forecast for the initialization times prior to 1400 UTC.
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The function S{WfWAV(lt)[i0, j0]} is quadratic in

WfWAV(lt)[i0, j0] with a positive-definite Hessian, and

therefore, this function possesses a unique global

minimum at WfWAV(lt)[i0, j0] 5W
_

fWAV(lt)[i0, j0] which

can be retrieved with the explicit equation:

W
_

fWAV(lt)[i0, j0]5

� ​
N

k51

*
bfWAV(t5 t

k
, lt)[i0, j0]3

fxfWAV
o (t5 t

k
)[i0, j0]2 x

fWAV

f (t5 t
k
, lt)[i0, j0]g

+

�​
N

k51

fbfWAV(t5 t
k
, lt)[i0, j0]g2

(10)

The value of W
_

fWAV(lt)[i0, j0], for a given location,

lead time, and spatial scale, has a dependence on the

number of observations (N) used in its computation.

For a single observation (N 5 1), we obtain the same

weight as in the previous section. The introduction of

more observations (larger N) provides information

about the variability of the weights in the system of

equations. This variability can be related to the

strength of the diurnal cycle signal for a given day; as

seen in Fig. 10, in the presence of a strong diurnal

cycle, these weights remained constant. The weight

obtained with Eq. (10) minimizes the RMSE in anal-

ysis mode. The weight obtained for a given time step

(analysis mode) is used for correcting the next fore-

cast. It is possible to compute these forecast in a real-

time operational framework, and for this reason, this

is called forecasting mode. The difference between

the RMSE obtained in analysis and forecasting mode

is used to find the number of observations N that op-

timizes this correction.

Figure 13 shows the RMSE obtained in analysis and

forecasting modes and the RMSE of the MAPLE

forecast for several lead times over the whole

domain (i.e., for a scale of 2048 km, the root-mean

S{WfWAV52048 km(lt)[i05 1, j0 5 1] 5 W(lt)}). In analysis

mode (dotted line), the RMSE increases as more ob-

servations from the past are used. However, in

the forecast mode, as more observations are used,

RMSE decreases. The goal of this test is to determine

the number of observations needed for a forecast to be

better than MAPLE. At the same time, it introduces

a correction weight when the diurnal cycle bias in

MAPLE forecasts is important. For this reason, the use

of fewobservations is enough for shorter lead times, while

FIG. 13. Root mean S{WfWAV(t, lt)[i0, j0]}, Eq. (9), for the whole

month of July 1998 as a function of the number of observations N.

The dashed lines correspond to xfWAV

cf (t5 tk, lt)[i
0, j0]5 x

fWAV

f (t5 tk, lt)

[i0, j0], the original MAPLE forecast. The other lines correspond

to the corrected forecast in the analysis mode (dotted lines) and

the forecast mode (solid lines). The weight obtained from past ob-

servations (analysis mode) is used to correct MAPLE forecasts

(forecastmode). These lines are averaged for themonth of July 1998.

The different colors represent the lead times.

FIG. 12. Correlation between the average rainfall field for

each hour (with the 10-yr dataset) associated with the diurnal

cycle of precipitation and the observed rainfall field for the

whole month of July 1998. To assess the presence of the di-

urnal cycle signal, this temporal correlation is computed by

using 96 (24 h3 4 fields every hour) points of observed rainfall

center at every hour for each day vs the diurnal cycle of pre-

cipitation. The gray dashed line represents the correlation for

a temporal scale of 1 h. To partially avoid the diurnal varia-

tion of the correlation, a 24-h filter is applied (black

solid line).

SEPTEMBER 2017 ATENC IA ET AL . 2571



for longer lead times, more observations are required.

Finally, 15 h of data have been selected for computing

the weights for all the lead times. This technique will

affect the forecast when the diurnal cycle is well above

the remaining precipitation noise, and it will not affect

the forecast otherwise. With this number of observa-

tions, the improvement is noticeable for the events

with a strong diurnal cycle (independently of the lead

time), and the effect when this diurnal cycle signal is

not important is mitigated. Let us introduce the skill

RMSE [SRMSE(t, lt)] to compare the original

MAPLE forecast with the corrected forecast obtained

with Eq. (7) using the weights computed with Eq. (10).

This score accounts for the percentage of improvement

in the RMSE:

S
fWAV

RMSE(t, lt)[i
0, j0]5 1003

"
RMSE

fWAV

f (t, lt)[i0, j0]2RMSE
fWAV

cf (t, lt)[i0, j0]

RMSE
fWAV

f (t, lt)[i0, j0]

#
(%), (11)

or for the scale of 2048km that corresponds to the whole

domain, the equation can be simplified to

S
RMSE

(t, lt)5 1003

"
RMSE

f
(t, lt)2RMSE

cf
(t, lt)

RMSE
f
(t, lt)

#
(%),

(12)

where RMSEf and RMSEcf are the root-mean-square

errors of the original forecast and of the corrected

forecast (forecast mode), respectively. The adaptive

behavior can be observed in Fig. 14, where the skill of

the RMSE is plotted as a function of day in July of 1998.

The skill score has a strong dependence on the lead

time and shows different behavior for different events.

It is important to highlight that in the worst case (i.e.,

when the evolution of the precipitation is not explained

by the diurnal cycle), the improvement is around 0%;

that is, theMAPLE forecast is not modified (this can be

FIG. 14. (top) The skill score of theRMSE (SRMSE) of the corrected

forecast as a functionof thedayof themonth of July 1998 for thewhole

domain (scale: 2048 km). Three lines are plotted corresponding to

three different lead times (1 h: blue line; 5 h: light green line; and 9 h:

red line). (bottom)Theweights obtained fromEq. (10) used to correct

the forecast, Eq. (7).

FIG. 15. RMSE as a function of the lead time for the original

MAPLE forecast (red lines) and the corrected version (black

lines) for the whole domain (scale: 2048 km). The solid lines

are for the pooled RMSE during the whole month of July

1998. The dashed lines are the standard deviation, and the

dotted lines are 690% of all of the RMSE obtained during

the month.
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observed in the lower panel of Fig. 14 where the evo-

lution of the weight is plotted). This is one of the

properties of the minimization process using 15 h of

previous observations. The improvement is smaller

than that obtained in section 4a for a single event,

with a known strong influence of the diurnal cycle or

strong correlation with the bias. The adaptive tech-

nique improves the forecast only when the diurnal cy-

cle signal is observed in the error in past observations.

Figure 15 summarizes the results over the entire do-

main of MAPLE forecasts for the month of July 1998.

A figure similar to Fig. 15 can be obtained at each

location and scale where the diurnal cycle signal is sig-

nificant (see section 3b). The range of values for

RMSEfWAV(t, lt)[i0, j0] is different for each scale but also

among the different locations, as can be observed in

Fig. 16. An improvement is obtained for almost all the

locations and scales (only a few are shown in Fig. 16). It

can also be observed as the averaged reflectivities are

dependent on the scale analyzed reaching values around

5 dBZ for the smallest significant spatial scale. The

upper-left panel shows the pooled RMSE for the four

subdomains of 1024km. The northeast location has the

smallest improvement [comparing the corrected fore-

cast (solid line) with the original forecast (dashed line)],

which can be explained by the fact that it is an area

with a small Dsn in comparison with the southeast lo-

cation with a larger Dsn. The other fact to remark from

this location-scale analysis is that the improvement is

not present for all the locations; for instance, at 256-km

cutoff scale, the corrected forecast of the southern sub-

domain in the Rocky Mountains has a worse perfor-

mance than the original MAPLE forecast. This can be

caused by the importance of the transportation over the

growth and decay; this effect has been observed in pre-

vious studies (Berenguer et al. 2012).

To summarize these results, the average improvement

in the RMSE for each scale and the range of maximum

FIG. 16. (top right) The locations over the continental United States of the lines in the figure’s other three panels.

The different colors stand for different spatial scales, and the different shades of color distinguish the different

locations. TheRMSEas a function of the lead time for the originalMAPLE forecast (dashed lines) and the corrected

version (solid lines) for three different scales: (top left) 1024, (bottom left) 256, and (bottom right) 64 km.
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improvement among the different locations is introduced

in Table 1. The average lead time of the maximum im-

provement is provided too. The last column shows the

worst performance (minimum skill RMSE) for the cor-

rected forecast. This minimum skill RMSE is obtained

from the second hour of lead time until the end of the

forecast period (10h) to avoid having low values from the

first hours when the Lagrangian persistence forecast is re-

ally accurate, and this diurnal cycle correction introduces

small corrections. For the higher scales (1024 and 512km),

there is always an improvement and theworst performance

happens in the second hour of forecast, which is caused

because the Lagrangian skill is still good and the correction

has a less important effect. For smaller scales, theminimum

skill score is negative (worsens the forecast). This happens

in latter lead times (around 9–10h). The worse perfor-

mance is at the scale of 256km, and a negative skill score is

obtained only in one location, but it lasts from 6h of lead

time to the end. A negative skill score is obtained in the

same location for the scales of 128 and 64km. This deg-

radation is only happening for the last 45min of forecast.

The rest of the scales and locations are showing always an

improvement in the skill RMSE, proving the positive effect

of introducing the diurnal cycle mean error correction.

5. Conclusions

The errors in MAPLE rainfall forecasts for the month

of July between 1998 and 2008 have been studied as a

function of the lead time and the time of day. The ob-

jective of introducing the time of day in this analysis was

to illustrate the impact of the diurnal cycle of pre-

cipitation into MAPLE errors. We have developed a

methodology to adaptively correct these nowcasts for

the effects of the diurnal cycle.

The first part of the paper focuses on the spatial scales

and locations for which forecast errors were mainly

associated with a diurnal signal. As expected from pre-

vious published results, the diurnal cycle of precipitation

was significant for scales of 128 km in the Colorado

plains and even 64 km for the Florida region. In the rest

of the domain, the diurnal signal is still detectable over

other possible causes of forecast error (a signal-to-noise

ratio larger than 1), but it specially affects the larger

scales of the rainfall field.

The proposed approach is an adaptive method that

determines the weight of the diurnal cycle correction

of MAPLE based on the observations from the pre-

vious hours. A small variability of this correction

(quasi-constant weights) indicates a strong diurnal

cycle, and, as a consequence, MAPLE forecasts need a

strong bias correction. On the other hand, a large

variability was associated with forecast errors due to

other causes, and the diurnal cycle bias correction is

minimal, keeping almost intact the MAPLE forecast.

The results indicate that the adaptive technique in-

troduces improvement up to 60% of the RMSE for

some events, whereas the negative impact, for events

where the errors were not associated with the diurnal

cycle of precipitation, was no larger than 22%. This

adaptive approach has been tested for all locations

and spatial scales where the signal-to-noise ratio was

larger than 1, and the results are similar to the ones

obtained for the entire domain. On average, the cor-

rections improve the RMSE of the forecast up to 30%

for lead times up to 8 h during the month of July 1998.

Zhang and Klein (2010) studied the mechanisms that

drive the transition from shallow to deep convection. In

their study, they found a temporally delayed high corre-

lation between the diurnal cycle of precipitation and the

structure (in height) of clouds. This delayed correlation

suggests the use of cloud coverage, structure, or other

weather variables (such as the moisture at the lower free

troposphere) to detect the diurnal cycle ahead of time. The

application of these predictors to assess the strength of the

diurnal cycle could lead to the use of fewer rainfall ob-

servations to compute theweights, which, at the same time,

could result in improved forecasts.

However, these corrections were only applied for

selected scales and locations. A technique to downscale

these corrections to the original image resolution

would improve the applicability of this study for other

meteorological or hydrological purposes such as storm

forecasting or flash-flood forecasting. Previous studies

have shown that the stochastic perturbation of some

statistical parameters of rainfall images, such as the

mean reflectivity (e.g., Berenguer et al. 2011), can be

used to generate different ensemble members for a

probabilistic nowcasting of precipitation. Our results

suggest that the application of a correction instead of a

TABLE 1. A summary of the results observed in Fig. 16. The first

column represents the spatial scale. The second column is the

average for all the significant locations of the maximum skill score of

RMSE S{WfWAV

RMSE(t, lt)[i
0, j0]}. The range ofmaximum S

fWAV

RMSE(t, lt)[i
0, j0]

is also introduced. The average lead time at which this maximum

S
fWAV

RMSE(t, lt)[i
0, j0] happens is in the fifth column. The minimum skill

score for any location at a given scale from the 2-h lead time until the

end of the forecasting period (10-h lead time) is in the last column.

Scale Mean SRMSE
Range SRMSE Averaged lt Min SRMSE

(km) (%) Min Max (h) (%)

1024 27.74 17.94 37.13 7.25 5.26

512 29.19 18.87 39.90 7 2.37

256 29.76 16.99 64.86 5.75 251.32

128 23.29 12.93 32.84 6.75 27.14

64 19.68 13.25 24.43 6.5 26.87
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stochastic perturbation of these parameters could be

beneficial for the locations and scales where the diurnal

cycle signal is significant.
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