Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras

Vyacheslav Futorny^a, Tetiana Klymchuk^{b,c}, Anatolii P. Petravchuk^c, Vladimir V. Sergeichuk^{d,*}

^aDepartment of Mathematics, University of São Paulo, Brazil b Universitat Politècnica de Catalunya, Barcelona, Spain c Faculty of Mechanics and Mathematics, Taras Shevchenko University, Kiev, Ukraine d Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine

Abstract

For each two-dimensional vector space V of commuting $n \times n$ matrices over a field F with at least 3 elements, we denote by \tilde{V} the vector space of all $(n+1)\times$ $(n+1)$ matrices of the form $\begin{bmatrix} A & * \\ 0 & 0 \end{bmatrix}$ with $A \in V$. We prove the wildness of the problem of classifying Lie algebras \widetilde{V} with the bracket operation $[u, v] := uv$ vu. We also prove the wildness of the problem of classifying two-dimensional vector spaces consisting of commuting linear operators on a vector space over a field.

Keywords: Spaces of commuting linear operators, Matrix Lie algebras, Wild problems. 2000 MSC: 15A21, 16G60, 17B10.

1. Introduction

Let $\mathbb F$ be a field that is not the field with 2 elements. We prove the wildness of the problems of classifying

• two-dimensional vector spaces consisting of commuting linear operators on a vector space over $\mathbb F$ (see Section 2), and

[˚]Corresponding author. Published in: Linear Algebra Appl. 536 (2018) 201–209. Email addresses: futorny@ime.usp.br (Vyacheslav Futorny),

tetiana.klymchuk@upc.edu (Tetiana Klymchuk), aptr@univ.kiev.ua (Anatolii

P. Petravchuk), sergeich@imath.kiev.ua (Vladimir V. Sergeichuk)

• Lie algebras $L(V)$ with bracket $[u, v] := uv - vu$ of matrices of the form

$$
\begin{bmatrix}\n\alpha_1 \\
A & \vdots \\
\alpha_n \\
0 & \dots & 0 & 0\n\end{bmatrix}, \quad \text{in which } A \in V, \ \alpha_1, \dots, \alpha_n \in \mathbb{F}, \qquad (1)
$$

in which V is any two-dimensional vector space of $n \times n$ commuting matrices over $\mathbb F$ (see Section 3).

A classification problem is called wild if it contains the problem of classifying pairs of $n \times n$ matrices up to similarity transformations

$$
(M, N) \mapsto S^{-1}(M, N)S := (S^{-1}MS, S^{-1}NS)
$$

with nonsingular S. This notion was introduced by Donovan and Freislich [\[8](#page-9-0), [9\]](#page-9-1). Each wild problem is considered as hopeless since it contains the problem of classifying an arbitrary system of linear mappings, that is, representations of an arbitrary quiver (see $|13, 5|$ $|13, 5|$ $|13, 5|$).

Let $\mathcal U$ be an *n*-dimensional vector space over $\mathbb F$. The problem of classifying linear operators $\mathcal{A}: \mathcal{U} \to \mathcal{U}$ is the problem of classifying matrices $A \in \mathbb{F}^{n \times n}$ up to similarity transformations $A \mapsto S^{-1}AS$ with nonsingular $S \in \mathbb{F}^{n \times n}$. In the same way, the problem of classifying vector spaces $\mathcal V$ of linear operators on U is the problem of classifying matrix vector spaces $V \subset \mathbb{F}^{n \times n}$ up to similarity transformations

$$
V \mapsto S^{-1}VS := \{ S^{-1}AS \mid A \in V \}
$$
 (2)

with nonsingular $S \in \mathbb{F}^{n \times n}$ (the spaces V and $S^{-1}VS$ are matrix isomorphic; see $[14]$. In Theorem $1(a)$, we prove the wildness of the problem of classifying two-dimensional vector spaces $V \subset \mathbb{F}^{n \times n}$ of commuting matrices up to transformations [\(2\)](#page-1-0).

Each two-dimensional vector space $V \subset \mathbb{F}^{n \times n}$ is given by its basis $A, B \in$ V that is determined up to transformations $(A, B) \mapsto (\alpha A + \beta B, \gamma A + \delta B)$, in which $\begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix} \in \mathbb{F}^{2 \times 2}$ is a change-of-basis matrix. Thus, the problem of classifying two-dimensional vector spaces $V \subset \mathbb{F}^{n \times n}$ up to transformations [\(2\)](#page-1-0) is the problem of classifying pairs of linear independent matrices $A, B \in \mathbb{F}^{n \times n}$ up to transformations

$$
(A, B) \mapsto (A', B') := S^{-1}(\alpha A + \beta B, \gamma A + \delta B)S,\tag{3}
$$

in which both $S \in \mathbb{F}^{n \times n}$ and $\left[\begin{array}{c} \alpha \\ \gamma \end{array}\right] \in \mathbb{F}^{2 \times 2}$ are nonsingular matrices. We say that the matrix pairs (A, B) and (A', B') from [\(3\)](#page-1-1) are weakly similar.

In Theorem $1(b)$, we prove that the problem of classifying pairs of commuting matrices up to weak similarity is wild, which ensures Theorem $1(a)$.

The analogous problem of classifying matrix pairs (A, B) up to weak congruence $S^T(\alpha A + \beta B, \gamma A + \delta B)S$ appears in the problem of classifying finite p-groups of nilpotency class 2 with commutator subgroup of type (p, p) , in the problem of classifying commutative associative algebras with zero cube radical, and in the problem of classifying Lie algebras with central commutator subalgebra; see [\[3,](#page-8-0) [4](#page-9-5), [6,](#page-9-6) [18](#page-10-0)]. The problem of classifying matrix pairs up to weak equivalence $R(\alpha A + \beta B, \gamma A + \delta B)S$ appears in the theory of tensors [\[2](#page-8-1)].

Note that the group of $(n + 1) \times (n + 1)$ matrices

$$
\begin{bmatrix} A & v \\ 0 & 1 \end{bmatrix}
$$
, in which $A \in \mathbb{F}^{n \times n}$ is nonsingular and $v \in \mathbb{F}^n$

is called the general affine group; it is the group of all invertible affine trans-formations of an affine space; see [\[15](#page-9-7)]. If $\mathbb{F} = \mathbb{R}$, then this group is a Lie group, its Lie algebra consists of all $(n + 1) \times (n + 1)$ matrices

$$
\begin{bmatrix} A & v \\ 0 & 0 \end{bmatrix}
$$
, in which $A \in \mathbb{R}^{n \times n}$ is nonsingular and $v \in \mathbb{R}^n$,

and each Lie algebra $L(V)$ of matrices of the form [\(1\)](#page-1-2) with $\mathbb{F} = \mathbb{R}$ is its subalgebra.

The abstract version of the construction of Lie algebras $L(V)$ of matrices of the form [\(1\)](#page-1-2) is the following. Let $\mathbb{F}[x, y]$ be the polynomial ring, and let $\mathcal{W}_{\mathbb{F}[x,y]}$ be a left $\mathbb{F}[x,y]$ -module given by a finite dimensional vector space $\mathcal{W}_{\mathbb{F}}$ and two commuting linear operators $P : w \mapsto xw$ and $Q : w \mapsto yw$ on $\mathcal{W}_{\mathbb{F}}$ that are linearly independent. The $(2 + \dim_{\mathbb{F}} \mathcal{W})$ -dimensional vector space $L_W := \mathbb{F}x \oplus_{\mathbb{F}} \mathbb{F}y \oplus_{\mathbb{F}} W$ is the metabelian Lie algebra with the bracket operation defined by $[x, v] := Pv$, $[y, v] := Qv$, and $[x, y] = [v, w] := 0$ for all $v, w \in \mathcal{W}$. If $\mathcal{W} = \mathbb{F}^n$ and V is the two-dimensional vector space generated by P and Q, then the Lie algebra L_W coincides with the Lie algebra $L(V)$ of all matrices [\(1\)](#page-1-2). By [\[16](#page-10-1), Corollary 1] and Theorem 1, the problem of classifying metabelian Lie algebras L_W is wild.

We use the following definition of wild problems (see more formal defini-tions in [\[1,](#page-8-2) [10](#page-9-8), [11](#page-9-9)]). Every matrix problem $\mathcal M$ is given by a set $\mathcal M_1$ of tuples of matrices over a field $\mathbb F$ and a set \mathcal{M}_2 of admissible transformations with them. A matrix problem $\mathcal M$ is *wild* if there exists a *t*-tuple

$$
M(x, y) = (M_1(x, y), \dots, M_t(x, y))
$$
\n(4)

of matrices, whose entries are noncommutative polynomials in x and y over F, such that

- (i) $M(A, B) \in \mathcal{M}_1$ for all $A, B \in \mathbb{F}^{n \times n}$ and $n = 1, 2, \dots$ (in particular, each scalar entry α of $M_i(x, y)$ is replaced by αI_n),
- (ii) $M(A, B)$ is reduced to $M(A', B')$ by transformations \mathcal{M}_2 if and only if (A, B) is similar to (A', B') .

2. Spaces of linear operators

- **Theorem 1.** (a) The problem of classifying up to similarity [\(2\)](#page-1-0) of twodimensional vector spaces of commuting matrices over a field $\mathbb F$ is wild. If $\mathbb F$ is not the field of two elements, then the problem of classifying up to similarity of two-dimensional vector spaces of commuting matrices over F that contain nonsingular matrices is wild.
	- (b) The problem of classifying up to weak similarity [\(3\)](#page-1-1) of pairs of commuting matrices over a field $\mathbb F$ is wild. If $\mathbb F$ is not the field of two elements, then the problem of classifying up to weak similarity of pairs (A, B) of commuting matrices over $\mathbb F$ such that $\alpha A+\beta B$ is nonsingular for some $\alpha, \beta \in \mathbb{F}$ is wild.

Proof. (a) This statement follows from statement (b) since each twodimensional vector space $V \subset \mathbb{F}^{n \times n}$ determined up to similarity is given by its basis $A, B \in V$ that is determined up to transformations [\(3\)](#page-1-1).

(b) Step 1: We prove that the problem of classifying pairs of commuting and nilpotent matrices up to similarity is wild. This statement was proved by Gelfand and Ponomarev [\[13](#page-9-2)]; it was extended in [\[7\]](#page-9-10) to matrix pairs under consimilarity. By analogy with [\[7](#page-9-10), Section 3], we consider two commuting and nilpotent $5n \times 5n$ matrices

$$
J := \begin{bmatrix} 0 & I_n & 0 & 0 & 0 \\ 0 & 0 & I_n & 0 & 0 \\ 0 & 0 & 0 & I_n & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \qquad K_{XY} := \begin{bmatrix} 0 & 0 & X & 0 & Y \\ 0 & 0 & 0 & X & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I_n & 0 \end{bmatrix}
$$
(5)

that are partitioned into $n \times n$ blocks, in which $X, Y \in \mathbb{F}^{n \times n}$ are arbitrary. Let us prove that

> two pairs (X, Y) and (X', Y') of $n \times n$ matrices are similar \iff two pairs of commuting and nilpotent matrices (J, K_{XY}) and $(J, K_{X'Y'})$ are similar. (6)

 \Rightarrow . If $(X, Y)S = S(X', Y')$, then $(J, K_{XY})R = R(J, K_{X'Y'})$ with $R :=$ $S \oplus S \oplus S \oplus S \oplus S.$

 \iff Let $(J, K_{XY})R = R(J, K_{X'Y'})$ with nonsingular R. All matrices commuting with a given Jordan matrix are described in [\[12](#page-9-11), Section VIII, § 2]. Since R commutes with J , we analogously find that

.

The equality $K_{XY}R = RK_{X'Y'}$ implies that

and so $(X, Y)C = C(X', Y').$

Step 2: We prove that the problem of classifying matrix pairs up to weak similarity is wild. If the field $\mathbb F$ has at least 3 elements, we fix any $\lambda \in \mathbb F$ such that $\lambda \neq 0$ and $\lambda \neq -1$. If F consists of two elements, we take $\lambda = 1$.

For each pair (A, B) of $m \times m$ matrices with $m \geq 1$ over F, define the matrix pair $(M_1(A), M_2(B))$ as follows:

$$
M_1(A) := I_{2m+2} \oplus 0_{3m+3} \oplus I_{m+1} \oplus A,
$$

$$
M_2(B) := 0_{2m+2} \oplus I_{3m+3} \oplus \lambda I_{m+1} \oplus B.
$$

(Analogous constructions are used in [\[3](#page-8-0), [4](#page-9-5)].)

Let us prove that $(M_1(A), M_2(B))$ can be used in [\(4\)](#page-3-0) in order to prove the wildness of the problem of classifying matrix pairs up to weak similarity. We should prove that

arbitrary pairs (A, B) and (A', B') of $m \times m$ matrices are similar $\iff (M_1(A), M_2(B))$ and $(M_1(A'), M_2(B'))$ are weakly similar. (7)

 \implies . If $S^{-1}(A, B)S = (A', B')$, then

$$
(I_{6m+6} \oplus S)^{-1}(M_1(A), M_2(B))(I_{6m+6} \oplus S) = (M_1(A'), M_2(B')).
$$

 \Longleftarrow . Let

$$
S^{-1}(\alpha M_1(A) + \beta M_2(B), \gamma M_1(A) + \delta M_2(B))S = (M_1(A'), M_2(B'))
$$

with a nonsingular $\left[\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right]$. Then

$$
rank(\alpha M_1(A) + \beta M_2(B)) = rank M_1(A'),
$$

$$
rank(\gamma M_1(A) + \delta M_2(B)) = rank M_2(B').
$$

If $\beta \neq 0$, then

$$
rank(\alpha M_1(A) + \beta M_2(B)) > 4m + 3 \geqslant rank M_1(A').
$$

Hence $\beta = 0$. Since $\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$ is nonsingular, $\delta \neq 0$. If $\gamma \neq 0$, then

rank $(\gamma M_1(A) + \delta M_2(B)) > 5m + 4 \geq \text{rank } M_2(B')$.

Hence $\gamma = 0$.

Thus

$$
S^{-1}(\alpha M_1(A), \delta M_2(B))S = (M_1(A'), M_2(B')),
$$

and so the pairs

$$
(\alpha M_1(A), \delta M_2(B)) = (\alpha I_{2m+2}, 0_{2m+2}) \oplus (0_{3m+3}, \delta I_{3m+3})
$$

\n
$$
\oplus (\alpha I_{m+1}, \delta \lambda I_{m+1}) \oplus (\alpha A, \delta B),
$$

\n
$$
(M_1(A'), M_2(B')) = (I_{2m+2}, 0_{2m+2}) \oplus (0_{3m+3}, I_{3m+3})
$$

\n
$$
\oplus (I_{m+1}, \lambda I_{m+1}) \oplus (A', B')
$$
\n(8)

give isomorphic representations of the quiver $\bigcirc \infty$. By the Krull–Schmidt theorem for quiver representations (see $[17,$ Theorem 1.2]), every representation of a quiver is isomorphic to a direct sum of indecomposable representations, and this sum is uniquely determined up to replacements of direct summands by isomorphic representations and permutations of direct summands.

If we delete in [\(8\)](#page-5-0) the summands $(\alpha I_{2m+2}, 0_{2m+2})$ and $(0_{3m+3}, \delta I_{3m+3})$ of $(\alpha M_1(A), \delta M_2(B))$ and the corresponding isomorphic summands $(I_{2m+2}, 0_{2m+2})$ and $(0_{3m+3}, I_{3m+3})$ of $(M_1(A'), M_2(B'))$, we find that the remaining pairs

$$
(\alpha I_{m+1}, \delta \lambda I_{m+1}) \oplus (\alpha A, \delta B), \qquad (I_{m+1}, \lambda I_{m+1}) \oplus (A', B')
$$

give isomorphic representations of the quiver $\bigcirc \infty$. The first pair has $m + 1$ direct summands $(\alpha, \delta \lambda)$ and the second pair has $m + 1$ direct summands $(1, \lambda)$. By the Krull–Schmidt theorem, these summands give isomorphic representations, hence $\alpha = \delta = 1$, and so the pairs (A, B) and (A', B') give isomorphic representations too. Therefore, the pairs (A, B) and (A', B') are similar.

Step 3. By Steps 1 and 2, the following equivalences hold for arbitrary pairs (X, Y) and (X', Y') of $n \times n$ matrices over F:

- (X, Y) and (X', Y') are similar
- \iff (J, K_{XY}) and $(J, K_{X'Y'})$ are similar
- $\iff (\lambda I + J, K_{XY})$ and $(\lambda I + J, K_{X'Y'})$ are similar
- $\iff (M_1(\lambda I + J), M_2(K_{XY}))$ and $(M_1(\lambda I + J), M_2(K_{X'Y'})$ are weakly similar.

Note that $(M_1(\lambda I + J), M_2(K_{XY}))$ and $(M_1(\lambda I + J), M_2(K_{X'Y'})$ are pairs of commuting matrices. If F has at least 3 elements, then the matrix $M_1(\lambda I +$ J + $M_2(K_{XY})$ is nonsingular. \Box

3. Lie algebras

For each vector space $V \subset \mathbb{F}^{n \times n}$ of commuting matrices over a field \mathbb{F} , we denote by \tilde{V} the vector space of all $(n + 1) \times (n + 1)$ matrices of the form

$$
(A|a) := \begin{bmatrix} \alpha_1 \\ A \\ \vdots \\ \alpha_n \\ 0 \end{bmatrix}, \quad \text{in which } A \in V \text{ and } a := \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{F}^n.
$$

We consider the space \tilde{V} as the Lie algebra $L(V)$ with the Lie bracket operation

$$
[(A|a), (B|b)] := (A|a)(B|b) - (B|b)(A|a) = (0|Ab - Ba).
$$
 (9)

Theorem 2. Let a field $\mathbb F$ be not the field with 2 elements.

- (a) Let $V \subset \mathbb{F}^{n \times n}$ and $V' \subset \mathbb{F}^{n' \times n'}$ be two vector spaces of commuting matrices that contain nonsingular matrices. Then the following statements are equivalent:
	- (i) The Lie algebras $L(V)$ and $L(V')$ are isomorphic.
	- (ii) $n = n'$ and V is similar to V' (i.e., $SVS^{-1} = V'$ for some nonsingular $S \in \mathbb{F}^{n \times n}$,
	- (iii) $n = n'$ and \tilde{V} is similar to \tilde{V}' .
- (b) The problem of classifying Lie algebras $L(V)$ with $\dim_{\mathbb{F}} V = 2$ up to isomorphism is wild.

Proof. (a) Let us prove the equivalence of (i)–(iii).

(i) \Rightarrow (ii) Let $\varphi : L(V) \rightarrow L(V')$ be an isomorphism of Lie algebras. Then $\varphi[\widetilde{V}, \widetilde{V}] = [\widetilde{V}', \widetilde{V}']$. By [\(9\)](#page-7-0), $[\widetilde{V}, \widetilde{V}] \subset (0 | \mathbb{F}^n)$. Since V contains a nonsingular matrix A, $[(A|0), (0|\mathbb{F}^n)] = (0|\mathbb{F}^n)$, and so $[\tilde{V}, \tilde{V}] = (0|\mathbb{F}^n)$. Hence $\varphi(0|\mathbb{F}^n) =$ $(0|\mathbb{F}^{n'})$ and $n = n'.$

Let e_1, \ldots, e_n be the standard basis of \mathbb{F}^n , and let $(0|f_i) := \varphi(0|e_i)$. Since $\varphi(0|\mathbb{F}^n) = (0|\mathbb{F}^n), f_1, \ldots, f_n$ is also a basis of \mathbb{F}^n . Denote by S the nonsingular matrix whose columns are f_1, \ldots, f_n . Then

$$
f_i = Se_i. \tag{10}
$$

Let $A \in V$ and write $(B|b) := \varphi(A|0)$. Let $A = [\alpha_{ij}]_{i,j=1}^n$, i.e., $Ae_j = \sum_{i} \alpha_{ij} e_i$. Then $_i \alpha_{ij} e_i$. Then

$$
(0|Bf_j) = [(B|b), (0|f_j)] = [\varphi(A|0), \varphi(0|e_j)] = \varphi[(A|0), (0|e_j)]
$$

= $\varphi(0|Ae_j) = \varphi(0, \sum_i \alpha_{ij}e_i) = \varphi(\sum_i \alpha_{ij}(0|e_i))$
= $\sum_i \alpha_{ij}\varphi(0|e_i) = \sum_i \alpha_{ij}(0|f_i) = (0|\sum_i \alpha_{ij}f_i)$

and so $Bf_j = \sum_i \alpha_{ij} f_i$. By [\(10\)](#page-7-1),

$$
BSe_j = \sum_i \alpha_{ij} Se_i = S\sum_i \alpha_{ij} e_i = SAe_j.
$$

Therefore, $BS = SA$ and so $V'S = SV$.

(ii) \Rightarrow (iii) If V and V' are similar via S, then \tilde{V} and \tilde{V}' are similar via $S \oplus I_1$.

(iii) \Rightarrow (i) If $R\widetilde{V}R^{-1} = \widetilde{V}'$ for some nonsingular $R \in \mathbb{F}^{(n+1)\times(n+1)}$, then $X \mapsto RXR^{-1}$ is an isomorphism $L(V) \tilde{\rightarrow} L(V')$.

(b) This statement follows from the equivalence (i) \Leftrightarrow (ii) and Theorem 1(a). \Box

Acknowledgements

V. Futorny was supported by CNPq grant 301320/2013-6 and by FAPESP grant 2014/09310-5. V.V. Sergeichuk was supported by FAPESP grant 2015/05864-9.

References

- [1] M. Barot, Introduction to the Representation Theory of Algebras, Springer, Cham, 2015.
- [2] G. Belitskii, M. Bershadsky, V.V. Sergeichuk, Normal form of m-by-nby-2 matrices for equivalence, J. Algebra 319 (2008) 2259–2270.
- [3] G. Belitskii, A.R. Dmytryshyn, R. Lipyanski, V.V. Sergeichuk, A. Tsurkov, Problems of classifying associative or Lie algebras over a field of characteristic not two and finite metabelian groups are wild, Electr. J. Linear Algebra 18 (2009) 516–529.
- [4] G. Belitskii, R. Lipyanski, V.V. Sergeichuk, Problems of classifying associative or Lie algebras and triples of symmetric or skew-symmetric matrices are wild, Linear Algebra Appl. 407 (2005) 249–262.
- [5] G.R. Belitskii, V.V. Sergeichuk, Complexity of matrix problems, Linear Algebra Appl. 361 (2003) 203–222.
- [6] P.A. Brooksbank, J. Maglione, J.B. Wilson, A fast isomorphism test for groups whose Lie algebra has genus 2, J. Algebra 473 (2017) 545–590.
- [7] D.D. de Oliveira, R.A. Horn, T. Klimchuk, V.V. Sergeichuk, Remarks on the classification of a pair of commuting semilinear operators, Linear Algebra Appl. 436 (2012) 3362–3372.
- [8] P. Donovan, M.R. Freislich, Some evidence for an extension of the Brauer–Thrall conjecture, Sonderforschungsbereich Theor. Math., Bonn 40 (1972) 24–26.
- [9] P. Donovan, M.R. Freislich, The representation theory of finite graphs and associated algebras, Carleton Lecture Notes 5, Ottawa, 1973.
- [10] Y.A. Drozd, Tame and wild matrix problems, Lecture Notes in Math. 832 (1980) 242–258.
- [11] P. Gabriel, L.A. Nazarova, A.V. Roiter, V.V. Sergeichuik, D. Vossieck, Tame and wild subspace problems, Ukrainian Math. J. 45 (no. 3) (1993) 335–372.
- [12] F.R. Gantmacher, The Theory of Matrices, vol. 1, AMS Chelsea Publishing, 2000.
- [13] I.M. Gelfand, V.A. Ponomarev, Remarks on the classification of a pair of commuting linear transformations in a finite dimensional vector space, Functional Anal. Appl. 3 (1969) 325–326.
- [14] J.A. Grochow, Matrix isomorphism of matrix Lie algebras, IEEE 27th Conference on Computational Complexity, 2012, 203–213, IEEE Computer Soc., Los Alamitos, CA, 2012.
- [15] R.C. Lyndon, Groups and Geometry, Cambridge University Press, 1985.
- [16] A.P. Petravchuk, K.Y. Sysak, On Lie algebras associated with modules over polynomial rings, Ukra¨ın Mat. Zh. 69 (2017) 1232–1241 (in Ukrainian), English translation in [arXiv:1701.03750.](http://arxiv.org/abs/1701.03750)
- [17] R. Schiffler, Quiver Representations, Springer, Cham, 2014.
- [18] V.V. Sergeichuk, The classification of metabelian p-groups, Matrix problems, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, 1977, 150–161 (in Russian); MR0491938.