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ABSTRACT

Hematopoiesis is one of the best characterized bi-
ological systems but the connection between chro-
matin changes and lineage differentiation is not yet
well understood. We have developed a bioinformatic
workflow to generate a chromatin space that allows
to classify 42 human healthy blood epigenomes from
the BLUEPRINT, NIH ROADMAP and ENCODE con-
sortia by their cell type. This approach let us to dis-
tinguish different cells types based on their epige-
nomic profiles, thus recapitulating important aspects
of human hematopoiesis. The analysis of the or-
thogonal dimension of the chromatin space iden-
tify 32,662 chromatin determinant regions (CDRs),
genomic regions with different epigenetic charac-
teristics between the cell types. Functional analy-
sis revealed that these regions are linked with cell
identities. The inclusion of leukemia epigenomes in
the healthy hematological chromatin sample space
gives us insights on the healthy cell types that are
more epigenetically similar to the disease samples.
Further analysis of tumoral epigenetic alterations in
hematopoietic CDRs points to sets of genes that
are tightly regulated in leukemic transformations and
commonly mutated in other tumors. Our method pro-
vides an analytical approach to study the relationship
between epigenomic changes and cell lineage dif-

ferentiation. Method availability: https://github.com/
david-juan/ChromDet.

INTRODUCTION

Hematopoiesis is one of the most studied biological dif-
ferentiation processes, in which different cell lineages arise
from a common hematopoietic stem cell (HSC). This sys-
tem can be seen as a hierarchical tree, where the more in-
ternal ‘nodes’ are the different lineage progenitors and the
‘leaves’ are the final mature cell types (1,2). This hierarchical
tree with many ‘nodes’ and ‘leaves’ provides the best model
to study chromatin remodeling during cell lineage differen-
tiation (3–5).

Chromatin remodeling is a dynamic process that modu-
lates the chromatin architecture and is vital to ensure proper
functioning of the cell and maintenance of its identity (6).
The de-regulation of chromatin remodeling factors often
leads to diseases such as cancers (7) and neurodevelopmen-
tal disorders (8,9). A main role in this re-organization of
chromatin is played by post-translational modifications of
histone tails, which can affect many biological processes
such as gene transcription, DNA repair, replication and
recombination (10,11). Moreover, the cross-talk between
different modifications affects the binding and function of
other epigenetic elements, increasing the complexity of the
chromatin remodeling process (12).

Despite great progress in our understanding of
hematopoiesis during the last decades (13,14), we are
still far from fully uncovering the details of the epigenetic
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mechanisms controlling this process. It is now widely
accepted that the cell phenotype is directly related to its
epigenetic makeup and that chromatin changes during
differentiation contribute to the determination of cell
fate. However, a major challenge in the field is to identify
exactly where the epigenetic changes causing phenotypic
changes occur. Similarly to the problem of distinguishing
driver and passenger mutations in cancer, we can think of
driver and passenger chromatin changes during cellular
differentiation. Chromatin drivers of cellular differenti-
ation would correspond to the subset of regions whose
change is required to perform the different differentiation
steps. As consequence, these regions must reflect one or
more changes among cell types, while being fixed in any
specific cell type. We therefore advocate the need to develop
strategies identifying these key chromatin regions and their
epigenetic changes that drive differentiation and determine
cell fate. For this purpose, we take advantage of the large
and comprehensive epigenomics datasets produced by
the partners of the International Human Epigenome
Consortium (IHEC; http://ihec-epigenomes.org/).

Here, we propose an approach to identify the key chro-
matin regions that undergo chromatin changes associated
to cell differentiation during multiple differentiation steps
in hematopoiesis (Figure 1). We define chromatin states
based on the combinatorial patterns of 6 histone modi-
fications in 42 human samples covering the myeloid and
lymphoid differentiation lineages from HSCs. This frame-
work establishes highly informative low-dimensional spaces
based on a multiple correspondence analysis (MCA; (15))
of the profiles of histone modification combinations (chro-
matin states). Our integrative analysis of chromatin states
in these samples recapitulates the human hematopoietic
lineage differentiation tree from an epigenetic perspective.
Moreover, our approach identifies 32,662 chromatin deter-
minant regions (CDRs) in which chromatin changes are as-
sociated with the various differentiation steps the cells go
through, possibly influencing their final lineage identities.
The combination of chromatin states in these CDRs consti-
tutes an epigenomic fingerprint that characterizes the dif-
ferent hematopoietic cell types. The method is available at
https://github.com/david-juan/ChromDet.

MATERIALS AND METHODS

ChIP-Seq data processing

We retrieved data for 430 chromatin immunoprecipitation
sequencing (ChIP-Seq) experiments from BLUEPRINT,
ENCODE and NIH ROADMAP. We downloaded the
hg19/GRCh37 alignments for 2 CD4+ and 1 CD8+
lymphocytes, 5 mature neutrophils, 3 CD14+ mono-
cytes, 4 macrophages and 7 CD38- B cell samples from
BLUEPRINT; 11 CD4+ and 3 CD8+ lymphocytes, 1
CD14+ monocyte and 3 CD34+ HSCs samples from NIH
ROADMAP and 2 CD14+ monocytes samples from EN-
CODE described in Supplementary Table S1 and Figure
2A. In addition, the analysis including diseases was based
on data from three acute myeloid leukemias (AML), six
chronic lymphocytic leukemias (CLL) and three mantle cell
lymphomas (MCL) from BLUEPRINT (see Supplemen-
tary Table S1). The BAM files were converted to BED for-

mat and duplicate reads were removed for all the exper-
iments. We computed different quality control measures
with phantompeakqualtools v1.10.1 (16) including total
number of reads, normalized strand cross-correlation coef-
ficient (NSC) and quality tag based on thresholded relative
strand cross-correlation coefficient (RSC; see Supplemen-
tary Table S1). We flagged those histone experiments with
less than 107 reads and no replicates; NSC < 1.05 and qual-
ity tag based on RSC < 0. Then, following a similar strategy
used previously by the NIH Epigenomics Roadmap (17),
we computed an overall quality rating per sample based on
the six core histone modification quality experiments. We
labeled samples as ‘very high quality’ if none or only one hi-
stone mark experiment failed in one out of the three quality
criteria; ‘high quality’ if two or three histone experiments
failed in one out of the three quality criteria; ‘medium qual-
ity’ if more than three histone marks failed in one out of
the three criteria or up to two broad histone modifications
(H3K36me3; H3K9me9; H3K27me3) failed in two out of
the three quality criteria; ‘low quality’ if three or more his-
tone experiments failed in two out of the three quality cri-
teria or at least one histone experiment failed in the three
quality criteria used. All the samples labeled as ‘low qual-
ity’ were discarded and not included in our study. The over-
all quality criteria for those histone experiments included in
the analysis is shown in Supplementary Table S1.

Genome segmentation

The input information used to segment the genome into dif-
ferent chromatin states was derived from six histone mod-
ifications (H3K4me3; H3K4me1; H3K27me3; H3K9me3;
H3K27ac and H3K36me3). We used the ChromHmm soft-
ware (v1.10; 18) to define a 11 chromatin-states model (see
Supplementary Figure S1) following the strategy proposed
by the ChromHMM developers to set up the different pa-
rameters like number of states for training or posterior col-
lapse (17,19,20). We evaluated the consistency and inter-
pretability of chromatin states in models learnt with dif-
ferent numbers of chromatin states (5, 7, 9, 11, 13 and 20
states), quantified as the correlation of chromatin mark fre-
quencies obtained for corresponding states across different
models, as previously done by Ernst M. and Kellis M. (19).
The results show that the 20 states model is recovered with
correlations higher than 0.75 by the states trained in the
model with 11 states, with little improvement in the 13 states
model (Supplementary Tables S2 and S3). The 11 states
model captures all the biological-interpretable states that
were consistently found in larger models.

Importantly, a manual curation of the chromatin states
based on available additional information (gene struc-
tures, CpG islands, Lamin B1, etc.) showed that the 11
states model retrieves all the main regulatory states (ac-
tive promoter, bivalent promoter, enhancer, elongation,
heterochromatin/low signal), without including any func-
tionally unclassifiable chromatin state. Therefore, our ap-
proach of selecting 11 states to train the Hidden Markov
Model (HMM) is aimed at striking an equilibrium between
a low enough number of combinations and the biologi-
cal interpretability of the states included in the analysis,
based on the ChromHMM emission probabilities correla-
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Figure 1. Framework to identify CDRs that determine cell or lineage identity based on chromatin state changes. (1a) A chromatin samples space is generated
with MCA from the chromatin segmentations by each sample. (1b) Samples are classified depending on clusters derived from the MCA analysis. (2a) A
second space is generated with MCA from the chromatin segmentations by each sample. (2b) The CDRs are obtained selecting those genomic regions
that overlap with the cluster sample fingerprints, a reference sample representing each cell type cluster. These regions discriminate the different cell types
classified in the samples space. (*Regions with chromatin changes among cell types → CDRs). See also Supplementary Figure S1 and Supplementary
Data.

tion, prior knowledge regarding the function of these marks
and our previous experience (12). In summary, the 11 states
model selected captures the biologically interpretable states
that were consistently found in larger models providing a
suitable framework for our analysis.

We generated the model with the ‘healthy’ samples ex-
cluding B cells (see Supplementary Table S1 for details).
The samples from B cells (naive and tonsil) and diseases
(AML, CLL, MCL) were segmented with the model gen-
erated previously, as they were produced at the final stages
of the BLUEPRINT project. Further, segmentations for
each sample from the 11 states model were collapsed into
5 chromatin states summarizing similar states based on the
emission probabilities, literature, biological knowledge and
genomic feature enrichments: heterochromatin/low signal
(H), enhancer (E), transcription (T), active promoter (A)
and repressed promoter (R; Supplementary Figure S1A).
Our a posteriori collapse into five chromatin states let us
group dynamic states for a more robust representation of
the epigenomic variability in cell types. In fact, differences
in strength of enhancers, promoters or elongating regions
can reflect more or less dynamic regions resulting in subtle
differences between ChIP-seq experiments.

Therefore, for each sample, we have a vector of regions
with their corresponding labels (chromatin states). In ad-
dition, we partitioned the genome into 200 bp, preserving
the associated chromatin state labels in order to have the
same number of regions in all samples and make them com-
parable. For further analysis, consecutive 200-bp intervals

with the same labels pattern in all samples were merged, any
change in one sample marking an interval transition.

Sample clustering in the chromatin sample space obtained by
multiple correspondence analysis (MCA)

In this work we propose to use a methodological proto-
col based on MCA (15), previously applied to multiple se-
quence alignments of proteins, for the automatic extraction
of relevant signatures (21) and to gene expression profiles
for sample classification (22). MCA can be considered as
an equivalent to principal component analysis (PCA) when
working with qualitative data instead of continuous vari-
ables. MCA disentangles the sources of epigenomic vari-
ability among our samples into a set of principal compo-
nents that form an orthogonal space which dimensions can
be prioritized according to their corresponding eigenvalues.
This MCA space can be reduced to a low dimensional one
preserving most of the original information but filtering the
main sources of noise. In brief, our protocol performs an
MCA on a vectorial representation of multiple chromatin
states sample vectors. It establishes the informative low di-
mensional space incorporating only those components with
the highest eigenvalues, those explaining most of the total
variance, where samples coordinates distribution is statisti-
cally different (P-value < 0.01, Wilcoxon test) between the
tested component and the previously selected one, the one
with the closer higher eigenvalue. In this work, we define the
chromatin sample space as the space formed by this set of
highly informative components coming from the MCA on
the vectors of the chromatin states for the genomic regions
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analyzed samples. Robust unsupervised k-means clustering
(23) is performed iteratively on this chromatin sample space
for a range of pre-specified number of groups (from 2 to 50).
Finally, optimal clustering solutions are detected as those
maximizing the Calinsky’s and Harabsz’s (CH) index (24).
In an analysis involving samples from different healthy cell
types, as the one presented in this work, this protocol is in-
tended to recover those cell types, or groups of cell types,
whose epigenomic differences are able to discriminate them.
These epigenetically robust groups of samples allow us to
confidently address the detection of those regions that are
important for establishing segregation of these samples.

A challenge of this approach was to deal with millions of
regions within the same analysis. However, many of these
regions will not be informative for discriminating the sam-
ple groups in our dataset. Highly variable regions and com-
pletely conserved regions are non-informative regions that
increase the computational time cost, while sample-specific
divergent regions can bias the results, being strongly influ-
enced by the presence of sample outliers or sample-specific
experimental noise. In order to reduce the influence of
sample-specific patterns contributing to outlier effects, we
focused on the set of regions presenting at least two differ-
ent chromatin states in at least two samples each of them.
Additionally, we filter out all the regions with change pat-
terns (vectors of chromatin states for each genomic region
across samples) that were poorly represented in our dataset.
In particular, we filtered out those regions whose patterns
were not shared by 10 regions (we obtain similar results for
patterns shared by 5, 10 and 15 regions; data not shown).
This step dramatically reduces the computational burden
by removing regions with low influence in sample cluster-
ing. As a result of this filtering we run our MCA framework
with 275, 825 regions from the 22 autosomal chromosomes
of all the healthy samples.

Selection of chromatin determinant regions in the chromatin
region space

Concomitantly to the detection of sample clusters, ideally
equivalent to cell types, our framework allows the detection
of the subset of regions better reflecting this inter-sample
clustering. We called these regions CDRs and they are
methodologically equivalent to the specificity determining
positions detected (21) in protein families. First, we project
the vectors reflecting every genomic region/state combina-
tion into the MCA space, generating the chromatin region
space. Vectors representing chromatin patterns perfectly as-
sociated to every combination of sample clusters were used
as fingerprints of the corresponding grouping. Every epige-
nomic region was associated to the closest fingerprint in
the chromatin region space. Finally, CDRs were defined as
those positions for which all their chromatin states were
among the top 10 shortest distances to its fingerprints and
the combination of these fingerprints form a perfect parti-
tioning of the sample clusters (for a more detailed descrip-
tion see 21). In this situation, CDRs correspond to those re-
gions with patterns of chromatin states along samples with
very few intra-cluster epigenomic changes but with at least
two clusters with different states. This definition of CDRs
highlights the two key properties of these regions: the sta-

bility of their state is important for every single epigenomic
cluster of samples and they define inter-cluster epigenomic
changes. These properties point to the putative role of these
regions in cell identity and cell fate respectively.

Chromatin determinant regions annotation, expression and
enrichment analyses

Genomic annotation was carried out with HOMER soft-
ware v4.7.2 (25). The tool annotatePeaks.pl was used with
default parameters to annotate CDRs to genes with the
following priority assigned: TSS (from −1 kb to +100 bp),
transcription termination site (from −100 bp to +1 kb), pro-
tein coding exon, 5′-UTR exon, 3′-UTR exon, intron and
intergenic. More detailed information is available in http:
//homer.salk.edu/homer/ngs/annotation.html. Gene ontol-
ogy (GO) (Biological Process; 26) and Reactome (27) en-
richment analysis were done adding the -go flag to the an-
notatePeaks.pl tool. Then, we calculated a P-value adjusted
for multiple testing based on Benjamini–Hochberg correc-
tion using the p.adjust function in R (v3.2.2). All terms with
an adjusted P-value < 0.05 were considered significant. We
summarized the GO (Biological Process) significant terms
with REVIGO (28).

The expression-associated analyses were carried out re-
trieving the RNAseq data for 60 483 protein-coding,
ncRNA, pseudo, snoRNA and snRNA genes from The
BLUEPRINT Data Analysis Portal (29). We took informa-
tion from 12 macrophages, 8 monocytes, 6 neutrophils, 4
naive B cells, 3 germinal center (GC) B cells and 21 T cells,
no data was found for HSCs from mature samples. We ap-
plied an ANOVA test to 7764 genes with CDRs associated
and adjusted the P-value with Benjamini–Hochberg correc-
tion, adjusted P-value ≤ 0.05 was considered significant.
Statistical analyses were carried out with aov and p.adjust
functions from R.

The transcription factor motif (TFM) enrichments were
performed with the findMotifsGenome.pl tool included in
HOMER software (v4.7.2; 25). To determine the relative
enrichment of known TFMs we excluded the CDRs re-
ferred to transcription, as they are related to polymerase
elongation and not to transcription factors binding. The
searches were done against a selected random background
of windows adjusted to have equal GC content distribu-
tion in each of the input sequences. The region size was set
up to ‘given’, other parameters were used by default. More
detailed information is available in http://homer.salk.edu/
homer/ngs/peakMotifs.html. The TFMs with a q-value <
0.01 at least in one cell type were considered significant and
selected to generate Figure 3C. We did not find enriched
TFMs for T cells and neutrophils. The expression analyses
for 28 of the transcription factor binding proteins of Fig-
ure 3C were performed with the same approach described
above, the transcription factors in HSCs were not included
in the expression analysis since BDAP does not provide data
for HSCs.

Chromatin state transitions among cell types were repre-
sented with a Sankey diagram in Figure 3A using the ‘mak-
eRiver’ and ‘riverplot’ functions included in the ‘riverplot’
R package (v0.5; https://cran.r-project.org/web/packages/
riverplot/index.html).
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Chromatin determinant regions in the context of disease

The ‘healthy’ hematopoietic chromatin sample space pro-
vides us a reference sample space, reflecting the informa-
tive epigenomic distances between normal hematopoietic
cell types. As it is based on the major sources of informa-
tion involved in hematopoiesis, it also serves us to study to
what extend leukemic epigenomes retain features important
to define the cell identity of the normal cell types.

In order to get a clearer view of these residual signals of
‘normality’, we focused on those CDRs for which the tu-
moral sample shows a chromatin state present in any cell
type. For this, we projected the leukemic samples on the
‘healthy’ hematopoietic chromatin sample space, but con-
sidering only the influence of these CDRs. In practice, it
means that every leukemic sample is projected based on a
different number of regions and its position reflects the ex-
tent to which these regions correspond to patterns more
related to one or other healthy cell type. This approach
allows us to reduce the effect of tumor-related epigenetic
changes and to weigh the contribution of patterns of chro-
matin states associated to more than one cell type according
to their influence in the ‘normal’ chromatin sample space.
We also projected the prototypic ‘normal’ cell types repre-
sented by the vectors presenting the chromatin states char-
acteristic of the corresponding cell type for each CDR. Dis-
tances of leukemic samples to these prototypic ‘normal’ cell
types reflect the similarity of the chromatin states in CDRs
balancing the effect of chromatin states shared with other
‘normal’ cell types.

Despite the effect of focusing on ‘conserved’ states in
CDRs, highly transformed leukemic samples could include
a relevant number of changes to chromatin states character-
istic of a different cell type. These effects will contribute to
leukemic samples with less ‘cell type-specific’ CDRs. This
situation can lead to less well-defined clusters of leukemic
samples. Therefore, we decided to perform a hierarchi-
cal clustering (using Ward’s method with euclidean dis-
tances as implemented in pheatmap v1.0.8 R package, http:
//CRAN.R-project.org/package=pheatmap) in this CDRs-
based chromatin sample space, to illustrate the associa-
tion of different leukemias to different cell types. As HSCs,
macrophages and GC B cells ‘prototypic’ cell types were
clearly very distant to the projections of all leukemic sam-
ples in this space, they were not considered in the hierar-
chical clustering, in order to improve the resolution of the
relationship of tumoral and healthy samples.

We also define the ratio of CDRs with a chromatin state
different to any healthy cell type as the tumoral epigenomic
divergence. It represents how divergent a tumoral sample is
from the space of healthy states calculated with the normal
samples. Therefore, higher divergences imply higher prob-
abilities that the cell type of origin of the tumoral sample
is not represented in the healthy chromatin space or that
the tumoral sample diverged so much than its projection
on this space should be taken with care. The analyzed tu-
moral samples show epigenomic tumoral divergences rang-
ing from 0.02 to 0.08 with higher values for AML sam-
ples, suggesting that they can be confidently analyzed in this
space.

We defined CDRs altered in leukemias as those CDRs in
which more than 50% of the tumoral samples show a chro-
matin state not observed in any normal sample. One of the
advantages of this definition is that it is agnostic about the
cell of origin of the tumor. Obviously, this definition, as any
other, is limited to the cell types included in the study and
some of these regions could be reclassified when more cell
types (especially progenitor cell types) are available. In ab-
sence of more information, this criterium provides a simple
definition of regions that are potentially important for tu-
moral progression.

Specifically altered regions in AML (or CLL or MCL)
were defined as those CDRs with more than 50% of the
AML (or CLL or MCL) samples presenting an unob-
served state in normal cell types, but lower than 50% in
the other two leukemia types. In both cases, CDRs altered
in leukemia were analyzed using HOMER, as explained
above. For exploring tumor-specific GO and Reactome en-
richments, those terms enriched also in the whole set of
CDRs were filtered out from altered CDR enrichments.

Resources

Method availability: https://github.com/david-juan/
ChromDet

UCSC track hub to browse the CDRs and the chromatin
states for all samples: http://genome.ucsc.edu/cgi-bin/
hgTracks?db=hg19&hubUrl=http://mcahematopoiesis.
bioinfo.cnio.es/carrillo et al NAR/hub.txt

Chromatin states model and segmentations: ftp:
//ftp.ebi.ac.uk/pub/databases/blueprint/paper data sets/
chromatin states carrillo build37

RESULTS

The chromatin space of human hematopoietic differentiation

We carried out a multi-group comparative analysis of chro-
matin states for representative cell types of the myeloid and
lymphoid lineages to understand how epigenetic changes
in chromatin are related to hematopoietic differentiation in
humans. We focused our analysis on a set of 42 blood IHEC
epigenomes from eight different cell types, with at least three
independent biological replicates available: HSCs (HSC; n
= 3), neutrophils (n = 5), monocytes (n = 6), macrophages
(n = 4), naive and GC B cells (n = 4 and n = 3) and CD4
and CD8 T cells (n = 13 and n = 4), see Figure 2A and Sup-
plementary Table S1 for details.

These epigenomes were assembled from ChIP-seq data
generated by three IHEC consortia: BLUEPRINT (n = 22),
NIH ROADMAP (n = 18) and ENCODE (n = 2). We in-
tegrated ChIP-Seq data experiments for the six core his-
tone modification marks that are required to be included
in IHEC epigenomes: H3K27ac marking active regulatory
regions, H3K4me3 marking promoters (30,31); H3K4me1,
related to enhancers (30); H3K36me3, marking transcrip-
tion (30); H3K27me3 and H3K9me3, associated with poly-
comb and heterochromatin repression, respectively (30).
Importantly, we only used histone mark sets where all
six marks were profiled in the same individual (i.e. each
epigenome corresponds to a unique individual).
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A multivariate HMM was employed to learn combinato-
rial chromatin states based on the six histone marks using
ChromHmm (18). However, others methods to segment the
genome based on histone marks (or other features) could
be used at this step, like Segway (32), EpicSeq (33), hiHMM
(34), chromstaR (35), IDEAS (36) and others. In fact, the
input for our method are the genome segmentations for
the included samples. This means that users could use our
method with the genome segmentations obtained by the
software of his/her choice.

Further, the genome of each sample was segmented using
the 11 combinatorial chromatin states model generated (see
Supplementary Figure S1). To facilitate biological interpre-
tation, the 11 chromatin states were further collapsed into
5 functional chromatin states encompassing five main cat-
egories: transcription (T), heterochromatin/low signal (H),
repressed promoter (R), enhancer (E) and active promoter
(A; see ‘Materials and Methods’ section for details; Supple-
mentary Figure S1A). Thus, for each sample, we can cre-
ate a vector representing the chromatin state of consecutive
200 bp windows along with the whole genome, using this
reduced five-state alphabet. In order to reduce biases as-
sociated to the different size of each regulatory region, we
collapse contiguous 200 bp windows having the same chro-
matin states pattern along all the samples (see ‘Materials
and Methods’ section for details).

Our initial aim was to generate a low-dimensional chro-
matin space, a graphical representation of the structure
and dimensionality of a complex and large data set, re-
flecting the major sources of epigenetic differences among
hematopoietic samples (e.g. changes in chromatin states).
To this end, we applied a protocol based on MCA, which we
have previously applied to protein sequence (21) and gene
expression (22) analysis. MCA is an analysis similar to PCA
but appropriate for categorical data. We created an MCA-
based multi-dimensional space in which the different sam-
ples are placed based on their vectors of chromatin states
across the genome. The first stage of our protocol selects
the minimal number of the most informative components
that are relevant in this space, which already allows us to
detect clusters of samples (see Figure 1).

Application of this approach to the matrix of collapsed
chromatin states along the autosomal chromosomes in the
42 different samples results in a hematological chromatin
sample space with the first two components as significantly
informative according with a Wilcoxon test (Figure 2B; see
‘Materials and Methods’ section for details). Samples from
the same cell type cluster together and the major blood cell
types are clearly separated from each other, showing that the
origin and technical biases of the samples are not affecting
the results (three different consortia and therefore different
laboratories). The relative samples distribution and the clus-
tering are robust, as shown by analyzing each of the autoso-
mal chromosomes independently (see Supplementary Fig-
ure S2).

As in PCA approaches, the interpretation of the two com-
ponents selected by our method to separate the different
cell types can lead to biological insight. Interestingly, the
first component, represented on the horizontal axis, clearly
separates myeloid (left side) from lymphoid cell types (right
side) with HSCs situated in a central position. On the other

hand, the second component on the vertical axis seems to
reflect the lineage-independent epigenomic changes needed
for the differentiation of the cell types from the HSCs, com-
bined with the sample environment. We can draw a path
from the pluripotent HSCs in bone marrow (at the bottom
of the plot) all the way to the more mature cell types or sub-
populations, such as in vitro cultured macrophages and GC
B cells from tonsil (at the top of the plot). The central lo-
cation of neutrophils, monocytes, T cells and naı̈ve B cells
from venous blood in this space suggests less epigenomic
changes between these cell types and the HSCs (see Figure
2B). Interestingly, neutrophils and T cells are the cell types
with least epigenomic changes from the HSCs. However, as
in previous works based on single chromatin marks (37),
we fail to discriminate CD4 and CD8 T cells, which form
a tight cluster. In conclusion, our approach is able to cap-
ture the main biological differences between cell types, and
is fully consistent with the known underlying biological pro-
cess, showing that epigenomic states are an excellent source
of information for discriminating these cell types.

Obviously, the value of the results obtained by our ap-
proach depends on the input information. Therefore, we
strongly encourage introducing proper quality criteria to
decide the inclusion of a sample in the analysis (see ‘Ma-
terials and Methods’ section). Interestingly, a detailed eval-
uation about the effect of using different input data from the
segmentations (see Supplementary Data and Supplemen-
tary Figures S3–S5) supports the use of collapsed chromatin
states to discriminate samples by cell type. These analyses
identify elongation and enhancer states as the most infor-
mative sources of information, and illustrates the potential
of our MCA-based approach for dealing with epigenomic
data. Consequently, for studying CDRs associated to dif-
ferentiation, we strongly recommend collapsing chromatin
states into a small number of robustly defined states reflect-
ing major functional shifts in transcription and enhancer
activities, instead of more dynamic variations in the strength
of the signal associated to these functions.

Chromatin determinant regions (CDRs)

So far we have shown how the MCA approach permits the
generation of a space in which to robustly locate the dif-
ferent hematopoietic samples. Next, we aimed to identify
the specific genomic regions that contribute most in defin-
ing specific cell types. We call these regions CDRs (Figure
1).

In order to retrieve these CDRs, we applied the second
stage of our MCA-based protocol (21). This involves build-
ing a hematological chromatin regions space, in which each
genomic region can be located based on its pattern of chro-
matin states across cell types (see Figure 1). For this we pro-
jected the chromatin states of every region of the genome on
the same principal components of the hematological chro-
matin samples space. In this space we identify which regions
have chromatin states that can discriminate the different
cell types classified in the samples space (that is the differ-
ent sample clusters). In practical terms, using this approach
we find the CDRs that give rise to differences between cell
types. For instance, a given region can show an enhancer
state in lymphoid cell samples and a heterochromatin/low

Downloaded from https://academic.oup.com/nar/article-abstract/45/16/9244/3976483/Automatic-identification-of-informative-regions
by guest
on 11 October 2017



9250 Nucleic Acids Research, 2017, Vol. 45, No. 16

Figure 2. Hematopoietic cell types cluster based on chromatin states. (A) Schematic differentiation tree of the cell types considered, highlighting the tissue
of origin and environment of each sample type. (B) Clustering of the samples in the MCA space recovers ontological relationships among cell types. (*Cell
types with samples from different consortia) See also Supplementary Figure S2, Supplementary Table S1 and Supplementary Data.

signal state in the rest of the samples. In other cases, our
protocol allows us to recover more complex patterns, such
as those in regions able to discriminate more than two cell
type groups. Starting from a total of 2,687,482 genomic re-
gions for the 22 autosomal chromosomes included in the
analysis, we recovered a total of 32,662 CDRs comprising
20,421,600 bp (a 0.71% of the canonical autosomal chro-
mosome size) (see Supplementary Table S4).

As mentioned above, each CDR can be associated to a
pattern of states across the different cell types, pointing to
chromatin changes that might be drivers of cell differentia-
tion. The most abundant CDR patterns we identified corre-

spond to regions that have a transcription or enhancer state
in one or two cell types, while having a heterochromatin/low
signal state in the others (see Supplementary Figure S6
and Supplementary Table S5). The six most frequent pat-
terns, that together comprise 61% of the CDRs, present
transcription or enhancer states in GC B cells, HSC
and macrophages, while having heterochromatin/low sig-
nal states in all other cell types (see Supplementary Fig-
ure S6 and Supplementary Table S5). In general, CDRs re-
lated to transcription states are larger than the ones show-
ing patterns with other states (see Supplementary Figure
S7). In addition, we can distinguish patterns that are cell
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type-specific (69, 3%), lineage-specific (16, 9%), which are
shared by two or more close cell types, and others with more
complex patterns between more distant cell types (13, 8%;
see Supplementary Figure S8). We have included UCSC
browser’s screenshots of two interesting genes that show
nearby CDRs, ABHD16B that shows transcription in the
lymphoid lineage and LINC00494 active only in B cells
(Supplementary Figure S9). As far as we know, these genes
have not been previously related with hematopoiesis.

Recently, Corces et al. (38) generated ATAC-seq profiles
to analyze the chromatin accessibility in a comprehensive
collection of hematopoietic cell types, of which HSCs, B
cells, T cells and monocytes are also included in our analy-
sis. Around 10% of their defined set of 774 cell type-specific
regions based on differential accessibility (38) overlapped
with our defined CDRs. For these regions, we analyzed the
ATAC-seq signal distributions for different CDR patterns
(see Supplementary Figure S10). Importantly, we found
that CDRs that show cell type-specific active state patterns
in HSCs, B cells, T cells and monocytes respectively also
show increased chromatin accessibility specifically for those
cell types in the ATAC-seq data.

CDR chromatin state transitions across hematopoiesis

A more detailed analysis of the CDR transitions between
cell types following the differentiation process can provide
insights about chromatin remodeling across lineages. From
the first pluripotent stage (HSCs), four possible second
stages can be obtained (monocytes, neutrophils or naive B
cells, T cells, according to the branch). After a further round
of differentiation the third stage comprises macrophages
(originating from monocytes) and GC B cells (originat-
ing from Naive B cells). Figure 3A shows transitions in
CDR states across the various branches of the differenti-
ation process. We observe the transitions from the HSCs
to the second stage to be characterized by a turning off
of active and enhancer CDRs. In contrast, in the second
round of differentiation (from monocytes and naive B cells
to macrophages and GC B cells, respectively) there is an in-
crease in the activation of promoter and enhancer CDRs.

CDR association to genes and transcription factors binding
sites

Chromatin state changes at CDRs might be pointing to
drivers of cell differentiation and could be involved in reg-
ulating the expression of nearby genes that are important
for these cell type transitions. We found most of the CDRs
(94.5%) in intergenic and intronic regulatory regions, with
an enrichment in the promoter and 5-UTR regions over the
genomic background (see Supplementary Figure S11). A
detailed annotation of each CDR is available in Supplemen-
tary Table S6. We associated each cell type-specific CDR
to its most proximal gene and carried out a multi-group
gene expression analysis of all the mature cell types, tak-
ing advantage of The BLUEPRINT Data Analysis Portal
(BDAP; 29). The analysis was carried out on 7,764 genes
with gene expression data available and associated CDRs,
out of 60,483 included in BDAP, including protein-coding,
ncRNA, pseudo, snoRNA and snRNA genes. The analysis

showed that 81% had significant gene expression differences
(adjusted P-value < 0.05) across the mature cell types (see
Supplementary Table S7).

Further, functional-enrichment analyses were performed
for the genes associated to each cell type-specific CDR
having specifically active promoter, enhancer or transcrip-
tion states (see Figure 3B; Supplementary Figures S12–S18;
Supplementary Table S8; see ‘Materials and Methods’ sec-
tion for details). As expected, genes proximal to the CDRs
defining HSCs were mainly enriched in processes related to
development and cell differentiation.

CDRs defining the myeloid lineage were close to genes
related to tissue development and antimicrobial response
among others. On the other hand, for CDRs defining the
lymphoid lineage we found genes related to T-cell activa-
tion, cytokine production or response to interleukin-4, a cy-
tokine produced by T cells involved in humoral and adap-
tive immunity (39). CDRs defining the two different B cell
types were associated to genes with functions in prolifera-
tion and differentiation.

In addition, different neuron terms for differentiation
and development were enriched for different cell types.
These enrichments could be explained by the overlap in
the molecular programs for hematopoiesis and neuropoiesis
(40–42). The hematopoietic system is involved in many
processes and genes related with neuronal development
and function have been observed as expressed in different
hematopoietic cell types (43). For example, we find a CDR
overlapping with the gene encoding for Basp1 (Brain Abun-
dant Membrane Attached Signal Protein) that belongs to
many differentiation/morphogenesis-related GO terms, in-
cluding ‘central nervous system development’. This and
other related neuronal genes were shown to be upregulated
in GC B cells, where its pattern of gene expression is as-
sociated to the development of neurite-like projections of
the membrane (44). Furthermore, interactions between the
nervous and immune systems are required for organ func-
tion and homeostasis (45). A report has shown that primary
CD34+ hHSCs express mRNA for a number of proteins
that are used by neurons (among other cell types), including
receptors for trophic factors and other mediators that are
known to influence neuronal development (42). Finally, the
similarity between these two differentiation programs could
explain the fact that HSCs can differentiate to neural cells,
albeit at relatively low efficiency (46–48).

We next asked whether CDRs involving cell type-specific
active promoter or enhancer states were enriched in TFMs
(see ‘Materials and Methods’ section for details). Hierar-
chical clustering based on the TFM enrichment patterns
clearly separates the HSC TFMs profiles from those of the
myeloid and the lymphoid cell types (Figure 3C). A detailed
annotation for motifs in each CDR is available in Supple-
mentary Table S6.

We observed in HSCs a specific motif enrichment for
GATA factors, which have been related to regulation of
the self-renewal of long-term HSCs and differentiation of
bone marrow-derived mesenchymal stem cells (49–52). En-
richment in binding motifs for factors like RUNX, implied
in stem cell fate maintenance and normal function, was
also observed in HSCs-specific CDRs (53,54). GATA and
RUNX factors were described by Corces et al. (38) as domi-
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Figure 3. Functional and transcription factor binding motifs characterization of chromatin determinant regions (CDRs). (A) Sankey Plot representation
of chromatin state transitions at CDRs during hematopoietic cell differentiation. Nodes for each cell type represent the five ‘collapsed’ chromatin states
(see ‘Materials and Methods’ section). For each pair of cell types in the hematopoietic differentiation pathway, flows, represented by line thickness, are
proportional to the number of regions that show a transition between a particular pair of states. Changes in chromatin states between two stages of
differentiation are shown with lines that change color. The thickness of the lines is proportional to the number of regions that show a transition between
a particular pair of states. (B) Enriched ontology terms from the genes related to the CDRs that characterize each cell type. (C) Heatmap and hierarchical
clustering based on transcription binding proteins enriched in the CDRs that characterize each cell type (see ‘Materials and Methods’ section). See also
Supplementary Figures S3–15, Tables S2–6 and File S1.
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nant regulators of chromatin accessibility in hematopoiesis.
Interestingly, motifs for the so far uncharacterized factor X
gene family, known to regulate the major histocompatibil-
ity complex class II (55), were also exclusively enriched in
CDRs specific for HSCs.

In myeloid cell types, CDRs specific to monocytes are en-
riched in binding motifs for the C/EBP homologous pro-
tein (CEBP/CHOP) and its interactor ATF4 (56,57), which
plays a key role during the differentiation of the monocyte
lineage (58,59). In contrast, EGR1 and EGR2 binding mo-
tifs, which are essential for macrophage but not for granu-
locyte differentiation (60,61), are enriched in macrophages.
Higher expression at RNA level is observed in macrophages
compared with monocytes and mature neutrophils (see
Supplementary Figure S19). In addition, enrichment for
transcription factor binding sites related to macrophage dif-
ferentiation like STAT3, JUND, MITF, NUR77 or ATF2
(62–66) is observed in CDRs specific to macrophages (Fig-
ure 3C).

Binding motifs for members of the NF–KB complex
(NF–KB, RELA, IRF2), implicated in stimulus response,
were enriched in CDRs characterizing GC B cells. It is
known that defects of this complex in GCs affect their main-
tenance and B-cell differentiation (67,68). In addition, we
observed enriched motifs for Early B-cell factor 1 (EBF1), a
central transcription factor in B cells implicated in GC for-
mation and class switch recombination (69,70), Oct2 and
Fli1, transcription factors expressed in B cells and related
to normal B-cells proliferation (71,72).

TFMs from the ETS transcription factor family genes
(GABPA, ETS1, SpiB, PU.1 and ELF5) were enriched in
all cell type-specific CDRs. These gene families are ubiqui-
tously expressed in the different blood cell types, although
they are known to play specific roles in different cell types.
For example, in monocytes, PU.1 regulates the transcrip-
tion of a large proportion of myeloid-specific genes, while
in B cells it is involved in regulating the transcription of the
heavy and light immunoglobulin chain genes (73).

Finally, we took advantage of BDAP expression data
for 28 transcription factors whose DNA binding motifs
were enriched in CDRs (Figure 3C) and for which expres-
sion data were available. We excluded transcription factors
whose binding motifs were specifically enriched in HSCs as
this immature cell type is not included in BDAP. A subset
of 96.5% (27/28) of them showed differential expression be-
tween cell types (see Supplementary Table S7). In addition,
we observed that 60% (16/27) of the transcription factors
with changes in expression also have a CDR associated to
them by proximity, suggesting a central role for chromatin
regulatory regions in the hematopoietic regulatory network.

Taken together, the gene expression, GO and TFM-
enrichment analyses suggest that the identified CDRs are
indeed important functional regions, where chromatin re-
modeling is linked to cell fate. Overall, we have shown that
our approach is useful to identify key and potentially driver
local changes in the epigenomes of healthy cells across dif-
ferent hematopoietic lineages.

Clustering of healthy and leukemic samples based on CDRs

The framework explained above allowed us to identify spe-
cific genomic regions that are under epigenetic control and
might contribute to define blood cell types. This framework
can be further exploited to analyze the relationships be-
tween leukemia and healthy cell types.

Extensive epigenetic changes are common in most
leukemias and solid tumors (74) and epigenetic features
such as DNA methylation or open chromatin have been
shown to be useful to identify the cell of origin of tumors
(75,76). However, given the extensive genome-wide epige-
netic alterations of tumor cells, matching tumoral cells with
their healthy counterparts is a great challenge and an essen-
tial step to identify the chromatin changes leading to malig-
nancy.

The CDRs constitute an epigenetic signature of
hematopoiesis. Therefore, we reasoned that they should be
useful to classify blood cancer samples according to their
similarity to normal cell types. We used the data generated
by The BLUEPRINT consortium for three hematopoietic
neoplasms, including six CLLs, three AMLs and three
MCLs to explore the epigenetic similarity among healthy
and cancerous samples.

We projected the leukemic samples on the healthy
hematopoietic chromatin space, based on their chromatin
states at CDRs (see Supplementary Figure S20 and ‘Mate-
rials and Methods’ section). Next, we used the distance of
each leukemic sample to a reference healthy cell type (Sup-
plementary Figure S20) to quantify the similarities and dif-
ferences observed at the CDRs level between healthy and
disease epigenomes.

The distribution of the leukemia samples in the CDRs
healthy hematopoietic chromatin sample space separates
them into two main groups. The AML samples localized
into the myeloid region of the space, while the CLL and
MCL samples were in the lymphoid region (see Supplemen-
tary Figure S20). A hierarchical clustering based on the dis-
tances of each leukemia sample to each reference healthy
cell type shows that CLL and MCL samples both cluster
with the reference Naı̈ve B cell (see Figure 4; cluster I). In
contrast, AML samples are distributed in more than one
cluster, with two samples clustering within the reference
neutrophil cluster IV and the other one within the reference
monocyte cluster II, suggesting a different origin for these
tumors.

Each tumoral sample was projected onto the healthy
hematopoietic chromatin sample space using the CDRs
whose chromatin states are represented in any of the healthy
cell types (see ‘Materials and Methods’ section). However,
there is a variable number of CDRs per tumoral sample
whose chromatin state is not represented in the normal
cell types. We can view these chromatin states either as
features related to maturation stages of cells not included
in our analyses, or as changes that have occurred specifi-
cally in the malignant transformation. Interestingly, we can
observe characteristic divergence patterns for the different
neoplasms (Figure 4). AML samples appear to be epige-
netically more divergent from the healthy states than those
closer to the B-cell derived cancer samples.
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Figure 4. Hierarchical clustering of leukemias based on CDRs of healthy cell types suggests potential lineage origin of tumors. The healthy cell type clusters
are summarized by each fingerprint, a reference sample representing each cell type cluster. The euclidean distances between samples and fingerprints are
calculated with the Ward’s method. The barplot in the right shows the epigenomic divergence (ratio of chromatin changes in CDRs) of each cancer sample
to the healthy states. See also Supplementary Figures S16–20 and Tables S7–9.

We analyzed these divergent CDRs as a potential source
of information about epigenomic alterations that might be
important for tumoral transformation. To this end, we fo-
cused on those 297 CDRs where most of the leukemic sam-
ples have a potentially unhealthy chromatin state (a chro-
matin state that is never observed in the healthy samples, see
Materials and Methods’ section and Supplementary Table
S9). We proceeded by associating these CDRs to genes by
proximity and investigated whether these genes were com-
monly regulated or mutated in tumors.

Functional enrichment analysis of the 177 genes asso-
ciated to these CDRs by proximity showed that they are
mutated in a large number of tumors, including AML and
CLL (COSMIC tumoral signatures (77), P-value < 0.05,
see Table 1 and Supplementary Table S10). An analysis of
those CDRs specifically altered in each of the leukemias
(282 CDRs in AML, 591 in CLL and 727 in MCL) shows
similar results. However, we observed that mutational signa-
tures associated specifically to AML, CLL and MCL were

enriched only in tumors different from the leukemia where
we detected the epigenomic alteration (see Table 1 and Sup-
plementary Table S10).

On the contrary, when comparing with gene signatures
regulated in tumors, we found that genes associated to al-
tered CDRs in AML and CLL respectively are enriched in
the expression signatures of the corresponding leukemias
(MSigDB gene expression signatures (78), P-value < 0.05,
see Table 1 and Supplementary Table S10). This result sup-
ports that these alterations in CDRs are linked to the de-
tected gene expression changes in the associated genes (see
Table 1 and Supplementary Table S10).

We also found that the three sets of genes specifically al-
tered in the different leukemias are all enriched in the same
general processes: differentiation and development, cell–cell
adhesion, endocytosis and phagocytosis or metabolic pro-
cesses (GO biological process, P-value < 0.05, see Supple-
mentary Table S11 and Figures S21–S24). Although these
sets of genes are related to similar processes, they con-
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Table 1. COSMIC and MSigDB enrichments for leukemia-altered CDRs

The values in orange background are statistically significant. See also Supplementary Table S10.
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tain different genes (only three genes in common among
the three leukemias) and they are related to different de-
tailed functions. In fact, genes associated to CDRs altered
in most AML samples are mainly enriched in membrane
transporters and metabolic pathways, those altered in CLL
are enriched in many signal transduction pathways (VEGF,
WNT, FGFR, ERBB or MAPK signaling) and those in
MCL in morphogenetic and developmental processes (P-
value < 0.05, see Supplementary Table S11). These ob-
servations draw a scenario where leukemic mutations and
epigenomic alterations point to the same processes that are
key for tumor progression, but involve different genes in
a leukemia-specific way. Taken together, these results show
the potential of our proposed CDR approach to character-
ize hematopoietic cell types in normal differentiation and
disease.

DISCUSSION

Chromatin remodeling is an essential process for deter-
mining the set of phenotypes deployed by eukaryotic cells.
Chromatin regulation is based on combinatorial associ-
ations among proteins and complex communication net-
works, which define the functional states of the different
genomic/chromatin regions (12). These functional states
play a determinant role to define cell identity during the
differentiation process. Despite the great efforts made in
the last few years to generate functional chromatin maps
for many cell types (19,37), we are still far from identifying
the genomic regions where driver chromatin changes occur,
their association with functional changes that give the cell
its identity during development or their implications in dis-
ease.

Hematopoiesis is possibly the best characterized differ-
entiation process, usually represented by a hierarchical tree
based on morphological criteria and refined with surface
markers (1). Hematopoiesis provides a well-defined model
to study cell differentiation from an epigenetic perspective.
We face the challenge of studying this process by integrat-
ing epigenomic information from multiple human blood
cell types and different data sources. The blood IHEC
epigenomes provide a unique opportunity to investigate the
epigenetic basis of lineage determination.

We have developed a new protocol, based on a useful
and powerful multivariate framework based on a rigorous
statistical approach, to define in an unsupervised manner
which cell types are epigenetically distinguishable. Impor-
tantly, we simultaneously identify the key genomic regions
driving these differences. These regions, named CDRs,
can be considered as the epigenetic signatures of human
hematopoiesis, a set of reference regions that through their
epigenetic changes might be able to drive hematopoiesis.

The results are robust to the possible noise introduced by
consortia-specific protocols and the clusters obtained pro-
vide perfect classification of samples in the different cell
types. We observed clear clusters for seven cell types plus
an additional cluster for CD4+ and CD8+ T cells. Inter-
estingly, a recent work using H3K4me1 and H3K27me3 hi-
stone modifications independently was also unable to dis-
criminate CD4+ from CD8+ T cell types (37), supporting

the hypothesis that the epigenomes of these cell types are
very similar.

The sample space, in addition to clearly separating the
myeloid from the lymphoid lineages, reflects the epigenetic
distance of each cluster from the HSC. Although both the
classical and the more recent alternative hematopoietic hi-
erarchical differentiation models propose a similar differ-
entiation distance for neutrophils and monocytes or T and
B cells (1,2), our space shows clearly very different epige-
netic differentiation distances for neutrophils and mono-
cytes, as well as for T and B cells. These differences suggest
that cell types with shorter epigenetic distances from HSCs
may reach the mature state earlier. In the case of murine fe-
tal liver T and B cells, it is known that the T-cell progenitors
appear earlier than the B cells ones (79).

The classical hematopoietic model establishes that the
HSCs differentiate into the common myeloid progenitor
(CMP) or the common lymphoid progenitor (CLP), di-
vided in the myeloid and the lymphoid lineages (1). How-
ever, this model is under discussion, as it has been shown
by Kawamoto et al. (79) and other authors (80–83) that the
T- and B-cell progenitors retain the potential to differenti-
ate into myeloid cells. These results have led to the proposal
of an alternative ‘myeloid-based’ model for hematopoiesis
(79), which would suggest that the two main branches are
not as well separated as initially thought. Interestingly, we
found that the epigenetic distance between neutrophils and
T cells is very short in our model, both cell types being very
close to the HSC group.

Unfortunately, although our CDRs refer to chromatin
changes during all the lineage differentiation steps, data for
progenitors (GMP, CMP, CLP, MPP, . . . ) do not meet the
IHEC standards and could not be used in our analysis.
Therefore, we can not assign each CDR to the precise in-
termediate cell type in which it was originated. The future
availability of complete epigenomes for more cell lineages,
including intermediate progenitors, will provide additional
information to assess whether the myeloid-based differenti-
ation model proposed by Kawamoto et al. (79) is consistent
with the chromatin landscape.

The strength of our protocol, beyond providing a classifi-
cation of cell types, is to identify the CDRs that drive human
hematopoiesis. We detected 32,662 CDRs that represent the
epigenetic signature of hematopoiesis for the cell types in-
cluded in the analysis. Interestingly, we observed that all the
transitions starting from HSCs to other cell types were en-
riched in epigenetic inactivation, while the Monocytes-to-
macrophages and naive-to-GC B-cells transitions are en-
riched in epigenetic activation. These results suggest that
the differentiation process involves a first phase character-
ized by loss of stemness through epigenetic repression of the
HSC processes, followed by activation of more specific regu-
latory programs that define specific differentiated cell types
(84–87).

A further characterization of these CDRs showed that
they are enriched in DNA binding motifs of transcription
factors with a key role in hematopoiesis. These results sup-
port the idea of CDRs as driver regions whose chromatin
reconfiguration is associated to cell type-specific regulatory
programs. Moreover, we also observed that these regions
are proximal to genes with functions in cell differentiation
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and cell type- or lineage-specific processes, coherent with
the transitions reflected by the epigenetic pattern of the re-
gions.

As only a subset of blood cell types was used in this analy-
sis, these CDRs have to be seen as only a first approximation
to understand human hematopoiesis from an epigenetic
perspective. It is important to note that other previous mod-
els were proposed based on surface markers (88) or mice
models with DNA methylation (4) and transcriptomics (2).
Although the human hematopoietic differentiation model
closely resembles the murine one, accumulated evidence has
shown that they differ in important aspects. For example,
the HSC immunophenotypes (1) or hematopoietic gene reg-
ulation programs are not fully conserved between species
(89).

In addition to providing a useful epigenetic signature of
hematopoiesis, we have also shown that the CDRs could
provide useful information about disease-related epigenetic
features. We applied our method to study the epigenetic sim-
ilarities between leukemias and healthy cell types by pro-
jecting the leukemia samples in the space generated with the
CDRs. We hypothesized that leukemia derived from certain
healthy cell types would maintain the epigenetic CDR sig-
nature of its cell of origin. Indeed, our approach recovers
a coherent distribution of hematological cancers, with B-
cell neoplasms clustering close to B naı̈ve cells, and a more
heterogeneous classification of the AML samples. AML is
known to be a very heterogeneous disease with many dif-
ferent subtypes and a difficult clinical classification (90,91),
which would explain why two of the AML samples clus-
ter close to neutrophils, and the other one with monocytes.
In addition, we also performed a functional analysis of
the CDRs more recurrently epigenetically changed in dif-
ferent leukemias, showing that they tend to target general
processes (such as differentiation and development, cell–
cell adhesion, endocytosis and phagocytosis). Interestingly,
different genes within these pathways are either epigeneti-
cally altered or mutated in the specific leukemias, suggest-
ing mutual exclusivity of the two types of alterations in the
same genes. In summary, our proof of concept application
of the epigenetic signature of hematopoiesis in the study of
leukemia shows the power of our methodology. Only when
more leukemia and complete progenitor epigenomes will
become available, we will be able to exploit the full potential
of this approach.

In conclusion, our results have shown the value of our
multivariate framework in investigating the differentiation
processes. We propose a catalog of epigenetic signatures
of human hematopoiesis, based on the CDRs that best
describe the different cell types. This catalog, with fur-
ther refinements by the inclusion of additional cell types
and hematopoietic progenitors, could become the reference
IHEC resource for human hematopoiesis studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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91. Papaemmanuil,E., Döhner,H. and Campbell,P.J. (2016) Genomic
classification in acute myeloid leukemia. N. Engl. J. Med., 375,
900–901.

Downloaded from https://academic.oup.com/nar/article-abstract/45/16/9244/3976483/Automatic-identification-of-informative-regions
by guest
on 11 October 2017


