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Abstract

The complexity in modeling human movement increases as the dimensionality of these movement grows.

Since searching more precision and flexibility involves more variables in the model. Dynamic Movement

Primitives (DMP) have shown the ability to generate joint movements with high complexity. However, the

problem remains in the interaction between several joints since DMP alone is not able to deal with it. To solve

this problem a new model called autoencoded dynamic movement primitive (AE- DMP) is introduced in the

work "Efficient movement representation by embedding Dynamic Movement Primitives in Deep Autoencoders"[2].

The proposed approach uses autoencoder in order to find a representation of the movement in a latent space.

Consequently, the DMP model is able to reconstruct the complete movement. In this Master Thesis we will study

the implementation of this model and study its performance. All the features stated in the original paper are

checked, as multiple movements, sparsity and reconstruction of missing or corrupted data.
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Wdd Transformation matrix to obtain frame by frame second derivatives

ẏ Latent space first derivative

ÿ Latent space second derivative

g Goal of the DMP

αy ,βy DMP parameters

αs Canonical system parameter

τ Time constant in DMP

s DMP canonical time

f (s) Forcing term function in a DMP

ft Target forcing term in a DMP obtained from demostration

Ψ(s) Gaussian basis function

z Output space of the AE

L(a,b) Loss function

λ,µ Regularization parameters

exp(a) Refers to expression ea

A1,B1,C1,D1 Parameters in the generation of ỹ

A,B ,C ,D Matrix implementation of A1,B1,C1,D1
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CHAPTER 1

OBJECTIVES

The general motivation for this master thesis is to explore links between deep autoencoders and forms of

information representation as dynamical systems, more precisely dynamic movement primitives. The project is

starting from the work in [2], where movement is represented by embedding dynamic movement primitives

into deep autoencoders. This approach is a dynamical solution to the increasing problem of human movement

replication.

This starting motivation leads me to set up the objectives of my master thesis:

• implement and re-visit the approach introduced in [2];

• analyze how to improve its performance; and

• consider future implementations in real applications, as exoskeletons and general mobile robots.

In parallel, practical skills are improved during the master thesis development:

• study and analysis of autoencoders;

• study and analysis of dynamical movement primitives;

• general literature review on these subjects;

• study and analysis of machine learning methods;

• TensorFlow and Python skills are needed; and

• human movements are studied for extrapolation to robotic applications.

Based on [2], the first steps in the master thesis development were the implementation and reproduction of

their results. During this time, most of the practical skills were acquired. Next, several structures in the literature

were analyzed and considered. Associated algorithms and procedures to these structures were mathematically

introduced and then programmed in Python, using the machine learning library TensorFlow, in order to test

their performance in a simulation.
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For all the proposed structures, the different characteristics attributed to the method were discussed: joints

reconstruction, goal changing, movement interpolation. All of them were observed from different views, looking

for its strengths and weaknesses.

Experimentation was developed having as the first aim the results precision and fidelity to the original data.

After checking the right performance, a more generalized solution is searched in the results with the denoised

autoencoder and the movement interpolation. Hence, we are paving the way for future projects that have as

objective a real implementation.
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CHAPTER 2

CONCEPTS

In this section, a brief explanation of the main concepts that will be used in the development of this master

thesis is introduced. The basics about Neural Networks and Dynamical Movement Primitives verb.

2.1 DEEP NEURAL NETWORKS

Artificial Neural Networks (ANNs) have been a hot topic since their first formulation during the 40s. After their

introduction a lot of uses have been found in machine learning and artificial intelligence. But the progress of

ANN was slowly due to the small computational power available in that time. Another important drawback was

the inaccessibility to large sets of data to train and obtain a real and useful implementation.

During the last years we started to gather data about all different actions, behaviours, weather patterns, medical

records, communication systems, data about our travels, and information about what we do at work, in order

to create a huge library that machines can use to learn. Currently during these years the computational power

increased exponentially and allowed us to start implementing neural networks in a lot of different applications

without overwhelming the devices. Due to this leap in computing power, a huge variety of different types of

neural structures appeared, which were not possible to compute before. One of these types are the Deep Neural

Networks (DNNs). DNNs are a specific types in which instead of adding nodes in one or two layers, more

layers are added to the structure, as shown in the Figure 2.1. Adding more layers forces the NN to learn the

important features of the training data, leading to better results in some topics, allowing the construction of

more combinations of the data.

DNNs have a drawback: when humans try to understand the meaning of the computation in the layers, it

becomes a difficult and complex task and sometimes unintelligible. For this reason, some people are hesitant of

accepting the success of DNNs. The inability of tweaking this parameters with some knowledge of their implica-

tion in the process creates that dissatisfaction. In image processing, sometimes patterns appear, programmers

are able to observe nodes that learn to search vertical lines, other that search for specific shapes, etc. But a full

understanding of them is beyond human comprehension.
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Figure 2.1: Difference between Neural Network architectures: Deep NN (right) and standard feedforward
NN(left).

2.2 AUTO-ENCODERS

Auto-Encoders (AEs) are a special construction of DNN and its objective is the reduction and uncorrelation of a

set of observations. AEs are the expansion of Principal Component Analysis (PCA), where PCA only composes

linear combinations. The AE adds the possibility of adding non-linear combinations using the activation

functions in the NN. This structure creates a latent space, with less or equal dimensions to the original space

and where data can be processed more easily with the chosen machine learning method.

Figure 2.2: Basic Auto-Encoder structure and the different parts. Source: neuralnetworksanddeeplearning.com

The AE consists of an encoder part and a decoder part as shown in Figure 2.2. The encoder part codifies the data

into a lower space, obtaining a called latent space.

In our setup for this project, the encoder takes the d joints angles x ∈ [−1,1]d of the moving body as inputs to the

network. The encoder maps these inputs to a reduced latent space, passing through the different hidden layers.

Every hidden layer computes the mapping y = hθ(x) = tanh(Wx+b), where θ = {W,b} are the NN parameters.
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Matrix W corresponds to the connection weights of the different layers, and b is the bias vector, these are the

basic parameters existent in almost all the NN structures. The activation function proposed in the paper is a

hyperbolic tangent, but in this thesis other options will be explored.

This mapping leads to y ∈ [−1,1]d ′
, a latent representation obtained made of d‘ dimensions.

From this latent space the feature representation is reconstructed back to the joint space z ∈ [−1,1]d through the

decoder network. The decoder has the same mapping but in the reverse way, z = gθ′ (y) = tanh(W′x+b′) where

θ′ = {W′,b′}, b′ is the bias of the decoding layers, and the weight matrix is W′. It exists a tied weights relation,

which is W′ = WT , the implementation of this change will be discussed during this thesis. To seek the parameters

θ and θ′, the optimization problem becomes:

θ?,θ′? = argmin
θ,θ′

1

n

n∑
i=1

L
(
x(i ),z(i )

)
= argmin

θ,θ′
1

n

n∑
i=1

L
(
x(i ), gθ′

(
hθ

(
x(i )

)))
, (2.1)

where n is the number of instances in a training set. L is a loss function, the squared error L(x,z) =∥ x−z ∥2; also

other types of error approximation will be discussed.

2.3 DENOISING

Denoising is a process in which the inputs are corrupted during the training steps. After training the model with

this process, the model is able to robustly reconstruct the set of observations from a corrupted one [7]. The

denoising process consist in, starting from an initial instance x, generating a corrupted vector x̃ as the new input.

For every input frame, each input joint is picked with a probability p, and its value is set to 0, while the rest are

unchanged.

Figure 2.3: Schematized process of a Denoised Auto-Encoder. Source: eric-yuan.me

The optimization problem is modified to adapt to the new changes:

θ?,θ′? = ar g min
θ,θ′

1

n

n∑
i=1

L
(
x(i ), gθ′

(
hθ

(
x̃(i )

)))
. (2.2)

The layers are connected, except the removed neurons, but as the inputs are 0 there is no need to make any

modification to the NN. During the testing process, all the joints are presented without corruption and the

weights of the first input layer to the first encoder layer are scaled by multiplying 1−p. The weights and bias in

the other layers remain unchanged.
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2.4 DYNAMICAL MOVEMENT PRIMITIVES

Finding an appropriate dynamical system model for a given behavioral phenomenon is a nontrivial task due to

the parameter sensitivity of nonlinear deferential equations and their lack of analytic predictability. The use of

Dynamical Movement Primitives (DMPs) is presented as a solution to this problem, generating a multidimen-

sional system to capture an observed behavior in an attractor landscape. All the work in this topic is obtained

from [1].

The simplest system is a point attractor using a second-order system:

τÿ =αy (βy (g − y)− ẏ)+ f , (2.3)

where τ is a time constant and αy and βy are positive constants. in order to obtain a critically damped system is

recommended to use βy =αy /4 in order to monotonically converge towards the goal g . The approach in this

thesis is to use the latent space in the AE as the dynamical system y in the DMP.

The forcing term f in (2.3) is chosen as a linear combination of basis functions Ψi :

f (t ) =
∑N

i=1Ψi (t )wi∑N
i=1Ψi (t )

. (2.4)

To decouple this from the dynamics of the data, a replacement for the time is introduced by means of the

following first-order linear dynamics in s:

τṡ =−αs s, (2.5)

where αs is a constant. Starting from some arbitrarily chosen initial state s0, such as s0 = 1, the state s converges

monotonically to zero. This equation is named the canonical system because it models the generic behavior of

the model equations:

f (s) =
∑N

i=1Ψi (s)wi∑N
i=1Ψi (s)

. (2.6)

Basis functionΨi (s) can be formulated as:

Ψi (s) = exp
(−hi (s − ci )2) , (2.7)

where hi and ci are constants that determine, respectively, the width and center of the basis functions. For more

information about the distribution of the basis functions, look for in Section 3.2.2 in this same thesis.

The DMP is trained using the objective force, also known as target force, is the force that the model needs to

achieve the demonstration movement. The target force is obtained from the demonstration values, yd and

its respective computed first and second derivative, all of these obtained from the latent space. This target is

calculated in the following way:

ftarget = τ2ÿd−αy (βy (g −yd)−τẏd). (2.8)

As it has been previously mention the weighted summation of basis functions have to achieve this ftarget. Hence,

the performance of the model is measured taking into account the difference between this two values. The
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corresponding solution is derived as:

w? = ar g min
w

m∑
i=1

L
(
ft

(i ), f(i )
)

, (2.9)

with
{(

ft
(1), f(1)

)
, ...,

(
ft

(m), f(m)
)}

of length m, number of time frames.

2.5 AUTO-ENCODER DYNAMICAL MOVEMENT PRIMITIVE

The objective of this model is to embed the DMP into a denoising AE. The set of parameters w can be trained

using a weighted linear regression or any other machine learning methods. However, in order to fit DMP into

auto-encoder, the learning is made using the optimization problem:

θ?,θ′?, w? = arg min
w,θ,θ′

1

n

n∑
i=1

L
(
x(i ), z̃(i )

)
+λ ·L

(
ft

(i ), f(i )
)

, (2.10)

where λ is a regularization parameter. And the model is trained with backpropagation like a normal NN. The

second term L
(
f(i)

t , f(i )
)

allows the DMP output to follow the demonstration in the latent space. During this

training the weights must be updated for a whole demonstration.

2.6 SPARE AE-DMP

In order to codify different movements a new term is added in the optimization formula:

L(y) =µ
m∑

i=1

∥∥∥y(i )
∥∥∥

1
, (2.11)

where the parameter µ is used to regularize the term. This sparsity is able to deactivate various hidden neurons,

leading to a possibility of codifying new movements in this "unsued" neurons.

The optimization problem is modified to:

θ?,θ′?, w? = arg min
w,θ,θ′

1

n

n∑
i=1

L
(
x(i ), z̃(i )

)
+λ ·L

(
ft

(i ), f(i )
)
+µ

m∑
i=1

∥∥∥y(i )
∥∥∥

1
. (2.12)

When this codification of different movements is accomplished the model is able to interpolate between different

movements or even create new movements like a slow jogging as a combination of running and walking.
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CHAPTER 3

METHODOLOGY

In this chapter some topics will be discussed and compared in order to determine the most efficient in terms of

performance through the available options. Firstly the structure of the NN and the complications in the con-

struction procedures. The training methods and regularization. And finally the mathematical implementation

of the model in [2].

3.1 AUTO-ENCODERS

3.1.1 NUMBER OF LAYERS AND RATE OF NEURONS PER LAYER

It is well know that there is no standard method to find the optimal values for the number of layers and the rate

of neurons per layer. However, exist some rules applied in general at NN: the relation between the input and the

output layers, the complexity of the problem and the size of the training data. If the problem is a simply linear

classification theoretically there is no need in using hidden neurons. But if a more complex nonlinear problem

must be solved; additional hidden layer must be added.

Defining the number of nodes is also a complex task; small number of nodes leads to error in the approximation

but having a lot of them will create a overfitting in the result, Figure 3.1.

Figure 3.1: Example of the possible problems when defining the number of nodes. Source: pingax.com

However for our case we are using an autoencoder, a special case of NN where our objective is to “compress”

the information into features and then reconstruct them. This compressed information is mean to be more

descriptive of the whole pattern in the original data.

First aboard the problem with the number of layers. Our objective, as previous said, is to “compress” the joints
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space into a smaller features space, through a nonlinear transformation. It is assumed the need of at least

one hidden layer in the encoder and one in the decoder. The introduction of at least one nonlinearity to the

computation is what differentiates this method from the PCA. From there, continue expanding until the one that

gives better performance is found.

But the problem lies in when to stop adding layers. A common problem in DNN is that the gradient tends

to get smaller as we move backward through the hidden layers. The phenomenon is known as the vanishing

gradient problem. That means that neurons in the first layers learn much slower than neurons in last layers. As

this error is decreased exponentially during the propagation. With this problem also exist the counterpart, the

exploding gradient problem, where the gradients change drastically due to singularities in the gradient surface.

Exist different methods that solves this problems but during this thesis we are studying the implementation of a

AE-DMP not the solution of this problems.

The results obtained from an experiment with different structures comparing their performance are presented

in Figure 3.2. The same experiment is repeated twice per structure for robustness in the results.

Figure 3.2: Different structures of DNN perfmance comapared.

For the experiments, the same parameters have been used for all of the structures: activation function, training

time, batch size, inputs set at 50 and the latent space a dimension of 5. Results in Data_Test2_0 and Data_Test2_1

are obtained from a DNN structure with basic connection with only one layer, 50 to 5. As observed, the Auto-

Encoder is not able to reconstruct the data as the other structures did, these converge to a larger error. The

results in Data_Test2_2 and Data_Test2_3 are obtained from a DNN structure in the form [50,36,5]. They have

the faster training of all the test. The error in these examples drop significantly at the start but they do not

reach the same minimum than the next structure. Data_Test2_4 and Data_Test2_5 are obtained from a DNN

in the form [50,36,20,5], which is the structure proposed in the paper used as starting point of this Master

Thesis [2]. It is the one that best works in terms of final accuracy. Looking at the results plotted in Data_Test2_8

and Data_Test2_9, obtained from a DNN scturctured as [50,42,36,20,12,5], overfitting appears, the phenomenon

previously mentioned. Learning period using that structure is slowed and even it converges to larger error than

the previous one.

This experiment manifest all the problems early mentioned, a simple structure will not be able to reconstruct

the data. And a too complex structure will impact in the learning speed. The point lies into find the adequate

structure.

In the experimenting part of this project two structures that gave the better results in the preliminary experiments

are used. The 3 layers[36,20,5] and 4 layers [60,42,25,5].
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3.1.2 ACTIVATION FUNCTION

Each neuron in an NN represents a mathematical operation. First of all, all the inputs are added or multiplied,

the sum is the most common operation but the multiplication is also used in probabilistic networks. Next, the

result is introduced into a activation function and the output is passed to the next neurons. The activation

function defines the output of the neuron. There is a wide range of functions to be used. Usually a non-linear

function is used to add this particularity to the network, but in some cases special functions may also be used to

obtain some special characteristics into our network.

Figure 3.3: Example of a neuron. Source:blog.dbrgn.ch

In the statement of the problem it has been declared that the inputs and the outputs are in the space of

x,z ∈ [−1,1]d . For this reason only functions that are able to produce outputs between these values are chosen in

order to do not lose information.

With the previous statement there are 3 common activation functions that fulfill the requirement,

• Tanh

• Softsign

• Sinusioudal

Tanh:

f (x) = 2

1+exp−2x −1 (3.1)

Figure 3.4: Tanh activation function

This is the proposed function in the source paper [2]. Also is a common choice in Deep Neural Networks. Produce

a sigmoid-like response but in the range [−1,1].

Softsign:

f (x) = x

1+ | x | (3.2)

Gives almost the same distribution as the tanh function but is less computationally stressful.
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Figure 3.5: Softsign activation function

Sinusoidal:

f (x) = si n(x) (3.3)

This option is not common, due that the sinus is not a increasing function and don’t fulfills the universal

approximation theorem. But in certain systems can be useful using them, with precaution [6].

Figure 3.6: Sin activation function

For the purpose of following the original paper [2] the tanh function is chosen. But all these functions could work

well for our setup. That the softsign is only smooth C 1 is not a problem because the optimization usually only

use the first derivative. Other options like step or binary are not good because the continuous nature of our data.

3.1.3 DENOISING PROCESS

If our interest is the extraction of the main features of a large set of data, one option is to force it. This is done

trying to reconstruct the data from a corrupted version of it. With this procedure we are forcing the autoencoder

to obtain the major information possible of the underlying structure.

Three types of noise are commonly used [8]:

• Additive isotropic Gaussian noise: X̃ n ∼ N (X x ,σ2I )

• Masking noise: Some elements of the input vector are randomly changed for 0

• Salt-pepper noise: Some elements of the input vector are randomly changed to the maximum or the

minimum values allowed.

In the project the Masking noise is the one implemented.

3.1.4 TIED WEIGHTS

In Auto-Encoders, there are 2 parts clearly defined, the encoder and the decoder. Both of them have a set of

weights which are the connections of the layers. If the AE have a large number of neurons the space of search

growth having more dimensions to find the gradient, slowing down the learning process. One proposed solution

commonly used is to tie mathematically the weights from both sides. This is made as W2 = WT
1 . If the system is

working with linear functions the solution of the latent space converge to a PCA solution. The learning time is

reduced because now the system have the half of variables. Some discussion exist about the optimality and the
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huge restriction that adds this method to the system, a good discussion about this topic and AE general related

can be found here [5], but this is not the topic of this thesis. Our model is not huge and the training time is not a

critical restriction, so the option of keeping the weights independent is chosen.

3.1.5 LOSS FUNCTION

In order to do the training the optimizer have to follow the gradients. These gradients come from the minimiza-

tion of the error. In this project is used the sum of a weighted loss functions. To calculate the distance of the

output from the input, and the same for the DMP part. This function is chosen to be an l2-norm.

L(x,z) =∥ x−z ∥2 (3.4)

Other options exist in the l-norm family, from l0 to l∞, all of them have some special characteristics [4]. But for

this project only the l2-norm is tested following the steps in [2].

3.1.6 TRAINING METHOD

TensorFlow software provides some classes to compute the gradients from a loss function and apply the calcu-

lated gradients to the variables. Also exist the possibility of creating your own optimizer.

The next ones are a few of the options given, the ones considered for this project:

• Gradient Descent. Is the simplest implementation of a optimizer, is the search of the minimum point of a

multivariable function following this equation:

an+1 = an −γ∇F (an), (3.5)

where γ can be calculated by different methods.

• Adagrad. Implements a method that dynamically incorporates knowledge of the geometry of the data

observed in earlier iterations to perform a more informative gradient learning1.

• Adadelta (Adaptive learning rate method). This method, presented in Algorithm 12, dynamically adapts

over time using only first order information and has minimal computational overhead beyond vanilla

stochastic gradient descent.

Algorithm 1 Computing ADADELTA update at time t

Require: Decay rate ρ, Constat ε
Require: Initial parameter x1

1: Initialize accumulation variables E [g 2]0 = 0,E [∆x2]0 = 0
2: for t = 1 do %% Loop over # of updates
3: Accumulate Gradient: E [g 2]t = ρE [g 2]t−1 + (1−ρ)g 2

t

4: Compute Update: ∆xt =−RMS[∆x]t−1
RMS[g ]t

g t

5: Accumulate Updates: E [∆x2]t = ρE [∆x2]t−1 + (1−ρ)∆x2
t

6: Apply Update: xt+1 = xt +∆xt

1For a wider explanation check this publication [3].
2A deeper formulation of the algorithm can be found in [9].



Dynamical Movement Primitives embedded into Auto Encoders to recreate human movement Pàg. 13

In the implementation of the model a Adadelta optimization is used. Gives a better performance than the basic

gradient descent without over-complicating the computation. Due that the objective of the project is not to test

different leaning methods, or their success, only this one will be implemented.

3.2 DMP

3.2.1 PERIODIC/LIMIT CYCLE CANONICAL SYSTEM

The canonical time can be computed in different ways. The most common is in the form of a first-order

dynamical system, as previous introduced:

τṡ =−αs s, (3.6)

but in some specific cases a cyclic canonical system can be used. This modified system provides a periodicity to

the basis functions:

τφ̇= 1, (3.7)

where φ ∈ [0,2π] is the phase angle of the oscillator in polar coordinates and the amplitude is r . Then the basis

should be substituted by von Mises basis functions:

f (φ,r ) =
∑N

i=1Ψi (t )wi∑N
i=1Ψi (t )

r, (3.8)

Ψi = exp
(
hi

(
cos(φ− ci

)−1)
)

. (3.9)

The amplitude and the period of the oscillations can be modulated by modifying the value of the variables r and

τ. Commonly τ is chosen to be closest to the signal period.

The human walking is a cyclic movement, but each part of the body works at different periods, furthermore in

the latent space the period can be whatever the NN adapt the combination of all the joints. For these reasons

adapting the structure to a cyclic canonical will require a lot of preprocessing working, against the objective of

simplifying the implementation and reproduction of the human movement.

3.2.2 BASIS FUNCTION DISTRIBUTION

A common problem using DMPs rise due that the system time is passed by a exponential system. If the centers

of the basis functions are grouped as mean = [0, .., t_ f i nal ], uniformly distributed during all the demonstration

time. The basis actually are activated as represented in the Figure 3.7.

The basis function are packed during the firsts moments of the execution. In order to spread out the functions

during all the movement, the center of our basis functions must be shifted. If we define the new centers as:

c = S0 ·exp
(
−αs ·mean

τ

)
. (3.10)
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Figure 3.7: Basis function distribution using the uniformly distributed means in the time axis. Source: study-
wolf.wordpress.com

Other modification in the variance can be added to obtain better results:

hi = #BF

ci
. (3.11)

With this new centers and variance introduced in the same equation previous presented [2.7]. Now we obtain an

evenly distribution in the basis functions during the new canonical time.

Figure 3.8: Basis function distribution spaced. Source: studywolf.wordpress.com

3.3 AE-DMP

After all the previous knowledge is time to introduce the main topic of this thesis, the AE-DMP which is the mix

of both. Uses the AE to find a latent space where the DMP can be trained easily. In our case we have worked in

the human body movement, simplified to 50 joints, low variance joints are discarded. Traditionally in order to

apply the DMP to a whole structure with multiple joints, a DMP function per joint or dimension of the state

space is required to reproduce the movement. But if this space is reduced to a latent space with 5 dimensions,

only 5 DMP are needed in order to reproduce the movement. Also the embedding the DMP into a Denoising AE

allows the model to reconstruct corrupted data of missing joints or even complete sections.

3.3.1 STRUCTURES

In order to validate the performance and the execution of this model, 3 different structures are proposed3:

3I gave the freedom to myself to name the structures with this names in order to facilitate the differentiation, there is no official
nomenclature or definition for these structures.



Dynamical Movement Primitives embedded into Auto Encoders to recreate human movement Pàg. 15

1. Basic DMP: Indivual DMP applied to all the 50 joints.

2. AE-DMP Non-Integrated: DMP applied from the latent space.

3. AE-DMP Integrated: DMP completely integrated into the AE as new layer in the whole structure.

3.3.1.1 BASIC DMP

The first structure considered is the classical DMP. It consists of applying for each joint an independent DMP

with their respective forcing term, acceleration and speed. Only the canonical time is shared.

Figure 3.9: Basic DMP structure, one dmp for each joint

The set of parameters w can be trained with locally weighted regression(LWR).

The optimization problem for each kernel function Ψi in f corresponding wi , is:

Ji =
P∑

t=1
Ψi (t ) · ( ft ar g et (t )−wiξ(t )

)2 , (3.12)

where ξ(t ) = x(t )(g − y0).

This is a weighted linear regression problem with the solution:

wi =
sTΓi ftarget

sTΓi s
, (3.13)

where:

s =



ξ(1)

ξ(2)

· · ·
ξ(P )

 Γi =



Ψi (1) 0

Ψi (2)

· · ·
0 Ψi (P )

 ftarget =



ft ar g et (1)

ft ar g et (2)

· · ·
ft ar g et (P )

 (3.14)

3.3.1.2 AE-DMP NON-INTEGRATED

The second one is a naive implementation of the model AE-DMP presented in this thesis. Where the DMP

only acts as an observer to this latent space and forcing the AE to adapt the codification of this space without

considering the interaction from the DMP to the output. As show in the scheme the target force is obtained in

the latent space, so only 5 dimensions are needed.

For the training the new loss function is the combination of both parts, where the AE is the main objective and

the DMP is the constraint that regularizes the training:

θ?,θ′?, w? = arg min
w,θ,θ′

1

n

n∑
i=1

L
(
x(i ), z̃(i )

)
+λ ·L

(
ft

(i ), f(i )
)

. (3.15)
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Figure 3.10: AE-DMP non-Integrated structure. The DMP is not interfering directly with the AE.

Starting off with a demonstration of a unique joint in the joint space x = [x1, x2, ..., xn], where n is the number of

frames. Introduced to the autoencoder is translated to the latent space yd = [yd1, yd2, ..., ydn] as previous shown

in the Section 2.2. To simplify the equations are referenced to only one joint or dimension to extrapolate for

bigger dimensions is only needed to repeat the equations for each of the dimensions. In order to obtain the

forcing term the first and second derivatives of this demonstration have to be found. The discretized derivation

of a sampled data is:

˙ydt = ydt − ydt−1

t s
,

¨ydt = ydt−1 −2ydt + ydt+1

t s2 .
(3.16)

This previous equations can be translated to a matrix form. Allowing us to apply the derivatives calculation to all

the members in a array at the same time:

Wd =



−1 1 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


Wdd =



1 −2 1 · · · 0

1 −2 1 · · · 0

0 1 −2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


(3.17)

The solution of applying this matrices to the demonstration array is an array with all the step first and second

derivatives:

ẏd =(Wd ·yd)
1

t s
,

ÿd =(Wdd ·yd)
1

t s2 ,
(3.18)

where ẏd = [ẏd 0, ẏd 1, ..., ẏd n] and ÿd = [ÿd 0, ÿd 1, ..., ÿd n] are the array of the first derivative and the second

derivative, respectively, for each step. Using (2.8) we found the target force in every step of the demonstration.

In (3.17) the first and last rows are modified. We suppose that the system is already in movement before and

after the demonstration. Due that these demonstrations are obtained from a real human movement. With these

adjustments we can ovoid the emergence of spikes in the first and second derivatives. Leading to a smoother

forcing term. During the generation of new movements this has to be taking into account, and initialize the

model with a initial speed and acceleration.
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Using the back-propagation algorithm in Tensorflow, the error is propagated from the DMP part to the encoder

part in the AE. With this particular structure a problem arise. Meanwhile the encoder part tries to catch up

with the DMP, the decoder only decodes a data that comes from the demonstration. As such gradients coming

from the error in the DMP part are larger and the latent space is shaped to adapt perfectly to the DMP but the

cohesion in the AE is deformed when more precision in the DMP is required. And during the generation of

new movements any little disturbance or error in the DMP calculation in the latent space can lead to unknown

consequences because the decoder part is only trained with data coming from the perfect demonstration and is

not able to adapt to this disturbances.

3.3.1.3 AE-DMP INTEGRATED

The last introduced structure is embedding the DMP into the AE structure as a layer in the neural network

structure. This is accomplished with a few equation manipulation to obtain the DMP transition.

Figure 3.11: AE-DMP Integrated structure, the DMP is totally embeded into the AE

Given a demonstration in the joint space x = [x1, x2, ..., xn] the system pass through the encoder part and obtains

the yd = [yd1, yd2, ..., ydn] in the latent space. In order to embed the DMP into that latent space we have to find

transformation in the transition from yt to yt+1 in a new layer in the NN allowing to use back-propagation for

the training.

The first step is obtain the dynamical equations of the DMP. The second derivative equation is obtained from the

basic formulation of the DMP (2.3):

τÿt+1 =αy (βy (y g oal − yt )− ẏt )+ f (s), (3.19)

while the rest of formulas, velocity and position, are obtained integrating the acceleration:

ẏt+1 =ÿt t s + ẏt ,

yt+1 =ẏt t s + yt ,
(3.20)

where t s is the sample time, and all the y are the variables in the latent space. The f (s) is the forcing term for

each step.

If we substitute (3.19) into the first equation in (3.20) and then recursively the same for the second obtaining the

dynamical equations with two state variables:
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ẏt+1 =
αy (βy (y g oal − yt )− ẏt )+ f (s)

τ
t s + ẏt ,

yt+1 =
(
αy (βy (y g oal − yt )− ẏt )+ f (s)

τ
t s + ẏt

)
t s + yt .

(3.21)

Two state variables are chosen, y and ẏ .

ẏt+1 =
(
τ−αt s

τ

)
ẏt − αβt s

τ
yt + αβy g oal t s

τ
+ f (s)t s

τ
,

yt+1 =
(
τt s −αy t s2

τ

)
ẏt +

(
τ−αyβy t s2

τ

)
yt + αβy g oal t s2

τ
+ f (s)t s2

τ
.

(3.22)

The previous equations can be translated to the state space as:

yt+1

ẏt+1

= A

yt

ẏt

+b. (3.23)

From now in this section all theαy and βy are simply written asα,β, and the y g oal which is ydN is simply written

as g in order to simply the equations. Now the transitions matrices can be defined.

The state matrix is written as:

A =
−t sαβ 1

τ −t sαβ 1
τ +1

−αβ 1
τ −α 1

τ

 t s + I , (3.24)

and the control input as:

b =
t s

1

(
αβg + f (s)

)
t s

1

τ
. (3.25)

Developing the previous equations we are able to find the computation of the next stepỹ , using the yd of the

demonstration:

ỹt =
(
− t s2αβ

τ
+1

)
ydt−1 +

(
− t s2α

τ
+ t s

)
ẏd t−1 +

t s2αβ

τ
g + t s2

τ
f (s). (3.26)

The equation can be identified with constant terms that don’t depend on the data or the time and variable terms:

ỹt = A1 ydt−1 +B1 ẏd t−1 +C1g +D1 f (s). (3.27)

This constants only depend from the parameters defined by us or the data characteristics:

A1 =τ− t s2αβ

τ
,

B1 =τt s − t s2α

τ
,

C1 = t s2αβ

τ
,

D1 = t s2

τ
.

(3.28)
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Now this terms, A1, B1, C1, D1, can be introduced to a matrix form, with this we are able to apply the transition

to all the elements of the array:

A =



1 0 · · · 0 0

A1 0 · · · 0 0

0 A1 · · · 0 0
...

...
. . .

...
...

0 0 · · · A1 0


B =



0 0 · · · 0 0

B1 0 · · · 0 0

0 B1 · · · 0 0
...

...
. . .

...
...

0 0 · · · B1 0


C =



0

C1

...

C1

C1


D =



0

D1

...

D1

D1


(3.29)

With this new transition matrices we are able to compute the ỹ for all the demonstration array in each of its

frames:

ỹ = A ·yd+B ·yd+C · g +D · f, (3.30)

where now yd, ẏd, are arrays obtained from the demonstration. g is the goal position, which is constant in all the

time. And the f is the forcing term array generated with (2.6) where the variables w are the ones that have to be

trained.

The input and the output in this new NN layer will have a one-to-one correspondence where its functions is to

generate the next step from the previous:



y0

y1

y2

...

yN


→



y0

ỹ1

ỹ2

...

ỹN


. (3.31)

The step ỹ0 is the same as y0 due that is the starting point. But the next step ỹ1 is generated with previous

values and goes one for each frame. With this new NN layer we are to reproduce the interference of the DMP

in the generation of new movement on the decoder part of the AE. If the DMP is no completely accurate the

correspondence y = ỹ will not exist, not like in the AE-DMP Non-Integrated structure.But when the model is

trained and the w properly calculated then L(ft
(i ), f(i ))) → 0 then y ≈ ỹ. With this structure the DMP is transformed

to a new hidden layer between the encoder and the decoder and now can be applied back-propagation taking

into account the interference of the DMP in the AE.

3.3.2 REGULARIZATION IN THE TRAINING STEP

In order to do a training, a loss function have to be defined. Decide which terms has more importance and which

ones have less weight is crucial to regularize correctly all the terms.

The principal objective in the AE is to keep the cohesion between the inputs and the outputs, trying to obtain

the outputs more analogous to the inputs possible. The AE-DMP have also the task to shape the latent space in

the best possible way to simplify the training in the DMP part. This part is achieved adding the regularization to
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the loss function in the AE:

θ?,θ′?, w? = arg min
w,θ,θ′

1

n

n∑
i=1

L
(
x(i ), z̃(i )

)
+λ ·L

(
ft

(i ), f(i )
)

. (3.32)

The chosen function L is L2-norm but also different function can be considered:

• SVMR

L(x(i ), z(i )) = |x(i ) − z(i )|ε (3.33)

• SVMC

L(x(i ), z(i )) = |1−x(i )z(i )|+ (3.34)

• Hard margin

L(x(i ), z(i )) = θ(1−x(i )z(i )) (3.35)

• Missclassification loss

L(x(i ), z(i )) = θ(−x(i )z(i )) (3.36)

These are the most used functions in regularization, but have a particularity in common; in some moments the

error value or the derivative is 0, and no gradient can be extracted from this parts, or more specific are not C 1

smooth. Even for the θ(x) the Heaviside function being a C−1 function, which its derivative is the delta function.

Leading that the only feasible options for our setup are L2 and L1 norms.

3.3.3 LATENT SPACE

The main objective of using AE is to obtain a new reduced space where DMP can be applied more easily. It is

similar to SVM for classification. Having a huge and complex space reduced to a smaller and adaptable to our

requirements, improving the training and the performance.

Each time this latent space will be different due that not only one solution will exist. It is chosen to be a 5

dimensional space, where this dimension do not have any meaning in the joint space or the state space. In this

space the movements are codified. If it is observed some patterns can be appear (Figure 3.12). This scatter plot

show which is the constitution of the different dimensions in two movements, running and walking.

As we can see the two movement have different features in each dimension and in the combination of different

dimension codifies this circular movement. In the dimension number 5 this can be observed, depending of the

dimension one of the movement is more predominant while the other have no significant variance. In the fourth

dimension it is easy to notice that codifies the differentiation between the 2 movements and are not circular

centered in the same spot so when one movement is playing here will be differentiated in where the center is

allocated. The plots are obtained from independent trained models, but the results are the similar in models

that are trained with both data (Figure 3.13).
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Figure 3.12: Matrix plot of all the dimensions in the latent space

3.3.4 RECONSTRUCTION OF A MISSING JOINT

The implementation of the Denoising AE allows the system to reconstruct broken or corrupted data. DAE have

been shown to be generative models . If the input data is corrupted the results should yield almost to the same

representation that have been trained.

This is a consequence of the fully layer connected structure of the NN. The model is able to capture the

dependencies and regularities characteristic of the distribution in the input data. The DAE reconstruct this

blanks from the behaviour of the other variables. In the experiments this will be tested as the complete loss of

information in a particular joint in the joint space. After training the model using the process explained in the

Section 2.3.

3.3.5 SPARSE AE-DMP

In order to use different movements the sparse AE-DMP allows to codify the movement using less dimensions so

that one or more that dimensions tends to 0.

As we can see the model is forced to adapt the movement in less dimensions than the full 5-dimensional space.

A few of them are reduced close to 0, minimizing its impact in the movement generation. With this characteristic

if different movements are trained in the same model, the system tries to distribute the patterns for this space.

The Sparse form can also used to obtain a more general model of a movement using different demonstrations

for it. With this more generalized model the system is able to find a more deep representation of the dynamics in

the movement. The different movements are distributed in the latent space, and comparing with the previous

results of training separately Figure 3.12 the combined training of the movements in the same model gives better

results Figure 3.13. The differentiation between the movements is more clear and observable in every dimension

combination.
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Figure 3.13: Matrix plot of all the dimensions in the latent space

3.3.6 INTERPOLATION BETWEEN MOVEMENTS

Starting from the Sparse AR-DMP if the model is trained with different models, then the system is able to generate

new movements with the adequate tuning. Deactivating or changing some hidden neurons the movement

generated will be a mix of the different demsotrations.

Also is possible to simulate the evolution from one movement to another, for example: starting running and then

low the pace and continues walking. This is achieved with a combination of two DMP parameters, the weights

and the goals:

w∗ =∑
i

(
ηi w i∑

i η
i

)
, (3.37)

g∗ =∑
i

(
ηi g i∑

i η
i

)
. (3.38)

The new w∗ and g∗ substitute the original variables in the model, and are tuned depending on our criterion to

create the proper transition or direction. The η parameter is constrain to ηi ∈ [0,1]. Finally i is the number of

movements learned.

Only 2 movements will be studied, walking and jogging, so only two parameters are considered
[
η1,η2

]
. To

simplify the task both parameters will be complementaries, η2 = (
1−η1

)
. If we develop the previous equation

with this constraints:

w∗ = η1w1 +η2w2

η1 +η2 . (3.39)

Knowing that the imposition η1 +η2 = 1 is conserved for all the interpolation :

w∗ = η1w1 +η2w2. (3.40)
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A similar equation results for the goal:

g∗ = η1g 1 +η2g 2. (3.41)

For the η evolution is chosen to be like a logistic function. The transition is chosen in a certain point in the time

and is centered in the logistic function by t0, then the values are adapted to get a 0 close in the start and a 1 in

the end of the simulation. This can also be reversed to obtain the inverse interpolation.

η(t ) = 1

1+e−m∗(t−t0 )
(3.42)

Figure 3.14: η values evolution during time

With this evolution the transition should be enough smooth and stable during the start and the end to obtain a

good movement.
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CHAPTER 4

PROGRAMMING

In this section a concise explanation of the programming language and library used in this thesis. Including the

main points of the code used in the model.

4.1 PYTHON

Python1 is a high-level programming language for general purpose. Is a interpreted language, its objective is to

emphasize readability, with a syntax that allow to do more in fewer lines of code than other languages such as

C++ or Java. Also incorporate dynamic type system and dynamic memory management.

4.2 DATA ACQUISITION

The data is extracted from CMU Graphics Lab Motion Capture Database2, for this project the subject 35 is used

to obtain the demonstration movements.

The file format chose is ".amc", it’s a text format where all the movement is codified in frames, at constant

framerate defined in a ".asf" file. Each one of this frame contains the angle in degrees of every joint and it’s

degrees of freedom. In this case the demonstration is composed by 62 features. 6 values are the root position

respect to the origin, can be ignored in our purpose. Also 6 other features have a variance of < 1026(shoulder and

finger movement) and can be ignored from our input vector. This leads to a 50 joint state space.

The data is read from the ".amc" file through a personal created function "r ead f r omamc_ f un" Appendix [A].

Which takes the file name as input and outputs a numpy array of dimension [50xN], where N is the number of

frames.

The input array x have this form:

[x1, x2, x3; lower back], [x4, x5, x6;upper back], [x7, x8, x9; thor ax], [x10, x11, x12; lower neck],

[x13, x14, x15;upper neck], [x16, x17, x18;head ], [x19, x20, x21;r humer ous], [x22;r r adi us], [x23;r wr i st ],

[x24, x25;r hand ], [x26, x27;r thumb], [x28, x29, x30; lhumer ous], [x31; l r adi us], [x32; l wr i st ], [x33, x34; lhand ],

[x35, x36; l thumb], [x37, x38, x39;r f emur ], [x40;r t i bi a], [x41.x42;r f oot ], [x43;r toes], [x44, x45, x46; l f emur ],

1Python programming language: https://www.python.org/
2CMU Graphics Lab Motion Capture Database: http://mocap.cs.cmu.edu/
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[x47;r t i bi a], [x48.x49; l f oot ], [x50; l toes]

In the opposite way, a function that writes a ".amc" file when is needed to test the results in a simulation

of a skeleton "wr i tetoamc_ f unc" Appendix[B].

4.3 USED LIBRARIES

4.3.1 TENSORFLOW

To do all the training of the project, TensorFlow3 is used. TensorFlow is an open source software library for

numerical computation using data flow graphs. This graph construction is perfect for NN, but also is used in a

wide variety of other domains as well. The ability of using GPU as a computing unit allows to reduce drastically

the training time.

4.3.2 SCIPY

SciPy4 (pronounced “Sigh Pie”) is a Python-based ecosystem of open-source software for mathematics, science,

and engineering. During the execution of this thesis some of the packages of this ecosystem are used. The ones

used are the following.

4.3.3 NUMPY

NumPy5 is the fundamental package for scientific computing with Python. With Numpy we are able to work

with N-dimensional arrays in a optimized way, this allows us to link the list structures to arrays and then to

Tensorflow. Also that is a fully optimized library boosting the performance of math computation processes.

4.3.4 MATPLOT

Matplotlib6 is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy

formats and interactive environments across platforms.

4.3.5 SCIPY SIGNAL PROCESSING

The signal processing toolbox7 currently contains some filtering functions, a limited set of filter design tools, and

a few B-spline interpolation algorithms for one- and two-dimensional data. This is used to filter or resample the

demonstration data.

3Tensorflow Machine Learning library: https://www.tensorflow.org/
4Scipy libraries: https://www.scipy.org/
5Numpy scientific computation: http://www.numpy.org/
6Matplotlib Python plotting library: https://matplotlib.org/
7Signal processing: https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html
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4.4 CODE STRUCTURE

All the code is separated in two parts, the model training and the model testing.

4.4.1 MODEL TRAINING

All the project is constructed around TensorFlow library, so the code structure is delimited by its rules. Firstly the

a graph have to be defined.

In Tensorflow 3 main types of introducing data exist. As a "placeholder" where is the data is feed in the different

executions. The "placeholder" are usually the input data for the training or parameters that can be changed

o defined by the user just before the execution. Then "Variables, are the trainable parameters. Categorizing

a tensor as "Variable" Tensorflow detects as trainable and when the gradient updating step is executed this

parameters are changed according to the training rules. And finally "Constants", parameters that are defined in

the code and do not change.

The AE model is written as sequence of fully connected layer.

Listing 4.1: Neural Network layer� �
1 with tf.name_scope('hidden_1 ') as scope:

2 W_h1 = tf.Variable(tf.random_normal ([inputs ,h_1_neurons],stddev =0.1),name="Weights_hidden_1")#

Neuron weights

3 b_h1 = tf.Variable(tf.constant (0.1, shape = [h_1_neurons ]),name = "Bias_hidden_1")#Neuron bias

4

5 h_1 = tf.tanh(tf.matmul(x_norm ,(W_h1∗ Denoised_W_h1))+b_h1)#Neuron operation

6

7� �
Each layer is defined by three parts, the layers weights, the layer bias, and the layer computation. Each computa-

tion in Tensoflow is build as a node in the general graph while the Tensors are the information going between

this computation nodes.

After building the AE structure the optimization function have to be defined:

Listing 4.2: Optimization problem definition� �
1 # Loss function

2 with tf.name_scope('Loss_AE ') as scope:

3 loss_AE = tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square(x_norm-z) ,1)) ,0)

4 tf.summary.scalar('Loss_AE ', loss_AE)#Data login operation

5

6 #AE training function

7 with tf.name_scope('Opt_AE ') as scope:

8 train_step_AE = tf.train.AdadeltaOptimizer (0.1).minimize(loss_AE)

9� �
First is defined a loss function and then the optimization problem, with an objective of minimizing this loss

function. We are searching the point where the difference between the inputs and the outputs are the smallest

possible.

The Code: 4.2 in the line 4 the command "tf.summary.scalar(’Loss_AE’, loss_AE)" is used in the data logging

aspect of Tensorflow. Tensorflow provides a complete data inspection with Tensorboard. This allows the user to
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store the detailed data during the training, this can be any scalar, matrix, tensor, etc. After that can be visualized

building a server with Tensorboard, can be private in your own computer but also provides the possibility of

uploading to a web server and updating in real time.

The DMP is built in different parts. The basis functions are the essential part in the DMP and are built as this:

Listing 4.3: Kernel building� �
1 with tf.name_scope("Basis_funcs") as scope:

2 with tf.name_scope("Kernel_fun_params") as scope:

3 mean = tf.linspace(ts ,t_final ,num)

4 mean_distributed = X0∗ tf.exp(-alfax∗ mean/tau)
5 var_distributed = num/mean_distributed

6

7 with tf.name_scope("Weights") as scope:

8 w = []

9 for i in range(dim):

10 name = "Weights" + str(i)

11 scope_name = 'Weights_kernel_ ' + str(i)

12 with tf.name_scope(scope_name) as scope:

13 w.append(tf.Variable(tf.truncated_normal ([num], stddev =1),name=name))

14

15 with tf.name_scope("Kernel") as scope:

16 time = [tf.linspace (0.0,t_final ,Data_in.shape [0])]

17 aux = tf.zeros([num ,1],dtype=tf.float32)

18 s_t = tf.transpose(time + aux)

19

20 s = X0∗ tf.exp(-alfax∗ s_t/tau)
21 internm = -(var_distributed∗ tf.square(tf.subtract(s,mean_distributed)))
22 kernel = tf.exp(internm ,name="Kernel_fun")

23

24� �
With this we simulate the basis functions values in all the time axis. The time is generated with the values know,

initial time, finish time, and time step.

Listing 4.4: Forcing term� �
1 with tf.name_scope("Forcing_term") as scope:

2 f_list = []

3 kernel_sum = tf.expand_dims(tf.reduce_sum(kernel ,1) ,1)

4 for i in range(dim):

5 f_list.append(tf.divide(tf.matmul(kernel ,(tf.expand_dims(w[i],1))),kernel_sum))

6� �
Combining the kernel with the weights variables the model obtains the force value for all the latent space joints

in all the time axis. This forcing term will be compared with the target force obtained from the demonstration.

Listing 4.5: Force target� �
1 with tf.name_scope("Goal") as scope:

2 goal = tf.transpose(tf.expand_dims(y[-1],axis =1))

3

4 goal = tf.stop_gradient(goal)

5

6 with tf.name_scope("Forcing_target_term") as scope:

7 f_target_list = []
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8 y_dd_matrix = tf.matmul(W_dd_tensor ,y)

9 y_d_matrix = tf.matmul(W_d_tensor ,y)

10 for i in range(dim):

11 y_dd = tf.slice(y_dd_matrix ,[0,i],[-1,1])

12 y_d = tf.slice(y_d_matrix ,[0,i],[-1,1])

13 f_target_list.append(tf.multiply(tf.square(tf.constant(tau ,dtype=tf.float32)),y_dd)-tf.

multiply(tf.constant(alfa ,dtype=tf.float32),tf.subtract(tf.multiply(beta ,tf.subtract(goal[0,i],tf

.slice(y,[0,i],[-1,1]))),tf.multiply(tf.constant(tau ,dtype=tf.float32),y_d))))

14

15 with tf.name_scope("Pack_tensor_lists") as scope:

16 f_target = tf.transpose(tf.squeeze(tf.stack(f_target_list)))

17 f = tf.transpose(tf.squeeze(tf.stack(f_list)))

18� �
In Code 4.5 the operation in line 4 is important for the training step. In order to avoid the optimizer to propagate

the gradients through the goal value the operand "tf.stop_gradient" is added. After all this process two tensors

are obtained, "f_target" and "f" which represented the objective and the generated by the current weights,

respectively. And the optimization problem is built as.

Listing 4.6: Loss function AE-DMP� �
1 with tf.name_scope("Loss_fun_AE -DMP") as scope:

2 suma_AE = tf.sqrt(tf.reduce_sum(tf.square(x_norm_target-z_decoded) ,1))

3 loss_AE_scalar = tf.reduce_sum(suma_AE ,0)

4 suma_DMP = tf.sqrt(tf.reduce_sum(tf.square(f_target-f) ,1))

5 loss_DMP_scalar = tf.reduce_sum(suma_DMP ,0)

6 spartsity = tf.reduce_sum(tf.abs(y))

7 loss_ae_dmp = tf.reduce_sum(suma_AE+nu∗ suma_DMP ,0)+mu∗ spartsity
8

9 tf.summary.scalar('Loss_AE ', loss_AE_scalar)

10 tf.summary.scalar('Loss_DMP ', loss_DMP_scalar)

11 tf.summary.scalar('Loss_AE_DMP ', loss_ae_dmp)

12

13 with tf.name_scope("Opt_DMP") as scope:

14 train_step_DMP = tf.train.AdadeltaOptimizer (0.1).minimize(loss_ae_dmp)

15� �
For the AE-DMP Integrated the new layer representing the DMP has to be integrated into the NN.

Listing 4.7: DMP NN layer� �
1 with tf.name_scope("y_computed") as scope:

2 y_decode = tf.matmul(A_tensor ,y)+tf.matmul(B_tensor ,y_d)+tf.multiply(C_tensor ,goal)+tf.multiply(f,

D_tensor)

3� �
After building all the model and establishing the training rules. The model have to be trained. This is made inside

a loop, calling each execution to the optimization operation "train_step_DMP". In this operation the optimizer

computes the error, the gradients, propagates them for all the connected operations and update the variable.

When the training is finished or when a snapshot is required to be saved. Calling the saver function provides the

possibility of saving all the model.

Listing 4.8: Saving function� �
1 with tf.name_scope("Saver") as scope:
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2 saver = tf.train.Saver()

3

4 save_path = saver.save(sess , "tmp/model.ckpt")

5� �
4.4.2 MODEL TESTING

As the model can be saved it can also be loaded.

Listing 4.9: Loading function� �
1 with tf.name_scope("Saver") as scope:

2 saver = tf.train.Saver()

3

4 saver.restore(sess , "tmp_run/model.ckpt")

5

6� �
This function will load all the variables stored, exist different ways of doing this. Exist the possibility of lading all

the model from this checkpoint, only the variables and assign to a new variables or build the same model and

then load the variables inside. Then the model can be test with no problem.

4.4.3 MOVEMENT INTERPOLATION

In order to achieve the interpolation and the combined training of different movements, the model previous

introduced have to be tweaked a bit.

Firstly each movement will have its personal weights:

Listing 4.10: Weights model with multiple movements� �
1 with tf.name_scope("Weights_walk") as scope:

2 w_walk = []

3 for i in range(dim):

4 name = "Weights_walk" + str(i)

5 scope_name = 'Weights_kernel_walk_ ' + str(i)

6 with tf.name_scope(scope_name) as scope:

7 w_walk.append(tf.Variable(tf.truncated_normal ([num], stddev =1),name=name))

8 with tf.name_scope("Weights_run") as scope:

9 w_run = []

10 for i in range(dim):

11 name = "Weights" + str(i)

12 scope_name = 'Weights_kernel_run_ ' + str(i)

13 with tf.name_scope(scope_name) as scope:

14 w_run.append(tf.Variable(tf.truncated_normal ([num], stddev =1),name=name))

15

16 with tf.name_scope("Basis_funcs") as scope:

17 with tf.name_scope("Kernel_fun_params") as scope:

18 var = tf.ones(num , dtype=tf.float32)∗ 0.005
19 mean = tf.linspace(ts ,t_final ,num)

20 mean_distributed = X0∗ tf.exp(-alfax∗ mean/tau)
21 var_distributed = num/mean_distributed

22 with tf.name_scope("Kernel") as scope:

23 time = [tf.linspace (0.0,t_final ,sample_num)]

24 aux = tf.zeros([num ,1],dtype=tf.float32)
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25 s_t = tf.transpose(time + aux)

26

27 s = X0∗ tf.exp(-alfax∗ s_t/tau)
28 internm = -(var_distributed∗ tf.square(tf.subtract(s,mean_distributed)))
29 # internm = -(tf.square(tf.subtract(s,mean_distributed))/(2*tf.square(var)))

30 kernel = tf.exp(internm ,name="Kernel_fun")

31� �
The new generation of the force term is a merge of the multiple movements:

Listing 4.11: Force term with multiple movements� �
1 with tf.name_scope("Forcing_term") as scope:

2 nu_1 = tf.placeholder(tf.float32 ,shape =[],name="Trainning_toggler")

3 f_list = []

4 kernel_sum = tf.expand_dims(tf.reduce_sum(kernel ,1) ,1)

5 w = tf.multiply(w_run ,nu_1)+tf.multiply(w_walk ,(1-nu_1))

6 for i in range(dim):

7 f_list.append(tf.divide(tf.matmul(kernel ,(tf.expand_dims(w[i],1))),kernel_sum))� �
During the training both groups of data are interchanged changing the parameters in order to match the training.

For each movement differnt training functions are used:

Listing 4.12: Training functions� �
1 kernel_weights_walk = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES ,"Weights_walk")

2 kernel_weights_run = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES ,"Weights_run")

3 AE_parameters = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES ,"AE")

4

5 with tf.name_scope("Opt_DMP") as scope:

6 train_step_DMP_run = tf.train.AdadeltaOptimizer (0.1).minimize(loss_ae_dmp ,var_list= AE_parameters+

kernel_weights_run)

7 train_step_DMP_walk = tf.train.AdadeltaOptimizer (0.1).minimize(loss_ae_dmp ,var_list= AE_parameters

+kernel_weights_walk)

8 sess.run(tf.global_variables_initializer ())� �
Tensorflow when the function "minimize" is used take as default all the trainable variables in the model, but if

the variables are specified only will train that variables. This is used to separate the training of both movements.

As previous said Tensorflow provides a data logger, where you can see all the variables or tensors that you

indicates, histograms, images, etc. But one of the important is the possibility of observing the graph built:

Figure 4.1: Tensorflow graph visual representation
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CHAPTER 5

EXPERIMENTATION

In this section all the results obtained in the test and results of the Auto-encoder are exposed and discussed.

As explained in the programming section of this project, the model is build in the library TensorFlow. Firstly

the AE is tested and check separately from the DMP in order to find the structure that gives better results. And

corroborate that the model works. Then the different structure proposed for the AE-DMP are tested.

5.1 AUTO ENCODER

The test of the AE is made using the demonstration of the movement. The data is separated in batches, precisely

50 for epoch, and scrambled in random order. The model is trained for a few epochs due that the objective here

is not final results whereas we search only a stable snapshot to compare the different models.

During all the process only two structures will be tested, 3 layers[36,20,5] and 4 layers [60,42,25,5]. Fist with the

full demonstration an then re-sampled to apply a kind of filter in the signal.

With 4 layers structure, after 4,050,000 training steps, results are obtained. With a final total loss of 0.157, Figure

5.1 depicts its behavior. Loss function decreases exponentially as expected. In fact, most of the learning models

behaves like this. This also inform us that the time chosen is a good option to compare the different models.

Figure 5.1: Loss evolution obtained from the 4 layer structure

Counting the average MSE ± SD for all the joints, in radians, the result is MSE: 0.133±0.247. We will use the

MSE plot in Figure 5.2 and the loss function to compare between the different options. The MSE plot gives

information of the AE in all the joints and the precision.
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Figure 5.2: MSE plot of the joints in the 4 layer structure

As observed, a high number of joints are close to a low error but a few exceptions are far away from this

objective. This is caused by the data collection method, which sometimes have error and generate unrealistic

and complicated movements. For example, the joint exposed in Figure 5.3.

(a) Joint position (b) Joint error

Figure 5.3: Example of the joint 50

Now, let us study the 3 layers structure. In this case, 4,490,000 epochs are considered and the achieved final loss

is 0.131, as plotted in Figure 5.4.

The averaged MSE is 0.328 ± 0.686, clearly larger than for the 4 layers version, even with a longer training time,

as it can be identified in Figure 5.5.

As the previous example, the joint number 50 leads again to problems in the training due to its complex behavior.

Now, let us observe the effects of re-sampling the signal to 100 samples instead of 358 that compose the original

demonstration. The 4 layers structure, with a training of 4,910,000 epochs, leads to a final loss of 0.135 (see

Figure 5.6).

The average MSE is 0.215 ± 6.389, that is a lower mean error value, but the variance increases due that less

samples are used (see Figure 5.7).
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Figure 5.4: Loss evolution obtained from the 3 layer structure

Figure 5.5: MSE plot of the joints in the 3 layer structure

The effects on resampling in the 3 layers structure, with a training of 5,000,000 and a final loss vaflue of 0.189 are

depicted in Figure 5.8.

In this case, the average MSE is 0.298 ± 0.951, as shown in Figure 5.9.
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Figure 5.6: Loss evolution obtained from the 4 layer structure, data resampled to 100 samples

Figure 5.7: MSE plot of the joints in the 4 layer structure with 100 samples

Figure 5.8: Loss evolution from the 3 layers structure, data resample to 100 samples
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Figure 5.9: MSE plot of the joints in the 3 layers structure with 100 samples
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The test for DAE is made in the same way as AE, but this time data will present some degree of corruption. Tests

are conducted on 2 structures, with 3 and 4 layers, and different sampling.

Firstly, we start with a low corruption rate 0.05%. Hence, in the 50 joints and the 358 samples, for a total of 17900

instances, 895 among them will be changed to 0. At least 2 of the joints in each frame are corrupted. With this

modification, DAE is forced to be able to infer the missing joints from the non-corrupted ones.

Results for the 4 layers structure, with a training of 4,550,000 epochs and a final loss value of 0.232 is presented in

Figure 5.10.

Figure 5.10: Loss evolution of the DAE 4 layers structure

The average MSE is 0.272±0.585 for this 4 layers structure with DAE (see Figure 5.11).

Figure 5.11: MSE plot of the joints in the 4 layers structure

The value for MSE is clearly higher than in the precedent case, but this is compensated with the DAE operation

of being able to reconstruct the signal even when inputs are corrupted.

The 3 layers structure was trained for 4,450,000 epochs and the obtained final loss value was 0.219 (see Figure

5.12).

The average MSE was 0.487±1.153 (Figure 5.13).

Now, let us observe the effects of resampling the signal on the DAE. The signal now have 100 samples.

Results with the 4 layers structure, with a training of 4,630,000 epochs and a final loss of 0.164 are depicted in

Figure 5.14.
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Figure 5.12: Loss evolution of the DAE 3 layers structure

Figure 5.13: MSE plot of the joints in the 3 layer structure

In this case, the average MSE is 0.274±0.595 (see Figure 5.15). For the 3 layers structure, with a training of

4,540,000 epochs and a final loss value of 0.220, results are in Figure 5.16.

The average MSE is 0.458 ± 0.987 (see Figure 5.17).

Auto encoder conclusions:

With this test we are able to see some of the different options that exist in the implementation of the AE. Obviously,

there exists an infinite space of different structures to test, however the objective of this thesis is not finding the

better AE in terms of accuracy, but verify the performance of the AE-DMP approach.

The best option among the chosen structures is confirmed to be the 4 layers one. But this result leads to new

Figure 5.14: Loss evolution of the DAE 4 layers structure, data resampled to 100 samples
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Figure 5.15: MSE plot of the joints in the 4 layers structure with 100 samples

Figure 5.16: Loss evolution of the DAE 3 layers structure, data resample to 100 samples

questions; adding more layers will show better results? Which is the number of layer and nodes to chose before

making the system too complex? Like in deep leaning this question don’t have an exact solution.

5.2 AE-DMP

As previously mentioned, three different structures will be tested. Firstly the DMP applied to all the 50 joints

in the demonstration. Then the one where the DMP “observe” the latent space; and the one where the DMP

is totally integrated into the AE. In this way, we will get a control group, the basic DMP, and then different

implementations in order to be able to compare and corroborate that the system works better than the basic.

5.2.1 BASIC DMP

This is simply apply a DMP in each of the 50 joints. The setup is simple. For each joint the w values of the DMP

are calculated. The basis functions and the canonical time is the same for all the joints.

With these model the forcing term tries to adapt to the objective force, Figure 5.20. But the complexity of the

signal make impossible to find a correct match with this method.
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Figure 5.17: MSE plot of the joints in the 3 layers structure with 100 samples

Figure 5.18: Joint 1, basic DMP

As we can observe, Figure 5.18 the DMP tries to recreate to the movement of the joint but with low success, with

another joint, Figure 5.19 we can see that the results are similar. Therefore the system is not working.

Figure 5.19: Joint 3, basic DMP
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This happen as previous stated because the forcing term calculated is too complex to be approximated with a

low number of basis functions, Figure 5.20.l

Figure 5.20: Joint 1 forcing term, basic DMP

Figure 5.21: Joint 3 forcing term

To match better the function, the number of basis function should be higher than the number of samples and

this makes the problem too complex.

The Figure 5.22 is the generated with 50 basis functions.

Figure 5.22: Joint 3 forcing term, basic DMP
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In conclusion, in order to obtain a correct representation of the movement is required an extremely complex

approximation in the DMP. The method proposed AE-DMP will be able to solve this issue.

For the next parts the control group where all the improvements will be compared, is this one:

Figure 5.23: Joints MSE plot basic DMP

The MSE will be the main comparison tool due that other like loss or accuracy depends on each structure. Also is

easy to compare with the previous test of the AE alone and conclude that the Basic DMP is not even close to a

decent performance

5.2.2 AE-DMP NON-INTEGRATED

The next one is the DMP "observing" the latent space but not interfering directly to it. This is wide explained in

the previous section 3.3.

3 layers:

The first model tested is the 3 layers structure, and here we can see clearly that with the first results the setup is

working as expected. In the latent space y the fter m is shaped by the AE to adapt the basis functions easily. The

encoder maps the inputs with the correct parameters to facilitate the task to the DMP. It is interesting to remark

that the basis function initial size are a big delimiting point in the shape of the latent space. During the test is

observed that if the initial vales of the weights are big the latent space will have bigger values, and if the weights

are small the latent space will tend to a smoother and smaller solution.
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Figure 5.24: Joint 4 forcing term, AE-DMP 3 layers structure

And the effectiveness of this can be observed in the next plot which is the representation of a joint in the latent

space.

Figure 5.25: Joint 4 latent space, AE-DMP 3 layers structure

After passing thought the decoder of the AE, we take the Joint 1 as a reference for the next comparisons. Is

clearly observe as the setup tries to imitate the movement with some difficulties in some parts. This is due the

codification and decodification process in the AE. Using the 4 layers structure this is improved.
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Figure 5.26: Joint 1, joint space, AE-DMP 3 layers structure

Comparing the MSE plot, Figure 5.27, it is clearly seen that a huge improvement happened compared to the

Basic DMP version, Figure 5.23. Where the Mean error is reduced near to x7 times, and the variance more than

x100 times. This is a lead that we are getting close to the solution.

Figure 5.27: MSE plot, AE-DMP 3 layers structure

Now observe what happens with the 3 layers structure if is the signal is resampled to 100 samples and also

changing the value in the regulation term, giving more importance to the DMP part.
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Figure 5.28: Joint 4 forcing term, AE-DMP 3 layers structure with 100 data samples

Figure 5.29: Joint 4 latent space, AE-DMP 3 layers structure with 100 data samples
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Figure 5.30: Joint 1 joint space, AE-DMP 3 layers structure with 100 data sample

Figure 5.31: MSE plot, AE-DMP 3 layers structure with 100 data samples

4 layers:

The next structure is the 4 layers. In the forcing term and the latent space joints, not so much difference can be

seen. But the improvement appears when we look to the decoded output.
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Figure 5.32: Joint 4 forcing term, AE-DMP 4 layers structure

Figure 5.33: Joint 4 latent space, AE-DMP 4 layers structure

Here the system adapts with incredible precision to the target values, Figure 5.34.
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Figure 5.34: Joint 1 joint space, AE-DMP 4 layers structure

The MSE values are much better than the previous tests. The Mean is x2 times smaller and the variance x50

times. With this plot we can see clearly that the 4 layers structure with the same training time is able to adapt

better. This is due to the higher possibilities in the configuration space.

Figure 5.35: MSE plot, AE-DMP 4 layers structure

4 layers structure with corruption:

Looking to the next graphs the results are not good as the previous examples. The introduction of the DAE into

the model have a big impact in the results. The forcing term is not able to adapt to the target, this can be induced

due to the introduction of the corruption in the inputs.
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Figure 5.36: Joint 4 forcing term, DAE-DMP 4 layers structure

Is easy to see the error in the latent space, the generated movements is not precise as the previous iterations.

This error will be increased after the decodification as shown in the Figure 5.38.

Figure 5.37: Joint 4 latent space, DAE-DMP 4 layers structure

As said the joint is completely different to the target even that the mean is relatively low the variance in the joints

shows this error.
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Figure 5.38: Joint 1 joint space, DAE-DMP 4 layers structure

Figure 5.39: MSE plot, DAE-DMP 4 layers structure

Doing a bit of exploration, with this new plot Figure 5.40, where are represented the following signals; the

demonstration(t ar g et ), the direct feed from the demonstration thought the AE(di r ect_ f eed) and the generated

by the AEDMP(i nter n_ f eed). The AE is working but the latent space representation is not suitable to be trained

by the DMP. The only solution is to tweak the values in the regularization, giving more weight to the DMP part.

But then the cohesion for the AE is lost as the DMP takes more importance and the model starts to performs

worse. A mew model is required, one which includes the dynamics of the DMP inside the AE.
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Figure 5.40: Joint 4 joint space, comparison between AE codification and AE-DMP generation

5.2.3 AE-DMP INTEGRATED

This is the final structure where the DMP is totally embedded in the AE. During all the tests the AE structure with

4 layers is chosen. The DMP have only 40 basis functions. In this part the same model will be tested but different

parameters, to adjust to the better performance, will be tweaked.

2 Main parameters can be changed in the regularization formula, λ and µ this two values controls the weight

of the different parts in the loss function. The λ controls the adaptability of the forcing term. While the µ is

used to add sparsity to the latent space variables, this is required if you want to use for more than movement,

allowing the interpolation between movements. In the first test we can see the forcing term is almost equal to

Figure 5.41: Joint 4 forcing term
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the forcing terget according our predictions, then the generated latent variables will be the same as the target

from the demonstration. This can be seen in the next Figure 5.24.

Figure 5.42: Joint 4 latent space

When passing to the joint space as we expect the system behaves almost identical to the demonstration.

Figure 5.43: Joint 1 joint space

More than the 90% of the joints are under the MSE error of 2. And reducing the variance in a huge gap from the

previous examples. This confirms our expectations about the model. Solves all the problems presented by the

previous structures and is suitable to be tested with the previous exposed features.
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Figure 5.44: MSE plot of the AE-DMP Integrated

5.2.4 DAE-DMP

Now the inputs will be corrupted in order to introduce the ability of reconstructing missing parts.

But firstly lets observe what happen when we introduce the corruption to a previous trained AE-DMP. All the

next test will taking as a base the AE-DMP Integrated structure.

Here is the example of different inputs with random corruption in each one, Figure 5.45.

Figure 5.45: AEDMP forcing term

The target force becomes a completely mess and a stable movement is difficult to be learned. Furthermore

if the DMP does not work properly then the supposition that when the error in the DMP goes to 0, then the

equivalence y = ỹ is not fulfilled and the training is more complicated .

Taking from a starting point the trained version without corruption. The forcing term evolves in this way after a

few training steps:
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Figure 5.46: AEDMP forcing term training evolution

The forcing term collapses to near to 0, as for the latent space goes near to 0 also. I did not find any reason to

explain this phenomenon but in all the test happens the same. The forcing term loses the pattern learned and

becomes a mess, this requires more steps to stabilize and find another solution. After close to 10 million training

steps we achieve this:

Figure 5.47: Joint 1 joint space

It’s a good improvement compared in the corrupted version of the previous structures. The underling pattern in

the movement is obtained. Even can be considered as a filtered version of the input data.
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Figure 5.48: Joint 4 forcing term

Figure 5.49: Joint 4 latent space

The forcing term and the evolution for the latent space is also a bit noisy but the performance is again much

better than the previous structures.
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(a) MSE plot of the DAE-DMP Integrated (b) MSE plot of the DAE-DMP Non-Integrated

Figure 5.50: MSE plot comparison of the different corruption effects in the structures

In the previous picture we have compared the MSE from the DAE-DMP integrated 5.50a and the DEA-DMP not

integrated 5.50b, as I have advanced the new implementation gives a much better performance not close to the

one without corruption but in this case the structure is able to perform as expected. Giving us the option to

implement the reconstruction of missing joints.

5.2.5 MISSING JOINT RECONSTRUCTION

As previous said the objective of the DAE-DMP is the possibility of recreating the movement from missing, or

corrupted, joints or even full body sections.

This test are made introducing a 0 in the initial state of the movement in the joints that we want to corrupt. To

show the performance in the graphs are shown the joint movement when there is no joint missing, and the one

generated after deleting the joint/s. Also the error between both graphs is shown to help in some case due that

in some the error is not observable compared to the scale.

Elbow joint missing:

We make x22 = 0, elbow joint index, and execute the algorithm:

(a) Joint position (b) Joint errror

Figure 5.51: Example of the missing joint 22; right radius

In this case the elbow joint is missing, as we can observe the algorithm fulfills its task of compensating this error.
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We can observe the effect of this joint in the neighbour joints, for example the hand.

(a) Joint position (b) Joint error

Figure 5.52: Example of the missing joint 22; right hand

The algorithm is completing the missing one without notable interferences in the subsequent joints in the arm.

Forearm missing:

In this case all the forearm joints are missing, this includes; elbow, wrist, 2 joints in the hand and 2 in the thumbs.

A total of 6 joints.

(a) Joint position (b) Joint errror

Figure 5.53: Example of the missing section right forearm; right radius

Is observable that in the radius is almost identical to the previous.

In the hand joint which is the one that have the most error in this example,
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(a) Joint position (b) Joint error

Figure 5.54: Example of the missing section right forearm; right hand

And more instructing is to compare this with the same joint when only the elbow is missing, Figure 5.52. Where

is observable that this missing section is interfering in the generation. Even losing all the initial information of

the arm, the model is able to reconstruct it without major information loss.

Knee joint missing:

In this case we are studying the effect in the right leg.

(a) Joint position (b) Joint error

Figure 5.55: Example of the missing joint 40; right tibia

The error is not comparable to the scale of the movement representing only a 1%.

But in this case the elimination of the joint have a higher impact into the movement of the next joint, the foot. In

the Figure 5.56 we can observe a more prominent interference form the missing joint but as evolves in the time

this error disappears.
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(a) Joint position (b) Joint error

Figure 5.56: Example of the missing joint 40; right foot

Right foreleg missing:

In this case the right foreleg is missing form the knee including 2 joints in the foot and the toes joint.

(a) Joint position (b) Joint error

Figure 5.57: Example of the missing section right leg; right tibia

Here the error is bigger than in the arm but the difference is that the DMP is able to stabilize the movement and

tends to a 0 error.

(a) Joint position (b) Joint error

Figure 5.58: Example of the missing section tight leg; right foot

Compared to the previous version, Figure 5.56, the error is more notable, but in the same way with the evolution
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of the time this error tends to 0. The results of this features are very successful, as stated the DAE-DMP provides

a robust model.

5.2.6 GOAL CHANGING

With this characteristic of the DMP a problem occurs due to the particularities of our system.

The DAE can be understand as an attractor, the DAE learns the underling manifold of the data. And every point

that diverges from the demonstration is attracted to this manifold. So any change in the initial point or in the

goal point will be diminish and attracted to the demonstration learned. This is can see in the Figure 5.59

(a) Joint position (b) Joint difference

Figure 5.59: Example of the joint 22 with goal changed; right radius

In this case the goal is changed more than 10 degrees but the movement generated remains almost unchanged.

As we can see in the difference between the generated from the original goal and the changed goal.

With this said a possible solution is that if we can not change the goal points in the joint space, they have to be

changed in the 5-dimension latent space where the DMP is allocated.

Figure 5.60: Joint 1 latent space goal changed
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It behaves as expected, the DMP follows the new trajectory to the new goal, but the new problem relays in what

means this new goal after the decodification into the joint space.

If we give a look to one of the joints in the joint space it easy to see in the Figure 5.61b. The movement in the

(a) Joint position (b) Joint difference

Figure 5.61: Example of the joint 22 with goal changed; right radius

joint space is totally changed and this will be observed in all the joint where the latent space changed dimension

have effect. For this reason the DMP ability to adapt to the changing goal points is inapplicable in this system.

Applied the same procedure to the AE-DMP without corruption, the results are similar. Is sensible to changes

in the goal in the joint space. But when translated in the DAE as this values are not in the learned data set the

results are totally unpredictable.

5.2.7 MOVEMENT GENERALIZATION

In this section we will put on test the ability of the system to generalize a solution and generate new movements

from different demonstrations learned.

First we will test the generalization of this movements. The walking model is trained with 8 different demonstra-

tions. The data is reduced to 150 samples, for both test walking and running. In order to facilitate the learning

task some demonstrations are shifted a few frames in this way the movements are more coherent during all the

time. Because the objective is to find the underlying pattern of the movement.

Walking:

In the photos we can see that the model is working as intended, providing a movement more generalized. In

joints where the movement follows a observable pattern, the model is able to learn this pattern and reconstruct

it, Figure 5.62b. While in other joints when the movement is more erratic and no defined pattern is seen is able

to stay in the more consistent path, Figure 5.62a.



Dynamical Movement Primitives embedded into Auto Encoders to recreate human movement Pàg. 61

(a) Joint 4, joint space walking demonstration (b) Joint 2, joints space walking demonstration

Figure 5.62: Example of two joints, of the generalization for various demonstrations. Dashed lines are the
demonstration and the continuous blue line is the generated by the Sparse AE-DMP

Figure 5.63: MSE plot of the walking movement generated compared with a single demonstration

This generalization will affect the precision compared to a single demonstration. As seen in the Figure 5.63 the

error is increased compared to a single demonstration.

To check if the model is working the generated movement will be compare with the mean of all the demonstra-

tions. The generated movement is more close to the pattern represented by the mean of all the demonstrations.
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(a) Joint 4, joint space mean of the walking demonstration (b) Joint 2, joints space mean of the walking demonstration

Figure 5.64: Example of two joints, are compared with the mean obtained in from all the demonstration

We can observe that the movement generated is close to the intern pattern. The MSE plot confirms this, the

error is more comparable to the one obtained in the previous results.

Figure 5.65: MSE plot of the running movement generated compared with the mean of all the demonstrations

Running:

The running movement have a faster pace, representing more movement cycles in the same time frame than

the walking movement. This means that more information is concentrated in less space. The model have to be

faster enough and have the flexibility to keep this rate.
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(a) Joint 4, joint space of the running demonstration (b) Joint 2, joints space of the running demonstration

Figure 5.66: Example of two joints, are compared with all the taught demonstrations

The model is able to generalize the movement in the same way as in the walking, Figure 5.67. Comparing with the

Figure 5.67: MSE plot of the walking movement generated compared with a single demonstration

mean of all the movements is easy to see the adequate performance of the model, Figure 5.68. Both movement

(a) Joint 4, joint space mean of the running demonstration (b) Joint 2, joints space mean of the running demonstration

Figure 5.68: Example of two joints, are compared with all the taught demonstrations
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separately work really well now the trick point is to merge both movements in the same model. Both movements

must be trained at the same time and in the same model, training in different models results to problems in the

merge.

When the model is trained with different movements at the same time, the Tensorflow model becomes a bit

more complicated. Different weights for the walking and running have to be defined, and during the training

this weights have to alternate during their corresponding time.

The training have to be modified, and one problem arise with the different data. During the training all the data

is normalized to [−1,1] to do this, the mean and the variance is calculated and used. However when different

movements are trained at the same time, this normalization process should be the same for both. Otherwise

when new movement is generated the decoding process at the last step, the values obtained have no relation to

the body position. Due that to pass to the body real joint values the mean and variance have to be added. For

new generated movements from both demonstrations the decodification process fails.

5.2.8 MOVEMENT INTERPOLATION

The model is trained with 2 movements at the same time, walking and running. The AE parameters will be the

same for both, but the weights for in the DMP are changed depending of the movement trained in that step.

So the model will have 3 kinds of variables, the AE parameters, the DMP weights for the walking and the DMP

weights for the running. The canonical time and the basis functions are the same for both movements.

The first test is to observe only the walking codification, so only the walking weights are used.

Figure 5.69: Force term of the joint 4 generated with the walking of the merged model

The model tries to follow the objective in the force term. In the Figure 5.69 the forcing term is adapting to

the target, and when is used to generate a new movement, Figure 5.70, the model performs inside a relaxed
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expectations. In the graph we can observe the "y_target" that represents the walking demonstration in the

latent space, the "y_target_run" that is the running demonstration, and finally the "y_dmp_intern" which is the

generated by the AE-DMP. The model is able to copse the movement close to the walking.

Figure 5.70: Latent space Joint 4 generated from the walking of the merged model

It is interesting to observe the behaviour if we interchange the initial state, position, speed and acceleration for

the running initial state. In the Figure 5.71 the new generated movement starts in the latent space position of

the running codification but as the time passes the DMP attractor moves the action to the walking goal. This is

observed in all the dimensions in the latent space.

Figure 5.71: Latent space joint 4 generated with the walking of the merged model, while the inital state is the
running
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Furthermore a problem arise with this structure, when the movement translated to the joint space the values

are off. The reason for this problem is the normalization, in order to normalize all the data the mean and the

variance are extracted. But when we have 2 sets of different data this values are different and the model tries to

generate new movement, during the transformation to the joint space the values are unusual, Figure 5.72.

Figure 5.72: Joint space joint 1, processed output.

But if we observe the data before the translation, Figure 5.73, the values are close to the demonstration. As

during the training this data is the used for the error calculation the mean and the variance should not affect the

solution in the latent space or either the training.

Figure 5.73: Joint space joint 1, non processed output
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The running movement is also achieved with considerable exactitude, the model learn the pattern in the target

force, Figure 5.74, giving good results in the generation of new movement, Figure 5.75. During individual test

running has given the better results, surprisingly being more easy to learn than the walking. Here in the merged

model also the running demonstrations perform a bit better than the walking.

Figure 5.74: Force term of the joint 3 generated with the running of the merged model.

Figure 5.75: Latent space joint 4 generated with the running of the merged model.

If we do the same as done in the walking about changing the initial state but in the reverse way. Now he initial

state is the walking and the movement is from the running, Figure 5.76.
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Figure 5.76: Latent space joint 4 generated with the running of the merged model, while the initial state is the
walking.

The generated starts in the walking point but follows the movement of running and tries to converge to the

running goal.

Movement interpolation:

The next step is the interpolation between the two movements. The interpolation is made with the rules

established in the Section 3.3.6. The weights merge is calculated as in the Equation (3.37).

Figure 5.77: Latent space joint 3 generated with the transition between walking and running.

In this case, Figure 5.77, the movement starts to change at the frame 50. It is easy to observe the transition

between one movement and the other. While the walking is active, before frame 50 the model follows this path

but when the force of the running start to interfere the action shifts to the other movement.
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This is also observable in the joints space, Figure 5.78, the generated path changes from one movement to

another, with the center point established in the 75 frame. While if we change the center to 25, the model reacts

and adapt to the change, Figure 5.79

Figure 5.78: Joint space joint 1 generated with the transition between walking and running, centered in the 75
frame.

Figure 5.79: Joint space joint 1 generated with the transition between walking and running, centered in the 25
frame.

The model is able to codify both movements but the interpolation or transition between them requires a lot of

tuning and parameter adjusting. Although the model reacts perfectly to the changes of this parameters, the

sensitivity of them complicates the task. And the unpredictability of the results to this changes creates a big

barrier.
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CHAPTER 6

CONCLUSIONS

As a conclusion of this thesis I would highlight the following points.

The AE-DMP model presented in [2] is studied and tested. It is compared with the naive implementation of

the only DMP applied to all body, Section 3.3.1.1, where the model AE-DMP gives incredible better results. The

model performs perfectly in the generation of complex movements, simplifying the body movement to 5 joints

providing a great approach. The possibility of modifying this conversion adding more layer or nodes to the AE,

or even changing the activation function brings a vast number of options in the transformation, giving the ability

to search the best option for each task. This model can be applied to animals, manipulators and mobile robots,

with extremely facility. The flexibility and adaptability to different bodies without big changes is a great point for

the model.

The AE have passed the test successfully, the system have been analyzed with different structures and interactions

with the DMP. The benefits of AE have been proven many times before this thesis, pretraining DNN, classification

problems, etc.

The AE-DMP as said preforms much better than the Basic DMP, the movement generated is almost equal to the

demonstration and with the adequate training time this difference will be smaller in every training.

Aside the recreation of movements, the DAE-DMP version provides a interesting feature of reconstructing

corrupted data. In the event of having any interferences in the information of the body provided or even if it

is completely missing, the DAE-DMP has proven, Section 5.2.5, to solve this and reconstruct and generate the

movement without major interferences. The DAE-DMP provides a robust model to "control" the body.

Other features as goal changing do not give the expected results. The structure of the AE minimize any intention

of modifying the movement and act directly to the latent space if the movement is not trained correctly can lead

to unexpected consequences.

The model is able to codify different movements in the latent space as shown in, Section 3.3.5, with the differ-

entiating features. And during the generation of new movement provides good results. the model adapts to

the transformation of the main parameters, but a lot of tuning is required to obtain the desirable results. Other

problem is the normalization of the data that requires more study and time invested in this features.

All the project as said during the Objectives is produced in Python, and using the TensorFlow library. The

knowledge obtained during the development of this thesis is a great value for my future professional trajectory.
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Tensorflow is an important part in the state of art in the machine learning sector, and it is forecasted that this

importance will increased as the library grows in features and performance. Also, the introduction of portability

between different platforms widens the applications of this library.

During the development of the thesis different parts of the machine learning field are inspected and studied as,

NN layers and nodes distribution, activation functions, optimization and training methods. Providing a good

view of all of them.

About the future projections of the model, the first objective should be to refine the generation of new actions

from different movements is the only part in the thesis that requires a review. The implementation in a real robot

and the observation of their actions should be the next big step. If this model can be introduced in a real robot

successfully it opens the possibility of using widely in future projects in robotics. Currently other more complex

methods are used to do the same task, but if this model is refined and applied robustly, the AE-DMP could give a

more flexible approach.
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APPENDIX A

DATA ACQUISITION FUNCTION

� �
1 def readfromamc_func(filepath):

2 import numpy as np

3 import re

4 f = open(filepath ,'r')

5 if f ==-1:

6 print("failed to load file")

7 return -1

8 data = f.readline ()

9 string = ":DEGREES"

10 while (data.rstrip('\n') != string):

11 data = f.readline ()

12 D=[]

13 dims =[6,3,3,3,3,3,3,2,3,1,1,2,1,2,2,3,

14 1,1,2,1,2,3,1,2,1,3,1,2,1];

15 locations = [1,1,4,7,10,13,16,19,19,22,23,24,26,26,28,28,

16 31,32 ,33 ,35,5,37,40,41 ,43,44,47,48 ,50];

17 frame =1;

18 data = f.readline ()

19 data = f.readline ()

20 while data != '':

21 row = np.zeros (50)

22 for _ in range (29):

23 linedata = re.split(r'\s+', data)

24 if linedata [0] == 'root':

25 index = 0

26 elif linedata [0] == 'lowerback ':

27 index = 2

28 elif linedata [0] == 'upperback ':

29 index = 3

30 elif linedata [0] == 'thorax ':

31 index = 4

32 elif linedata [0] == 'lowerneck ':

33 index = 5

34 elif linedata [0] == 'upperneck ':

35 index = 6

36 elif linedata [0] == 'head':

37 index = 7

38 elif linedata [0] == 'rclavicle ':

39 index = 0

40 elif linedata [0] == 'rhumerus ':
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41 index = 9

42 elif linedata [0] == 'rradius ':

43 index = 10

44 elif linedata [0] == 'rwrist ':

45 index = 11

46 elif linedata [0] == 'rhand ':

47 index = 12

48 elif linedata [0] == 'rfingers ':

49 index = 0

50 elif linedata [0] == 'rthumb ':

51 index = 14

52 elif linedata [0] == 'lclavicle ':

53 index = 0

54 elif linedata [0] == 'lhumerus ':

55 index = 16

56 elif linedata [0] == 'lradius ':

57 index = 17

58 elif linedata [0] == 'lwrist ':

59 index = 18

60 elif linedata [0] == 'lhand ':

61 index = 19

62 elif linedata [0] == 'lfingers ':

63 index = 0

64 elif linedata [0] == 'lthumb ':

65 index = 21

66 elif linedata [0] == 'rfemur ':

67 index = 22

68 elif linedata [0] == 'rtibia ':

69 index = 23

70 elif linedata [0] == 'rfoot ':

71 index = 24

72 elif linedata [0] == 'rtoes ':

73 index = 25

74 elif linedata [0] == 'lfemur ':

75 index = 26

76 elif linedata [0] == 'ltibia ':

77 index = 27

78 elif linedata [0] == 'lfoot ':

79 index = 28

80 elif linedata [0] == 'ltoes ':

81 index = 29

82 else:

83 print("Labels are not correct")

84 return -1

85 if(index != 0):

86 location = locations[index-1]

87 dim = len(linedata)-1

88 row[location-1: location+dim-2] = linedata [1:dim]

89 data = f.readline ()

90 row_T = np.array(row)

91 D.append(row_T)

92 data = f.readline ()

93 Out = np.array(D)

94 f.close ()

95 return Out� �
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APPENDIX B

DATA WRITING FUNTION

� �
1 def writetoamc_func(filepath ,D):

2 import numpy as np

3 import re

4 Data_in = np.squeeze(D)

5 f = open(filepath ,'w+')

6 aux = '#!OML:ASF F:\\ VICON \\ USERDATA \\ INSTALL \\rory3\\ rory3.ASF\n'

7 f.write(aux)

8 aux = ":FULLY -SPECIFIED\n"

9 f.write(aux)

10 aux = ":DEGREES\n"

11 f.write(aux)

12 Dummy = [0 ,17.8934 ,0 ,0 ,0 ,0]

13 locations = [1,1,4,7,10,13,16,19,19,22,23,24,26,26,28,28,

14 31 ,32 ,33 ,35 ,35 ,37 ,40 ,41 ,43 ,44 ,47 ,48 ,50];

15 dims =[6,3,3,3,3,3,3,2,3,1,1,2,1,2,2,3,1,1,2,1,2,3,1,2,1,3,1,2,1];

16 names = ['root','lowerback ','upperback ','thorax ','lowerneck ','upperneck ','head','rclavicle ','

rhumerus ','rradius ','rwrist ','rhand ','rfingers ','rthumb ','lclavicle ','lhumerus ','lradius ','lwrist

','lhand ','lfingers ','lthumb ','rfemur ','rtibia ','rfoot ','rtoes ','lfemur ','ltibia ','lfoot ','ltoes '

]

17 for n in range(Data_in.shape [0]):

18 aux = str(n+1)

19 f.write(aux+ '\n')

20 for i in range (29):

21 if(i== 0):

22 aux = names[i] + ' ' +str(Dummy [0])+ ' ' + str(Dummy [1]) + ' ' + str(Dummy [2])+ ' ' +

str(Dummy [3]) + ' ' + str(Dummy [4]) + ' ' + str(Dummy [5])

23 elif(i == 7):

24 aux = names[i] + ' ' + str(0) + ' ' + str(0)

25 elif(i == 12):

26 aux = names[i] + ' ' + str (7.12502)

27 elif(i == 14):

28 aux = names[i] + ' ' + str(0) + ' ' + str(0)

29 elif(i == 19):

30 aux = names[i] + ' ' + str (7.12502)

31 else:

32 aux = names[i]

33 for j in range(dims[i]):

34 aux = aux + ' ' + str(Data_in[n,( locations[i]+j-1)])

35 f.write(aux+ '\n')

36 f.close()� �
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APPENDIX C

AE-DMP INTEGRATED TRAINING

� �
1 version = 6.0

2 from pathlib import Path

3 import os

4 os.environ['TF_CPP_MIN_LOG_LEVEL ']='3' #Used to reduce tensorflow logging

5

6 def pause(): #Custom pause function

7 programPause = input("Press the <ENTER > key to continue ...")

8

9 import tensorflow as tf

10 config = tf.ConfigProto ()

11 config.gpu_options.allocator_type = 'BFC'

12

13 import numpy as np

14 from readfromamc import readfromamc_func

15 import matplotlib.pyplot as plt

16 import math

17 import re

18 import scipy.signal as signal

19 #Non tensor ops ---

20 inputs = 50

21 h_1_neurons = 60

22 h_2_neurons = 42

23 h_3_neurons = 25

24 h_4_neurons = 5

25 epochs = 100000

26 file_num = 1

27 sample_num = 100

28 #Read data

29 D = readfromamc_func("Data/joints.amc")

30

31 Data_in = np.squeeze(D)

32 minim = Data_in.shape [0]

33

34 #Initialization of placeholder

35 sess = tf.InteractiveSession ()

36 x = tf.placeholder(tf.float32 ,shape =[None ,inputs],name="Inputs") #Target values

37 x_corrupt = tf.placeholder(tf.float32 ,shape=[None ,inputs],name="Inputs_corrupted")

38 Denoised_W_h1 = tf.placeholder(tf.float32 ,shape=[],name="Input_corruption")

39

40 with tf.name_scope('Data_info ') as scope:
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41 mean_data ,std_data = tf.nn.moments(x,[0], keep_dims=True)

42

43 with tf.name_scope('AE') as scope: # Input: x_corrupt , output: z_out

44 with tf.name_scope('Process_data ') as scope:

45 x_norm = tf.div(tf.div(tf.subtract(x_corrupt ,mean_data),tf.sqrt(std_data)),(math.pi∗ 2))
46

47 #Deep Neural Nets build

48 with tf.name_scope('hidden_1 ') as scope:

49 W_h1 = tf.Variable(tf.random_normal ([inputs ,h_1_neurons],stddev =0.1),name="Weights_hidden_1")

50 b_h1 = tf.Variable(tf.constant (0.1, shape = [h_1_neurons ]),name = "Bias_hidden_1")

51

52 h_1 = tf.tanh(tf.matmul(x_norm ,(W_h1∗ Denoised_W_h1))+b_h1)
53

54 with tf.name_scope('hidden_2 ') as scope:

55 W_h2 = tf.Variable(tf.random_normal ([ h_1_neurons ,h_2_neurons],stddev =0.1),name="Weights_hidden_2")

56 b_h2 = tf.Variable(tf.constant (0.1, shape = [h_2_neurons ]),name = "Bias_hidden_2")

57

58 h_2 = tf.tanh(tf.matmul(h_1 ,W_h2)+b_h2)

59

60 with tf.name_scope('hidden_3 ') as scope:

61 W_h3 = tf.Variable(tf.random_normal ([ h_2_neurons ,h_3_neurons],stddev =0.1),name="Weights_hidden_3")

62 b_h3 = tf.Variable(tf.constant (0.1, shape = [h_3_neurons ]),name = "Bias_hidden_3")

63

64 h_3 = tf.tanh(tf.matmul(h_2 ,W_h3)+b_h3)

65

66 with tf.name_scope('hidden_4 ') as scope:

67 W_h4 = tf.Variable(tf.random_normal ([ h_3_neurons ,h_4_neurons],stddev =0.1),name="Weights_hidden_4")

68 b_h4 = tf.Variable(tf.constant (0.1, shape = [h_4_neurons ]),name = "Bias_hidden_4")

69

70 y_AE = tf.tanh(tf.matmul(h_3 ,W_h4)+b_h4)

71

72 with tf.name_scope('hidden_g4 ') as scope:

73 W_g4 = tf.Variable(tf.random_normal ([ h_4_neurons ,h_3_neurons],stddev =0.1),name="Weights_hidden_g4"

)

74 b_g4 = tf.Variable(tf.constant (0.1, shape = [h_3_neurons ]),name = "Bias_hidden_g4")

75

76 g_4 = tf.tanh(tf.matmul(y_AE ,W_g4)+b_g4)

77

78 with tf.name_scope('hidden_g3 ') as scope:

79 W_g3 = tf.Variable(tf.random_normal ([ h_3_neurons ,h_2_neurons],stddev =0.1),name="Weights_hidden_g3"

)

80 b_g3 = tf.Variable(tf.constant (0.1, shape = [h_2_neurons ]),name = "Bias_hidden_g3")

81

82 g_3 = tf.tanh(tf.matmul(g_4 ,W_g3)+b_g3)

83

84 with tf.name_scope('hidden_g2 ') as scope:

85 W_g2 = tf.Variable(tf.random_normal ([ h_2_neurons ,h_1_neurons],stddev =0.1),name="Weights_hidden_g2"

)

86 b_g2 = tf.Variable(tf.constant (0.1, shape = [h_1_neurons ]),name = "Bias_hidden_g2")

87

88 g_2 = tf.tanh(tf.matmul(g_3 ,W_g2)+b_g2)

89

90 with tf.name_scope('hidden_g1 ') as scope:

91 W_g1 = tf.Variable(tf.random_normal ([ h_1_neurons ,inputs],stddev =0.1),name="Weights_hidden_g1")

92 b_g1 = tf.Variable(tf.constant (0.1, shape = [inputs ]),name = "Bias_hidden_g1")

93

94 z = tf.tanh(tf.matmul(g_2 ,W_g1)+b_g1)

95
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96 with tf.name_scope('Deprocess_output ') as scope:

97 z_out = tf.multiply(tf.add(tf.multiply(z,tf.sqrt(std_data)),mean_data) ,(2∗ math.pi)) #

98

99 with tf.name_scope('Data_info ') as scope:

100 mean_data_encoder ,std_data_encoder = tf.nn.moments(x,[0], keep_dims=True)

101

102 with tf.name_scope('Encoder ') as scope: # Input: x, output: y

103 with tf.name_scope('Process_data ') as scope:

104 x_norm_encoder = tf.div(tf.div(tf.subtract(x_corrupt ,mean_data_encoder),tf.sqrt(

std_data_encoder)) ,(math.pi∗ 2))
105

106 with tf.name_scope('hidden_1 ') as scope:

107 h_1 = tf.tanh(tf.matmul(x_norm_encoder ,(W_h1∗ Denoised_W_h1))+b_h1)
108

109 with tf.name_scope('hidden_2 ') as scope:

110 h_2 = tf.tanh(tf.matmul(h_1 ,W_h2)+b_h2)

111

112 with tf.name_scope('hidden_3 ') as scope:

113 h_3 = tf.tanh(tf.matmul(h_2 ,W_h3)+b_h3)

114

115 with tf.name_scope('hidden_4 ') as scope:

116 y = tf.tanh(tf.matmul(h_3 ,W_h4)+b_h4)

117

118 # Loss function

119 with tf.name_scope('Loss_AE ') as scope:

120 loss_AE = tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square(x_norm-z) ,1)) ,0)

121 tf.summary.scalar('Loss_AE ', loss_AE)

122

123 #DAE training function

124 with tf.name_scope('Opt_AE ') as scope:

125 train_step_AE = tf.train.AdadeltaOptimizer (0.1).minimize(loss_AE)

126

127 #Non tensor ops ---

128

129

130 num = 40

131 framerate = 120

132 t_final = minim/framerate

133 ts = t_final/Data_in.shape [0]

134 alfax = 1

135 alfa = 10

136 beta = alfa/4

137 tau = 1.0

138 X0 = 1

139 dim = h_4_neurons

140

141 #Derivative matrix

142 W_dd = np.zeros ([ Data_in.shape [0], Data_in.shape [0]])

143 W_dd [0 ,0:3]=(1 ,-2,1) #Eliminate 0 in first row

144 Aux_array = np.zeros([ Data_in.shape [0]])

145 Aux_array [0:3]=(1 ,-2,1)

146 for i in range(1,Data_in.shape [0]-1):

147 W_dd[i,:] = Aux_array

148 Aux_array=np.roll(Aux_array ,1)

149 W_dd[-1,-3:] = (1,-2,1) # W_dd[Data_reduced.shape [0]-1,0] = 0

150 W_dd = W_dd/(np.square(ts))

151

152 W_d = np.zeros ([ Data_in.shape [0], Data_in.shape [0]])
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153 W_d [0 ,0:2]= (-1,1)

154 Aux_array = np.zeros(Data_in.shape [0])

155 Aux_array [0:2]=(-1,1)

156 for i in range(1,Data_in.shape [0]):

157 W_d[i,:] = Aux_array

158 Aux_array = np.roll(Aux_array ,1)

159 W_d[-1,-2:]=(-1,1)

160 W_d = W_d/ts

161 #---Non tensor ops

162

163 with tf.name_scope("Basis_funcs") as scope:

164 with tf.name_scope("Kernel_fun_params") as scope:

165 mean = tf.linspace(ts ,t_final ,num)

166 mean_distributed = X0∗ tf.exp(-alfax∗ mean/tau)
167 var_distributed = num/mean_distributed

168

169 with tf.name_scope("Weights") as scope:

170 w = []

171 for i in range(dim):

172 name = "Weights" + str(i)

173 scope_name = 'Weights_kernel_ ' + str(i)

174 with tf.name_scope(scope_name) as scope:

175 w.append(tf.Variable(tf.truncated_normal ([num], stddev =1),name=name))

176

177 with tf.name_scope("Kernel") as scope:

178 time = [tf.linspace (0.0,t_final ,Data_in.shape [0])]

179 aux = tf.zeros([num ,1],dtype=tf.float32)

180 s_t = tf.transpose(time + aux)

181

182 s = X0∗ tf.exp(-alfax∗ s_t/tau)
183 internm = -(var_distributed∗ tf.square(tf.subtract(s,mean_distributed)))
184 kernel = tf.exp(internm ,name="Kernel_fun")

185

186 with tf.name_scope("Forcing_term") as scope:

187 f_list = []

188 kernel_sum = tf.expand_dims(tf.reduce_sum(kernel ,1) ,1)

189 for i in range(dim):

190 f_list.append(tf.divide(tf.matmul(kernel ,(tf.expand_dims(w[i],1))),kernel_sum))

191

192 W_dd_tensor = tf.constant(W_dd ,dtype=tf.float32 ,name="Second_derivative")

193 W_d_tensor = tf.constant(W_d ,dtype=tf.float32 ,name="First_derivative")

194

195 #Non tensor ops ---

196

197 #Matrix A

198 A_1 = (tau-np.square(ts)∗ alfa∗ beta)/tau
199 A = np.identity(Data_in.shape [0])

200 A_aux = np.zeros([1, Data_in.shape [0]])

201 A = np.vstack ((A_aux ,A))∗ A_1
202 A = np.delete(A,-1,axis =0)

203 A[0,0] = 1

204 A_tensor = tf.constant(A,dtype=tf.float32 ,name="Matrix_A")

205

206 #Matrix B

207 B_1 = (tau∗ ts-np.square(ts)∗ alfa)/tau
208 B = np.identity(Data_in.shape [0])

209 B_aux = np.zeros([1, Data_in.shape [0]])

210 B = np.vstack ((B_aux ,B))∗ B_1
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211 B = np.delete(B,-1,axis =0)

212 B_tensor = tf.constant(B,dtype=tf.float32 ,name="Matrix_B")

213

214 #Matrix C

215 C_1 = np.square(ts)∗ alfa∗ beta/tau
216 C_aux = np.ones([ Data_in.shape [0] ,1])

217 C_aux [0] = 0

218 C_1 = C_1∗ C_aux
219 C_1_tensor = tf.constant(C_1 ,dtype=tf.float32 ,name="Matrix_C_1")

220

221 C_2 = np.square(ts)/tau

222 C_2 = C_2∗ C_aux
223 C_2_tensor = tf.constant(C_2 ,dtype=tf.float32 ,name="Matrix_C_2")

224

225 #--- Non tensor ops

226

227 with tf.name_scope("Goal") as scope:

228 goal = tf.transpose(tf.expand_dims(y[-1],axis =1))

229

230 goal = tf.stop_gradient(goal)

231

232 with tf.name_scope("Forcing_target_term") as scope:

233 f_target_list = []

234 y_dd_matrix = tf.matmul(W_dd_tensor ,y)

235 y_d_matrix = tf.matmul(W_d_tensor ,y)

236 for i in range(dim):

237 y_dd = tf.slice(y_dd_matrix ,[0,i],[-1,1])

238 y_d = tf.slice(y_d_matrix ,[0,i],[-1,1])

239 f_target_list.append(tf.multiply(tf.square(tf.constant(tau ,dtype=tf.float32)),y_dd)-tf.

multiply(tf.constant(alfa ,dtype=tf.float32),tf.subtract(tf.multiply(beta ,tf.subtract(goal[0,i],tf

.slice(y,[0,i],[-1,1]))),tf.multiply(tf.constant(tau ,dtype=tf.float32),y_d))))

240

241 with tf.name_scope("Pack_tensor_lists") as scope:

242 f_target = tf.transpose(tf.squeeze(tf.stack(f_target_list)))

243 f = tf.transpose(tf.squeeze(tf.stack(f_list)))

244

245 with tf.name_scope("y_computed") as scope:

246 y_decode = tf.matmul(A_tensor ,y)+tf.matmul(B_tensor ,y_d)+tf.multiply(C_1_tensor ,goal)+tf.multiply(

f,C_2_tensor)

247

248 with tf.name_scope('Decoder ') as scope: # Input: y_decode , output: z_decoded_out

249 with tf.name_scope('hidden_g4 ') as scope:

250 g_4 = tf.tanh(tf.matmul(y_decode ,W_g4)+b_g4)

251

252 with tf.name_scope('hidden_g3 ') as scope:

253 g_3 = tf.tanh(tf.matmul(g_4 ,W_g3)+b_g3)

254

255 with tf.name_scope('hidden_g2 ') as scope:

256 g_2 = tf.tanh(tf.matmul(g_3 ,W_g2)+b_g2)

257

258 with tf.name_scope('hidden_g1 ') as scope:

259 z_decoded = tf.tanh(tf.matmul(g_2 ,W_g1)+b_g1)

260

261 with tf.name_scope('Deprocess_output ') as scope:

262 z_decoded_out = tf.multiply(tf.add(tf.multiply(z_decoded ,tf.sqrt(std_data_encoder)),

mean_data_encoder) ,(2∗ math.pi))
263

264 with tf.name_scope('Target_data ') as scope:
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265 with tf.name_scope('Process_data ') as scope:

266 x_norm_target = tf.div(tf.div(tf.subtract(x,mean_data_encoder),tf.sqrt(std_data_encoder)),(

math.pi∗ 2))
267

268 nu = 0.25

269 mu = 1

270 with tf.name_scope("Loss_fun_AE -DMP") as scope:

271 suma_AE = tf.sqrt(tf.reduce_sum(tf.square(x_norm_target-z_decoded) ,1))

272 loss_AE_scalar = tf.reduce_sum(suma_AE ,0)

273 suma_DMP = tf.sqrt(tf.reduce_sum(tf.square(f_target-f) ,1))

274 loss_DMP_scalar = tf.reduce_sum(suma_DMP ,0)

275 spartsity = tf.reduce_sum(tf.abs(y))

276 loss_ae_dmp = tf.reduce_sum(suma_AE+nu∗ suma_DMP ,0)+mu∗ spartsity
277

278 tf.summary.scalar('Loss_AE ', loss_AE_scalar)

279 tf.summary.scalar('Loss_DMP ', loss_DMP_scalar)

280 tf.summary.scalar('Loss_AE_DMP ', loss_ae_dmp)

281

282 with tf.name_scope("Opt_DMP") as scope:

283 train_step_DMP = tf.train.AdadeltaOptimizer (0.1).minimize(loss_ae_dmp)

284

285 sess.run(tf.global_variables_initializer ())

286

287 with tf.name_scope("Saver") as scope:

288 saver = tf.train.Saver()

289

290 #Loading model if exist , else create a new one

291 my_file = Path("tmp/version.txt")

292 if my_file.is_file ():

293 saver = tf.train.Saver()

294 print("Loading model")

295 saver.restore(sess , "tmp/model.ckpt")

296 print("Load sucessful")

297 else:

298 sess.run(tf.global_variables_initializer ())

299 with tf.name_scope("Saver") as scope:

300 saver = tf.train.Saver()

301

302 merged = tf.summary.merge_all ()

303

304 summary_writer = tf.summary.FileWriter("tmp/AE_logs", sess.graph)

305

306 x_mse = tf.placeholder(tf.float32 ,shape=[None],name="MSE_target")

307

308 MSE_joint_mean = tf.reduce_mean(tf.squared_difference(z_out [:,0],x_mse))

309 MSE_joint_variance = tf.sqrt(MSE_joint_mean∗ Data_in.shape [0])
310 plt.ion()

311 DMP_corruptness = 0.05

312

313 print("Starting DMP training")

314

315 print ("Start DMP training loop")

316 loop = 0

317 acc_sparse = 0

318 trained_epochs = 0

319 try:

320 while trained_epochs<5000000:

321 plt.close("all")
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322 plt.pause (0.001)

323 f_aux = np.transpose(sess.run(f))

324 f_target_aux = np.transpose(sess.run(f_target ,feed_dict ={x: Data_in ,x_corrupt: Data_in ,

Denoised_W_h1: 1-DMP_corruptness }))

325 print("Sparsity: ", acc_sparse)

326 #Every x number plot the actual state of the training

327 for i in range(dim):

328 plt.figure ()

329 plt.plot(f_aux[i,:], label="f_term")

330 plt.plot(f_target_aux[i,:], label="f_target")

331 plt.legend ()

332 plt.draw()

333 plt.pause (0.001)

334 for i in range(epochs):

335 #Corruption operation

336 Matrix_corruption = np.random.rand(Data_in.shape [0], Data_in.shape [1])

337 corrupt_data_var = np.copy(Data_in)

338 corrupt_data_var[np.where(Matrix_corruption<DMP_corruptness)] = 0

339 #Training operation

340 sess.run(train_step_DMP ,feed_dict ={x: Data_in ,x_corrupt: Data_in ,Denoised_W_h1: 1})

341 if (i%10000) == 0: # Each 10000 print the current state

342 summary ,acc ,acc_AE ,acc_DMP ,acc_sparse= sess.run([merged ,loss_ae_dmp ,loss_AE_scalar ,

loss_DMP_scalar ,spartsity],feed_dict ={x: Data_in ,x_corrupt: Data_in ,Denoised_W_h1: 1-

DMP_corruptness })

343 trained_epochs = i+epochs∗ loop
344 print("Epoch:",trained_epochs ," Loss: ",acc , " AE Loss: ",acc_AE , " DMP Loss: ",

acc_DMP)

345 summary_writer.add_summary(summary , loop)

346 loop = loop + 1

347 except KeyboardInterrupt:

348 pass

349

350 print("Finished training DMP")

351

352 print("Saving data to tmp/model.ckpt")

353 #Save model

354 save_path = saver.save(sess , "tmp/model.ckpt")

355

356

357 #Write a file that conserve some parameters for the test , and for the user

358 my_file = Path("tmp/version.txt")

359 if my_file.is_file ():

360 f = open("tmp/version.txt",'a')

361 else:

362 f = open("tmp/version.txt",'w+')

363 aux = "Version: " + str(version) + "\n"

364 f.write(aux)

365 f.write("DMP_training\n")

366 aux = "DAE corruption: "+str(DMP_corruptness)+"\n"

367 f.write(aux)

368 aux = "Nu: "+str(nu)+"\n"

369 f.write(aux)

370 aux = "Mu: "+str(mu)+"\n"

371 f.write(aux)

372 aux = "Trained by "+str(trained_epochs)+" epochs\n"

373 f.write(aux)

374 aux = "Last loss: "+str(acc)+"\n"

375 f.write(aux)
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376 f.close()

377 pause ()� �
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