
1

Pattern Recognition Letters
journal homepage: www.elsevier.com

Modeling perceptual categories of parametric musical systems

Iván Paza,∗∗, Àngela Nebota, Francisco Mugicaa, Enrique Romeroa

aComputer Science Department BarcelonaTech, C/ Jordi Girona 1-3. Omega 005, Barcelona 08034, Spain

ABSTRACT

In computer music fields, such as algorithmic composition and live coding, the aural exploration of pa-
rameter combinations is the process through which systems’ capabilities are learned and the material
for different musical tasks is selected and classified. Despite its importance, few models of this process
have been proposed. Here, a rule extraction algorithm is presented. It works with data obtained during
a user auditory exploration of parameters, in which specific perceptual categories are searched. The
extracted rules express complex, but general relationships, among parameter values and categories.
Its formation is controlled by functions that govern the data grouping. These are given by the user
through heuristic considerations. The rules are used to build two more general models: a set of “ex-
tended or inference rules” and a fuzzy classifier which allow the user to infer unheard combinations of
parameters consistent with the preselected categories from the extended rules and between the limits
of the explored parameter space, respectively. To evaluate the models, user tests were performed. The
constructed models allow to reduce complexity in operating the systems, by providing a set of “pre-
sets” for different categories, and extend compositional capacities through the inferred combinations,
alongside a structured representation of the information.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Computer music is the application of computer technology in
music composition (Dean, 2009), either to program computers
that create music automatically, like algorithmic composition
(Nierhaus, 2009), or to help human composers to program mu-
sic in real time, as is the case in live coding (Collins et al., 2003;
Magnusson, 2015; Wang and Cook, 2004). In these activities,
parametric systems capable of generating different types of mu-
sical material are used (Brown and Sorensen, 2009; Rohrhu-
ber and de Campo, 2009). Examples of parametric musical
systems include sound synthesizers and signal processors, as
well as melodic or rhythmic sequence generators. To develop
a clearer idea of the wide range of possible parametrical musi-
cal systems, and therefore motivate the need for a methodology
that creates a structured model of their capabilities, let us con-
sider a couple of examples: In the first one, McCormack et al.
(2009) discuss the granular synthesis system “Chaos-Synth”,
developed by Miranda (1995) for wind instruments. It consists

∗∗Corresponding author: Tel.: +34-93-413-7783; fax: +34-93-413-7833;
e-mail: ivanpaz@cs.upc.edu (Iván Paz)

of a bank of oscillators, whose individual frequencies and du-
rations are controlled by the arithmetic mean of groups of cells
taken from a cellular automata. In this case, the granular syn-
thesis engine is parametrized by the cell states. The control
parameters of the system, once the set of rules for the automata
is written, are the cells, and the parameter space is the set of
initial conditions with which the automata can be initialized.
As a second example, consider a simple synthesis system based
on two oscillators controlled by directly changing the values of
their parameters. Suppose the system has two parameters: fre-
quency 1 and frequency 2 both in Hz, with values ranging from
a to b. In this case the system has an [a, b] x [a, b] space of pos-
sibilities, controlled by parameters frequency 1 and frequency
2. Even though these constructions can be framed in general
structures (e.g, in additive or granular synthesis), they may have
small changes or particular characteristics that modify their re-
sponse. For example, they could have a different number of
oscillators or envelope types, as well as different ranges in their
parameters. Therefore, although there is a general idea of the
behavior of the different architectures, it is necessary to test a
new system to explore its possibilities.

By changing their parameters, the musician interacts with the

© 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/132528981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

parametric musical systems. Therefore, in all cases, the ex-
ploration of the different combinations of parameter values is
the process through which the system’s capabilities are learned,
and the selection and classification of the musical material is
performed. In Goldmann (2015) the commercial and cultural
roles that specific parameter settings (called “presets”) have had
when they become sound “standards” is analyzed. Examples
of presets include the classic configurations of an equalizer la-
beled as ”Funk, Rock or Classical”, digital plug-ins that mimic
iconic instruments and new programs for the automatic audio
mastering of a song depending on its genre. In a similar way,
in algorithmic composition and live coding the selection of pa-
rameter configurations has to do with selecting settings that pro-
duce musical material with specific perceptual categories. Ex-
amples of this selection process are: given a system with two
variable-frequency oscillators, to find all the frequency combi-
nations that produce a consonant output (in acoustics a sound
with harmonic partials), or a sound with “rough” quality. Al-
though the exploration of parameter combinations in search of
perceptual categories is a common activity in computer music,
there have been few attempts to formalize the information pro-
duced during this process with the aim of using it for differ-
ent musical tasks, such as the automatic creation of variations
within a part of a piece while playing in front of an audience
(live performance), or the execution of generative music algo-
rithms (Brown and Sorensen, 2009).

Nonetheless, there are excellent examples of methods for
finding sets of parameters that successfully produce entities
with specific perceptual properties. For example, Dahlstedt
(2001), Collins (2002b) and Collins (2002a) applied interactive
evolution (Dawkins, 1986), which uses human evaluation as the
fitness function of a genetic algorithm for system parameter op-
timization. In Dahlstedt (2001), this technique was applied to
sound synthesis and pattern generation tasks, while in Collins
(2002b) and Collins (2002a), it was used for searching success-
ful sets of arguments controlling algorithmic routines for audio
cut procedures.

The present work is inspired by the methodologies of Collins
(2002b) and Dahlstedt (2001), and further focuses on structur-
ing the information that is produced during the exploration pro-
cess to build tools intended for the following objectives:

1. To provide a structured representation of how the values
of the parameters are related with the user-selected per-
ceptual categories.

2. To reduce the cognitive and operational complexity of the
algorithms by providing a set of organized “presets” for
the different preselected categories which can be used to
automate some musical tasks, such as live coding.

3. To extend the compositional capacities by inferring new
unheard (unexplored) parameter combinations consistent
with the perceptual categories.

In this research, a methodology based on rules is developed for
the modeling of perceptual properties. Our particular interest
in a rule-based model relies on its interpretability. Rule mod-
els, in contrast with subsymbolic approaches (like neural net
classifiers), are human readable information, which make them
especially attractive for applications in the context of computer

Methodology

2. Strict Rules are extracted
from data.

2. Strict Rules are evaluated
by user visual inspection.

3. Model of interval rules
(Inference Rules).

3. Inference Rules are
validated through user
audition of examples.

4. The fuzzy model is
validated by:

a) A fuzzy classifier (10 times
CV).

b) Random generation of
instances which are classified
with the extended model and

user audition.

4. Fuzzy rules model based on
the Inference Rules.

Model Validation

-

G
e
n
e
ra

li z
a
t i

o
n

+

1. Data acquisition. 1. Validated through a
questionnaire.

Fig. 1. General methodology.

music. In addition, a rule-based model naturally functions as a
set of presets, by encoding user associations (between param-
eter configurations and perceptual category). Furthermore, it
is possible to extend this model to explore new regions of the
space consistent with the assigned classes of the rules. An early
version of the methodology can be found in Paz et al. (2017).

The proposed methodology consists of four parts, shown in
Figure 1, together with their respective evaluation processes.
The methodology has a data acquisition stage which is per-
formed through a parametric exploration of a musical system,
while searching for predefined perceptual categories (see # 1 in
Figure 1). During this process, the parameter combinations are
labeled with their respective perceptual categories. Then, the
data is grouped according to specific patterns, as explained in
detail in Section 2. The resulting structures are called “Strict
rules” (see # 2 in Figure 1). This rules are used to build a more
general model, which extends the validity of the Strict rules
from points in the space to intervals. The result of this process,
described in Section 3, is a set of “Inference Rules” (see # 3 in
Figure 1). Then, a next level generalization based on the set of
Inference Rules is made through the design of a fuzzy classifier
(# 4 in Figure 1). This classifier covers the complete explored
space and is presented in depth in Section 3. Sections 4 and
5 describe, respectively, the model evaluation process and the
experiments performed to validate the different models. Sec-
tion 5 also describes in detail the data acquisition process and
the user interface used for the parametric exploration. Finally,
sections 6 and 7 present, in turn, the discussion followed by the
conclusions and further work.

2. Strict Rules extraction

2.1. Algorithm design considerations

The Strict Rules extraction algorithm was designed to iden-
tify complex but general relationships among the values in the
system parameters and the perceptual categories assigned by

3

the user. The idea is to reorder the data to make visible spe-
cific patterns. In this way, it produces a “structured” and in-
terpretable representation of the input data. In Section 3, this
representation is used to infer new combinations of parameters
consistent with any of the user-defined perceptual categories.
The algorithm was inspired by a rule extraction algorithm de-
veloped by Castro et al. (2011). However, it has two fundamen-
tal differences. First, the result does not depend on the order of
the data. Second, the algorithm can create rules requiring fewer
conditions. These are discussed in Section 2.3.

The input data are organized as data pairs (parameter val-
ues, perceptual category), which are seen as deterministic input-
output relations. In these data, the algorithm searches iteratively
for patterns. Specifically, it looks for combinations of param-
eters with the same category that differ only in one parameter
value (let us say p j). In that case, if the absolute difference
of the p j values that differ is less than a certain threshold (t),
the combinations are grouped together into one structure. This
structure has the same values of the grouped combinations in
all its parameters, the same category and a set in p j that con-
tains the values that differ. Before presenting the algorithm let
us define the function that calculates the thresholds.

2.1.1. Threshold function
The thresholds are calculated through functions that are de-

clared in advance by the user. These are based on heuristic con-
siderations, i.e. on a priori knowledge of the variables that the
parameters represent. For example, the frequency or the num-
ber of upper harmonics added to a signal. Some ideas on how
to automate this process are presented in Section 7. For each
parameter p j a threshold function tp j (x) is declared. It assigns
a threshold to each value x of the parameter p j. Given x1, x2,
they will be grouped in a set if Equation 1 is satisfied.

| x1 − x2 | < g(tp j (x1), tp j (x2)) (1)

g is a function of two variables, that can be defined as
Max(tp j (x1), tp j (x2)) or Min(tp j (x1), tp j (x2)) or a constant func-
tion, for example g(tp j (x1), tp j (x2)) = in f ∀x, etc. Functions t
and g control, for each parameter, how values are grouped into
sets.

Example: Let p j be a parameter that controls a frequency
(Hz). One possible definition of the function tp j (x) could be as
in Equation 2.

tp j (x) =

{
10 if x ≤ 20 Hz
80 if x > 20 Hz (2)

Suppose that we have the parameter combinations X1, X2 and
X3, shown at the top of Table 1. They differ only in the value
of parameter p j, i.e., x1,k = x2,k = x3,k ∀ k , j. Suppose
also that x1, j = 7, x2, j = 11, x3, j = 25. The bottom of Ta-
ble 1 shows the result of grouping this combinations using the
Threshold function of Equation 2 and combining the thresholds
using g(tp j (x1), tp j (x2)) = Min(tp j (x1), tp j (x2)). For the first two
values, x1, j = 7 and x2, j = 11, we have tp j (7) = 10 and tp j (11) =

10. For the values 11 and 25, tp j (11) = 10 and tp j (25) = 80. As
|7 − 11| < Min(10, 10) and |11 − 25| ≮ Min(10, 80) the com-
binations X1 and X2 are grouped into RuleX1X2 and X2 is not
grouped with X3, so X3 remains alone.

Table 1. Consider the parameter combinations X1, X2 and X3 all with class
(or perceptual category) rough and differing only in the jth parameter
p j. i.e., x1,k = x2,k = x3,k ∀ k , j. Suppose that x1, j = 7, x2, j = 11,
x3, j = 25. The result of grouping this combinations using the Tresh-
old function of Equation 1 and combining the respective thresholds using
g(tp j (x1), tp j (x2)) = Min(tp j (x1), tp j (x2)) are shown at the bottom of the Ta-
ble. Note that in RuleX1X2 entrance x1−2,k = x1,k = x2,k ∀ k.

Combination p1 . . . pj . . . pN Class
X1 x1,1 . . . x1, j = 7 . . . x1,N rough
X2 x2,1 . . . x2, j = 11 . . . x2,N rough
X3 x3,1 . . . x3, j = 25 . . . x3,N rough

Result
RuleX1X2 x1−2,1 . . . {7, 11} . . . x1−2,N rough

X3 x3,1 . . . x3, j = 25 . . . x3,N rough

The thresholds allow the user to define how “close” two val-
ues can be in order to be placed in the same rule. For example,
suppose that for a specific parameter (p j), the threshold is set
equal to infinity for all of their values. I.e., tp j (x) = in f ∀ x
and g(tp j (x1), tp j (x2)) = in f . Then, all parameter combina-
tions in the data, differing only in the value of that parameter
will be grouped into a single rule no matter how “separated”
they are. This could produce great variability in the combina-
tions described by the rule. In contrast, suppose that a threshold
t(x) = constant < in f is set for all the values. The result would
then be a set of rules, each of them containing values that, when
ordered from minimum to maximum, will not be separated from
each other by more than that constant.

2.1.2. Considerations on thresholds applications
Since thresholds determine, for each parameter, the maxi-

mum distance between two adjacent grouped values, and can be
used for different purposes. For example, to create small tran-
sitions when using the rule instances that have been grouped
with a small threshold, or big transitions (to create contrast)
in the opposite case. For a discussion of how stepwise per-
ceptual transitions (or small perceptual changes in the sound)
have played an essential role in music composition, from gre-
gorian chant to 20th century music, see Cope (2015). Further-
more, structures to visualize relationships between parameters
and perceptual categories, as the rules can be thought of, can
also be interesting from an analytical point of view. For exam-
ple, they can be used for computational modeling of musical
styles (Pearce et al., 2002).

2.2. Algorithm Inputs
The inputs for the algorithm are:

1. data: {X1,X2, ...,Xm}, where each Xi =

((xi1, xi2, ..., xin), yi), xi j denotes the value of the jth

parameter of the ith combination explored, and yi denotes
the perceptual category. Index i satisfies that 1 ≤ i ≤ m
and n is the number of parameters.

2. thresholds: Array containing, for each parameter, a func-
tion tp j (x) that calculates the threshold for each value, and
the function g (defined in Section 2.1.1) to combine the
thresholds.

4

2.3. Algorithm
The algorithm is currently implemented in the SuperCollider

programming language (McCartney, 1996; Wilson et al., 2011)
since it can also be used as a synthesis engine to implement the
sound generators. As mentioned, the algorithm searches, pa-
rameter by parameter, instances differing only in one parameter
value and belonging to the same perceptual category. Given that
the result of such search depends on the order of parameters,
the algorithm starts by calculating all the possible parameter
permutations of the data. Then it applies the search to each per-
mutation and the independent results are aggregated by elim-
inating the redundant and repeated rules at the end. This is a
difference with the algorithm proposed in Castro et al. (2011)
that searches using only the initial order of the data.

The search is performed as follows:

1. For each column index the corresponding column is ex-
cluded from the data and identical rows are searched. Two
rows are identical if they are equal entry-to-entry. If the en-
tries are “sets”, they are considered identical if they con-
tain the same elements.

2. Then, the values of the excluded column for the selected
(identical) rows are taken.

3. These values are sorted from min to max and used to form
subsets. Each subset contains all the subsequent values
whose absolute difference is less or equal to their corre-
sponding threshold (distance).

4. Finally, the algorithm creates one rule for each created
subset. The rules have the values of the selected rows in
all the parameters, and a set with all the values of the sub-
set in the index of the excluded column. The rows used to
create the rules are eliminated from the data and the rules
are added.

As an example of set and rule creation suppose a con-
stant threshold of 0.2 for parameter k. If we have values =

{0.1, 0.3, 0.5, 0.8, 0.9, 1.1}, we will have the sets: {0.1, 0.3, 0.5}
and {0.8, 0.9, 1.1}. As we have excluded column k, the new rules
created will be : x1, x2, ..., xk−1, {0.1, 0.3, 0.5}, xk+1, ...xn, yk, and
x1, x2, ..., xk−1, {0.8, 0.9, 1.1}, xk+1, ...xn, yk. As the process of
creating all the permutations is computationally expensive, the
user can decide the order of the parameters and avoid this step.
Note that, through the process of constructing and separating
sets, the Strict Rules algorithm allows the grouping of rules
starting from sets containing only two instances. Unlike Castro
et al. (2011) algorithm in which, for a rule to be formed, it is
required that the set contains all the possible values that the an-
alyzed parameter can take. Therefore in one parameter we may
have different rules covering different ranges of values. This
gives the algorithm the necessary flexibility to find regularities
with different levels of generality.

2.3.1. Algorithm pseudocode

1. permutations = array with the possible permutations of the
parameter indexes (excluding the output)

2. For each permutation :
temporal data = copy of data

For each index j in permutation (j from 0 to
parameters):

Exclude column permutation[j] from temporal data
For each row (in temporal data):

a. Look for identical rows
b. Collect from the identical rows the values

located at the excluded column
c. Create sets and new rules with the collected

values (See section 2.3.2)
d. Eliminate the identical rows
e. Add the new rules to temporal data

Add temporal data to sets of rules
3. Eliminate redundant and repeated rules from sets of rules
4. Return sets of rules (array to store the result of the

algorithm applied to each permutation)

2.3.2. Create sets and rules
Create sets
To create the new sets proceed as follows:

1. Sort set (array)
2. Split the set in subsets S i such that ∀xi, xi+1 ∈ S i

| xi − xi+1 |≤ t∗

Where t∗ is the assigned threshold for elements xi, xi+1 by
the functions g, t (described in Section 2.1.1) of parameter
j (located at thresholds[j]).

Create Rules
To create the new rules proceed as follows:

1. Take the current row (set of parameters) used to look for
identical rows.

2. For each of the sets created in the previous step (Create
sets) build a new rule by replacing the excluded column
(j) by the selected set.

3. Inference Rules and Fuzzy Rules model

3.1. Construction of the Inference Rules
As mentioned, the Strict Rules do not describe unheard pa-

rameter combinations. They only structure the data by grouping
the regularities found. This allows us to separately perform the
process of structuring the existing information and the process
of building a model able to infer new, unheard combinations,
consistent with the preselected perceptual categories. To do
this, a set of Inference Rules is created. These rules are exten-
sions of the Strict Rules created with the algorithm described
in Section 2. To extend the rules, the values of the sets con-
tained in their parameters are replaced by the intervals between
the minimum and maximum values for each set. For example,
let us suppose that we have the rule shown in Table 2, contain-
ing values {a, b, c, d} in parameter p j. Without the extension,
this rule only describes the cases formed with the combinations
of the values in the set and the values of the other parameters
(which could also be a set). To build the inference rule, we sub-
stitute the set for the interval [a−d], a and d being the minimum
and maximum values of the set, respectively. The extended rule
comprises the combinations of the parameter values with all the
values in the interval.

5

Table 2. Extension of a Strict rule into an Inference rule. The list of values
in parameter p j is extended to the interval between the minimum (a) and
maximum (b) values.

Rule Type p1 . . . pj . . . pn Class
Strict Rule xk,1 . . . {a, b, c, d} . . . xk,N rough

Inference Rule xk,1 . . . [a − d] . . . xk,N rough

Fig. 2. Membership function for the classifier. The values vk, j and wk, j are,
respectively, the minimum and maximum values of parameter j in rule k.
The parameter γ controls the “slopes”.

3.2. A fuzzy classifier based on Inference Rules

To extend the model to cover all the space within the explored
limits, a fuzzy if-then classifier, based on the Inference Rules,
was designed. It was built as follows:
First, consider the trapezoidal membership function of Equa-
tion 3, which is represented in Figure 2.

µk, j(p j) =
1
2

[max(0, 1 − max(0, γ ∗ min(1, p j − wk, j)))

+max(0, 1 − max(0, γ ∗ min(1, vk, j − p j)))]
(3)

In this function (Kuncheva, 2000) the index k represents the rule
number and the index j counts the parameters. The values vk, j

and wk, j are, respectively, the minimum and maximum values
with membership µ(x) = 1 of the kth rule jth parameter. The
parameter γ controls the “slopes” of the trapezoid and is calcu-
lated so that the slopes intersect the x-axis at the minimum and
maximum values of the parameter.

To build the classifier, all features are scaled into [0, 1]. Then,
for each rule Rk, a trapezoidal membership function is assigned
to each parameter p j in the following way:

1. If the parameter contains an interval, let us say [a−b], then
vk, j = a and wk, j = b. In this case, the trapezoidal member-
ship function has maximum membership values between
the extremes of the interval.

2. If the parameter contains a single value, then vk, j = wk, j.
Thus, we obtain a triangular membership function cen-
tered at that value.

To classify a new parameter combination, the classifier oper-
ates as follows: Let P be the combination sent to the classifier.
P is a combination of p j parameter values. Then, for each rule
Rk, it calculates the membership values µk, j(p j) for each param-
eter p j. The firing strength τk(P) (Kuncheva, 2000) of a rule Rk,

which measures the degree to which the rule matches the input
parameters, is defined as the minimum of all the membership
values obtained for the parameters (see Equation 4), i.e:

τk(P) = min { µk, j(p j) } (4)

Once the firing strength has been calculated for all rules, the
assigned class (i.e. category; Equation 5) will be equal to the
class of the rule with maximum firing strength.

Class(P) = Class of Rc where C = arg max
k

{τk(P)} (5)

An example of the classification process for a hypothetical sys-
tem with only two rules and two parameters is shown in Figure
3. The parameter combination P = (p1, p2) is sent to the clas-
sifier. To classify this combination, for each rule, the degree
of membership of each pi given by the ith membership func-
tion of the rule is calculated and the minimum of these values is
taken. Then, a set containing the minimum value of each rule is
formed. Finally, the output of the system is the class associated
with the rule corresponding to the maximum value of that set.
If more than one rule has the same firing strength, a random
decision is taken.

4. Model evaluation

The model evaluation was based on the ideas suggested by
Pearce et al. (2002). They discuss specific motivations for
the development of programs for composing music, suggesting
specific criteria for its evaluation depending on the case. They
identify four activities: algorithmic composition, the design
of compositional tools, the computational modeling of musical
styles and the computational modeling of music cognition. Al-
though the algorithms presented here were originally designed
for personal compositional purposes and therefore could be cat-
aloged within the algorithmic composition activity, the further
development of the system was designed to be a compositional
tool, i.e. it is a tool intended to be used by composers other
than the designers. As proposed by Pearce et al. (2002), we
therefore performed evaluation tests to ensure that the behavior
of the software satisfies the requirements (unit tests), as well as
to examine its performance in different scenarios (application
tests).

The different models presented were evaluated as follows:
The Strict Rules were validated in experiments through user
visual inspection, that is, the extracted rules were grouped in
classes and shown to the user for its validation (in question 2.1
of the Evaluation questionnaire below). The Inference Rules
were evaluated through user testing. In this case, the users eval-
uated, whether or not, random combinations produced from the
generalized intervals were consistent with the preselected per-
ceptual categories. To evaluate the Fuzzy Rules model, users
evaluated random combinations covering the whole range of
parameter values. The evaluation of the users was compared
with the results of the classifier described in section 4.2. Finally,
the accuracy of the classifier was calculated using the latter data
and the standard technique 10-fold cross-validation. The details
are presented below.

6

Fig. 3. Example of the classification process for a system of two rules with two parameters p1 and p2. A new combination P = (p1, p2) is sent to the classifier.
For the first rule µ(p1) = a and µ(p2) = b. The minimum of these values is a. In the case of the second rule µ(p1) = c, µ(p2) = d and min(c, d) = d. Finally,
the max(a, d) = a and therefore the class assigned to the instance is Class i, which is the class associated with the first rule.

4.1. Evaluation questionnaire

The tests results were registered through a questionnaire. As
the system has different components that relate with the user
in differents ways (user interface, extracted rules and general-
ization stage) these were addressed in separate sections. The
questionnarie is shown below.

4.1.1. Assessment questionnarie
The data and threshold functions were saved for each user.

1. Data acquisition process
1..1 Interface evaluation: Do you consider that the inter-

face is intuitive and suitable for exploring the space
of parameter combinations?

1..2 Instructions evaluation: Do you feel the instructions
given by the interviewer are an efficient way to ex-
plore changes in the parameters?

2. Extracted rules
2..1 Do the rules give you interpretable information about

the relationship of the parameter values with the per-
ceptual category of the output?

3. Generalization
3..1 Consistency: Do you perceive the produced param-

eter combination to be consistent with the selected
category?

3..2 Novelty: Do you find novelty in the unheard pat-
terns?

To answer the questions, we adopted a user-focused evalua-
tion through Likert scale feedback (Likert, 1932) as proposed
by Wanderley and Orio (2002). With the following categories:
strongly agree, agree, neutral, disagree, and strongly disagree.
We used this approach to evaluate the data acquisition process
(interface and parameter exploration methodology), the inter-
pretability of the extracted rules, and the novelty of the unheard
parameter combinations created in the generalization step. To
evaluate if the category of the new unheard combinations per-
ceived by the user was consistent with the selected category

(question 3.1), a consistency score was used, similar to the mu-
sical Turing Test presented in Stowell et al. (2009). The general
idea is that, in computer music, we may desire the systems to
behave in a human-like fashion. In our case, the produced ex-
amples should emulate patterns that would be selected by the
human user as belonging to a particular category. Therefore,
as Stowell et al. (2009) pointed out, “the degree of observed
confusion between human and automated response is an appro-
priate route for evaluating systems which perform human-like
tasks”. In the tests, the Inference Rules generated new param-
eter combinations, and the users evaluated whether they were
consistent, or not, with the requested category. If so, we had a
success and otherwise a failure.

4.2. Evaluation of the fuzzy model

Two tests were performed to evaluate the fuzzy model. First,
parameter combinations (from the entire observed space) were
produced, and the classifications of the model and the user were
compared. Second, we used the classifier described in the Sec-
tion 3.2 to estimate the model accuracy. A 10-times cross-
validation standard technique was used on the data acquired
during these experiments.

5. Experiments

The experiments were conducted with students of the Real
Time Interaction Class of the Master’s Degree in Sound and
Music Computing of the Pompeu Fabra University (winter term
of 2016-2017), as well as with computer music composers and
audio technology developers. The systems and the collected
data are available at Paz (2017). Individual sessions were held
in which the surveyed were introduced to the system interface
and functionalities. After that, the participants were given time
to become familiarized with the system before beginning the
experiment.

For the user-tests, an analytic interface (shown in Figure 4)
as described by Hunt and Kirk (2000) was designed. It allowed
the users to listen, tweak and perceptually categorize (into three

7

Table 3. Synthesis of the questionnaire results for the Blip and Sawtooth generators. The numbers below the quantifiers of the Likert scale denote the
number of users that selected such option. The percentages in 3.1, are the average percentages of the numbers assigned by the users to the consistency of
the twenty combinations produced by the Inference Rules.

System Question Strongly
agree

Agree Neutral Disagree Strongly
Disagree

Blip 1.1 Interface evalua-
tion

2 5 2 1 –

Sawtooth 1.1 Interface evalua-
tion

2 5 2 1 –

Blip 1.2 Instructions 3 5 2 – –
Sawtooth 1.2 Instructions 3 5 2 – –
Blip 2 Strict rules evalua-

tion
6 3 1 – –

Sawtooth 2 Strict rules evalua-
tion

7 2 1 – –

Blip 3.1 Consistency of
inference rules com-
binations

Consistent:
Inconsistent:

90%
10%

Sawtooth 3.1 Consistency of
inference rules com-
bination

Consistent:
Inconsistent:

85%
15%

Blip 3.2 Novelty - 4 4 2 -
Sawtooth 3.2 Novelty 2 6 2 - -

classes given the perceptual categories of the systems described
in Section 5.2) the parameter combinations while seeing their
values in a display. It also allowed the captured data to be re-
viewed. Once the data were collected, the user executed the rule
extraction algorithm and listened to parameter combinations in
the following modalities:

1. Patterns contained in the generated Strict Rules, such that
they had already been heard and categorized by the user.

2. Patterns inferred through the Inference Rules, i.e, assumed
to be within some predefined perceptual category, but
which had not been heard.

Users were asked to collect at least thirty categorized combina-
tions by following the instructions shown in Section 5.1. After
this, the rule extraction process was performed and the obtained
Strict Rules were inspected by the users. Finally, twenty un-
heard combinations were produced with the Inference Rules.
These were evaluated as being consistent or not with the cat-
egories that they described, as well as whether or not they
showed novelty.

5.1. Instructions for exploring the parametric space

In order to favor rule formation and to avoid having many
instances not grouped in any rule, users were provided with
specific instructions to vary the parameters while exploring the
space. These instructions allow to explore the space in an or-
dered way, so that changes occur in one parameter at a time.
Participants were asked to explore the space as follows:

1. Without restrictions, vary the system parameters until a
new point is found within the desired perceptual category.
Save the parameter values with its associated category.

Fig. 4. Interface used to explore the parametric space and to collect data.
The left side allows to boot the system, initialize the data, tweak the pa-
rameters and classify the combinations into three categories. The central
part performs the rule extraction process. The right side allows the user to
listen the Strict Rules (Play buttons) or the Inference Rules (Try buttons),
as well as to reclassify the instances (Class buttons).

2. From that point, tweak one parameter at a time while keep-
ing the others constant. If the new combinations belong to
any of the desired categories save them with its respective
label. In this way, changes in one or more parameters can
be explored.

3. When enough has been explored around the combination,
freely vary the parameters until a new point with a desired
perceptual category is found.

8

5.2. Sound generators

For the experiments, two different sound generators were se-
lected. The first system, was a single band limited impulse os-
cillator with well defined acoustic properties of its different pos-
sibilities (Section 5.2.1). The second was a slightly more com-
plex system for additive synthesis for which an arbitrary per-
ceptual property was chosen (Section 5.2.2). The first system,
was selected because of the great amount of psychoacoustics
documentation describing the human perception of their differ-
ent aural possibilities, allowing the validation of the obtained
results (rules). Moreover, the simplicity of the system made it
an excellent candidate for the interviewees to become familiar
with the methodology. The second system was chosen given
that consonance is a well defined perceptual property, and con-
sidering that, as additive synthesis is generally the first synthe-
sis technique to be studied, the users were also familiar with
this system.

5.2.1. Single band limited impulse oscillator
The single band limited impulse oscillator “Blip”, produces

a fundamental frequency to which a certain number of upper
harmonics, all with equal amplitude, are added (Blip, 2016). It
is available as a unit generator (UGen) in SuperCollider. It has
three parameters: freq, the fundamental frequency; numharm
which controls the number of upper harmonics added; and amp,
the output’s amplitude. The parameters can range in the follow-
ing way: the fundamental frequency can take values from 0Hz,
with no audible result, to 20KHz which is the upper audible
limit. However, as the audition capacity is reduced with age
and environmental factors, the upper limit is sometimes con-
sidered around 15KHz. The number of added harmonics range
from 0, which leads to a pure tone frequency of the chosen fun-
damental, to any (theoretical) number of harmonics. However,
considering the aliasing processes, this number is limited by the
sample rate and the chosen fundamental frequency. Finally, the
signal amplitude is normalized between 0 and 1.

Configuration for the experiments
For the experiments, the values were restricted within the

following ranges. The frequency took values in the interval
[0Hz, 400Hz], the number of upper harmonics in [0, 100], and
the amplitude in [0, 1]. This is a bounded space where the per-
ceptual properties (described next) are clearly expressed. Al-
though this is a simple generator, the different aural possibili-
ties produced by its parameter combinations clearly define dis-
tinct perceptual subspaces. For the experiment, we worked
with three perceptual properties. These are outputs perceived
as rhythmic, rough, and pure-tone. For further reference of
the Blip generator, the reader is referred to Roads (2001).

Generally speaking, outputs perceived as rhythmic are char-
acterized by low fundamental frequencies (less than 15Hz). The
number of upper harmonics controls the pitch of the produced
pulse (or beat). A low number of harmonics produce constant
beats with low pitch, while a higher number of upper harmon-
ics produce the same constant beating, but with higher pitch.
Outputs perceived as rough have fundamental frequency val-
ues between 15 and 35 Hz. The number of upper harmonics

plays a similar role as in the case of rhythmic outputs. Finally,
outputs perceived as pure-tones are produced by any frequency
greater that 20Hz without upper harmonics. However, combi-
nations of low-mid to high frequencies (e.g greater than 80Hz)
with medium to high number of upper harmonics (for example,
between 40 and 50) can sometimes be perceived as pure-tones.
This phenomenon is accentuated due to the effects of compar-
ison on the perception. For example, when hearing something
highly rough and afterwards hearing a slightly rough combina-
tion, the latter can be perceived more like a pure tone. Also, it
is worth saying that the regions described are not crisp, and the
perception may vary from one user to another, as well as with
the mentioned perception by comparison effect. For the experi-
ments, g(tp j (x1), tp j (x2)) = tp j (x1)∀ p j. The threshold functions
for the parameters were set, for all x, as in Equation 6.

tp j (x) =

in f for any freq
in f for any numharm
1 for any amp

(6)

5.2.2. Sawtooth wave additive synthesis
As a second sound generator, a simple Additive Sawtooth

Wave Synthesizer was selected. It consisted of four sawthooth
waves with frequencies freq1, freq1 - 1, freq2, freq2 + 1 mea-
sured in Hz, with a general normalized amplitude, amp. The
system parameters were: freq1, freq2 and amp. The system
output is the sum of the four frequencies times the amplitude.
This synthesizer was also implemented in SuperCollider.

Configuration for the experiments
For the experiments, the frequencies took values in the in-

terval [0Hz, 300Hz]. The sought perceptual property was de-
fined as follows: The frequency space was divided in ranges of
100Hz. At the first range ([0Hz, 100Hz]) freq1 was set to 50Hz.
Then, freq2 was tweaked and all the outputs that exhibited con-
sonance between freq1 and freq2 were selected at the discretion
of the user. For example, frequencies 50Hz and 100Hz given
that one is the octave of the other. For ranges [100Hz, 200Hz]
and [200Hz, 300Hz] freq1 was set equal to 200Hz and 300Hz
respectively, and values of freq2 were searched in the same
way. Consonant values were freely chosen by the users. They
were able to select, for example, only 50 and 100Hz at the
first interval, or 50, 100 and 75Hz (the perfect fifth of 50), and
so on. These values could be chosen guided simply by audi-
tion or analytically by using the interface. For the experiments
g(tp j (x1), tp j (x2)) = tp j (x1) ∀ p j and the thresholds were defined
as in Equation 7.

tp j (x) =

10 for any freq1
10 for any freq2
1 for any amp

(7)

Remember that consonance can be defined, acoustically, con-
sidering the coincidence of partials (Helmholtz, 1954) and the
combined spectral distribution of the sound. There are also sub-
jective variations dependent on the cultural context. Neverthe-
less, in this case, each subject evaluates its own material and
therefore only changes in perception produced by the memory
of past events (as the ear works by comparison) influence per-
ception.

9

Table 4. Example of the Strict Rules obtained during the experiments for
the Blip generator.

Category Frequency Number of
harmonics

Amplitude

Rhythmic 2.3 OR 3.94 87.9 4.7
Rough 14.8 22 OR 47,9

OR 100
0.35

Pure-Tone 218.5 OR
323.7 OR
386.7 OR
400

0 0.12

Table 5. The second row contains the mean accuracy ± standard deviation
for the classifiers build with the data collected during the experiments us-
ing 10 fold cross-validation. For each user, a classifier was build and tested.
The third row shows the mean percentage of coincidence between the clas-
sifier and the user, in the classification of new combinations of parameters
(taken over all parameter input space).

System Blip Sawtooth
Mean accuracy ±
Standard deviation 0.955 ±0.0008 0.930 ± 0.0024
Coincidence user
and classifier 93 % 88 %

5.3. Results of the experiments
Ten subjects were interviewed, and all tested both generators.

The evaluation of the systems was done through the presented
questionnaire. The results evaluating the Strict and Inference
Rules are presented in Table 3. Table 4 presents examples of
Strict Rules for the Blip system. And Table 5 presents the eval-
uation of the fuzzy model. This includes the accuracy of the
classifiers and the coincidence degree of the classes assigned to
the new combinations by the users and the classifier.

5.3.1. Evaluation of the Strict and Inference rules
Table 3 contains the results of the questionnaire evaluating

the Strict and Inference rules models, for the experiments car-
ried out with both generators. The numbers below the five quan-
tifiers of the Likert scale indicate the number of users who se-
lected that option. In the case of the Inference Rules consis-
tency (column 2, rows 8 and 9), the numbers after “Consistent”
and “Inconsistent” express the average of the percentages cal-
culated for the twenty produced combinations. An example of
the Strict Rules obtained during the experiments is shown in Ta-
ble 4. The second row shows a rule for the Rhythmic category.
It should be read in the following way: If Frequency is 2.3 OR
3.94 AND Number of upper harmonics is 87.9 AND Ampli-
tude is 4.7 THEN the combination is categorized as rhythmic.
As can be seen, the rules obtained and shown in Table 4 coin-
cide with the ranges for the perceptual properties described in
section 5.2.1. For example, for the output to be perceived as
Tone the Number of upper harmonics should be low, or zero in
this case.

5.3.2. Evaluation of the fuzzy model
The results of the experiments evaluating the fuzzy model

are presented in Table 5. The second row contains the mean

accuracy and standard deviation for the classifiers built for each
data set generated by the users during the tests. The accuracy
was calculated by using 10-fold cross-validation. The third row
shows the mean percentage of coincidence between the cate-
gories assigned by the user and the classifier to new unheard
combinations. Such combinations were taken randomly from
the whole considered parametric space.

6. Discussion

For the purposes of this work, we were mostly interested in
the evaluation of the perception of the Strict Rules in terms of
interpretability, and the ability of the Inference Rules to pro-
duce unheard combinations consistent with the categories and
the novelty of these combinations. The evaluation of the inter-
face and the instructions for exploring the space (questionnaire
1.1 and 1.2), let us know that the collected data actually has
the desired structure. That is: a combination of parameters as-
sociated with a particular perceptual category. If we see the
numbers from second to fifth rows of Table 3, we can say that
both the interface and the instructions to explore the space were
considered appropriate for the data collection.

The results evaluating the Strict Rules, sixth and seventh
rows of Table 3, show that the structure with which the rules
are presented, effectively allowed the user to have an image of
the value regions (within the parameters) that “codify” for a
certain category. In many cases, the visualization of the rules
allowed the users to verbalize some general ideas to describe its
own behavior.

The eighth and ninth rows of Table 3, that describe the con-
sistency of the Inference Rules, show that, in the case of the an-
alyzed systems, it is possible to use the proposed generalization
to extend the grouped values (sets) to regions maintaining their
perceptual properties. In the case of the second generator, the
consistency values are slightly lower, but the combinations are
perceived with novelty. However, looking at the novelty evalu-
ation of the Blip, the produced combinations exhibit moderate
novelty. This is due in part to the homogeneity in the perception
of this system. One way to overcome this would be to produce
more risky combinations, for example by extending the cover
regions by grouping adjacent intervals. However, when infor-
mal tests were performed, it was clear that, by doing this, there
is a higher risk of leaving the perceptual categories. So, it is
necessary to define a criterion for when the adjacent intervals
can be grouped together.

This problem is directly related to the choice of the thresh-
olds, that at the moment it is the user’s complete responsibility.
During the experiments it was clear that the consistency associ-
ated with the Inference Rules depends on the thresholds used.
Since this determines how “separated” the numbers within the
sets are, and therefore the “length” of the generalization in-
terval. In the experiments the thresholds were initially set by
heuristic considerations and then used to process all users’ data.
Therefore, developing a way to obtain the appropriate thresh-
olds from the data is important for the quality of the Inference
Rules, and to free the user from the responsibility of tuning the
thresholds. In the next section we discuss work in progress to
automate this process.

10

Table 5 presents the results that compare the category as-
signed to new combinations by the user and the Fuzzy Rules
model (third row). It also presents the accuracy of the classi-
fiers obtained with the standard 10-fold cross-validation (sec-
ond row). Given that the results are similar between them, this
allows us to have a positive evaluation of the Inference Rules
model extended to Fuzzy Rules covering the whole space.

7. Conclusions and further work

In this paper, we present a methodology for modeling per-
ceptual categories in parametric musical systems. It begins by
grouping the variations that can occur in the value of a param-
eter without changing the perceptual category associated with
the system output. The result of this analysis is an interpretable
structure (Strict Rules) that was validated through user tests.
Based on the Strict Rules, we constructed the first generaliza-
tion. The new model extends the coverage of each Strict Rule.
For this, the sets of values contained in their parameters are
extended to intervals between the minimum and maximum val-
ues of each set. The resulting rules are called Inference Rules.
These were validated by generating random combinations from
the rules, which were evaluated by users as consistent or not
with the expected perceptual category.

A second generalization was then constructed, covering the
whole space by associating a trapezoidal membership function
with each entry of the Inference Rules. For a new entrance, the
output of the model was calculated by using the rules in a fuzzy
classifier. This model was validated by generating new param-
eter combinations of the whole considered space and then, by
comparing, for each combination, the categories assigned by
the users and the model. In addition to this, the accuracy of the
classifiers was calculated by using the 10-fold cross-validation
method.

The presented models allow to codify the existing relation-
ships between the parameter values combinations of the gener-
ative systems, and the perceptual categories assigned. However,
the effectiveness of the model, highly depends on the selection
of functions for calculating the thresholds. In this case, this
responsibility lies on the user, so it is necessary to be familiar
with the systems in order to choose the thresholds properly. Our
current research focuses on a way to automatically find these
functions. A possible solution would be to use the information
given by the data for the grouping of the values. For exam-
ple, once we have put together all the combinations that differ
only in one parameter, and the set containing the different val-
ues has been formed, we split the set into subsets by grouping
the values regardless of how distant they are. This is possible as
long as there is no value between them that shares values in the
other parameters, but has a different perceptual category asso-
ciated. If this is the case, we group the values in two subsets to
the “left” and “right” of that value. By doing this, the grouped
rules will be naturally split into subsets without containing ex-
amples with a different label. This would eliminate the need for
thresholds for data grouping, leaving them for more creative
processes.

Acknowledgments

The kind help of Angel Faraldo and the Befaco collective for
the realization of the tests must be acknowledged. This work
was supported by the National Council of Science and Tech-
nology of Mexico (CONACyT). We also thank the anonymous
reviewers whose wise feedback has been essential for improv-
ing the reading of this contribution.

References

Blip, 2016. Blip. http://doc.sccode.org/Classes/Blip.html. Ac-
cessed: 2017-01-25.

Brown, A.R., Sorensen, A., 2009. Interacting with Generative Music through
Live Coding. Contemp. Music Rev. 28, 17–29.

Castro, F., Nebot, À., Mugica, F., 2011. On the extraction of decision support
rules from fuzzy predictive models. Appl. Soft Comput. J. 11, 3463–3475.

Collins, N., 2002a. Experiments with a new customisable interactive evolution
framework. Organised Sound 7, 267.

Collins, N., 2002b. Interactive evolution of breakbeat cut sequences. Proc.
Cybersonics .

Collins, N., McLean, A., Rohrhuber, J., Ward, A., 2003. Live coding in laptop
performance. Organised sound 8, 321.

Cope, D., 2015. Algorithmic Music Composition. Springer Netherlands, Dor-
drecht. pp. 405–416.

Dahlstedt, P., 2001. Creating and Exploring Huge Parameter Spaces: Interac-
tive Evolution as a Tool for Sound Generation., in: ICMC.

Dawkins, R., 1986. The blind watchmaker: Why the evidence of evolution
reveals a universe without design. WW Norton & Company.

Dean, R.T., 2009. The Oxford Handbook of Computer Music. Oxford Hand-
books, Oxford University Press.

Goldmann, S., 2015. Presets - Digital shortcuts to sound. The Bookworm, an
imprint of The Tapeworm.

Helmholtz, H., 1954. On the sensations of tone. Dover Publications, INC., New
York.

Hunt, A., Kirk, R., 2000. Mapping strategies for musical performance. Trends
Gestural Control Music 21, 231–258.

Kuncheva, L., 2000. Fuzzy Classifier Design. Physica-Verlag Heidelberg.
Likert, R., 1932. A technique for the measurement of attitudes.
Magnusson, T., 2015. Herding cats: Observing live coding in the wild. Comput.

Music J. 38, 8–16.
McCartney, J., 1996. SuperCollider: a New Real Time Synthesis Language, in:

Proc. Int. Comput. Music Conf.. International Computer Music Association,
pp. 257–258.

McCormack, J., Eldridge, A., Dorin, A., McIlwain, P., 2009. Generative al-
gorithms for making music: emergence, evolution and ecosystems. Oxford
University Press, New York. pp. 354–379.

Miranda, E.R., 1995. Granular Synthesis of Sounds by Means of a Cellular
Automaton. Leonardo 28, 297–300.

Nierhaus, G., 2009. Algorithmic composition: paradigms of automated music
generation. Springer Science & Business Media.

Paz, I., 2017. Parametric perceptual exploration. https://github.com/

ivan-paz/parametric-perceptual-exploration.
Paz, I., Nebot, M., Romero, E., Mgica, F., Vellido, A., 2017. A method-

ological approach for algorithmic composition systems’ parameter spaces
aesthetic exploration., in: A: IEEE Congress on Evolutionary Computation.,
pp. 1317–1323.

Pearce, M., Meredith, D., Wiggins, G., 2002. Motivations and Methodologies
for Automation of the Compositional Process. Music. Sci. 6, 119–147.

Roads, C., 2001. Sound Composition with Pulsars. J. Audio Eng. Soc 49,
134–147.

Rohrhuber, J., de Campo, A., 2009. Improvising Formalisation: Conversational
Programming and Live Coding. New Comput. Paradig. Comput. Music.
Sampzon, Fr. Delatour .

Stowell, D., Robertson, A., Bryan-Kinns, N., Plumbley, M., 2009. Evalua-
tion of live human-computer music-making: Quantitative and qualitative
approaches. Int. J. Hum. Comput. Stud. 67, 960–975.

Wanderley, M., Orio, N., 2002. Evaluation of Input Devices for Musical Ex-
pression: Borrowing Tools from HCI. Comput. Music J. 26, 62–76.

11

Wang, G., Cook, P., 2004. On-the-fly Programming: Using Code As an Expres-
sive Musical Instrument, in: Proc. 2004 Conf. New Interfaces Music. Expr.,
pp. 138–143.

Wilson, S., Cottle, D., Collins, N., 2011. The Supercollider Book. MIT Press,
Cambridge, MA.

