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Abstract

In this work we present a general error estimator for the finite element solution of
solid mechanics problems based on the Variational Multiscale method. The main idea
is to consider a rich model for the subgrid scales as an error estimator. The subscales
are considered to belong to a space orthogonal to the finite element space (Orthogonal
Subgrid Scales) and we take into account their contribution both in the element interiors
and on the element boundaries (Subscales on the Element Boundaries). A simple analysis
shows that the upper bound for the obtained error estimator is sharper than in other error
estimators based on the Variational Multiscale Method. Numerical examples show that
the proposed error estimator is an accurate approximation for the energy norm error and
can be used both in simple linear constitutive models and in more complex non-linear
cases.

1 Introduction

In the general solution of computational solid mechanics problems using finite element approx-
imations, many times one faces situations where it is convenient to focus the computational
effort in certain subdomains of interest. This is the case for instance when simulating fracture
processes, where very large deformation gradients are concentrated along fracture lines. If the
position and orientation of fracture lines are known a priori, a suitably refined computational
mesh can be built beforehand.

However, in most engineering cases of interest the location of such failure lines is precisely
part of the information that one expects to obtain from a computational simulation. As a
consequence, the information required to build such meshes is not known a priori. In this case
one faces with the need of either building extremely fine computational meshes capable of
appropriately capturing the details of the solution no matter where these appear, or running
successive simulations with different computational meshes which are progressively built as
more information is available.

Adaptive mesh refinement (AMR) techniques [1, 2, 3] appear precisely to deal with simula-
tions where the refinement requirements are not known a priori. AMR consists in introducing
local modifications in the computational mesh in such a way that the computational effort
for attaining a certain error level is minimized. Or, equivalently, adaptive strategies allow
one to maximize the accuracy of the obtained solution for a given computational cost.

There are two main ingredients which are involved in an AMR simulation: the first one
is the actual mesh refinement algorithm, which allows one to increase the accuracy of the
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numerical solution in a given region of the computational domain. Several families of methods
exist which are able to modify a given finite element mesh into a new mesh which is more
convenient and results in a reduced approximation error. For the sake of conciseness, let
us just remark that in our work we are focused in hierarchical h refinement with hanging
nodes. The treatment of hanging nodes used here consists in enforcing that the value of the
unknown in these nodes is exactly the interpolated value of their parent nodes, although other
possibilities for the treatment of hanging nodes such as the use of Discontinuous Galerkin
approaches are possible [4], and perfectly compatible with the developments done here. Also,
the proposed strategies are in principle applicable to p and r mesh refinement techniques,
although these possibilities are not explored here. For the mesh refinement process, we
rely on the adaptive refinement library RefficientLib [5, 6], which is capable of running
adaptively refined simulations on distributed memory parallel systems and handling meshes
with hanging nodes.

The second ingredient (and the one in which this work is focused) are error estimators
which are used to decide over which domain region mesh refinement is required [7, 8]. Again
several families of a posteriori error estimators can be found in the literature, including
explicit, implicit and goal-oriented error estimators. This work deals with the development
of error estimators for AMR based on the Variational Multiscale Method (VMS) [9, 10] .

The main idea of the VMS method is based in considering that the finite element approxi-
mation is not capable of exactly representing the solution to computational physics problems.
If this is taken into account, the exact solution can be decomposed into the finite element
part plus what are called the subscales, which are precisely the parts of the solution not
representable by the finite element approximation. The finite element part can be resolved,
but the effect of the subscales on the finite element solution (or coarse scales) needs to be
modeled. Including the effect of the unresolved scales in the finite element formulation has
turned out to be a very good strategy to solve many of the intrinsic drawbacks of the standard
Galerkin method for finite elements: the VMS method is capable of providing stable solu-
tions for convective problems, saddle point problems, acting as a turbulence model for fluid
mechanics problems, dealing with the polution error of the Helmholtz equation and solving
many other problems related to the finite element approximation of computational physics
problems, see for instance the reviews in [11, 12].

Although it was already remarked in [10] that the modeling of the subgrid scales could be
used as a suitable a posteriori error estimator, it has not been until much more recently that
these ideas have started to be implemented. A first approach to use the VMS framework in
error estimation is presented in [13], where the error norm for each element is computed for
the one dimensional convection-diffusion equation. The methodology is extended to higher
order elements in [14, 15]. The previous strategy is used in two-dimensional domains in [16],
where also the contribution of the error on the element boundaries is taken into account in
the error estimator. The same ideas are applied to the Navier-Stokes equations in [17, 18],
to linear elasticity in [19], and to higher order ordinary differential equations in [20]. Also,
in [21], an algebraic subgrid scale approach is used to derive an error estimator for a mixed
formulation for linear elasticity, although the contribution of the subscales in the boundary
is neglected. A similar approach based on the Streamwise Upwind Petrov Galerkin (SUPG)
stabilization method can be found in [22], where it is applied to the stationary convection-
diffusion equation.

A different approach can be found in [23], where following [24], the equation for the
subscales is solved in a finer mesh instead of using an analytical expression for them. This
idea is also pursued in [25], and applied to nearly-incompressible elasticity in [21] and to
elliptic problems with highly varying physical coefficients in [26].
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In this work a different approach is pursued in order to obtain error estimators for solid
mechanics problems solved using a mixed u-p formulation. The proposed error estimator is
based on the Orthogonal Subgrid Scales concept presented in [27], and the model for the
subscales on the element boundaries first presented in [28, 29]. This turns out in an er-
ror estimator composed of three main ingredients: the orthogonal displacement subscales in
the element interiors, the displacement subscales in the element boundaries, and the pressure
subscales. As it will be shown, this approach provides an elaborate model for the subscales ca-
pable of taking into account the effect of the non-resolved scales, that allows one to efficiently
predict the error of the finite element approximation for mixed elasticity u-p formulations.
Also, it will be shown that the subscales are capable of tracking the behavior of non-linear
solid mechanics constitutive models.

The paper is organized as follows. In Section 2 the mixed u-p formulation for solid
mechanics is presented. Section 3 describes the proposed error estimator and its numerical
properties. Numerical examples illustrating the performance of the proposed error estimator
are presented in Section 4, and finally some conclusions close the paper in Section 5.

2 Finite element formulation

In this section we present a finite element formulation for general solid mechanics problems in
the small strains context. The proposed mixed displacement - pressure (u-p) formulation is
valid both for compressible materials and for materials in the incompressible limit. As it will
be explained, it relies on a variational multiscale stabilizing mechanism which allows one to
use arbitrary interpolation spaces for both displacement and pressure even when one is dealing
with incompressible materials. The formulation departs from the equation of conservation of
momentum:

−∇ · σ = ρb,

where σ represents the stress tensor, ρ is the density, and b is the vector of external forces.
Additionally, a constitutive equation which relates strains and stresses is required, which for
linear elasticity can be stated as:

σ = C : ε(u).

Here C is the constitutive tensor, and ε(·) represents the symmetric gradient operator. Many
times, and specially when dealing with incompressible materials, it is convenient to decompose
the stress tensor into its spherical and deviatoric parts. The spherical part is then represented
by means of the pressure p (taken as positive in compression regime) and the deviatoric part
is denoted as σ′:

σ = −pI + σ′,

where I is the identity tensor. Introducing this decomposition in the constitutive equation,
we obtain:

σ = −pI + C′ : ε(u),

where now C′ represents the deviatoric part of the constitutive tensor, that is, the tensor that
applied to the symmetric gradient of the displacement field yields the deviatoric part of the
stresses:

C′ : ε(u) = σ′.

p is related to the displacement field through the following equation:

p = −κ∇ · u,
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where κ is the bulk modulus or modulus of compressibility. This yields the final form of the
linear elasticity equations in u-p form: find u and p such that:

−∇ ·
[
C′ : ε(u)

]
+∇p = ρb in Ω,

∇ · u+
1

κ
p = 0 in Ω,

where Ω represents the computational domain of R2 or R3. The boundary conditions for the
problem are:

u = ū on ΓD,

σ · n = t̄ on ΓN ,

where ū are the prescribed displacements in the Dirichlet boundary ΓD and t̄ are the pre-
scribed tractions in the Neumann boundary ΓN , n being the unit external normal.

Let us consider a quasi-uniform (for simplicity) finite element partition Th := {K} defined
over domain Ω, assumed to be polyhedral, h denoting the element size. In the adaptive context
this translates into considering that ratio between the largest and the smallest element of the
mesh is bounded. The Galerkin weak form of the u-p linear elasticity equations can be
written as: find uh ∈ Vh and ph ∈ Qh such that:

B([uh, ph], [vh, qh]) = L(vh, qh), ∀vh ∈ Vh,∀qh ∈ Qh, (1)

with:

B([uh, ph], [vh, qh]) =
(
ε(vh), σ′(uh)

)
− (∇ · vh, ph) + (qh,∇ · uh) +

(
qh,

1

κ
ph

)
,

L(vh, qh) = 〈vh, ρb〉+ 〈vh, t̄〉ΓN
.

Here Vh ⊂ V = H1(Ω) and Qh ⊂ Q = L2(Ω) are the displacement and pressure interpolation
spaces, defined on the partition Th. (·, ·) stands for the L2(Ω) inner product and 〈·, ·〉ω for
the integral of the product of two functions in a domain ω, not necessarily in L2(ω); the
subscript is omitted when ω = Ω. Boundary conditions need to be incorporated to Vh in the
usual way.

In the incompressible limit this formulation is not stable for arbitrary spaces Vh and
Qh, because the term

(
qh,

1
κph
)

tends to zero and causes the stability of the weak form to
depend on a compatibility inf-sup condition between Vh and Qh. In order to circumvent this
restriction, an additional stabilization term is introduced which ensures that the resulting
linear system of equations is solvable. This additional stabilizing term can be derived by
using the VMS method.

The VMS method was firstly introduced in [9, 10] and has since been used as a tool
for stabilization and representation of multiscale phenomena in many fields. The main idea
consists in decomposing the exact solution of a variational problem into the part which can
be captured by the finite element space, and the part which cannot. In the problem we are
considering, this translates into the following decomposition of u and p:

u = uh + ũ (2)

p = ph + p̃

where uh ∈ Vh and ph ∈ Qh represent the finite element parts of the solution, and ũ ∈ Ṽ
and p̃ ∈ Q̃ are the displacement and pressure subscales and subscale spaces, respectively.
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This decomposition leads to enhanced numerical discretization schemes, which in many cases
allow one to solve the stability issues of the straightforward Galerkin variational form. In the
particular case of solid mechanics problems, the use of the VMS method leads to formulations
which are stable in the incompressible limit, in contrast to the standard Galerkin method
which is unstable in this limit. This is the case of the formulation presented in equation (1).

Intuitively, it can be seen from the decomposition introduced in equation (2) that the
subscales are a measure of the error of the obtained solution, because they represent the
difference between the exact solution and the approximated one. This was originally noted in
[9, 10], and has been exploited in several works since then. In this work, we are going to use
a particular family of subgrid scales, the orthogonal subgrid scales, in order to build an error
estimator for solid mechanics problems. The main particularity of this family of subscales is
that it assumes that the subscales belong to spaces which are orthogonal to the finite element
approximation spaces with respect to the L2(Ω) inner product:

Ṽ = V ⊥h ,

Q̃ = Q⊥h .

The objective of this section is to obtain an accurate representation of the displacement
and pressure subscales which allows us to, on the one hand, obtain a stable finite element
formulation for the u-p approximation of the solid mechanics problem, and on the other,
estimate the error of the finite element approximation. Let us start by introducing the
decomposition (2) in the original variational form of the problem, and apply it both to the
unknowns and the test functions of the problem. This allows us to separate the resulting
equations into the equations for the finite element test functions, and the equations for the
subscales test functions. The resulting finite element equations are:(

ε(vh),σ′(uh)
)

+
(
ε(vh),σ′(ũ)

)
− (∇ · vh, ph)− (∇ · vh, p̃) = 〈vh, ρb〉 , (3)

(qh,∇ · uh) + (qh,∇ · ũ)−
(
qh,

1

κ
ph

)
−
(
qh,

1

κ
p̃

)
= 0. (4)

Here and in the following we have considered that t̄ = 0 on ΓN for simplicity in the theoretical
development, although arbitrary values for the tractions can be used with the proposed error
estimator.

On the other hand, the equation for the subscales test functions in the element interiors
are: (

ε(v′),σ′(uh)
)

+
(
ε(v′),σ′(ũ)

)
−
(
∇ · v′, ph

)
−
(
∇ · v′, p̃

)
=
〈
v′, ρb

〉
, (5)(

q′,∇ · uh
)

+
(
q′,∇ · ũ

)
−
(
q′,

1

κ
ph

)
−
(
q′,

1

κ
p̃

)
= 0. (6)

The equations for the subscales cannot be exactly solved and need to be approximated.
Integrating by parts equation (5) inside each element and neglecting the contribution of the
pressure subscales on the displacement subscales equation we obtain the following equation:

−
(
v′,∇ ·

(
σ′(uh)

))
h
−
(
v′,∇ ·

(
σ′(ũ)

))
h

+
(
v′,∇ph

)
=
〈
v′, ρb

〉
.

In this expression, subscript h is used to indicate that integrals are evaluated element-wise and
we have taken into account that the exact fluxes (stresses) across inter-element boundaries
cancel in matching element faces. It represents the equation for the subscales on the element
interiors. Grouping terms for uh and ũ we obtain:

−
(
v′,∇ ·

(
σ′(ũ)

))
h

=
(
v′, ρb+∇ · σ′(uh)−∇ph

)
h
. (7)
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Finally, we introduce the additional key approximation

∇ ·
(
σ′(ũ)

)
= τ−1ũ.

Assuming isotropic elasticity, the expression for τ in each element can be defined as (see [30]):

τ = c1
h2

2

(
1

µ
+

1

κ

)
, (8)

with h being the element size, µ being the shear modulus and c1 being an algorithmic con-
stant. A more elaborated expression for the stabilization parameter τ would be required if
anisotropic materials are considered. For simplicity we have assumed quasi-uniform meshes,
so that τ will be considered the same for all the elements in what follows.

The closed form expression for the subscales in the element interiors can now be obtained
from equation (7):

ũ = τP̃
(
ρb+∇ · σ′(uh)−∇ph

)
. (9)

where P̃ (·) denotes the projection onto the subscales space. This projection operator is many
times defined as the identity operator, which results in the approach known as the Algebraic
Subgrid Scale (ASGS) method. In the case of the Orthogonal Subgrid Scale method (OSS)
used in this work, the projection operator is taken as projection onto the space orthogonal
to the finite element space:

P̃ = I − Ph,

where Ph denotes the projection onto the appropriate finite element space, either of displace-
ments as in (9) or onto the pressure space, as we require next.

Applying a similar strategy to equation (4) we arrive to the expression for the pressure
subscales:

p̃ = τpP̃

(
1

κ
ph −∇ · uh

)
= τpP̃ (−∇ · uh), (10)

with

τp = c22

(
1

µ
+

1

κ

)−1

.

We have assumed that the normal component of the stresses produced by the finite
element solution and the subscales is continuous across interelement boundaries, but this
does not happen when the subscales are approximated. We now argue as in [28] to obtain
the contribution of the subscales on the element boundaries, assuming this does not affect
the subscales in the element interiors. Integrating by parts within each element in equations
(3) and (4), we obtain:(

ε(vh),σ′(uh)
)
−
(
∇ · σ′(vh), ũ

)
h

+
∑
K

〈
n · σ′(vh), ũE

〉
∂K

− (∇ · vh, ph)− (∇ · vh, p̃) = 〈vh, ρb〉 , (11)

(qh,∇ · uh)− (∇qh, ũ)h +
∑
K

〈qh,n · ũE〉∂K +

(
qh,

1

κ
ph

)
+

(
qh,

1

κ
p̃

)
= 0, (12)

where ũE represents the value for the subscales on the element boundaries ∂K. We assume it
is uniquely defined on the edges (faces, in 3D) shared by neighboring elements, that we denote
with subscript E. The expression for the subscales in the element interiors has already been
obtained in equations (9) and (10). However, their contribution in the element boundaries
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ũE in equations (11) and (12) still needs to be accounted for. Following [28], the subscales
in the element boundaries can be approximated as:

ũE = −τE [[σ′(uh) · n− phn]]E , (13)

with

τE =
δ0h

2µ
.

The algorithmic constant δ0 = 1/2 is typically used. h here is taken as the average element
length, that is, the average of the square (in two dimensions) or cubic (in three dimensions)
root of the volume of the elements owning the edge or face. The jump operator across a face
E is defined as:

[[ng]]E = n1g|∂K1∩E + n2g|∂K2∩E ,

where ni denotes the external normal in the boundary of element Ki. This expression for
the boundary subscales is obtained by enforcing that the total tractions are continuous across
interelement boundaries. As a consequence, [[σ′(u) · n − pn]] = 0 must hold. Decomposing
this expression into the finite element contribution and the contribution of the displacement
boundary subscales we obtain:

[[σ′(uh + ũE) · n− pn]] = 0.

Finally, approximating [[σ′(ũE) · n]] on the faces of the elements as:

[[σ′(ũE) · n]] =
ũE
τE

yields (13). The details of the formulation can be found in [28]. A similar model for the
boundary subscales in the context of the transport equation is proposed in [16].

For continuous interpolation spaces for ph, where the pressure is already continuous, we
obtain:

ũE = −τE [[σ′(uh) · n]]E .

Introducing the previous expressions for the displacement and pressure subscales in equa-
tions (3) and (4) results in a stabilized formulation capable of dealing with any interpolation
space pair for the displacement and pressure, even in the incompressible limit. However,
when using continuous interpolation spaces for both the displacement and the pressure, not
all of the previous terms are required in order to obtain a stable formulation. Particularly,
a stable formulation can be obtained by dropping all the contributions of the subgrid scale
terms except for the ones corresponding to the element interior displacement subscales in
the continuity equation,

∑
K τ
〈
∇qh, P̃ (ρb+∇ · σ′(uh)−∇ph)

〉
K

. When using continuous
interpolation spaces this results in the simplest implementation without harming the proper
rate of convergence (see [27]). The additional terms can enhance the solution and account
for the effect of unresolved subscales and materials with complex behavior (see for instance
[31, 28, 32]).

Due to this, and in order to obtain an as simple to implement as possible formulation
without harming the accuracy of the method, we are going to use an OSS bilinear form
with only the indispensable stabilizing terms in order to build the finite element system of
equations. On the contrary, the full approximation for the subscales is going to be used in
order to compute an as accurate as possible error estimator in Section 3.

Taking this into account, the final stabilized weak form of the problem is:

BS([uh, ph], [vh, qh]) = LS(vh, qh) (14)
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with

BS([uh, ph], [vh, qh]) = B([uh, ph], [vh, qh]) +
∑
K

τ
〈
∇qh, P̃

(
−∇ · σ′(uh) +∇ph

)〉
K

LS(vh, qh) = L(vh, qh) +
∑
K

τ
〈
∇qh, P̃ (ρb)

〉
K

The main properties of the formulation are the following: first, the formulation can now
be shown to be stable even in the incompressible limit (see [33, 34] for a stability proof), and
any set of continuous interpolation spaces Vh and Qh can be used. Second, the stabilization
term is consistent. As a consequence, the convergence rate of the error of the finite element
solution with respect to the mesh size is not harmed by the stabilizing term.

Remark 1. When implementing the OSS formulation, the projections onto the finite
element space, Ph, need to be computed. A possible approach to deal with these projections
is to compute them in an iterative manner. This means that the global L2 projections onto
the finite element space are evaluated using the residual fields at the preceding iteration. For
non-linear problems the iterative process for the orthogonal projection can be coupled with
the non-linear iterations, generally with reduced impact in the convergence rate.

For linear problems, an iterative loop (not required in the original problem) is necessary
to compute the projections. Local projections can be used to avoid this issue, although we
have not pursued this possibility in this work, because our final objective is to apply the
proposed methodology to non-linear solid mechanics problems.

Also, diagonal lumped mass matrices can be used to perform low-computational-cost L2

projections, with low impact in the accuracy of the results. This is the strategy followed in
the numerical examples section.

Remark 2. Note that, following [28], the expression for the subscales on the element
boundaries is the same for our definition of the ASGS and the OSS method, that is, an identity
projection operator is used for the subscales on the element boundaries. An unexplored
possibility would be to consider an edge or face orthogonal projection for the subscales on
the element boundaries. However, it is not clear that this would lead to a sharper error
estimator.

3 Variational Multiscale based error estimators

3.1 Definition of the error estimator

In this work we are going to see that the norm of the orthogonal subgrid scales given by
equations (9), (10) and (13) can be used as an error estimator and provide an accurate
measure of the difference between the finite element solution and the exact one. For this, we
consider as an error estimator the following norm of the subscales:

η2
K := τ−1

ˆ
K
|ũ|2 + τ−1

p

ˆ
K
|p̃|2 + τ−1

E

ˆ
∂K
|ũE |2 (15)

Following [35] as done in [4], the last term in (15) can be shown to be equivalent to ‖σ′h −
Ph(σ′h)‖2K in the sense that:

γ1

∑
K

hK

ˆ
∂K
|[[σ′(uh) · n]]E |2 ≤ ‖σ′h − Ph(σ′h)‖2 ≤ γ2

∑
K

hK

ˆ
∂K
|[[σ′(uh) · n]]E |2 (16)

for certain positive constants γ1, γ2. This introduces the possibility of approximating:

τ−1
E

ˆ
∂K
|ũE |2 ≈ τEγh−1

K ‖P̃ (σ′h)‖2K (17)
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in practical cases. The most convenient γ parameter can be obtained through a numerical
benchmark. In the numerical examples in Section 4 this approximation has been used. The
performance of the error estimator (15) is going to be compared with the measure of the
actual error in the energy norm, which we define as follows:

|||[u, p]|||2 :=
(
σ′(u), ε(u)

)
+

1

κ
‖p‖2 +

∑
K

τ‖∇p‖2K .

This is the norm in which stability and convergence can be proved for the stabilized finite
element formulation being used.

3.2 Error estimator bound and approximation

In the following we check that the orthogonal subgrid scales based error estimator effectively
provides an upper bound for the energy norm error. We define the error and the error’s
energy norm as:

e = [u− uh, p− ph],

e = |||[u− uh, p− ph]|||.
In order to show that the orthogonal subgrid scales can be used as an error estimator, we
will show that the following inequality holds:

|||e|||2 ≤ C2
EST

(∑
K

η2
K

)
,

where CEST is a mesh geometry dependent constant. This can be obtained following the
procedure explained in [36]. The only particularity is that, since we consider the subscales
to belong to spaces orthogonal to the finite element interpolation, some simplifications can
be done in the derivation process. In particular, it can be shown that the upper bound for
the error estimator is sharper than in the case of standard (non orthogonal) approximation
of the subscales: basically the same error estimator as in the ASGS method can be obtained
for the OSS method, but using the orthogonal projection of the residual. Since the norm of
the orthogonal projection of the residual is smaller than the norm of the residual, the upper
bound of the error estimator is sharper.

Due to the consistency of the stability term, the usual Galerkin orthogonality for the
stabilized formulation (14) can be applied:

BS(e, [vh, qh]) = 0 ∀vh ∈ Vh,∀qh ∈ Qh. (18)

Also:

BS(e, [v, q]) = BS([u, p], [v, q])−BS([uh, ph], [v, q])

= LS(v, q)−BS([uh, ph], [v, q]).

Now, departing from the originally stabilized weak form (14), separating integrals within each
element and integrating by parts we arrive to:

BS(e, [v, q]) =
∑
K

〈
v, ρb+∇ · σ′(uh)−∇ph

〉
K

−
∑
K

〈
v,n · (σ′(uh)− phI)

〉
∂K
−
∑
K

〈
q,∇ · uh +

1

κ
ph

〉
K

+
∑
K

τ
〈
∇q, P̃ (ρb+∇ · σ′(uh)−∇ph)

〉
K
.
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Making use of (18), we have:

BS(e, [v, q]) = BS(e, [v − vh, q − qh]).

Now, in the previous equation we take vh = Ph(v), qh = Ph(q) and we recall that v−Ph(v) =
P̃ (v) for the OSS method:

BS(e, [v, q]) =
∑
K

〈
P̃ (v), P̃

(
ρb+∇ · σ′(uh)−∇ph

)〉
K

−
∑
E

〈
P̃ (v), [[n · σ′(uh)− phn]]

〉
E
−
∑
K

〈
P̃ (q), P̃ (∇ · uh)

〉
K

+
∑
K

τ
〈
P̃ (∇(P̃ (q))), P̃ (ρb+∇ · σ′(uh)−∇ph)

〉
K
. (19)

Due to interpolation properties of the finite element space (see for instance [37]) and the
definition of P̃ , the following inequalities hold:∑

K

‖P̃ (v)‖K . τ1/2|||[v, 0]|||,∑
K

‖P̃ (v)‖∂K . τ
1/2
E |||[v, 0]|||,∑

K

‖P̃ (q)‖K . τ1/2
p |||[0, q]|||,∑

K

τ1/2‖P̃ (∇(P̃ (q)))‖K . |||[0, q]|||,

where ., & denote an inequality up to dimensionless constants independent of the discretiza-
tion.

Using the stability of BS and applying the triangular inequality we can say that there
exists [v, q] such that:

|||e||||||[v, q]||| . BS(e, [v, q]). (20)

The proof for the stability of BS can be found in [33, 34], and has not been included for
conciseness. Let us only remark that in order for BS to be stable, a weakened inf-sup com-
patibility condition needs to be satisfied between Vh and Qh. This weakened inf-sup condition
is satisfied by most u-p interpolation pairs, and in particular by equal order interpolation
spaces for u and p. Now, taking [v, q] such that (20) is fulfilled and using Schwarz’s inequality
in (19), the sought bound for the error is obtained:

|||e|||2 .
∑
K

η2
K

It is interesting to note that the obtained error bound is sharper if we use an orthogonal
space for the subgrid scales (OSS method), than if the usual space for the subscales is used
(ASGS). This observation leads to our error estimator based on the OSS method.

4 Numerical examples

In this section some numerical examples are presented which focus in the various features
of the OSS error estimator. Firstly, some analytical examples that highlight the behavior of
the estimator with different type of displacement and pressure solution fields are simulated.
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This allows us to see how does the estimator behave in divergence free, compressible and
incompressible, and hydrostatic solution fields. In each of these examples, we evaluate the
weight of the contribution of the interior and boundary subscales, and we compare the error
estimator obtained with the OSS and the ASGS methods.

A second block of examples show the behavior of the error estimator when applied to
problems where non-linear constitutive models are used.

4.1 Divergence free solution for a compressible material

In this numerical example the following analytical solution is tested:

u = 2xy, v = −y2,

where u and v are the Cartesian components of the displacement. The computational domain
is Ω := (0, 1) × (0, 1). A mesh of linear triangles is used to discretize the computational
domain. The Poisson coefficient is taken as ν = 0.21, which corresponds to a compressible
material. The Young modulus is taken as E = 2.40 · 1011, which results in a bulk modulus
κ = 1.3793 · 1011 and a shear modulus µ = 9.9174 · 1010. On the other hand, note that the
analytical solution is divergence free, so the pressure is going to be zero everywhere in the
domain. This solution is very convenient in order to analyze the contribution of the subscales
on the element boundaries ũE to the error estimator, since the contributions of ũ and p̃ will
be negligible. The subscales based error estimator is compared with the energy norm error.
Since this is a smooth solution, the error estimator causes the algorithm to refine the mesh
uniformly. Also, it is important to note that this example has been used to adjust the γ
parameter in approximation (17). We use γ = 4 in all the numerical examples. Nevertheless,
the spatial distribution of the error estimator is independent of the chosen γ constant and it
can be seen how it properly matches the spatial distribution of the energy norm error.

The energy norm error and the error estimated by using the norm of the subgrid scales
are shown in Fig. 1, after some refinement steps have been done. It is interesting to observe
that the shape of the elements that conformed the original mesh (which has been successively
refined) can still be appreciated in the coloring of both the energy norm and the subscales
error estimator. The cause for this is that the original coarse element geometry and quality
determine the quality of their children refined elements. Fig. 2 shows the convergence rate
of both the energy error and the subscales error estimator with the mesh size. It also shows
the global efficiency index of the error estimator for this problem. It can be observed that
the efficiency of the estimator for this case is very good.

4.2 Hydrostatic solution for an incompressible material

In this numerical example, an incompressible material with Poisson coefficient ν = 0.5 is
tested, so that the bulk modulus is κ = ∞. The Young modulus is again taken as E =
2.40 · 1011 and a shear modulus µ = 8 · 1010. In this case an analytical solution with null
displacement is considered:

u = 0, v = 0, p = 2x2y.

The domain is again Ω := (0, 1) × (0, 1). A mesh of linear triangles is used to discretize
the computational domain. As in the previous case, the solution is quite smooth, so a
uniform refinement criteria is obtained. The main interest of this case is that both the
contribution from the subscales on the element boundaries ũE and the contribution of the
pressure subscales p̃ to the error indicator are negligible, so it allows us to evaluate the
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Figure 1: Left: Energy norm error contribution. Right: Subscales error estimator contribu-
tion. Top: After two refinement steps. Bottom: After four refinement steps.
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Figure 2: Left: convergence of the energy error norm and the subscales error estimator with
the mesh size. Right: Global efficiency index as a function of the mesh size.
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Figure 3: Left: Energy Error Norm. Center: ASGS error estimator. Right: OSS error
estimator. Top: Two refinement levels. Bottom: Four refinement levels.

performance of ũ as an error indicator. Fig. 3 shows a comparison between the energy norm
error, the Algebraic Subgid Scale (ASGS) error estimator (obtained by using the identity
projector I instead of P̃ when defining the subgrid scales in (9)) and the OSS error estimator.
The ASGS is the usual approach in VMS methodologies, possibly because it allows to avoid
the projection onto the subscales space. However, it has been observed that in many cases
the OSS approach results in more accurate results (see [31, 38]).

It can be observed that a good match between the energy norm error and the ASGS and
OSS error estimators is obtained. Despite the fact that the analysis shows that the OSS error
bound is sharper than the ASGS error bound, in this practical example very few differences
are observed between them. In Fig. 4 a comparison between the convergence rate of the
energy norm error and the OSS error estimator is shown, together with the global efficiency
index of the OSS error estimator. It can be observed that the error estimator does a good
job in reproducing the convergence rate of the energy norm error.

4.3 Hydrostatic solution for a compressible material

This case deals with a hydrostatic solution for a compressible material. The contribution of
the pressure gradient to the error and the capability of the error estimator to capture it are
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Figure 4: Convergence rate and global efficiency index for the error estimator.

evaluated. The components of the displacement of the considered solution are:

u =
1

2

(
x2 − y2 − z2

)
+ x (y + z) + y + z,

v =
1

2

(
y2 − x2 − z2

)
+ y (x+ z)− z − x,

w =
1

2

(
z2 − x2 − y2

)
+ z (x+ y)− x+ y.

The Poisson coefficient is taken as ν = 0, and the Young modulus E = 1, which results
in a bulk modulus κ = 1/3 and a shear modulus µ = 0.5. In this case the computational
domain is three-dimensional and occupies the cube Ω := (0, 1) × (0, 1) × (0, 1). A mesh of
linear tetrahedra is used to discretize the computational domain. The resulting stress field is
hydrostatic, the value for the pressure being:

p = −κ(3x+ 3y + 3z).

As in the previous cases, we are using linear approximation spaces for the displacement and
pressure unknowns. As a consequence, the pressure approximation is capable of exactly cap-
turing the analytical solution. However, the displacement approximation does not allow one
to exactly represent the displacement field and its divergence, which results in an approx-
imation error. Since the stresses are purely hydrostatic, the only active part of the error
estimator will be the pressure subscale p̃, which includes the orthogonal projection of the
displacement divergence. This is precisely the part of the error estimator that we want to
evaluate in this numerical example. In this case, no difference will be appreciated between
using the algebraic or the orthogonal subscales version for the error estimator, because when
using equal order interpolation the pressure is precisely the projection onto the finite element
space of the displacement divergence, and the expression for the pressure subscale is the same
for the ASGS and the OSS error estimators.

Fig. 5 shows a comparison of the energy norm error distribution and the error estimator
at several refinement steps. Both are similar at the several stages, and thus we conclude that
the pressure subscales are capable of capturing the part of the error associated to hydrostatic
stress states.

Fig. 6 shows the convergence and global efficiency index for the hydrostatic solution for
a compressible material. It can be observed that the global efficiency index is close to one in
the whole refinement process and that the energy norm error and the global efficiency index
converge at the same rate.
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Figure 5: Comparison of the energy norm error and the subgrid scales error estimator for the
hydrostatic solution for a compressible material. The figures in the left represent the energy
norm error, the ones in the right the subgrid scales error estimator. From top to bottom, the
results for one and two refinement steps are shown.
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Figure 6: Left: Error and error estimator convergence for the hydrostatic solution for a
compressible material. Right: Global efficiency index for the hydrostatic solution for a com-
pressible material.
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Figure 7: Comparison of the energy norm error and the orthogonal subgrid scales error
estimator for the singular solution problem.

4.4 Singular solution

In this numerical example we test a solution for the incompressible limit ν = 0.5 (and thus
κ = ∞) with a singular point. The Young modulus is taken as E = 1, which results in a
shear modulus µ = 1/3. This allows us to evaluate the performance of the subscales as an
error indicator when large localized gradients appear. The studied solution is the following:

u(r, φ) = rα
[

cos(φ)ψ′(φ) + (1 + α) sin(φ)ψ(φ)
sin(φ)ψ′(φ)− (1 + α) sin(φ)ψ(φ)

]
, p(r, φ) = −rα−1 (1 + α)2ψ′(φ) + ψ′′′(φ)

1− α
,

with r and φ being the polar coordinates and:

ψ(φ) =
sin((1 + α)φ) cos(αω)

1 + α
− cos((1 + α)φ) +

sin((α− 1)φ) cos(αω)

1− α
+ cos((α− 1)φ).

Here we take ω = 3π/2 and α as the (approximate) root of the following non-linear equation:

sin2(αω)− α2 sin2(ω)

α2
= 0.

This solution is evaluated in the L-shaped domain:

Ω := ((−1, 1)× (−1, 1))\([0, 1]× [−1, 0]).

A bilinear quadrilateral mesh is used to discretize the computational domain.
Fig. 7 shows the comparison of the error estimator and the energy norm error after several

refinement steps. It can be observed that both quantities are very similar, from which we
conclude that the orthogonal subgrid scale error estimator is suitable also for problems in
which the solution presents large gradients. Fig. 8 shows the convergence rate of the energy
norm error compared to the error estimator and the global efficiency index. Again, very good
results are obtained.

4.5 Damage model

In this numerical example we use the subscales error estimator in order to track the failure
process of a plain strain test plate subject to an increasing axial effort. In order to properly
track the evolution of the failure lines when using low order elements, a smoothing of the
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Figure 8: Convergence rate and global efficiency index for the singular solution case.

stress field is used in order to evaluate the damage constitutive model. This allows us to
obtain an accuracy similar to the one of mixed σ-u-p finite element formulations for solid
mechanics, but without the additional complexity of solving a coupled stress field.

The constitutive equation for the J2-damage model used in this example (see [39]) reads
as follows: an internal damage variable d is introduced which takes into account the damage
of the deviatoric part of the stresses. This leads to the modified constitutive equation:

σ = −pI + (1− d)C′ : ε(u).

The characterization of damage is done through an equivalent one dimensional shear stress:

τd =

√
3

2
σ′ : σ′,

which corresponds to the classical Von Misses stress. We also define the explicit internal
variable r as:

r = max{r0,max(τd)},

where r0 corresponds to the initial damage uniaxial stress. From here, the damage parameter
can be computed as:

d(r) = 1− r0

r
exp

(
−2HS

(
r − r0

r0

))
,

where Hs is a constant which depends on the considered material rate of energy dissipation,
with:

HS =
H̄Slch

1− H̄Slch
≥ 0,

H̄S =
r2

0

3(2µ)GII
,

where lch is the fracture length (typically taken as the finite element size) and GII is the mode
II fracture energy per unit area.

The considered problem is the following: a rectangular plate with an orifice in its cen-
ter is subject to a progressively increasing forced displacement in its top border, while the
displacement in the bottom border is set to zero. The material properties are the following:
the Young modulus is set to E = 10 MPa, the Poisson coefficient is ν = 0.3, which results
in a bulk modulus κ = 8.333 MPa and a shear modulus µ = 3.846 MPa. The initial damage
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Figure 9: Displacement field after 5, 64, 75 and 125 simulation steps.

Figure 10: Pressure field after 5, 64, 75 and 125 simulation steps.

uniaxial stress is taken as r0 = 10 kPa. Mode II fracture energy is taken as GII = 200 J/m2.
Again, linear triangles are used to discretize the computational domain.

As the stress module increases, the material gets damaged, damage starts first in the
region surrounding the central orifice. Finally a crack appears departing from the central
orifice and propagating with an angle of 3π/4. Figs. 9 and 10 show the displacement and
pressure history as the simulation evolves. As the displacement increases large strains appear
in the region surrounding the central orifice. The 3π/4 oriented crack can be observed in
the last plot. Although initially (due to the simmetry of both loads and geometry) a second
crack starts to develop with an orientation of π/4, this crack does not finally grow because
the stress in the region decreases once the first crack develops. Which of both cracks finally
develops depends on the initial imperfections of the considered problem, which in this case
correspond to the lack of symmetry of the finite element mesh used to solve the problem.
Fig. 11 shows the spatial distribution of the damage parameter at several simulation steps.
In the initial steps the distribution of damage is symmetric, but at the end damage is much
larger in the 3π/4 direction where the prevailing crack appears. Finally, Fig. 12 shows the
adaptive mesh at each of the simulation steps, which has been obtained by using the adaptive
refinement criteria based on the orthogonal subgrid scales model for the energy error. The
mesh follows the path of the crack, which allows us to conclude that the orthogonal subgrid
scales are a suitable error estimator for non-linear constitutive laws for solid mechanics which
lead to the apparition of cracks.
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Figure 11: Damage parameter field after 5, 64, 75 and 125 simulation steps.

Figure 12: Finite element mesh 5, 64, 75 and 125 simulation steps.
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4.6 A complex geometry case

In order to illustrate the capability of the proposed methodology to solve complex problems,
in this example we apply the damage model described in Section 4.5 to a case with a complex
geometry. The considered geometry is depicted in Fig. 13; the total length of the simulated
piece is 8 cm. It consists in a machinery piece with several orifices. The material properties are
the following: the Young modulus is set to E = 24 MPa, the Poisson coefficient is ν = 0.21,
which results in a bulk modulus κ = 13.79 MPa and a shear modulus µ = 9.92 MPa. The
initial damage uniaxial stress is taken as r0 = 5 kPa. Mode II fracture energy is taken as
GII = 240 J/m2. The boundary conditions are depicted in Fig. 14: one of the surfaces
of the machinery piece is prescribed null displacements, while another one is prescribed an
horizontal displacement. These boundary conditions cause a bending moment to appear in
the sections close to the fixed surface. If the bending moment is large enough, it leads to the
failure of the material. A mesh of linear tetrahedra is used to discretize the computational
domain.

As in the previous example, we are interested in showing that the subgrid scales based
error estimator is capable of tracking the apparition of cracks. Fig. 15 shows the evolution of
the damage parameter in one of the most stressed areas of the machinery piece, together with
the evolution of the finite element mesh as the simulation evolves. The OSS error estimator
is capable of tracking and capturing the apparition of damage (which induces the apparition
of large deformation gradients), and thus it is suitable to be used for mesh adaptation in
complex non-linear materials and geometries.

5 Conclusions

In this work we have presented an Orthogonal Subgrid Scale (OSS) [30, 27] error estimator
for solid mechanics problems. The OSS error estimator belongs to the family of Variational
Multiscale (VMS) based error estimators, with the particularity that the subgrid scales are
considered to belong to a space orthogonal to the finite element approximation space. When
applied to solid mechanics problems, the error analysis shows that a sharper upper bound
can be obtained for the OSS error estimator than for other VMS error estimators such as the
Algebraic Subgrid Scale (ASGS) error estimator. Also, the proposed error estimator makes
use of a recently developed approximation for the subscales on the element boundaries [28].

The numerical results show that the proposed error estimator is capable of recovering the
energy error norm in a variety of situations where the contribution of each of the terms of the
error estimator are evaluated: these situations correspond to compressible and incompressible
materials, hydrostatic and deviatoric stress states.

Finally the developed error estimator is applied to non-linear solid mechanics problems
featuring a non-linear damage constitutive law. In these problems, the proposed error esti-
mator is capable of tracking the apparition of cracks and large concentrated gradients, adding
the required mesh refinement in the appropriate areas of the computational domain.

In summary, the OSS error estimator is a suitable estimator for the solution of adaptive
finite elements in the context of complex solid mechanics problems.
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displacement in the x direction.
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Figure 15: Damage parameter evolution and mesh evolution in the most stressed areas of the
machinery piece.
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