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Abstract. The cell suppression problem (CSP) is one of the most widely applied meth-

ods for tabular data protection. Given a set of primary cells to be protected, CSP aims at

finding a set of secondary cells to be additionally removed to guarantee that estimates of

values of primary cells fall out of a predefined protection interval. From a computational

point of view, CSP is very challenging even for tables of moderate size and number of

primary cells. Currently, the only effective optimal approach for CSP is Benders decom-

position (also known as cutting planes). However, the convergence to the optimal solution

is often too slow due to well known instability issues of Benders decomposition. This work

discusses a recently developed improved Benders method, which focus on finding new so-

lutions in the neighborhood of ”good” points. Some results are reported in the solution of

realistic and real-world CSP instances, showing the effectiveness of this approach.

1 Introduction

Benders decomposition [1] is an iterative method that allows to decompose the orig-
inal MILP in several smaller and theoretically easier to solve subproblems (referred
to relaxed master and slaves) and after a finite number of iterations the method pro-
vides an optimal solution. Originally, this method was suggested for problems with
two types of variables where one of them are considered as “complicating variables”.
In MILP models complicating variables are the binary/integer ones y. Although
Benders decomposition is widely used in many real-world applications, it suffers
from well-known instability issues that limit its efficiency. The convergence to the
optimum is often too slow due to the fact that the solutions tend to oscillate wildly

1This is an brief summary of the paper “D. Baena, J. Castro, A. Frangioni, Stabilized Benders
methods for large combinatorial optimization problems” which is currently under review.
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among different feasible regions by jumping from a good point, i.e. close to optimal-
ity, to a much worse one.

This paper addresses this issue and proposes a stabilized Benders decomposition
in order to prevent this behaviour. In particular, we focus on finding new solutions
inside trust feasible regions, i.e. neighborhoods of well considered points, where we
expect to find better solutions. The main cause for slow convergence is due to the
generation of weak Benders cuts as a result of obtaining “bad” points y when we
solve the master problem [3]. The idea behind the stabilized Benders decomposition
is to search new solutions y as close as possible to properly chosen points, so called
stability center points.

For binary MILPs, the stabilization can be done by adding linear constraints that
restrict the feasible region of relaxed master problems. This is made possible by us-
ing the Hamming distance defined from a stability center point (ȳ), not necessarily
feasible, and a radius K ≥ 1 [6]. This restricted feasible region of size K is called
trust region (TR). Note that K can be either a constant or dynamically updated
at each iteration. TR is defined by a well-known local branching constraint which
limits the ”switching” of binary variables only at most K [4]. These local branch-
ing constraints prevent the master problem solution from moving too far from the
stability center point ȳ.

2 Application to data privacy: Cell Suppression Problem

Cell Suppression Problem (CSP) formulates a very large MILP problem whose direct
solution is impractical with state-of-the-art MILP solvers for tables of moderate size.
Because of that, a Benders decomposition approach was suggested in the past for
its solution [5]. In this paper we try to improve the behaviour of the Benders
decomposition applied to CSP through the application of stabilization techniques.
A series of computational experiments have been designed to empirically validate the
efficiency of the proposed stabilized Benders decomposition for CSP. The numerical
experiments have been performed on a set of real-world general and synthetic 1H2D
tables. Real-world general tables are standard instances used in the literature [2].
Synthetic instances were obtained with a generator of random 1H2D tables. A
total of 48 randomly 1H2D instances and 15 real-world tables were considered. The
results have been successful and show the stabilized Benders applied to CSP to be an
excellent strategy compared to the state-of-the-art classical Benders of [5]. In 92%
of the synthetic 1H2D tables, stabilized Benders outperformed classical Benders in
terms of both CPU time and gap of the feasible solution found. With stabilized
strategy, the average GAP was 0.87% whereas for classical CSP Benders was 2.51%.
Moreover, the stabilized Benders was 1.8 faster than classical Benders. For real-
world general tables the stabilized approach was not as competitive as for the 1H2D
case, probably due to the absence of a hierarchical structure. However, it is worth
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noting that stabilized Benders can be a promising approach because, when applied
to real-world tables, the average gap was lower (2.61%) than for classical Benders
(4.57%).
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