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ABSTRACT:	
In	 this	 paper	 we	 propose	 a	 method	 to	 convert	 the	 local	 variations	 of	 refractive	 index	 into	 local	
changes	of	one	surface	of	the	lens,	which	then	can	then	be	described	as	a	free-form	surface,	easy	to	
introduce	 in	 conventional	 simulation	 tools.	 The	 proposed	 method	 tries	 to	 provide	 an	 equivalent	
model	of	 the	 lens	with	refractive	 index	variations	where	 the	 index	changes	have	been	replaced	 for	
local	 thickness	variations	on	the	 lens’	surface.	The	 local	 thickness	variations	can	be	 fitted	at	a	 free-
form	description	that	holds	all	the	local	index	variations	through	the	OPD	(Optical	patch	difference)	
using	a	B-Spline	description	and	a	simplex	algorithm	to	find	the	best	fitted	surface.		
Key	words:	free-form	surfaces,	index	variations,	polarization,	plastic	lenses.	

RESUMEN:	
En	este	trabajo	se	propone	un	método	para	convertir	las	variaciones	locales	de	índice	de	refracción	
en	cambios	locales	de	una	superficie	de	la	lente	con	el	fin	de	poder	evaluar	si	su	calidad	es	suficiente	
para	 el	 objetivo	 con	que	 fue	diseñada.	 La	nueva	 superficie	de	 la	 lente	puede	describirse	 como	una	
superficie	 free-form,	 fácil	 de	 introducir	 en	 herramientas	 de	 simulación	 convencionales.	 El	método	
propuesto	trata	de	proporcionar	un	modelo	equivalente	de	la	lente	para	simular	las	variaciones	del	
índice	de	refracción	como	cambios	 locales	de	espesor	de	 la	 lente	a	 través	de	 la	OPD	(diferencia	de	
camino	óptico)	 inducida	por	el	 cambio	 local	del	 índice	de	 refracción,	el	 ajuste	del	mapa	de	OPD	se	
realiza	mediante	una	descripción	B-spline	de	 la	nueva	superficie	y	utilizando	un	algoritmo	Simplex	
para	hallar	la	mejor	descripción	
Palabras	clave:	superficies	free-form,	variaciones	de	índice,	polarización,	lentes	de	plástico.	
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1.	Introduction	
In	recent	years	thermoplastic	injected	lenses	have	reached	the	required	standard	quality	to	be	part	of	high	
performance	 optical	 systems.	 Injected	 lenses	 are	 no	 longer	 a	 lower	 quality	 product	 and	 they	 are	 now	
included	 into	 quality	 systems	 and	 services	 [1][2]	 ranging	 from	 automotive	 applications	 to	 the	 latest	
generation	 of	 optical	 zooms	 for	 mobile	 telephones	 [3].	 A	 plastic	 lens	 can	 be	 manufactured	 by	 three	
different	 processes.	 First,	 it	 can	 be	 cut	 and	mechanically	 polished	 from	 a	 block	 of	material,	 as	 done	 in	
conventional	glass	lenses.	In	this	case,	the	block	of	material	has	not	undergone	any	volume	strains,	as	in	
the	glass	case,	so	the	 lenses	have	equivalent	optical	quality	 to	 its	glass	equivalents.	The	second	possible	
process	 is	 in	 situ	 polymerization	 (typically	 in	 e.g.	 Allyl-diglycol-carbonate	 (CR39)	 and	 equivalent	
thermostable	 materials).	 This	 technique	 is	 fully	 in	 use	 for	 ophthalmic	 lenses;	 where	 the	 monomer	 is	
injected	at	low	pressure	and	the	polymer	undergoes	a	polymerization	reaction	to	obtain	the	final	lens.	The	
process	is	typically	slow;	usually	they	need	around	2	hours	in	the	best	case,	and	the	properties	of	the	lens	
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differ	from	glass	lenses	as	the	characteristics	of	glass	ones	because	of	the	density	variations	inside	the	lens	
caused	by	the	polymerization	process.	Thus,	the	polymerization	time	is	set	to	be	smooth,	typically	lasting	
several	hours,	so	the	variations	may	be	done	almost	negligible,	making	these	lenses	a	relevant	alternative	
to	glass	lenses.	Finally,	the	third	process	is	injection	molding,	used	in	thermoplastic	lenses	[4][5][6].	Due	
to	the	fast	solidification	process	involved,	these	lenses	present	the	greatest	local	differences	in	refractive	
index	in	their	volume,	making	them	the	most	relevant	candidates	for	in-line	polariscopic	quality	control.		

The	constituent	polymers	with	 thermoplastic	properties	applied	 to	optics	are	Poly-methyl	methacrylate	
(PMMA),	Polycarbonate	(PC),	Cyclic-olefin-copolymer	(COC),	and	Styrene	acrylonitrile	(SAN).	All	of	them	
move	 from	 solid	 to	 liquid	 state	 at	 temperatures	 between	 200ºC	 and	 300ºC,	which	 are	 slow	 enough	 to	
make	 them	 useful	 for	 production	 purposes.	 Once	 in	 the	 liquid	 state	 they	 can	 be	 injected	 into	 a	 mold,	
adopting	the	shape	of	the	cavity,	and	refrigerated	to	get	back	to	solid	state.	The	cost	of	this	process	is	very	
small,	and	the	material	remainder	and	rejected	lenses	may	be	recycled.	However,	their	large	advantages	
regarding	their	fast	and	cheap	production	turn	into	disadvantages	when	inaccurate	processing	turns	them	
into	low-quality	lenses.	

The	 origin	 of	 the	 problem	 is	 the	 same	 manufacturing	 process.	 The	 solidification	 of	 the	 thermoplastic	
induces	a	fast	change	form	a	liquid	to	a	solid	state,	so	a	thermodynamic	change	of	state	is	induced.	As	the	
density	of	liquid	and	solid	thermoplastic	are	different,	and	the	time	in	the	transition	is	very	short	(usually	
less	 than	 5	 seconds)	 a	 dynamic,	 small	 scale	 process	 in	 the	 solidification	 appears,	 inducing	 stress,	
birefringence	and	local	changes	of	density	and	refractive	index.	

This	dynamic	transition	starts	in	the	surface	in	contact	with	the	mold	skin	and	ends	inside	the	core	of	the	
lens.	Thus,	the	solidification	process	of	the	injected	thermoplastic	lenses	(whether	PMMA	or	PC)	involves	
a	volumetric	change	which	affects	the	refractive	index,	turning	the	lens	into	a	gradient	index	(GRIN)	with	a	
particular	index	profile,	which	cannot	be	neglected	if	quality	imaging	applications	are	targeted.	

The	 two	main	disadvantages	of	plastic	 lenses	against	glass	ones	are	 the	change	of	 its	optical	properties	
with	 temperature	 at	 near-ambient	 temperatures,	 and	 its	 dependence	 on	 geometrical	 shape	 (being	
thickness	 the	 most	 relevant	 factor)	 [7][8][9][10].	 There	 are	 also	 some	 additional	 dependences	 to	 be	
considered	in	the	parameters	linked	to	the	injection	process,	where	internal	stress	and	volume	reduction	
may	play	a	very	important	role	in	the	final	optical	performance.		

Even	 in	plastic	 lenses	using	optimized	 injection	procedures,	refractive	 index	presents	smooth	variations	
from	 the	 internal	 to	 the	 external	 regions,	 which	 appear	 when	 the	 thermoplastic	 shrinks	 during	 the	
solidification	process	by	 introducing	variations	 in	shape	and	surface.	This	effect	 is	well	known	since	the	
very	beginning	of	 the	use	of	 thermoplastics,	 and	has	 so	 far	 been	 considered	 as	 a	manufacturing	defect.	
Studies	on	the	GRIN	profiles	induced	in	injected	lenses	using	the	generic	injection	method	[11],	and	some	
others	propose	methods	for	accurately	measuring	the	induced	refractive	index	variations	[12]	[13]	[14].	

However,	 once	 a	 good	 method	 to	 estimate	 the	 internal	 refractive	 index	 changes	 is	 available,	 a	 new	
problem	appears	when	they	need	to	be	included	in	an	optical	simulation	software	tool.	In	this	paper	we	
propose	 a	method	 to	 include	 the	 internal	 refractive	 index	 variations	 in	 the	 lens	 in	 simulation	 tools	 by	
transforming	 them	 in	 the	 equivalent	 optical	 path	 changes,	 and	 then	 using	 this	 computed	 optical	 path	
difference	 (OPD)	 to	 calculate	 a	 free-form	 surface	 [15],	 [16],	 [17]	 which	 enables	 to	 compensate	 for	 the	
refractive	index	changes	in	the	lens.	

	

2.	Method	
The	proposed	method	intends	to	provide	an	equivalent	model	of	the	lens	to	simulate	the	refractive	index	
variations	 in	 the	 lens.	To	do	 so,	we	will	use	a	 lens	with	homogeneous	 refractive	 index	and	 the	nominal	
geometric	parameters	to	those	of	the	plastic	“GRIN”	lens,	but	shaping	one	of	its	surfaces	with	a	free-form	
curve,	 so	 the	 local	 change	 in	 the	 lens	 thickness	 introduces	 an	 optical	 path	 difference	 equivalent	 to	 the	
refractive	index	variation	in	the	same	local	coordinates.	
The	 method,	 see	 Figure	 1,	 starts	 with	 a	 proposed	 lens	 (with	 the	 nominal	 surface’s	 shapes).	 This	 lens	
including	the	free-form	surface	will	be	named	from	now	on	the	“final	 lens”.	At	 its	 initial	stage,	 it	has	the	
same	geometrical	parameters	of	the	initial	lens;	the	plastic	“GRIN”	one,	but	the	material	of	the	lens	shows	
a	homogenous	refractive	 index.	 In	the	next	step	the	wavefront	 leaving	the	 initial	and	the	end	 lenses	are	
calculated.	Such	wavefront	measurement	needs	be	carefully	done	in	the	same	plane,	as	it	is	in	this	plane	
where	they	will	be	compared	in	the	next	step.	
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The	local	OPD	difference	between	the	wavefronts	at	that	plane	may	then	be	calculated,	and	used	to	obtain	
the	local	sagitta	of	the	surface	assuming	a	homogeneous	refractive	index,	which	will	be	added/subtracted	
to	the	final	lens.	When	this	OPD	is	added/subtracted	to	the	final	lens	the	same	wavefront	expected	from	
the	initial	lens	in	the	selected	wavefront	plane	will	be	obtained.	To	use	the	second	surface	of	the	final	lens	
as	the	plane	where	the	OPD	is	computed	is	the	best	option,	as	in	these	conditions	the	OPD	can	be	directly	
translated	 to	 thickness	 changes,	 by	 just	 dividing	 the	optical	 path	 changes	by	 the	 value	of	 the	 refractive	
index.	

The	 last	 step	 of	 the	method	 is	 a	 fitting	 process	 to	 generate	 a	 new	 continuous	 surface	 for	 the	 end	 lens,	
which	 can	 be	 carried	 out	 using	 a	 B-spline	 curves	 description	 [18]	 to	 fit	 such	 a	 surface,	 as	 usually	 the	
refractive	index	variations	which	appear	have	no	observable	symmetry.	

	
Figure	1:	Flux	diagram	of	the	method	to	replace	the	second	surface	of	a	lens	with	homogenous	refractive	index	with	a	free-form	

surface,	so	the	wavefront	obtained	is	equivalent	to	one	obtained	in	the	original	lens	with	a	gradient	distribution	

	

3.	Checking	of	the	method		
Prior	 to	 apply	 the	 proposed	 method	 in	 a	 real	 lens	 the	 proposed	 method	 has	 been	 tested	 using	 a	
commercial	 GRIN	 lens	with	 known	 index	 profile.	 Using	 this	 strategy,	 the	 experimental	measures	 of	 the	
refractive	 index	was	substituted	by	 the	analytical	expression	of	 the	 index	profile.	The	 lens	was	selected	
from	the	commercial	catalogue	of	LightPathTM	[19]	technologies	with	reference	GPX-10-30.	The	analytical	
expression	of	its	profile	is	described	as	

𝑛 = 𝑛#
𝑧 + ∆𝑧
𝑧'()

#**

#+,

	 (1)	

Being	n	the	refractive	index	value	along	Z	axis;	z	the	coordinate	value	along	the	lens	axis	where	n	will	be	
computed,	and	Dz	the	step	using	during	the	simulation.	For	this	lens		𝑧'()=	9,4	mm	and		the		𝑛# 	numerical	
values	 are	 presented	 in	 Table	 1.	 The	main	 optical	 features	 of	 the	 lens	 are	 presented	 in	 Figure	 2.	 	 The	
aperture	stop	of	the	lens	is	placed	on	the	second	surface.	Under	this	conditions	the	OPD	for	an	object	at	
infinity	 is	evaluated	using	ZemaxTM	[20]	(Figure	3.a)	obtaining	a	maximum	OPD	value	of	0,035	l	 (@546	
nm)	in	the	exit	pupil,	which	has	a	diameter	of	10	mm.		
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	 Glass	description	

	 G23SFN	

Diameter		

	 10	mm	

Radius	first	surface(R1)	

	 21.66173	mm	

Radius	second	surface(R2)	

	 Infinity	(Flat)	

Central	thickness	(CT)	

	 2.5	mm	

Effective	focal	length	(EFL)	

	 30	mm	
Figure	2.-	Scheme	and	main	optical	parameters	of		GPX-10-30	from	LightPathTM	

	 	
Table	1.-	Coefficients	of	equation	(1)used	to	obtain	the	refractive	index	profile	of	GPX-10-30	lens	

i	 ni	 i	 ni	

0	 1.7758298E+000	 6	 9.2133053E+001	

1	 -6.3476076E-002	 7	 -5.3438915E+001	

2	 6.8687048E-001	 8	 -2.4823518E+001	

3	 -6.7605889E+000	 9	 6.8676506E+001	

4	 2.8904287E+001	 10	 -4.8879704E+001	

5	 -6.9313554E+001	 11	 1.2759259E+001	
	

	
As	final	lens	we	will	calculate	another	lens	with	the	same	geometrical	parameters	of	the	initial	lens	(Figure	
2),	but	changing	the	glass	description	to	a	constant	refractive	index	of	1,7601.	The	OPD	of	this	new	lens	is	
presented	in	Figure	3b	and	has	been	chosen	as	the	standard	lens	for	our	purposes.	The	OPD	images	are	
enough	 to	 show	 the	 homogenous	 refractive	 index	 lens	 does	 not	 have	 the	 same	 optical	 behavior	 of	 the	
initial	lens.	Such	differences	may	be	easily	appreciated	from	the	tangential	cuts	of	OPD	in	Figures	4a	and	
4b		

 
Figure	3,	OPD	at	the	exit	pupil	(second	surface	of	the	lens)	at		l=546	nm,	grey	scale	of	OPD	in	l, box	dimensions	10x10	mm,	a)	Initial	
GRIN	lens	GPX-10-30	b)	Final	lens	when	the	GRIN	profile	is	changed	by	a	constant	index	of	1.760101	c)	Final	lens	with	constant	

index	and	a	second	free-form	surface	added.	
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a	 b	 c	

Figure	4,	Sagittal	cuts	of	the	OPD	in	the	exit	pupil,	placed	on	the	second	surface	of	the	lens	at	l=546	nm,	vertical	scale	in	l,	horizontal	
scale	in	mm,	a)	Initial	lens	GPX-10-30	b)	Final	lens	with	GRIN	profile	replaced	by	a	constant	index	of	1.760101	c)	Final	lens	with	the	

free	form	shape	added	at	the	second	surface.	

 
The	next	step	is	to	subtract	the	sagittal	cuts	of	the	OPDs	obtained	from	the	initial	and	final	lenses	and	use	
the	difference	to	create	a	 free-form	shape	which	yields	a	 final	wavefront	equivalent	to	that	of	 the	 initial	
lens.	

The	final	lens	has	the	same	geometrical	parameters	of	the	initial	lens	presented	in	Figure	2,	but	the	GRIN	
profile	has	been	replaced	by	a	constant	refractive	 index	 lens	with	an	ad	hoc	 local	 thickness	distribution	
(see	Figure	5)	to	yield	an	equivalent	wavefront	shape	A	fitting	procedure	of	local	thickness	was	performed	
to	obtain	an	analytical	form	from	the	simulated	values	obtained	with	ZemaxTM.	The	target	function	was	

𝑧 = 𝑎𝑟/ + 𝑏𝑟1							𝑤ℎ𝑒𝑟𝑒	𝑟1 = 	 𝑥1 + 𝑦1				 (2)	

	

Where	z	is	now	the	height	of	the	OPD	surface	taking	as	origin	the	apex	of	the	OPD	surface,	and	x	and	y	are	
the	coordinates	of	the	plane	normal	to	the	optical	axis.	Using	a	least	squares	method	[21]	strategy	to	find	
the	coefficients	of	Equation	2	we	obtain	a	value	of	a=	1,0179*10-5	mm-3	and	a	value	of	b=	1,8470*10-6	mm-

1,	with	a	correlation	coefficient	(r2)	of	1,000,	meaning	the	equation	passes	on	all	data	values.	As	data	is	not	
experimental,	error	bars	or	further	statistical	analysis	is	not	required.	

 
Figure	5:	Local	thickness	distribution	in	the	second	surface	of	the	final	lens	to	obtain	an	equivalent	optical	behavior.	The	graph	

reproduces	a	sagittal	cut	(y=0),	with	X	axis	in	the	horizontal	and	Z	axis	in	vertical.	Scales	are	in	mm.	

	

Now	we	 can	 compute	again	 the	OPD	 in	 the	 same	plane	 (see	Figures	3c	 and	4c).	Note	 that	 the	obtained	
OPDs	are	not	exactly	equal;	at	 the	border	of	 the	OPD	function,	 in	 the	4	 -5	mm	distance	 from	the	center,	
OPD	values	decrease,	where	they	were	expected	to	stay	at	top	values.	Deviations,	however,	deviate	around	
0,005l	of	the	initial	lens.	Such	differences	will	be	seen	to	be	not	relevant	for	our	proposal,	see	for	instance	
the	spot	diagrams	of	Figure	7.	

In	order	to	set	and	extra	accuracy	test	of	the	method,	the	MTF	sagittal	plots	of	initial	and	final	lenses	until	
a	 400	 l/mm	 frequency	 for	 an	 object	 placed	 on	 axis	 and	 at	 infinity	were	 calculated	 (Figure	 6).	 Table	 3	
completes	the	comparison	of	the	initial	and	final	lenses	with	a	table	presenting	the	RMS	values	of	spot	size	
for	different	object	positions.	 It	 is	 relevant	 to	notice	how	both	 the	values	on	axis	and	at	 full	 field	are	of	
comparable	magnitude	in	both	lenses.	
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Figure	6,	Sagittal	MTF	representation	up	to	a	frequency	of	400	l/mm	for	the	initial	lens	(solid	line)	and	final	lenses	(long	dash	line).	

In	the	graph	also	shows	the	MTF	values	of	the	final	lens	without	the	inclusion	of	a	free-form	surface	(short	dash).	

 
Table	2:	RMS	values	of	the	spot	diagrams	for	the	initial	and	end	lens.	To	do	this	comparison	the	image	plane	

was	always	refocus	to	obtain	the	minimum	RSM	value	for	the	axis	position	of	the	object.	

Id	 Object	placed	at	 Field	value	

RMS	spot	radius	(microns)	

Initial	lens	 Final	lens	

1	 Infinity	 Axis	 0,025	 0,465	

2	 Infinity	 5	degrees	 35,745	 44,351	

3	 5	times	EFL	 Axis	 2,754	 2,718	

4	 5	times	EFL	 10	mm	high	 29,379	 34,939	

5	 2	times	EFL	 Axis	 22,055	 28,488	

6	 2	times	EFL	 5	mm	high	 111,659	 132,540	

	

The	set	of	spot	diagrams	corresponding	to	the	objects	described	in	Table	2	are	presented	in	Figure	7.	The	
degree	 of	 accuracy	 in	 the	 reproduction	 of	 optical	 performance	 between	 the	 Initial	 and	 final	 lenses	 is	
presented,	showing	the	feasibility	to	substitute	a	GRIN	lens	by	a	lens	with	constant	index	with	a	free-form	
second	surface,	in	this	case	described	by	a	4th	degree	polynomial	equation.	

	

4.	Results		
We	present	the	results	of	the	method	on	a	plastic	lens	manufactured	by	injection	molding,	and	measured	
using	 an	 in-house	 polariscope	 to	 obtain	 the	 residual	 local	 refractive	 index	 variations.	 The	 lens	 selected	
was	one	of	the	worse,	but	functional,	lens	of	the	injected	batch.	The	lens,	which	has	a	meniscus	shape	lens	
was	 injected	 molded	 in	 PMMA	 and	 made	 in	 ASCAMM	 (a	 Technological	 Center	 devoted	 to	 plastic	
manufacture	 in	 the	 Barcelona	 area	 http://www.ascamm.com)	 in	 Figure	 8	 presents	 the	 geometrical	
parameters	of	the	manufactured	lens,	and	Figure	9	the	lens	itself	and	the	tooling	used,	to	do	the	injecting	
molding	process.	The	measurements	of	the	local	refractive	index	variations	were	done	using	an	in-house	
built	polarimeter	based	on	a	transmissivity	polariscopic	arrangement	shown	in	Figure	10.	
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Figure	7.	Spots	diagrams	for	the	initial	and	final	lenses.	Box	size	is	200	µm	for	the	infinity	and	5	times	EFL	cases,	and	600	µm	for	2	

times	EFL.	In	all	the	cases	the	size	and	structure	of	the	spots	are	similar	showing	an	equivalent	optical	behavior.	

	

	 	

	

Glass	description	
	 PMMA	
Diameter	
	 18	mm	
Radius	of	1st		surface	(R1)	
	 12.749	mm	
Radius	of	2nd	surface	(R2)	
	 97.133	mm	
Central	thickness	(CT)	
	 2.0	mm	
Effective	focal	length	(EFL)	
	 29.6	mm	

Figure	8.-	Optical	specifications	of	the	injected	molded	lens	
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a	 b	 c	
Figure	9.-	a)	Optical	parts	of	the	mold	used	to	inject	the	sample	lens;	b)	Obtained	lens;	the	ring	around	the	central	part	is	for	

mechanical	support	purposes	c)	injecting	molding	machine	used	to	make	the	lens	

The	local	refractive	index	variations	were	measured	using	an	in-house	polarimeter;	this	polarimeter,	see	
Figure	 10,	 uses	 a	 collimated	 light	 beam	 to	 illuminate	 the	 sample	 lens,	which	 is	 dipped	 in	 a	 liquid	with	
matching	refractive	index.	The	light	crossing	the	sample	is	collected	with	an	afocal	system	and	its	image	
recorded	on	a	CMOS	image	sensor.	The	selection	of	an	afocal	system	enables	to	capture	the	image	keeping	
the	 same	 lateral	 magnification	 when	 small	 changes	 in	 the	 sample	 position	 are	 introduced.	 The	
experimental	 device,	 shown	 in	 Figure	 10,	 comprises	 a	 vertical	 stage	 and	 several	 perpendicular	 plates	
where	different	elements	are	assembled.	The	entire	device	is	controlled	by	a	laptop	computer	which	can	
manage	the	LEDs	for	illumination,	the	stage	motors	and	the	CMOS	camera.	

	

	
(b)	

	
(a)	 (c)	

Figure	10;	Picture	of	the	experimental	setup;	a)	Polarimetric	bench,	bottom	to	top	(A)	Wires	to	connect	with	controller	and	laptop	
computer;	(B)	Light	source,	the	illumination	device	uses	a	LED	sources	@626	nm	(red))	that	can	be	electronically	switched	and	a	

100	mm	effective	focal	lens	to	collimate	the	light;	(C)	Polarizer	rotation	stage,	the	orientation	of	the	polarizer	is	also	controlled	from	
the	laptop;	(D)	Cuvette,	more	in	detail	in	picture	2b	and	2c;	(E)	Rotation	stage	for	the	analyzer,	as	the	orientation	of	the	analyzer	is	
also	controlled	from	the	laptop,	(F)	Afocal	imaging	system	to	ensure	a	constant	magnification	under	small	errors	in	positioning;	and	
(G)	CMOS	sensor;	b)	Detail	of	the	cuvette	in	the	polariscopic	bench	c)	Structure	of	the	cuvette;	(A)	holder,	the	bottom	part	is	on	

borosilicate,	(B)	lens	under	test	placed	inside	the	cuvette,	the	cuvette	here	is	empty,	otherwise	it	is	not	possible	to	see	it	(C)	cover	of	
the	cuvette	–	flat	window	of	N-BK7	glass	(D)	fixation	of	the	cover;	b)	and	c),	detailed	view	of	the	setup.	



ÓPTICA PURA Y APLICADA. www.sedoptica.es 
 

Opt. Pura Apl. 50 (3) 303-315 (2017)  © Sociedad Española de Óptica 312 

The	original	optical	behavior	of	 the	 lens	measured	with	the	setup	 in	 figure	10	can	be	seen	 in	Figure	11,	
where	a	2D	map	of	the	OPD	is	shown	(Figure	11a)	and	a	sagittal	cut	of	the	OPD	is	also	presented	(Figure	
11b)	

	 	

a	 b	
Figure	11.	OPD	of	the	manufactured	lens	for	an	object	placed	at	infinity	and	with	a	wavelength	of	626	nm	a)	2D	map,	box	dimensions	

18x18	mm		b)	Sagittal	cut,	vertical	scale	in	wavelength	units	and	horizontal	scale	in	mm	

In	 these	conditions	we	can	also	apply	 the	method	proposed	before.	We	start	 from	the	measurements	of	
the	polarimeter	which	provide	us	with	a	local	refractive	index	variation	map	of	the	lens	(Figure	12).	The	
local	changes	are	in	2.4e-10	units,	which	are	can	be	directly	translated	into	an	OPD	map	by	multiplying	the	
difference	in	refractive	indexes	by	the	local	thickness	of	the	lens	(Figure	13a).		

	 	 	
a	 b	 c	

Figure	12.-	a)	Injection-molded	lens	provided	by	ASCAMM.	The	optically	active	area	has	a	diameter	of	only	18	mm,	with	the	
surrounding	area	used	to	fix	the	lens	in	the	holder,	b)	One	of	the	measurements	obtained	using	the	polariscope,	c)	Local	refractive	

index	differences;	the	complete	image	bit	depth	(black	to	white)	covers	2.4e-10	units	of	refractive	index	

	

	 	
a	 b	

Figure	13	a)	Local	changes	of	OPD	measured,	b)	New	free	form	surface	generated	using	the	measured	local	variations	of	OPD;	size	of	
the	box	18x18	mm	
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Out	 of	 the	 local	 variations	 of	 the	 second	 surface	 of	 the	 lens	 a	 free-form	 surface	 was	 computed	 to	
compensate	 them	 and	 fitted	 to	 an	 analytical	 surface,	 in	 our	 case	 a	 uniform	 and	 symmetrical	 B-Spline	
description	was	used	[21].	The	free-form	surface	was	obtained	on	a	regular	grid	of	10x10	control	points	
which	covers	all	the	optical	area	(Figure	14).	

As	the	free-form	surface	of	the	final	lens	must	be	obtained	by	fitting,	a	merit	function	and	an	optimization	
strategy	need	be	defined.	 In	our	example	 the	merit	 function	was	set	so	 the	absolute	difference	between	
the	original	values	and	the	values	of	the	fitted	surfaces	was	less	than	0,01	microns	in	all	the	points	used	
for	the	fitting.		

𝑀𝐹 = 𝑎𝑏𝑠 𝑑𝑖𝑠𝑡 𝑟𝑎𝑤	𝑑𝑎𝑡𝑎 − 𝑠𝑢𝑟𝑓𝑎𝑐𝑒	𝑑𝑎𝑡𝑎 < 0,01				

				𝑓𝑜𝑟	∀	𝑑𝑎𝑡𝑎	𝑣𝑎𝑙𝑢𝑒𝑠	

(3)	

	

In	order	to	shorten	the	computation	time	in	the	fitting	of	Equation	3	only	a	quarter	of	the	586.000	useful	
experimental	points	collected	in	the	optical	area	were	used.		

	
Figure	14.-	Control	points	for	B-Spline	adjustment.	The	figure	presents	the	points	superimposed	to	the	2D	representation	of	the	

second	surface	of	the	lens;	size	of	the	box	18x18	mm	

	
Table	3.-	Z	value	(in	microns)	of	the	control	points	of	the	B-Spline	used	to	fit	the	second	surface	to	the	measured	local	thickness	

variations.	A	uniform	and	symmetrical	B-Spline	description	was	used.	The	X	and	Y	values	of	the	control	points	were	determined	for	
the	selected	grid	sample,	which	in	this	case	had	values	goes	from	-9	mm	to	9	mm	in	10	equally	spaced	steps.	The	reference	of	the	B-

Spline	control	points	is	taken	on	a	plane	perpendicular	to	the	Z-axis	and	tangent	to	the	apex	of	the	second	surface	of	the	lens	

	
	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

1	 0	 0	 0	 0	 423,02	 266,76	 0	 0	 0	 0	

2	 0	 0	 381,67	 299,02	 257,72	 258,25	 300,61	 384,31	 0	 0	

3	 0	 381,67	 257,72	 175,18	 133,93	 134,46	 176,76	 260,36	 385,37	 0	

4	 0	 299,02	 175,18	 92,70	 51,49	 52,02	 94,29	 177,82	 302,72	 0	

5	 423,02	 257,72	 133,93	 51,49	 10,30	 10,83	 53,08	 136,57	 261,42	 427,77	

6	 266,76	 258,25	 134,46	 52,02	 10,83	 11,35	 53,61	 137,10	 261,95	 428,30	

7	 0	 300,61	 176,76	 94,29	 53,08	 53,61	 95,88	 179,40	 304,31	 0	

8	 0	 384,31	 260,36	 177,82	 136,57	 137,10	 179,40	 263,00	 388,01	 0	

9	 0	 0	 385,37	 302,72	 261,42	 261,95	 304,31	 388,01	 0	 0	

10	 0	 0	 0	 0	 427,77	 428,30	 0	 0	 0	 0	

	

As	important	as	the	merit	function	selected	it	is	the	optimization	strategy	used	to	find	the	best	positions	of	
the	control	points,	in	our	case	we	have	used	a	Simplex	Algorithm	strategy	[22]	[23].	Table	3	presents	the	
z-coordinates	of	the	control	points	used	to	describe	the	surface	using	B-Spline	description.	Coordinates	x	
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and	y	are	linked	to	the	cell	position,	where	each	cell	correspond	to	an	incremental	step	of	1,8	mm,	which	
contains	 a	 variable	 number	 of	 experimental	 points.	 Table	 4	 presents	 the	 residual	 errors	 of	 the	 fitting	
process,	with	 the	values	 shown	 in	 each	 cell	 of	 the	 table	 corresponding	 to	 local	differences	between	 the	
average	 value	 of	 the	 fitted	 surface	 (described	 using	 B-Splines)	 and	 the	 average	 of	 value	 of	 the	 sample	
points	 in	 the	 same	 cell.	 Such	 residual	 values	 are	 presented	 on	 the	 lens	 diameter	 in	 Figure	 15,	 showing	
fitting	errors	below	0.01µm	in	all	cases.	

 
Table	4:	Residual	values	(in	microns)	at	the	selected	control	point	between	the	measured	data	and	the	nominal	surface	shape.	All	

values	are	positive	due	to	the	merit	function	used	in	the	fit.	In	all	the	values	are	below	0,01	microns	

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

1	 0	 0	 0	 0	 0,00998	 0,00989	 0	 0	 0	 0	

2	 0	 0	 0,00584	 0,00672	 0,00720	 0,00716	 0,00665	 0,00576	 0	 0	

3	 0	 0,00587	 0,00719	 0,00797	 0,00857	 0,00849	 0,00813	 0,00733	 0,00585	 0	

4	 0	 0,00672	 0,00802	 0,00892	 0,00961	 0,00954	 0,00910	 0,00798	 0,00674	 0	

5	 0,00993	 0,00716	 0,00854	 0,00952	 0,01004	 0,01008	 0,00957	 0,00867	 0,00731	 0,00983	

6	 0,00981	 0,00709	 0,00849	 0,00962	 0,01003	 0,01009	 0,00953	 0,00860	 0,00717	 0,00984	

7	 0	 0,00670	 0,00817	 0,00918	 0,00960	 0,00961	 0,00903	 0,00811	 0,00680	 0	

8	 0	 0,00571	 0,00730	 0,00808	 0,00872	 0,00865	 0,00804	 0,00725	 0,00580	 0	

9	 0	 0	 0,00584	 0,00688	 0,00708	 0,00725	 0,00672	 0,00588	 0	 0	

10	 0	 0	 0	 0	 0,00986	 0,00982	 0	 0	 0	 0	

	

	

	
Figure	15.	Residuals	of	the	fitting	in	the	selected	control	points.	Numerical	values	can	be	found	in	Table	3.	Points	(in	white)	are	

superimposed	to	the	surface.	

	

Thus,	 the	 injected	 molded	 lens,	 which	 presented	 uncontrolled	 changes	 of	 refractive	 index	 due	 to	 the	
manufacturing	 process	 used,	 can	 now	 be	 exchanged	 by	 this	 lens	 of	 equivalent	 performance,	 with	 the	
second	surface	replaced	by	a	free-form	shape	easy	to	implement	in	further	optical	simulations.	

In	 this	 particular	 example	 the	 values	 of	 the	 induced	 changes	 in	 the	 refractive	 index	 where	 below	 the	
minimum	amount	relevant	to	noticeably	impact	the	shape	of	the	second	surface.	To	validate	the	proposed	
method,	we	artificially	raised	two	orders	of	magnitude	the	weight	of	the	internal	changes	in	refractive,	so	
the	effect	 in	 the	 final	 free-form	surface	was	noticeable.	 It	 is	 stressed	 that	 such	change	 in	scale	does	not	
affect	the	validity	of	the	proposed	method.	
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5.	Conclusions		
We	 have	 proposed	 a	method	 to	model	 in	 conventional	 optical	 simulation	 software	 tools	 the	 effects	 on	
optical	performance	of	the	internal	refractive	index	changes	in	an	injection	molded	plastic	lens.	The	final	
lens	has	a	constant	refractive	index	and	the	same	geometrical	parameters	of	the	initial	lens,	but	its	second	
surface	is	replaced	by	a	free-form	surface.	In	the	paper	we	present	a	method	to	calculate	such	free-form	
surface,	and	we	have	applied	it	to	a	commercial	GRIN	lens	and	to	a	real	PPMA	injected	molded	lens	whose	
internal	refractive	index	variations	have	been	measured	using	an	in-house	built	polarimeter.		
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