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Abstract—This paper takes on the problem of recovering the
missing entries of an incomplete matrix, which is known as matrix
completion, when the columns of the matrix are signals that lie on a
graph and the available observations are noisy. We solve a version of
the problem regularized with the Laplacian quadratic form by means
of the proximal gradient method, and derive theoretical bounds on
the recovery error. Moreover, in order to speed up the convergence
of the proximal gradient, we propose an initialization method that
utilizes the structural information contained in the Laplacian matrix
of the graph.

Index Terms—matrix completion, signal processing on graphs,
proximal gradient

I. INTRODUCTION

In [1], Candès and Retch formulated the matrix completion
problem as a convex minimization of the nuclear norm of
the partially observed matrix, and demonstrated that an exact
recovery of the original matrix is possible whenever the
matrix is low rank, incoherent and uniformly sampled. The
same framework is used in [2] for the recovery from noisy
observations. The assumptions made imply that the matrix
entries are unstructured, which is usually not the case for real
data. Therefore, some works have extended the work in [1]
by including extra information about hidden matrix structures
into the problem formulation. For instance, in [3] an additional
restriction is imposed so that the columns of the recovered
matrix are a linear combination of the basis elements in a
dictionary. In [4], it is observed that the temperature measure-
ments taken by the sensors in a wireless sensor network are
temporally stable in the short term, so a regularization term is
added to ensure the short term stability of the recovered data.
In the problem of predicting an incomplete matrix of ratings
in [5], groups of users with similar background are assumed
to have similar preferences, thus a penalty term is included to
reduce the variability of the predicted ratings within a group.

An alternative approach to capture the interdependence
between the entries in the matrix is by applying techniques
from the field of signal processing on graphs. As described
in [6], [7], this field extends classical signal processing tools
such as filtering or domain transformations and applies them
to signals on a graph, so that the vertices in the graph
measure signals and the graph edges model the underlying
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relational structure of those signals. The connections between
the vertices are represented by the weighted adjacency matrix
of the graph, which can be known beforehand or inferred
from the data as, for instance, in [8]. With regards to the
matrix completion problem, so far the existing works under
the signal processing on graphs perspective take advantage of
the fact that the graph signals are known to be smooth on a
given graph. For instance, in [9] the signals are assumed to be
smooth on a graph when the data from connected vertices have
similar values. Hence, the Laplacian quadratic form is added
as a regularization function to the problem in [1] to enforce
this smoothness on the recovered data. Additionally, a function
named total variation is used in [10] as a regularization term to
enforce the graph structure described by the adjacency matrix.
Similarly, [11] takes on the collaborative filtering problem
assuming that the original matrix can be factorized into two
smaller matrices which lie on two different graphs.

In this paper, we focus on the recovery of partially observed
graph signals that are arranged in a data matrix when the
observations are noisy. We solve the problem by adding the
Laplacian quadratic form as a regularization term as in [9],
[11], and using the proximal gradient (PG) method, which
allows us to derive theoretical bounds on the recovery error
and give insight into the effect of the regularization. Moreover,
we also propose an initialization method to reduce the number
of iterations required to reach a solution. The remaining of this
paper is organized as follows. Section II introduces the matrix
completion problem, the PG algorithm, and the proposed
initialization method. Section III analyzes the recovery error
of the PG. Finally, Section IV includes the simulation results.

II. MATRIX COMPLETION FOR GRAPH SIGNALS

Consider the undirected weighted graph G = (V, E ,A),
where V = {v1, . . . , vN} is the set of vertices, E ⊆ V × V is
the set of edges connecting the vertices, and A ∈ RN×N is
the weighted adjacency matrix. This matrix is defined so that
a non-zero entry Ai,j indicates that information flows from
vertex j to vertex i, and the magnitude of the entries is a
measure of similarity or dependence between the connected
vertices. Given G, a graph signal is defined as a map from the
set of V vertices into a set of real numbers y : V → R that
can be arranged in a column vector y defined as

y = [y(1), . . . , y(N)]T ,
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where y(i) is the value of the signal at vertex vi.
Consider now a set of graph signals {yl, ∀l = 1, . . . , L}

residing on the graph G, and let Y be the N × L matrix of
graph signals

Y = [y1, . . . ,yL].

Matrix Y is assumed low rank and cannot be observed except
for a subset Ω ⊂ {1, . . . , N} × {1, . . . , L} of entries, which
are corrupted by noise so that the matrix of observed entries
M ∈ RN×L is defined as

Mi,j =

{
Yi,j + ∆i,j , when (i, j) ∈ Ω,

0, when (i, j) 6∈ Ω,

where ∆ is a sparse noise matrix with nonzero entries
∆i,j ∀(i, j) ∈ Ω. For convenience, we also define the com-
plement subset of Ω as Ωc, the cardinality of a subset as | · |,
and the operator (·)Ω which projects a matrix X onto the
subset Ω as follows

(XΩ)i,j =

{
Xi,j , when (i, j) ∈ Ω,

0, when (i, j) 6∈ Ω.

Thus, our objective is to recover the original matrix Y from
the observed noisy entries in M .

According to [2], one can recover Y with an error propor-
tional to the noise by solving the following convex optimiza-
tion problem:

Ŷ = argmin
X

||X||∗ (1)

subject to
∣∣∣∣XΩ −M

∣∣∣∣
F ≤ ||∆||F

where ||·||∗ denotes the nuclear norm defined by ||X||∗ =∑r
i=1 σi, with σi being the singular values of X and r its

rank, and ||·||F is the Frobenius norm.
We can reduce the impact of the noise and take advantage of

the structural information provided by the graph by incorporat-
ing its Laplacian matrix into the matrix completion problem.
The quadratic Laplacian form measures the smoothness of a
signal on the graph and is defined as

L(X) = Tr(XTLX) =
∑L

l=1

∑
(i,j)∈E

Ai,j(Xi,l−Xj,l)
2,

where L = diag(A1) −A is the Laplacian matrix, 1 is the
all-ones vector, and Tr(·) denotes the matrix trace operation.
The matrix completion problem is commonly [10], [12], [13]
solved by minimizing the Lagrangian form of (1) as

argmin
X

1

2

∣∣∣∣XΩ −M
∣∣∣∣2

F + β ||X||∗ + αL(X), (2)

where the nuclear norm becomes a regularization term with
regularization parameter β, and we have incorporated the
Laplacian quadratic form as an additional term weighted by a
parameter α in order to promote similarity between the edges
connected on the graph.

Proximal gradient is a popular method to solve nonsmooth
optimization problems such as (2) thanks to its ease of
implementation, and the good results it offers [10]. As proven
in [14], the solution to (2) is given by the following iterative

scheme which performs a proximal gradient minimization
for k ≥ 1:

Xk = Stβ(Xk−1 − t(XΩ
k−1 −M + 2αLXk−1)). (3)

The parameter t is the step size of the gradient, and Stβ(·) is
the matrix shrinkage operator (MSO), which, given the singu-
lar value decomposition (SVD) of a matrix X as X = UΣV ,
we define as

Stβ(X) = U(Σ− tBX)V .

The symbol BX denotes a diagonal N ×L matrix with main
diagonal

bX = [β, . . . , β,
σd
t
, . . . ,

σD
t

],

where D = min(N,L), and {σd, . . . , σD} are the singular
values of X smaller than tβ, that is, σi< tβ ∀i ≥ d.

A. Proximal gradient initialization

Algorithms for matrix completion are usually initialized to
the observed matrix M , a low-rank approximation of M or
a random matrix [15]. Here we propose to take advantage of
the information provided by the Laplacian matrix to compute
an initial point X0, hopefully closer to the optimal solution,
that will reduce the number of iterations required by the PG
algorithm to converge.

One of the properties of the Laplacian matrix is that
its smallest eigenvalue has value 0 with multiplicity equal
to the number of connected components on the graph. Let
matrix L have eigenvalue decomposition L = QΛQT , and
Q0 ∈ RN×P be the matrix containing the P eigenvectors
with associated eigenvalue 0. Indeed, Q0 contains the graph
signals that are smoothest on the graph so that L(Q0) = 0.
Thus, as the initial matrix X0, we propose to use matrix M
and complete the zero entries using a weighted combination
of the signals in Q0. Specifically, the initialization matrix is
obtained as

X0 = (Q0C0)Ωc

+ M , (4)

where C0 ∈ RP×L is the matrix of coefficients that better fits
Q0C0 to the observed entries, that is,

C0 = argmin
C

||M − (Q0C)Ω||2F . (5)

If we denote C0 = [c1, . . . , cL], the problem in (5) is
equivalent to solving

{c1, . . . , cL} = argmin
c1,...,cL

L∑
l=1

||m̄l − SlQ0cl||22, (6)

where m̄l is a vector of length el containing the observed
samples of the lth column of M , and Sl is a el×N sampling
matrix. Matrix Sl has a single non-zero element per row equal
to 1, and it is built so that m̄l = Slml. The solution to (6) is

cl = (QT
0 S

T
l SlQ0)−1QT

0 S
T
l m̄l ∀l = 1, . . . , L.

The computational cost of this initialization is O(N3) due
to the eigendecomposition of A, which is comparable to the
cost of one PG iteration.



III. ERROR ANALYSIS

In this section we analyze the recovery error of the PG
algorithm and how the addition of the Laplacian quadratic
form as a regularization term impacts on the noise. Before
introducing the main results, we first make and define the
following assumption and lemmas:

Assumption 1. Similar to Assumption 7 in [13], we assume
that, given small enough α and t, there exists a constant 0 ≤
γ<1 such that for any matrix X∣∣∣∣(I − 2αtL)X − tXΩ

∣∣∣∣
F ≤ γ ||X||F .

Lemma 1. Given a pair of matrices X and Z,

||Stβ(X)− Stβ(Z)||F ≤ ||X −Z||F .

Proof. The proof of this lemma can be found in [14].

Lemma 2. For any matrix X

||Stβ((I − 2αtL)X)−X||F ≤
√
rtβ + 2αt ||LX||F . (7)

Proof. We begin by showing that

||Stβ((I − 2αtL)X)−X||F
= ||Stβ((I − 2αtL)X)−X + 2αtLX − 2αtLX||F
≤ ||Stβ((I − 2αtL)X)− (I − 2αtL)X||F + 2αt ||LX||F .

Next, let us define matrix X ′ = (I − 2αtL)X with SVD
X ′ = U ′Σ′V ′. Then,

||Stβ((I − 2αtL)X)−X||F ≤ ||Stβ(X ′)−Stβ(X′ +tβI)||F
+ 2αt ||LX||F .

Finally, we apply Lemma 1 and obtain (7).

We now introduce the following theorem which bounds the
recovery error of the original matrix when the observed entries
are noiseless:

Theorem 1. Let Ŷ be the rank r estimate obtained with (3)
after the PG has converged, with a noiseless observed matrix
Y Ω. Then ∣∣∣∣∣∣Ŷ − Y

∣∣∣∣∣∣
F
≤
√
rtβ + 2αt ||LY ||F

1− γ
.

Proof. Since f(X) = 1
2

∣∣∣∣XΩ − Y Ω
∣∣∣∣2

F + αL(X) is convex
and continuously differentiable, the proximal gradient con-
verges to a solution in the optimal solution set of (2) which is
also a fixed point of (3) [12]. Hence, since Ŷ is a fixed point
of (3), we have that∣∣∣∣∣∣Ŷ − Y

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣Stβ(Ŷ − t(Ŷ Ω − Y Ω + 2αLŶ ))− Y

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣Stβ((I − 2αtL)Ŷ −t(Ŷ Ω − Y Ω)) −Stβ((I − 2αtL)Y )

+Stβ((I − 2αtL)Y )− Y ||F .

≤
∣∣∣∣∣∣Stβ((I−2αtL)Ŷ −t(Ŷ Ω − Y Ω))−Stβ((I−2αtL)Y )

∣∣∣∣∣∣
F

+ ||Stβ((I − 2αtL)Y )− Y ||F .

Applying Lemma 1:∣∣∣∣∣∣Ŷ − Y
∣∣∣∣∣∣

F
≤
∣∣∣∣∣∣(I − 2αtL)(Ŷ − Y )− t(Ŷ − Y )Ω

∣∣∣∣∣∣
F

+ ||Stβ((I − 2αtL)Y )− Y ||F .

Next, we apply Lemma 2 and Assumption 1 and obtain∣∣∣∣∣∣Ŷ − Y
∣∣∣∣∣∣

F
≤ γ

∣∣∣∣∣∣Ŷ − Y
∣∣∣∣∣∣

F
+
√
rtβ + 2αt ||LY ||F ,

which leads to the error bound in Theorem 1.

Intuitively, Theorem 1 shows that the recovery error with
noiseless observations can be reduced by setting a lower β,
as it was anticipated in [16], as well as by choosing a graph
on which the graph signals in Y are smooth. Nevertheless,
whether the error can be driven to 0 by having β → 0 depends
on the number of observed entries and their distribution, which
is implicit through the constant γ.

In order to assess the effect of the regularization on the
noise, let us switch to another perspective. In the signal
processing on graphs theory [6], [7], matrix QT obtained
from the eigendecomposition of L is referred to as the Graph
Fourier Transform (GFT) matrix. The eigenvectors in Q can
be viewed as frequencies on the graph, with the eigenvectors
associated to the smaller eigenvalues corresponding to the
lower frequencies, that is, signals that vary slowly on the
graph. Given a vector x, the product Lx = QΛQTx projects
the vector onto the graph frequency domain of L, scales the
frequency coefficients by Λ, and projects the result back to
the graph domain given by Q. Therefore, the result of Lx
is a highpass filtered version of the vector since the lowest
frequency coefficients in QTx associated with the smallest
eigenvalue, which is equal to 0, are eliminated and the rest are
scaled according to Λ. Then, we can introduce the following
theorem:

Theorem 2. Given I0 = ΛΛ†, where Λ† is the pseudoinverse
of Λ, the frequency content of Ŷ on the nonzero frequencies
of the graph is bounded as∣∣∣∣∣∣I0Q

T Ŷ
∣∣∣∣∣∣

F
≤ 1

2α

(∣∣∣∣∣∣Λ†QT (Y Ω − Ŷ Ω)
∣∣∣∣∣∣

F
(8)

+
∣∣∣∣Λ†QT∆

∣∣∣∣
F +

∣∣∣∣Λ†QTU ′BŶ ′V
′)
∣∣∣∣

F

)
,

where matrices U ′,V ′ are the left and right singular vector
matrices of

Ŷ ′ = Ŷ − t(Ŷ Ω −M)− 2αtLŶ . (9)

Proof. Let matrix Ŷ ′ in (9) have SVD Ŷ ′ = U ′Σ′V ′. Given
an estimate Ŷ , which is a fixed point of (3), we have that
Stβ(Ŷ ′) = Ŷ . Expanding the MSO in this last expression we
obtain

Ŷ ′ − tU ′BŶ ′V
′ = Ŷ .

Now, if we replace Ŷ ′ by its definition, substitute M = Y Ω+
∆ and rearrange the resulting equation, we have

2αLŶ = Y Ω − Ŷ Ω + ∆−U ′BŶ ′V
′. (10)

Note that if we multiply the matrix LŶ by Λ†QT we are
left with a GFT matrix of the columns of Ŷ , containing only



the coefficients of the nonzero frequencies. Hence, multiplying
both sides of (10) by Λ†QT we obtain the bound in (8).

Theorem 2 shows that the Laplacian regularization has a
lowpass filtering effect on the solution since the right-hand
side of (8) vanishes with α. Moreover, the second term on the
right-hand side of (8) also shows the filtering effect on the
noise ∆ since the coefficients of its GFT are multiplied by
Λ†. If the noise is not smooth on the graph, that is, L(∆)
is large and the GFT coefficients are concentrated around the
higher frequencies, its contribution to the spectrum of Ŷ will
be small.

IV. SIMULATION RESULTS

We have tested the PG algorithm for the Laplacian-
regularized matrix completion problem on a real dataset of
temperature measurements. The algorithm has been run until
convergence over Nrea = 20 realizations with different
percentages of observed samples, denoted by Ps = |Ω|

N ·L · 100.
The parameters of the PG are β = 200, which is set relative
to the singular values of the observed dataset, t = 0.05 and
α = {0, 0.5}. As a performance metric, we use the normalized
mean square error at iteration k

NMSEk =
1

Nrea

Nrea∑
n

||Xn
k − Y ||2F
||Y ||2F

,

where X
(n)
k is the estimate of the complete matrix Y at

iteration k and realization n. The initial estimates {X(n)
k ∀n}

are calculated using (4).
The dataset Y is a 150×365 matrix of temperature readings

taken by 150 stations over 365 days in 2002 in the United
States. The graph signals yl are the temperature values mea-
sured at each station. In order to obtain the weighted adjacency
matrix A, first a graph G′ with unweighted adjacency matrix
P ′ is generated as in [10] for the stations. In this graph, each
station is a vertex and is connected to the 8 geographically
closest stations. Next, we obtain the undirected graph G with
symmetric adjacency matrix P = sign(P ′T +P ′). Finally, the
entries of A are calculated as Ai,j = exp(− N2di,j∑

i,j di,j
), where

di,j are the geodesic distances on G. The noisy matrix M is
generated by adding Gaussian noise to the observed entries,
which are selected uniformly at random in each realization.

Fig. 1 shows the NMSE after convergence for different
percentages of samples and parameter values. We observe that
in the noiseless case the NMSE is reduced as the percentage
increases. Moreover, the PG shows a larger error with α = 0.5
than with α = 0. This is because there are enough samples
and β is small enough to allow the non-regularized PG to
attain a low recovery error. In the noisy case, Fig. 1 shows
that the error also decreases with Ps for α = 0.5, although it
rises for α = 0 after Ps = 25%. This is due to the absence
of regularization, which causes the PG to overfit to the noisy
entries thus resulting in a larger error as more observations
and noise are added.

Fig. 2 shows the evolution of the NMSE for Ps = 30%
for the first 200 iterations for noisy and noiseless observations
with different parameter values. We observe that the starting
point of the PG with noiseless observations is fairly close to
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Figure 1: NMSE vs. Ps for noisy and noiseless observations.
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Figure 2: NMSE vs. iterations with Ps = 30% for noisy and noiseless
observations.

the minimum since the initial estimate calculated with (4)
has a very low NMSE equal to 0.033. For comparison, if
we initialize to matrix M the NMSE is 0.699 and it takes
400 iterations to converge with α = 0. For α = 0.5, the PG
converges to a point close to the initial error. In the noisy
case, we observe a smaller error at convergence for α = 0.5
than for α = 0, which converges to NMSE = 0.069 (see
Fig. 1), since the graph regularization helps filter out some
of the noise. Moreover, the regularization also increases the
convergence speed with noisy observations since the PG with
α = 0 needs 1000 iterations to converge at Ps = 30%.
Regarding the convergence speed in all the scenarios, it should
be noted that there exist implementations of the PG such as
the one in [14] that accelerate the convergence.

From these simulations we can conclude that, if the random
sampling is able to capture the underlying structure of the
dataset and β is small enough, the Laplacian regularization
does not reduce the recovery error when the observations
are noiseless. On the other hand, with noisy observations the
regularization improves the error for datasets which are smooth
on the graph since it helps filter out the noise, prevents the
overfitting to the observed noisy entries, and it also reduces the
iterations to convergence. Finally, the proposed initialization
provides a good starting point much closer to the minimum
than the observed matrix.
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