
c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICPPW.2017.44

Performance Analysis and Optimization of the
FFTXlib on the Intel Knights Landing Architecture

Michael Wagner∗, Victor López∗†, Julián Morillo∗†, Carlo Cavazzoni‡,
Fabio Affinito‡, Judit Giménez∗† and Jesús Labarta∗†
∗ Barcelona Supercomputing Center (BSC), Barcelona, Spain

Email: michael.wagner@bsc.es
† Universitat Politècnica de Catalunya (UPC), Barcelona Spain

‡ Cineca, Casalecchio di Reno (BO), Italy

Abstract—In this paper, we address the decreasing perfor-
mance of the FFTXlib, the Fast Fourier Transformation (FFT)
kernel of Quantum ESPRESSO, when scaling to a full KNL
node. An increased performance in the FFTXlib will likewise
increase the performance of the entire Quantum ESPRESSO code
one of the most used plane-wave DFT codes in the community
of material science. Our approach focuses on, first, overlap-
ping computation and communication and, second, decreasing
resource contention for higher compute efficiency. In order to
achieve this we use the OmpSs programming model based on
task dependencies. We allow overlapping of computation and
communication by converting all steps of the FFT into tasks
following a flow dependency. In the same way, we decrease
resource contention by converting each FFT into an individual
task that can be scheduled asynchronously. In both cases, multiple
FFTs can be computed in parallel. The task-based optimizations
are implemented in the FFTXlib and show up to 10 % runtime
reduction on the already highly optimized version. Since the task
scheduling is done dynamically during execution by the parallel
runtime, not statically by the user, it also frees the user from
finding the ideal parallel configuration himself.

I. INTRODUCTION

Utilizing the enormous computation resources of current
high performance computing (HPC) systems is a challenging
and complex endeavor that requires consideration of parallel
execution, network, system topology, and hardware acceler-
ators as well as a variety of different parallel programming
models such as message passing (MPI), threading and tasking
(OpenMP), one-sided communication (PGAS), and architec-
ture specific models to incorporate hardware accelerators such
as GPUs. In addition, new architectures such as Intel’s Knights
Landing (KNL) urge for the adaption of existing, already
optimized software to take advantage of their specific features
and capacities. To facilitate the continuing optimization and
adaption of software, performance analysis tools assist devel-
opers not only in identifying performance issues within their
applications but also in understanding how new architectures
and concepts influence their parallel behavior.

In this paper, we share our experience in combining the
efforts of three research groups – scientific application de-
velopment, performance analysis, and programming model
development – to increase the performance of the FFTXlib on
the Intel Knights Landing architecture. FFTXlib is the stand-
alone miniapp that represents the Fast Fourier Transformation

(FFT) kernel of Quantum ESPRESSO, one of the most used
plane-wave DFT codes in the community of material science.
The miniapp allows analyzing the impact of the paralleliza-
tion parameters and their performance and is a easy-to-use
tool for co-design and benchmarking of novel architectures
like the KNL. The FFT kernel implements a layered MPI
communication with FFT task groups to split the cost of
collective communication operations to balance the impact on
the performance (see Section II). However, the complexity in
the many parallelization layers can be hard to manage, which
was one reason for the development of the miniapp.

We analyzed the scaling behavior of the FFTXlib on the
KNL architecture and uncovered two performance issues,
namely, increasing communication costs and low computation
efficiency. Based on the analysis we propose a new approach
based on task dependencies with the OmpSs programming
model that enables the concurrent execution of multiple FFTs.
We target the increasing communication costs with over-
lapping computation and communication by converting all
steps of the FFT into tasks following a flow dependency.
We target the decreasing computation efficiency by decreasing
resource contention, which is done by converting each FFT
into an individual task that can be scheduled asynchronously,
i.e. compute phases of high resource requirements can be
overlapped with phases of low resource requirements.

We implement both versions in the FFTXlib. This allows
comparing the performance of the new method to the existing
code. Next to an increase in performance, we anticipate to
remove some of the complexity of the multiple communication
layers by providing a method whose performance is less
affected by the specific setup. Since we make all optimiza-
tions available in the FFTXlib miniapp, we expect that the
performance and usability gains are transferable to the entire
Quantum ESPRESSO code.

The remainder of the work is organized as follows. In
Section II we present the FFTXlib and the involved tools
and libraries. In Section III we analyze the FFTXlib on
the Intel Knights Landing architecture and discuss the main
performance issues. In Section IV we present optimization
approaches using the OmpSs programming model based on
task dependencies and evaluate these optimizations in Section
V. Finally, we draw conclusion in Section VI.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/132528956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. BACKGROUND

In this section we provide an introduction to the FFTXlib
and discuss the reasoning for the used tools and libraries
to better follow the analysis and optimization techniques
presented in the following sections.

A. The FFTXlib Miniapp

Quantum ESPRESSO [1] is one of the most used codes
based on plane-wave DFT in the community of material
science and it has been optimized for a very large number of
HPC architectures in the recent years. The parallel structure of
Quantum ESPRESSO is mainly based on several layers of MPI
communicators, plus a finer grain OpenMP parallelization. The
parallelization strategy relies on the symmetries of the solution
of the Schroedinger equation permitting to treat independently
many physical quantities (Kohn-Sham states, G-vectors, Bril-
louin indexes, etc.). In addition, some ad-hoc parallelizations
on data structure permit to squeeze the performances on the
most intensive computational kernels such as the linear algebra
and the parallel FFT. In particular, the interplay between the
distribution of the Kohn-Sham states and the distribution of the
parallel FFT data structures (i.e. task groups [2]) allows to tune
the pattern of collective communications. In this sense, the
distribution of FFT task groups can permit to split the cost of
MPI Alltoall communications in different parts, balancing the
impact on the performance. On the other side, the advantage of
such complexity in the many parallelization layers is quite hard
to manage because of the high number of tuning parameters.
This is one of the reasons that led to the development of a
miniapp containing only the FFT kernel. With this miniapp it is
possible to analyze the impact of the parallelization parameters
and their performance. Moreover, this miniapp can be also
considered as a simple tool for a future activity of co-design
and benchmarking of novel architectures.

The FFTXlib [3], [4] permits to study in depth the behavior
of the FFT kernel in Quantum ESPRESSO according to the
knobs of the parallelization. In plane-waves DFT codes, the
cut-off of the kinetic energy imposes a constraint to the
number of G-vectors, i.e. the number of vectors on which
the many-body wave function is expanded. As a consequence,
when a transformation from the reciprocal to the real space
is needed, the domain on which the FFT acts is shaped as
a sphere rather than a 3D cube. This feature reflects in the
need of a redistribution of data among the MPI processes
in order to balance the workload. After this redistribution is
accomplished, the most efficient procedure for the parallel 3D
FFT is by decomposing it in a 1D and a 2D FFT. This shows
how the whole FFT is quite communication intensive rather
than computationally intensive (typically in DFT simulations,
the FFT grid is not huge).

The usage of task groups (introduced by [2]) permits to
redistribute the G-vectors upon which the FFT acts. Task
groups were introduced in order to prevent cases in which
the number of processes can be larger than the number
of FFT planes to process. An analogous situation is cared
by the ortho-groups in Quantum ESPRESSO, where only a

sub-communicator takes on charge the the diagonalization
workload. Because of the task groups distribution, in order to
perform a whole FFT transformation, a further MPI Alltoall
communication is required.

The FFTXlib miniapp reproduces the FFT kernel needed
when an operator diagonal in real space should be applied to
the wave functions. Since the wave functions are expressed
in the reciprocal space, first a forward transformation is
applied, then the potential is applied and, finally, a backward
transformation is performed.

When the FFT task group parallelization is switched on,
each MPI process has only a subset of the G-vectors for a given
set of Kohn-Sham states. For the computation of the FFT,
then, the G-vectors should be redistributed with a MPI Alltoall
inside the task groups. After this has been done, the FFT can
be computed for the whole wavefunction. The structure of the
code with task groups is depicted in Figure 1.

DO I = 1, NB, NTG
CALL pack NTG bands
CALL multi-band FW-FFT along Z
CALL multi-band Scatter
CALL multi-band FW-FFT along XY
CALL VOFR
CALL multi-band BW-FFT along XY
CALL multi-band Scatter
CALL multi-band BW-FFT along Z
CALL unpack NTG bands

END DO

Fig. 1. Mockup of the FFT kernel in the FFTXlib with task groups.

Using this schema, the communication is split in two parts.
The first one is taking place in the pack/unpackK routines.
Here the G-vectors are redistributed among the processes
belonging to the different task groups. The second one is
taking place in the scatter between the 1D and 2D FFT. In
this function the data is scattered from the 1D pencils to the
2D planes with an MPI Alltoall. It is important to stress that
the second communication takes place only within the task
groups.

In order to better understand the mechanisms of task groups,
we examine two extreme cases. First, the number of task
groups is equal to one, i.e. task groups are switched off. In this
case, the G-vectors are distributed among all the processes.
The pack/unpack does not redistribute the G-vectors, so all
the cost is shifted to the scatter routine that will involve all
the processes and will be much more time-consuming. The
opposite is the case where the number of task groups is equal
to the number of MPI processes. In this case, each process
will perform a single FFT within its set of G-vectors. Hence,
the cost of the Scatter will be minimal and much more time
will be consumed during the execution of the pack/unpack
subroutines. All the options between these two extreme cases
should be benchmarked. In order to do so, FFTXlib is a
practical tool that does not require the whole execution of a
DFT simulation and permits to extract performance data with
the help of analysis tools.

B. Performance Tools and Libraries

While there are many of the common performance monitors
and analyzers available on KNL, not all of them are equally
suited. The proprietary tools of Intel (Vtune, Adviser) can be
particularly helpful for analyzing the aspects of the single-
thread performance on KNL such as vectorization. For the
analysis of the parallel behavior the tools can be categorized
mainly in two groups. On the one hand, there are tools
based on periodic sampling like HPCToolkit, Openspeedshop
or VTune. These tools intercept the application periodically
to record the current status of the application, e.g. call stack
information and hardware performance counters. The collected
information is typically accumulated to profiles that represent
a statistical summary of high-level application characteristics
like the approximated time spent in each function. On the
other hand, tools like Score-P use source code instrumen-
tation to trigger runtime events, e.g. entering and leaving a
function, sending and receiving a message, to gather detailed
information and store them separately in application traces.
Event-based tracing tools capture each process/thread and each
runtime activity individually and record the exact communica-
tion behavior by intercepting the MPI runtime, thus, allowing
a detailed analysis of the parallel behavior up to an entire
replay or simulation of the application execution. While tools
using instrumentation provide much more detail than sampling
tools, they may introduce higher overhead, especially, for
the function call interception, which on KNL is more costly
because of the lower frequency.

For our performance measurements we choose the open
source BSC tools [5] including the Extrae trace monitor [6]
and the Paraver trace analyzer [7] for two main reasons.
First, Extrae combines the benefits of instrumentation and
sampling by intercepting the parallel runtime to provide the
exact communication behavior but uses sampling instead of
function instrumentation to record the application behavior in
the compute phases. Thus, for our measurements we saw an
average overhead of 0.6 % for the MPI runs and 2.2 % for
the runs with MPI+OmpSs. Second and for this case most
important, currently Extrae/Paraver are the only tools that
allow to record and analyze detailed information from the
OmpSs/Nanos++ runtime, which was necessary, for instance,
to evaluate the task scheduling.

OmpSs [8] is a task-based programming model, based on
OpenMP and StarSs, that extends new directives to support
asynchronous parallelism through data dependencies and het-
erogeneity for multiple architectures and accelerators. OmpSs
takes from OpenMP its philosophy of providing a way to,
starting from a sequential program, produce a parallel version
of the same by introducing annotations in the source code.
These annotations do not have an explicit effect in the se-
mantics of the program, instead, they allow the compiler to
produce a parallel version of it. This characteristic feature
increases the programmer’s productivity, since the application
can be parallelized incrementally instead of redesign it to
implement a parallel version. The task construct allows the

annotation of functions or structured blocks to define a task,
which is considered the elementary unit of work that represents
a specific instance of an executable code. The task construct
implements the in, out and inout clauses to express data depen-
dencies among tasks. These data dependencies are evaluated
at runtime whenever a task is created to generate a dynamic
task dependency graph, thus, only tasks with no predecessors
in the graph will be scheduled for execution. The dynamic
task scheduling during execution by the accompanying parallel
runtime Nanos++ [9] is typically easier to use as well as faster
than statically defined parallelism by the user.

III. ANALYSIS

In this section we describe the analysis process and the
resulting conclusions. The measurements for the analysis were
performed on a local KNL test system at BSC, which allowed
us to deploy and use our latest tools and libraries. The test
system has a single KNL node with 68 cores at 1.4 Ghz with
four-time hyper-threading.

Fig. 2. Runtime of the FFT phase with increasing number of MPI ranks with
the following parameters: Plane wave energy cut off: 80, lattice parameter:
20, number of bands: 128, number of task groups: 8.

Figure 2 shows the runtime of the FFT phase with an in-
creasing number of MPI ranks ranging from 1 x 8 (ranks x FFT
task groups) to 32 x 8; whereas the last two entries (16 x 8 and
32 x 8) use 2 and 4 hyper-threads per core, respectively. It can
be seen that, first, the FFT phase does not scale very well with
an increasing number of MPI ranks and, second, there is not
benefit from using the hyper-threading; in fact the runtime is
increased again.

To identify the main issues with the limited scalability
we recorded traces of the different measurements with Ex-
trae 3.4.3 in detailed tracing mode. Based on the traces we
computed basic efficiency and scalability factors that allow to
model the overall efficiency [10]. Table I depicts these factors
for an increasing number of MPI ranks (the configuration
32 x 8 is excluded since it does not provide any additional
benefit or information over 16 x 8). The basic idea of the
model is combining these factors to compute derived indicators
for performance issues. For instance, the global efficiency is
derived by combining (multiplying) the parallel efficiency with
the computation scalability; whereas the parallel efficiency
itself is derived by combining (multiplying) load balance

TABLE I
EFFICIENCY AND SCALABILITY FACTORS FOR EXECUTIONS WITH 1-16 RANKS WITH 8 FFT TASK GROUPS EACH.

1 x 8 2 x 8 4 x 8 8x 8 16 x 8

Parallel efficiency 95.75 % 91.21 % 92.70 % 90.97 % 86.15 %
→ Load Balance 97.31 % 95.04 % 98.31 % 98.18 % 96.91 %
→ Communication Efficiency 98.40 % 95.97 % 94.29 % 92.66 % 88.90 %
→ Synchronization 99.56 % 98.88 % 98.09 % 97.76 % 95.81 %
→ Transfer 98.83 % 97.06 % 96.13 % 94.78 % 92.78 %

Computation Scalability 100.00 % 91.87 % 78.09 % 54.74 % 27.32 %
→ IPC Scalability 100.00 % 92.78 % 78.68 % 56.28 % 28.26 %
→ Instructions Scalability 100.00 % 99.78 % 99.62 % 99.42 % 98.88 %
Global Efficiency 95.75 % 83.80 % 72.39 % 49.79 % 23.54 %

and communication efficiency. Load balance is defined by
the average time divided by the maximum time spent in
computation. The communication efficiency is defined as the
maximum time over all processes in computation; i.e. outside
of MPI. The computation scalability is the accumulated time
over all processes in computation in relation to the smallest
run, in this case 1 x 8. It can be further characterized by IPC
and instruction scalability, which relate the average IPC in
computation and the accumulated number of instructions in
computation to the smallest run, respectively. From Table I can
be inferred that the main issues that limit scalability are the
low computation scalability and the decreasing communication
efficiency. It also shows why hyper-threading does not provide
additional benefits since the average IPC is more or less cut
in half when going from 8 x 8 (no hyper-threading) to 16 x 8
(two-time hyper-threading). Apart from these, the FFTXlib
achieves a very good load balance and instructions scalability
(i.e. parallel work load replication), which testify the high
level of the previously performed optimizations. In addition,
the two-layer MPI communication has shown to effectively
reduce the decrease in communication efficiency [3].

Figure 3 details the detected issues in the form of time-
lines. Timelines show the evolving program behavior along
time (horizontal axis) for each process (vertical axis). The
current state of each executed process is marked by a colored
rectangle, which highlight the evolution of a selected metric
of the recorded application. The upper timeline depicts the
entire FFT phase with the color representing the length of
each compute phase on a gradient from green (short) to blue
(long). This timeline presents the general behavior of the FFT
phase where the 64 FFTs are executed with 8 FFTs at the same
time, i.e. 8 repeating phases can be seen. On the bottom there
are three timelines zoomed into the third of these 8 repeating
phases. These timelines show from left to right the average
IPC, the MPI calls, and the used communicators. They allow
identifying the main phases of the FFT: the preparation of
the Psis with very low IPC (light green, average 0.06 IPC),
the packing of the group sticks which calls an MPI Alltoallv
(dark yellow in the MPI call timeline), the forward FFT along
Z (second phase in IPC timeline, average 0.52 IPC), teh
forward scatter which calls MPI Alltoall (violet in the MPI

call timeline), the forward FFT along XY, the inner loop, and
the backward FFT along XY (all three in the central phase,
average 0.77 IPC), as well as the backward scatter, backward
FFT along Z, and unpacking of the group sticks (all three
mirroring the forward direction).

The communicator timeline highlights well the different
communication operations and partners in the two-layered
MPI communication with the FFT task groups. In the pack-
ing and unpacking of the group sticks there are 8 sub-
communicators with 8 neighboring ranks each performing the
MPI Alltoallv. In general, for a setup of R x T (MPI ranks x
FFT task groups) there are R sub-communicators with T ranks
each. In the forward and backward scatter there are again 8
sub-communicators with 8 alternating ranks each (i.e. 1, 9,
17, ...) performing the MPI Alltoall. In general, for a setup of
R x T there are T sub-communicators with R ranks each.

IV. OPTIMIZATION

Based on the analysis of the FFTXlib we implemented
two different optimization strategies. Both strategies convert
different parts of the code into tasks where the dependencies
are handled by the OmpSs runtime environment. In particular,
there is a flow dependency within each loop iteration, while
the iterations itself are independent from each other.

The first optimization strategy targets the decreasing com-
munication efficiency by trying to overlap communication
with computation phases. Therefore, each step of the FFT is
converted into a task with the according dependencies, which
can be done by marking them with the $omp task pragma as
shown in Figure 4. This allows the OmpSs runtime to schedule
each task only based on their dependencies, not by user-
defined order. After that, we enabled all threads to participate
in the parallel regions by nesting tasks in fft scalar.FFTW.f90
[4]. To this aim, we converted the main loops in functions
cft 2xy and cft 2z into OpenMP task loops. The task loops
distribute the number of iterations of the loop in chops equal
to a given grain size. For our implementation, we have used a
grain size equal to 10 and 200 (in the case of function cft 2z).
Finally, we included an outer task loop around the main loop.

The second optimization strategy targets the low computa-
tion scalability, in particular, the decreasing IPC. Therefore,
we tried to soften the resource contention by replacing the

Fig. 3. Timeline showing the FFT phase (top), and a zoom into the a single sub-phase showing the average IPC, the MPI calls, and the used communicators.

!$omp taskloop inout(psis)
DO I = 1, NB, NTG !number of bands, number of task groups
!$omp task in(aux) out(psis) in(dffts)
CALL pack NTG bands
!$omp task in(psis) in(dffts) out(aux)
CALL multi-band FW-FFT along Z
!$omp task inout(psis) in(dffts) inout(aux)
CALL multi-band Scatter
!$omp task inout(psis) in(dffts)
CALL multi-band FW-FFT along XY
!$omp task inout(psis) in(dffts)
CALL VOFR
!$omp task inout(psis) in(dffts)
CALL multi-band BW-FFT along XY
!$omp task inout(psis, aux) in(dffts)
CALL multi-band Scatter
!$omp task inout(psis) in(aux, dffts)
CALL multi-band BW-FFT along Z
!$omp task in(psis, dffts) out(aux)
CALL unpack NTG bands

END DO

Fig. 4. Modifications to execute each step of the FFT as a task.

second MPI layer (the FFT task groups). Instead of converting
each step in to a single task (as for the first optimization),
the approach converts each loop iteration, i.e. each FFT, into
a single task (see Figure 5). Since there are no dependencies
between the loop iterations each task can be scheduled without
any further constraints.

DO I = 1, NB, NTG !number of bands, number of task groups
!$omp task default(shared) firstprivate(ipsi) &
!$omp & private(aux, time, i, j) inout(psis) &
!$omp & reduction(+:ncount, my_time)
CALL pack NTG bands
CALL multi-band FW-FFT along Z
CALL multi-band Scatter
CALL multi-band FW-FFT along XY
CALL VOFR
CALL multi-band BW-FFT along XY
CALL multi-band Scatter
CALL multi-band BW-FFT along Z
CALL unpack NTG bands
!$omp end task

END DO
!$omp taskwait

Fig. 5. Modifications to execute each FFT as a task.

We use the individual tasks to de-synchronize the computa-
tion phases. As mentioned in the previous section and as can be
seen in the IPC timeline in Figure 3, there is a main compute
phase with high compute intensity (high IPC) and phases with
lower compute intensity. In the original version, all processes
execute the computation phases more or less at the same time

TABLE II
EFFICIENCY AND SCALABILITY FACTORS FOR EXECUTIONS WITH 1-16 RANKS WITH 8 OMPSS TASKS EACH.

1 x 8 2 x 8 4 x 8 8x 8 16 x 8

Parallel efficiency 99.13 % 95.53 % 91.67 % 83.33 % 70.47 %
→ Load Balance 99.86 % 98.25 % 95.52 % 91.81 % 90.32 %
→ Comm Efficiency 99.26 % 97.23 % 95.97 % 90.77 % 78.03 %
→ Synchronization Efficiency 100.00 % 99.84 % 99.85 % 97.52 % 92.17 %
→ Transfer Efficiency 99.26 % 97.39 % 96.11 % 93.07 % 84.66 %

Computation Scalability 100.00 % 92.56 % 81.16 % 61.36 % 37.29 %
→ IPC Scalability 100.00 % 94.04 % 84.05 % 66.14 % 42.57 %
→ Instructions Scalability 100.00 % 99.46 % 98.55 % 97.19 % 91.18 %
Global Efficiency 99.13 % 88.42 % 74.40 % 51.13 % 26.28 %

since they are statically parallelized and synchronized with
the MPI collective calls. By using tasks that are scheduled
dynamically by the runtime the compute phases are executed
based on dependencies and resource availability. Therefore, the
execution of the compute phases is de-synchronized, i.e. at any
time only a subset of processes executes the main phase with
high compute intensity while others execute the phases with
lower compute intensity. As a result, the increasing resource
contention that leads to the decrease in IPC when scaling to
the full node (see Table I) can be partly absorbed.

The first optimization strategy is especially targeting large
scales where the impact of the communication is very high
and the computational load is relatively rather small. The
second optimization is especially targeting scenarios with high
computational load. For the execution on the Knights Landing
test system, we chose the second version since the test node
contains only 68 cores and the clock frequency of 1.4 GHz is
lower than on standard CPUs, i.e. the compute performance
is expected to be lower.

V. EVALUATION

In this section we evaluate the optimization using OmpSs
tasks. We first discuss the general performance gain that can
be achieved and then use the performance analysis tools to
detail how this gains are achieved, i.e. evaluate our hypothesis
about increased IPC through decreased resource contention via
de-synchronization.

Figure 6 shows the runtime of the FFT phase with an
increasing number of MPI ranks for the second optimization
strategy with OmpSs vs. the original version (the last two
entries use 2 and 4 hyper-threads per core, respectively).
Thereby, the original version uses N x 8 MPI ranks, i.e. N
ranks for the first MPI layer and 8 FFT task groups. The
OmpSs version uses N MPI ranks and 8 threads that replace
the FFT task groups. From Figure 6 it can be seen that the
version using OmpSs performs the FFT phase about 7-10 %
faster (not counting hyper-threading), in particular, the fastest
version with OmpSs (16x8) is about 10 % faster as the fastest
original version (8x8).

Table II that shows the efficiency and scalability factor for
the version with OmpSs confirms that our intention to increase
the computation scalability was effective. While in the original

Fig. 6. Runtime of the FFT phase with increasing number of MPI ranks with
the following parameters: Plane wave energy cut off: 80, lattice parameter:
20, number of bands: 128, number of task groups: 8 (orginal), 1 (OmpSs).

version the compute efficiency drops from 1.1 IPC for 1 x 8 to
0.6 IPC for 8 x 8, in the OmpSs version the compute efficiency
only decreases to 0.8 IPC for the setup with 8 MPI ranks and
8 tasks each. In the case of two-time hyper-threading (16 x 8)
the scheduling in OmpSs provides even slightly better results:
while in the original version the compute efficiency is halved
(0.3 IPC) in comparison to 8 x 8, the version with OmpSs still
achieves 0.5 IPC.

As stated in the previous section, we anticipate higher
compute efficiency by reducing resource contention through
asynchronous execution of phases with different resource
requirements, in particular, overlap phases with high compute
intensity and phase with low compute intensity. To evaluate
this hypothesis we recorded the runtime behavior of the
original version and the OmpSs version. Figure 7 compares
the two versions. It highlights the execution behavior for both
in the timelines on the left side (same time scale) and the
distribution of the phases with regard to IPC in the histogram
on the right (same IPC scale). Both versions use 64 cores in
a setup of 8 x 8.

In the original version (top, left) all phases are executed
synchronously as can be seen by the structured blocks of
phases with high IPC (blue) and low IPC (green) across
the processes. Thus, phases with high resource demands are
executed simultaneously on all processes, which leads to the

Fig. 7. The effects of de-synchronizing of compute phases with tasks: original version with 8 x 8 (top) vs. OmpSs 8 x 8 (bottom). Left: timeline showing the
execution of the compute phases; right: histogram with the distribution of IPC.

detected resource contention and decreasing IPC with more
active cores on the node. In the same way, phases with
low resource demands are executed simultaneously and, thus,
available resources are not fully utilized. In the OmpSs version
(bottom, left) the phase are executed asynchronously. Thus,
phases with high resource demands are executed at the same
time as phases with low resource demands.

The resulting performance with regards to IPC can be
observed in the histograms on the right side of Figure 7. The
histograms show the distribution of IPC among the different
phases, whereas each compute phase is categorized by process
(vertical axis), IPC (horizontal axis), and duration (color
gradient from green to blue), e.g. the blue dots represent the
blue phases from the timeline on the left. The further on the
right a point is located, the higher the IPC. Phases on the same
process with similar IPC are grouped together and their time
is accumulated. The upper histogram of the original version
shows three vertical point clouds, whereas the one on the right
sight with mainly blue dots shows the behavior of the main
compute phase with the highest resource demands. As each
process executes these phases more or less at the same time,
all resources are fairly shared and all phases achieve more or
less the same IPC.

In the OmpSs version the IPC of the phases is much more
scattered. While generally such an imbalance is undesirable
in a synchronized execution since it leads to wait times
at the synchronization points, for a dynamic scheduling the
imbalance has a much lower effect. In this, case the imbalance

was actually the target of our optimization since the imbalance
increases the average IPC. As can be seen, nearly all blue
phases achieve a higher IPC as in the original version. The
degree to which the IPC is increased for each individual
phase depends on how many others core are executing the
same phase at the same time. Blue phases that are close
to the value of the original version are phases that coincide
with blue phases on nearly all cores. Blue phase with higher
IPC coincide with green phases on many other cores. While
the behavior of the asynchronous scheduling seems to be
more “chaotic”, the figure highlights clearly that the dynamic
scheduling by the parallel runtime is more efficient than the
static, user-defined scheduling with the FFT task groups. As
a result the average IPC for these phases is increased from
about 0.75 to 0.85 IPC.

In addition to the previous gain, the OmpSs version can
gain an additional runtime reduction from two-times hyper-
threading of about 3 %. This is among others due to the fact
that the tasking approach is much more flexible in resource
scheduling than the static FFT task groups, which allows
integrating the additional resources, i.e. the four extra cores
and the two-time hyper-threading, more efficiently. Moreover,
since the scheduling is done dynamically during execution by
the parallel runtime, not statically by the user, it frees the user
from finding the ideal parallel configuration himself. This is
particularly interesting for further platforms and heterogeneous
systems because the runtime is capable of seamlessly schedul-
ing the tasks on different architectures or accelerators.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we address the decreasing performance of
the FFTXlib, the Fast Fourier Transformation (FFT) kernel of
Quantum ESPRESSO, when scaling to a full KNL node. We
analyze the FFTXlib with the performance tools Extrae and
Paraver to understand the behavior of the FFTXlib on the KNL
architecture and highlight the two main performance issues
that arise when scaling two a full KNL node. The first issue is
the increasing communication cost for the use of the collective
communication operations. The second issue is the decreasing
computation efficiency caused by a decreasing IPC, where we
identified resource contention as the main contributor.

We present two approaches that use tasks based on the
OmpSs parallel programming model. The first approach targets
the increasing communication costs by overlapping compu-
tation and communication. The second approach targets the
decreasing computation efficiency by softening resource con-
tention, which is done by asynchronously scheduled tasks,
so, compute phases of high resource requirements can be
overlapped with phases of low resource requirements.

We implement both approaches in the FFTXlib and evaluate
the results of the second approach on the Knights Landing
test system. We choose the second version since the test node
contains only 68 cores and the clock frequency of 1.4 GHz is
lower than on standard CPUs, i.e. issues in computation are
more critical than issues in communication. The tasks based
optimization proofs to soften resource contention and increases
the IPC about 10 % in the main compute phase. As a result,
the FFT phase shows up to 10 % runtime reduction on the
already highly optimized version. An increased performance
in the FFTXlib will likewise increase the performance of the
entire Quantum ESPRESSO code one of the most used plane-
wave DFT codes in the community of material science. Fur-
thermore, since the task scheduling is done dynamically during
execution, not statically within the code, it relieves some of
the complexity of the two-layered MPI communication from
the user and shifts it to the parallel runtime.

We continue analyzing and optimizing the FFTXlib, in
particular, we try to combine the approaches to overlap com-
munication and computation with asynchronously scheduled
tasks. For this we also investigate the effects of automatically
overlapping computation and communication using MPI com-
munication within OmpSs tasks [11].

VII. ACKNOWLEDGMENTS

We gratefully acknowledge the support of the MaX and
POP projects, which have received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 676598 and 676553, respectively.

REFERENCES

[1] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso,
S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann,
C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov,
P. Umari, and R. M. Wentzcovitch, “Quantum espresso: a modular and
open-source software project for quantum simulations of materials,”
Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502
(19pp), 2009. [Online]. Available: http://www.quantum-espresso.org

[2] C. Bekas, A. Curioni, and W. Andreoni, “New Scalability Frontiers in Ab
Initio Electronic Structure Calculations Using the BG/L Supercomputer,”
in Applied Parallel Computing. State of the Art in Scientific Computing,
8th International Workshop, PARA 2006, Umeå, Sweden, June 18-21,
2006, Revised Selected Papers, 2006, pp. 1026–1035.

[3] F. Affinito and C. Cavazzoni, “FFT Data Distribution in Plane-waves
DFT Codes. A Case Study from Quantum ESPRESSO,” in Proceedings
of the 23rd European MPI Users’ Group Meeting, EuroMPI 2016,
Edinburgh, United Kingdom, September 25-28, 2016, 2016, p. 212.

[4] F. Affinito, C. Cavazzoni, and S. de Gironcoli, “FFTXlib.” [Online].
Available: https://github.com/fabioaffinito/FFTXlib

[5] “BSC Tools.” [Online]. Available: https://tools.bsc.es
[6] “Extrae instrumentation package.” [Online]. Available:

https://tools.bsc.es
[7] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool

to visualize and analyze parallel code,” Transputer and occam
Developments, pp. 17–32, 1995. [Online]. Available: https://tools.bsc.es

[8] A. Duran, E. Ayguade, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “OmpSs: A proposal for programming hetero-
geneous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 02, pp. 173–193, 2011.

[9] “Nanos++ RTL.” [Online]. Available: http://pm.bsc.es/projects/nanox
[10] C. Rosas, J. Giménez, and J. Labarta, “Scalability Prediction for

Fundamental Performance Factors,” Supercomputing Frontiers and In-
novations, vol. 1, no. 2, 2014.

[11] V. Marjanović, J. Labarta, E. Ayguadé, and M. Valero, “Overlapping
Communication and Computation by Using a Hybrid MPI/SMPSs
Approach,” in Proceedings of the 24th ACM International Conference
on Supercomputing, ser. ICS ’10. New York, NY, USA: ACM, 2010,
pp. 5–16.

