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Abstract

For each two-dimensional vector space V of commuting nˆn matrices over a
field F with at least 3 elements, we denote by rV the vector space of all pn`1qˆ
pn` 1q matrices of the form r A ˚

0 0 s with A P V . We prove the wildness of the

problem of classifying Lie algebras rV with the bracket operation ru, vs :“ uv´
vu. We also prove the wildness of the problem of classifying two-dimensional
vector spaces consisting of commuting linear operators on a vector space over
a field.

Keywords: Spaces of commuting linear operators, Matrix Lie algebras,
Wild problems.
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1. Introduction

Let F be a field that is not the field with 2 elements. We prove the
wildness of the problems of classifying

• two-dimensional vector spaces consisting of commuting linear operators
on a vector space over F (see Section 2), and
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• Lie algebras LpV q with bracket ru, vs :“ uv´vu of matrices of the form
»
———–

A

α1

...
αn

0 . . . 0 0

fi
ffiffiffifl , in which A P V, α1, . . . , αn P F, (1)

in which V is any two-dimensional vector space of n ˆ n commuting
matrices over F (see Section 3).

A classification problem is called wild if it contains the problem of clas-
sifying pairs of n ˆ n matrices up to similarity transformations

pM,Nq ÞÑ S´1pM,NqS :“ pS´1MS, S´1NSq

with nonsingular S. This notion was introduced by Donovan and Freislich [8,
9]. Each wild problem is considered as hopeless since it contains the problem
of classifying an arbitrary system of linear mappings, that is, representations
of an arbitrary quiver (see [13, 5]).

Let U be an n-dimensional vector space over F. The problem of classifying
linear operators A : U Ñ U is the problem of classifying matrices A P F

nˆn

up to similarity transformations A ÞÑ S´1AS with nonsingular S P F
nˆn. In

the same way, the problem of classifying vector spaces V of linear operators
on U is the problem of classifying matrix vector spaces V Ă F

nˆn up to
similarity transformations

V ÞÑ S´1V S :“ tS´1AS |A P V u (2)

with nonsingular S P F
nˆn (the spaces V and S´1V S are matrix isomorphic;

see [14]). In Theorem 1(a), we prove the wildness of the problem of classi-
fying two-dimensional vector spaces V Ă F

nˆn of commuting matrices up to
transformations (2).

Each two-dimensional vector space V Ă F
nˆn is given by its basis A,B P

V that is determined up to transformations pA,Bq ÞÑ pαA ` βB, γA ` δBq,
in which

“ α γ
β δ

‰
P F

2ˆ2 is a change-of-basis matrix. Thus, the problem of
classifying two-dimensional vector spaces V Ă F

nˆn up to transformations (2)
is the problem of classifying pairs of linear independent matrices A,B P F

nˆn

up to transformations

pA,Bq ÞÑ pA1, B1q :“ S´1pαA ` βB, γA ` δBqS, (3)
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in which both S P F
nˆn and

“
α β
γ δ

‰
P F

2ˆ2 are nonsingular matrices. We say
that the matrix pairs pA,Bq and pA1, B1q from (3) are weakly similar.

In Theorem 1(b), we prove that the problem of classifying pairs of com-
muting matrices up to weak similarity is wild, which ensures Theorem 1(a).

The analogous problem of classifying matrix pairs pA,Bq up to weak con-
gruence ST pαA`βB, γA` δBqS appears in the problem of classifying finite
p-groups of nilpotency class 2 with commutator subgroup of type pp, pq, in
the problem of classifying commutative associative algebras with zero cube
radical, and in the problem of classifying Lie algebras with central commu-
tator subalgebra; see [3, 4, 6, 18]. The problem of classifying matrix pairs up
to weak equivalence RpαA`βB, γA` δBqS appears in the theory of tensors
[2].

Note that the group of pn ` 1q ˆ pn ` 1q matrices

„
A v

0 1


, in which A P F

nˆn is nonsingular and v P F
n

is called the general affine group; it is the group of all invertible affine trans-
formations of an affine space; see [15]. If F “ R, then this group is a Lie
group, its Lie algebra consists of all pn ` 1q ˆ pn ` 1q matrices

„
A v

0 0


, in which A P R

nˆn is nonsingular and v P R
n,

and each Lie algebra LpV q of matrices of the form (1) with F “ R is its
subalgebra.

The abstract version of the construction of Lie algebras LpV q of matrices
of the form (1) is the following. Let Frx, ys be the polynomial ring, and let
WFrx,ys be a left Frx, ys-module given by a finite dimensional vector space
WF and two commuting linear operators P : w ÞÑ xw and Q : w ÞÑ yw

on WF that are linearly independent. The p2 ` dimF Wq-dimensional vector
space LW :“ Fx ‘F Fy ‘F W is the metabelian Lie algebra with the bracket
operation defined by rx, vs :“ Pv, ry, vs :“ Qv, and rx, ys “ rv, ws :“ 0 for all
v, w P W. If W “ F

n and V is the two-dimensional vector space generated by
P and Q, then the Lie algebra LW coincides with the Lie algebra LpV q of all
matrices (1). By [16, Corollary 1] and Theorem 1, the problem of classifying

metabelian Lie algebras LW is wild.
We use the following definition of wild problems (see more formal defini-

tions in [1, 10, 11]). Every matrix problem M is given by a set M1 of tuples
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of matrices over a field F and a set M2 of admissible transformations with
them. A matrix problem M is wild if there exists a t-tuple

Mpx, yq “ pM1px, yq, . . . ,Mtpx, yqq (4)

of matrices, whose entries are noncommutative polynomials in x and y over
F, such that

(i) MpA,Bq P M1 for all A,B P F
nˆn and n “ 1, 2, . . . (in particular, each

scalar entry α of Mipx, yq is replaced by αIn),

(ii) MpA,Bq is reduced to MpA1, B1q by transformations M2 if and only if
pA,Bq is similar to pA1, B1q.

2. Spaces of linear operators

Theorem 1. (a) The problem of classifying up to similarity (2) of two-

dimensional vector spaces of commuting matrices over a field F is wild.

If F is not the field of two elements, then the problem of classifying up

to similarity of two-dimensional vector spaces of commuting matrices

over F that contain nonsingular matrices is wild.

(b) The problem of classifying up to weak similarity (3) of pairs of com-

muting matrices over a field F is wild. If F is not the field of two

elements, then the problem of classifying up to weak similarity of pairs

pA,Bq of commuting matrices over F such that αA`βB is nonsingular

for some α, β P F is wild.

Proof. (a) This statement follows from statement (b) since each two-
dimensional vector space V Ă F

nˆn determined up to similarity is given
by its basis A,B P V that is determined up to transformations (3).

(b) Step 1: We prove that the problem of classifying pairs of commuting

and nilpotent matrices up to similarity is wild. This statement was proved
by Gelfand and Ponomarev [13]; it was extended in [7] to matrix pairs under
consimilarity. By analogy with [7, Section 3], we consider two commuting
and nilpotent 5n ˆ 5n matrices

J :“

»
————–

0 In 0 0 0
0 0 In 0 0
0 0 0 In 0
0 0 0 0 0
0 0 0 0 0

fi
ffiffiffiffifl
, KXY :“

»
————–

0 0 X 0 Y

0 0 0 X 0
0 0 0 0 0
0 0 0 0 0
0 0 0 In 0

fi
ffiffiffiffifl

(5)
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that are partitioned into n ˆ n blocks, in which X, Y P F
nˆn are arbitrary.

Let us prove that

two pairs pX, Y q and pX 1, Y 1q of n ˆ n matrices are similar
ðñ two pairs of commuting and nilpotent matrices pJ,KXY q
and pJ,KX1Y 1q are similar.

(6)

ùñ. If pX, Y qS “ SpX 1, Y 1q, then pJ,KXY qR “ RpJ,KX1Y 1q with R :“
S ‘ S ‘ S ‘ S ‘ S.

ðù. Let pJ,KXY qR “ RpJ,KX1Y 1q with nonsingular R. All matrices com-
muting with a given Jordan matrix are described in [12, Section VIII, § 2].
Since R commutes with J , we analogously find that

R “

»
————–

C C1 C2 C3 D

0 C C1 C2 0
0 0 C C1 0
0 0 0 C 0
0 0 0 E F

fi
ffiffiffiffifl
.

The equality KXYR “ RKX1Y 1 implies that

»
————–

0 0 XC XC1 ` Y E Y F

0 0 0 XC 0
0 0 0 0 0
0 0 0 0 0
0 0 0 C 0

fi
ffiffiffiffifl

“

»
————–

0 0 CX 1 C1X
1 ` D CY 1

0 0 0 CX 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 F 0

fi
ffiffiffiffifl
,

and so pX, Y qC “ CpX 1, Y 1q.

Step 2: We prove that the problem of classifying matrix pairs up to weak

similarity is wild. If the field F has at least 3 elements, we fix any λ P F such
that λ ‰ 0 and λ ‰ ´1. If F consists of two elements, we take λ “ 1.

For each pair pA,Bq of m ˆ m matrices with m ě 1 over F, define the
matrix pair pM1pAq,M2pBqq as follows:

M1pAq :“ I2m`2 ‘ 03m`3 ‘ Im`1 ‘ A,

M2pBq :“ 02m`2 ‘ I3m`3 ‘ λIm`1 ‘ B.

(Analogous constructions are used in [3, 4].)
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Let us prove that pM1pAq,M2pBqq can be used in (4) in order to prove
the wildness of the problem of classifying matrix pairs up to weak similarity.
We should prove that

arbitrary pairs pA,Bq and pA1, B1q of mˆm matrices are sim-
ilar ðñ pM1pAq,M2pBqq and pM1pA

1q,M2pB
1qq are weakly

similar.

(7)

ùñ. If S´1pA,BqS “ pA1, B1q, then

pI6m`6 ‘ Sq´1pM1pAq,M2pBqqpI6m`6 ‘ Sq “ pM1pA1q,M2pB
1qq.

ðù. Let

S´1pαM1pAq ` βM2pBq, γM1pAq ` δM2pBqqS “ pM1pA1q,M2pB1qq

with a nonsingular
“
α β
γ δ

‰
. Then

rankpαM1pAq ` βM2pBqq “ rankM1pA1q,

rankpγM1pAq ` δM2pBqq “ rankM2pB1q.

If β ‰ 0, then

rankpαM1pAq ` βM2pBqq ą 4m ` 3 ě rankM1pA1q.

Hence β “ 0. Since
“
α β
γ δ

‰
is nonsingular, δ ‰ 0. If γ ‰ 0, then

rankpγM1pAq ` δM2pBqq ą 5m ` 4 ě rankM2pB1q.

Hence γ “ 0.
Thus

S´1pαM1pAq, δM2pBqqS “ pM1pA1q,M2pB1qq,

and so the pairs

pαM1pAq, δM2pBqq “ pαI2m`2, 02m`2q ‘ p03m`3, δI3m`3q

‘ pαIm`1, δλIm`1q ‘ pαA, δBq,

pM1pA1q,M2pB1qq “ pI2m`2, 02m`2q ‘ p03m`3, I3m`3q

‘ pIm`1, λIm`1q ‘ pA1, B1q

(8)
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give isomorphic representations of the quiver ü rý. By the Krull–Schmidt
theorem for quiver representations (see [17, Theorem 1.2]), every represen-
tation of a quiver is isomorphic to a direct sum of indecomposable represen-
tations, and this sum is uniquely determined up to replacements of direct
summands by isomorphic representations and permutations of direct sum-
mands.

If we delete in (8) the summands pαI2m`2, 02m`2q and p03m`3, δI3m`3q
of pαM1pAq, δM2pBqq and the corresponding isomorphic summands
pI2m`2, 02m`2q and p03m`3, I3m`3q of pM1pA1q,M2pB

1qq, we find that the re-
maining pairs

pαIm`1, δλIm`1q ‘ pαA, δBq, pIm`1, λIm`1q ‘ pA1, B1q

give isomorphic representations of the quiver ü rý. The first pair has m` 1
direct summands pα, δλq and the second pair has m ` 1 direct summands
p1, λq. By the Krull–Schmidt theorem, these summands give isomorphic
representations, hence α “ δ “ 1, and so the pairs pA,Bq and pA1, B1q
give isomorphic representations too. Therefore, the pairs pA,Bq and pA1, B1q
are similar.

Step 3. By Steps 1 and 2, the following equivalences hold for arbitrary
pairs pX, Y q and pX 1, Y 1q of n ˆ n matrices over F:

pX, Y q and pX 1, Y 1q are similar

ðñ pJ,KXY q and pJ,KX1Y 1q are similar

ðñ pλI ` J,KXY q and pλI ` J,KX1Y 1q are similar

ðñ pM1pλI ` Jq,M2pKXY qq and pM1pλI ` Jq,M2pKX1Y 1qq are weakly sim-
ilar.

Note that pM1pλI `Jq,M2pKXY qq and pM1pλI `Jq,M2pKX1Y 1qq are pairs of
commuting matrices. If F has at least 3 elements, then the matrix M1pλI `
Jq ` M2pKXY q is nonsingular.
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3. Lie algebras

For each vector space V Ă F
nˆn of commuting matrices over a field F, we

denote by rV the vector space of all pn ` 1q ˆ pn ` 1q matrices of the form

pA|aq :“

»
———–

A

α1

...
αn

0 . . . 0 0

fi
ffiffiffifl , in which A P V and a :“

»
—–
α1

...
αn

fi
ffifl P F

n.

We consider the space rV as the Lie algebra LpV q with the Lie bracket oper-
ation

rpA|aq, pB|bqs :“ pA|aqpB|bq ´ pB|bqpA|aq “ p0|Ab ´ Baq. (9)

Theorem 2. Let a field F be not the field with 2 elements.

(a) Let V Ă F
nˆn and V 1 Ă F

n1ˆn1

be two vector spaces of commuting ma-

trices that contain nonsingular matrices. Then the following statements

are equivalent:

(i) The Lie algebras LpV q and LpV 1q are isomorphic.

(ii) n “ n1 and V is similar to V 1 pi.e., SV S´1 “ V 1 for some non-

singular S P F
nˆnq,

(iii) n “ n1 and rV is similar to rV 1.

(b) The problem of classifying Lie algebras LpV q with dimF V “ 2 up to

isomorphism is wild.

Proof. (a) Let us prove the equivalence of (i)–(iii).
(i)ñ(ii) Let ϕ : LpV q rÑLpV 1q be an isomorphism of Lie algebras. Then

ϕrrV , rV s “ rrV 1, rV 1s. By (9), rrV , rV s Ă p0|Fnq. Since V contains a nonsingular

matrix A, rpA|0q, p0|Fnqs “ p0|Fnq, and so rrV , rV s “ p0|Fnq. Hence ϕp0|Fnq “
p0|Fn1

q and n “ n1.
Let e1, . . . , en be the standard basis of Fn, and let p0|fiq :“ ϕp0|eiq. Since

ϕp0|Fnq “ p0|Fnq, f1, . . . , fn is also a basis of F
n. Denote by S the nonsingular

matrix whose columns are f1, . . . , fn. Then

fi “ Sei. (10)
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Let A P V and write pB|bq :“ ϕpA|0q. Let A “ rαijs
n
i,j“1, i.e., Aej “ř

i αijei. Then

p0|Bfjq “ rpB|bq, p0|fjqs “ rϕpA|0q, ϕp0|ejqs “ ϕrpA|0q, p0|ejqs

“ ϕp0|Aejq “ ϕp0,
ř

iαijeiq “ ϕ
ř

iαijp0|eiq

“
ř

iαijϕp0|eiq “
ř

iαijp0|fiq “ p0|
ř

iαijfiq

and so Bfj “
ř

i αijfi. By (10),

BSej “
ř

iαijSei “ S
ř

iαijei “ SAej .

Therefore, BS “ SA and so V 1S “ SV .

(ii)ñ(iii) If V and V 1 are similar via S, then rV and rV 1 are similar via
S ‘ I1.

(iii)ñ(i) If RrV R´1 “ rV 1 for some nonsingular R P F
pn`1qˆpn`1q, then

X ÞÑ RXR´1 is an isomorphism LpV q rÑLpV 1q.

(b) This statement follows from the equivalence (i)ô(ii) and Theorem
1(a).
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