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Abstract. This paper investigates the spatial behavior of the solutions of two gener-
alized thermoelastic theories with two temperatures. To be more precise, we focus on
the Green-Lindsay theory with two temperatures and the Lord-Shulman theory with
two temperatures. We prove that a Phragmén-Lindelöf alternative of exponential type
can be obtained in both cases. We also describe how to obtain a bound on the ampli-
tude term by means of the boundary conditions for the Green-Lindsay theory with two
temperatures.

1. Introduction

The study of the spatial behavior of solutions of partial differential equations is a topic
related with the Saint-Venant’s principle. This is an interesting question to analyze both
from a mathematical and a thermomechanical viewpoints. Such studies describe how
the influence of perturbations on a part of the boundary is damped for the points which
are far away from the part of the boundary where the perturbations are applied. There
exists a long tradition for the study of this question and many investigations have been
developed to understand the spatial damping of the solutions for several thermoelastic
situations (see [12] and the references therein). Spatial decay estimates for elliptic [9],
parabolic [13], [14], hyperbolic [10] and/or combinations of such [28] have been obtained
in the last years. It is worth recalling that some contributions have also been proposed
in the study of phase field models (see [20], [21], [22], [24] and [25]). However, it is worth
noting that such a knowledge for nonlinear problems is very limited. What is usual is
to consider a semi-infinite cylinder whose finite end is perturbed and to study how the
solutions behave when the spatial variable goes to infinity.

The infinite speed of propagation for the Fourier law of heat conduction is an important
drawback from a physical point of view. This led many scientists to look for alternative
heat conduction models. At the end of the 1960’s, Gurtin and several co-authors pro-
posed and studied a thermoelastic theory that they called ”thermoelasticity with two
temperatures” ([3], [4], [5], [32]). Several authors have dedicated their attention to this
problem (Iesan [15], Quintanilla [29], [30] among others). At the same time, other heat
conduction theories have been proposed and developed. We can mention the damped
hyperbolic heat conduction proposed by Cattaneo and Maxwell or the theories proposed
by Green and Naghdi. In particular, two thermoelastic theories based on the Cattaneo-
Maxwell heat conduction were proposed by Green and Lindsay and Lord and Shulman
([11], [18]). A remarkable fact is that these theories are susceptible to be merged in a way
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which allows to consider the generalized thermoelastic theories with two temperatures
such as the ones proposed in [8], [31] and [33]. In this paper, we focus on such theories.
It is worth recalling that the combination of the theories proposed by Green and Lindsay
and Lord and Shulman with the two temperatures theory was suggested by Youssef [33].
This theory has attracted a lot of attention in the past years ([2], [19], [26]). The spatial
behavior for the classical theory with two temperatures was considered by Awad [1]. Our
aim in this paper is to extend these arguments to the theories of Green-Lindsay with two
temperatures and Lord-Shulman with two temperatures. Therefore it is suitable to recall
that the spatial behavior of solutions for the Green-Lindsay theory was studied in [6],
[27]. However, to the best of our knowledge, there is no such contribution for the Lord-
Shulman theory. Nevertheless, the arguments to study the usual Lord-Shulman theory
would be very different from the ones proposed here for the Lord-Shulman theory with
two temperatures.

Here, we do not study the existence of solutions of the problems; in fact, this can be
a difficult question in many nonlinear situations (see, e.g., [24]). We note however that
the existence of solutions can be done by adapting the arguments proposed in [17] to
the three-dimensional unbounded case. We thus assume the existence of solutions and
then only study the spatial asymptotic behavior in that case. More precisely, we obtain a
Phragmén-Lindelöf alternative for the solutions, i.e., either a growth or a decay estimate
of exponential type can be shown. An upper bound on the amplitude term, when the
solution decays, is also derived, in terms of the boundary conditions.

The plan for the paper is the following: in the next section we recall the boundary-
initial-value problems that we are going to work with. Section 3 is devoted to the study of
the Green-Lindsay thermoelasticity with two temperatures. The exponential alternative is
obtained and an upper bound for the amplitude term by means of the boundary conditions
is obtained. Section 4 considers the Lord-Shulman thermoelasticity with two temperatures
and we also obtain an exponential alternative for the solutions. Some conclusions end the
paper.

2. Preliminaries

The system of equations that governs the thermoelastic deformations of a centrosym-
metric material for the Green and Lindsay theory with two temperatures reads

(cijkluk,l + aij(θ + αθ̇)),j = ρüi,(2.1)

hθ̈ + dθ̇ − aiju̇i,j = (kijφ,i),j,(2.2)

φ− θ = a(kijφ,i),j.(2.3)

Here ui is the displacement, θ is the thermodynamic temperature and φ is the conductive
temperature. Furthermore, ρ is the mass density, h and d are constitutive functions, a is
a positive constant, cijkl is the elasticity tensor, aij is the coupling tensor and kij is the
thermal conductivity tensor. Finally, α is a strictly positive constant, which is typical of
the Green-Lindsay theory.

Throughout this paper, we assume that the elasticity tensor satisfies

(2.4) cijkl = cklij,
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and that the thermal conductivity tensor is also symmetric

(2.5) kij = kji.

We also assume that a and α are two positive constants and that

(2.6) ρ ≥ ρ0 > 0, h ≥ h0 > 0, dα− h ≥ m0 > 0.

The last inequality is a consequence of the entropy inequality of Green and Lindsay [11]
and ρ0, h0 and m0 are positive constants. At the same time we also assume that all the
constitutive functions and tensors are essentially upper bounded in the region in which
we consider our study.

The elasticity tensor and the conductivity tensor are also assumed positive. That is,
there exists a positive constant c0 such that

(2.7) cijklξijξkl ≥ c0ξijξij,

for every tensor ξij, and there exists another positive constant k0 such that

(2.8) kijξiξj ≥ k0ξiξi,

for every vector ξi.
We also assume that there exists c1 such that the following inequality

cijklξijξkl ≤ c1ξijξij,

is satisfied for every tensor ξij. In a similar way, we assume the existence of k1 such that

kijξiξj ≤ k1ξiξi,

for every vector ξi.
We denote β = sup aijaij and introduce the parameters

k = (
λ sup k11

k0
)1/2, k∗ =

α

2
(
sup k11
m0

)1/2, k∗∗ = (
a sup k11

2
)1/2,

where λ is the Poincaré constant for the domain D (which will be defined below).
The system that governs the deformations of a thermoelastic solid for the Lord and

Shulman theory with two temperatures reads

(cijkluk,l + aijθ),j = ρüi,(2.9)

h1
˙̂
θ − aij ˙̂ui,j = (kijφ,i),j,(2.10)

φ− θ = a(kijφ,i),j,(2.11)

where f̂ = f + d1ḟ . In this theory d1 is a constitutive constant. When considering this
theory, we assume that (2.4), (2.5), (2.7) and (2.8) hold, but we also need to impose that

(2.12) a > 0, ρ ≥ ρ0 > 0, h1 ≥ h∗0 > 0, d1 > 0.

In this paper, we study the spatial behavior of the solutions of the systems (2.1)-
(2.3) and (2.9)-(2.11). Therefore, we study the problems in a semi-infinite cylinder R =
[0,∞)×D, where D is a two-dimensional bounded domain smooth enough to apply the
Divergence Theorem.

We then need to impose the boundary and initial conditions. We thus assume that

(2.13) ui(x, t) = φ(x, t) = 0, x ∈ [0,∞)× ∂D,
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and

(2.14) ui(x, t) = fi(x2, x3, t), φ(x, t) = g(x2, x3, t), x ∈ {0} ×D,
where fi and g are given functions. We also impose null initial conditions

(2.15) ui(x, 0) = 0, φ(x, 0) = 0, x ∈ R.
Remark 2.1. Here, we have not defined initial and boundary conditions for the ther-
modynamic temperature θ. Actually, in the computations below, θ does not appear and
can be seen as an auxiliary unknown only, so that such conditions are not needed. Note
however that θ can be expressed in terms of φ, so that initial and boundary conditions
on φ imply proper conditions on θ, although, strictly speaking, one would also need to
impose boundary conditions on the first and second derivatives of φ to do so.

It is worth noting that the existence, uniqueness and continuous dependence of the
decaying solutions determined by the problems (2.1)-(2.3), (2.13)-(2.15) and (2.9)-(2.11),
(2.13)-(2.15) can be obtained by means of a semigroup approach. The existence of solu-
tions can be obtained by extending the arguments proposed in [17] and used there for the
one-dimensional problem. However, we do not address this here and we will assume the
existence of solutions to study their spatial behavior. We refer the interested reader to
[7] or the appendix 1 of [16] for more details on this.

3. Green-Lindsay theory with two temperatures

In this section, we study the spatial behavior of the solutions of the problem determined
by the system (2.1)-(2.3) subject to the boundary conditions (2.13), (2.14) and the initial
conditions (2.15) whenever the assumptions (2.4)-(2.8) hold. To be more precise, we will
give a Phragmén-Lindelöf alternative for the solutions of this problem, as well as an upper
bound for the amplitude term for the decaying solutions. To simplify the notation, we
will write

K(φ) = (kijφ,i),j.

It will be useful to take into account the following identities:

(3.1)
(

(cijkluk,l + aij(θ + αθ̇))u̇i + kijφ,i(φ+ αφ̇)
)
,j

= cijkluk,lu̇i,j+aij(θ+αθ̇)u̇i,j+(cijkluk,l+aij(θ+αθ̇)),ju̇i+kijφ,iφ,j+αkijφ,iφ̇,j+(kijφ,i),j(φ+αφ̇)

= cijkluk,lu̇i,j + aij(θ+ αθ̇)u̇i,j + ρüiu̇i + kijφ,iφ,j + αkijφ,iφ̇,j + (hθ̈+ dθ̇− aiju̇i,j)(φ+ αφ̇)

=
1

2

d

dt
[cijklui,juk.l + ρu̇iu̇i + αkijφ,iφ,j] + kijφ,iφ,j + (hθ̈ + dθ̇ − aiju̇i,j)(θ + αθ̇)

+aij(θ + αθ̇)u̇i,j + (kijφ,i),j(a(klmφ,l),m + aα(klmφ̇,l),m)

=
1

2

d

dt
[ρu̇iu̇i + cijklui,juk.l +

h

α
(θ + αθ̇)2 + (d− h

α
)θ2 + αkijφ,iφ,j + αa(K(φ))2]

+(dα− h)(θ̇)2 + kijφ,iφ,j + a(K(φ))2.

We note that the last equality comes from the relation

(hθ̈ + dθ̇)(θ + αθ̇) =
1

2

d

dt

(
h

α
(θ + αθ̇)2 + (d− h

α
)θ2
)

+ (dα− h)(θ̇)2.
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3.1. Phragmén-Lindelöf alternative. We start our analysis by considering the func-
tion

(3.2) Fω(z, t) =

∫ t

0

∫
D(z)

exp(−2ωs)
(

(ci1kluk,l + ai1(θ + αθ̇))u̇i + ki1φ,i(φ+ αφ̇)
)
da ds,

where ω is an arbitrary positive constant to be fixed later and D(z) = {x ∈ R, x1 = z}.
We have, owing to the boundary and initial conditions, the evolution equations and the

Divergence Theorem,
(3.3)

Fω(z + h, t)− Fω(z, t) =
exp(−2ωt)

2

∫
R(z,z+h)

W ∗
1 dx+

∫ t

0

∫
R(z,z+h)

exp(−2ωs)W ∗
2 dx ds,

where R(z, z + h) = {x ∈ R, z < x1 < z + h} ,

W ∗
1 = ρu̇iu̇i + cijklui,juk,l +

h

α
(θ + αθ̇)2 + (d− h

α
)θ2 + αkijφ,iφ,j + αa(K(φ))2,

and
W ∗

2 = ωW ∗
1 + (dα− h)(θ̇)2 + kijφ,iφ,j + a(K(φ))2.

We then obtain

(3.4)
∂Fω(t, z)

∂z
=

exp(−2ωt)

2

∫
D(z)

W ∗
1 da+

∫ t

0

∫
D(z)

exp(−2ωs)W ∗
2 da ds.

We note that
(θ̇)2 = (φ̇)2 − 2aK(φ̇)φ̇+ a2(K(φ̇))2.

We now consider an auxiliary function to control the expression involving the term
K(φ̇)φ̇. We define

G(z, t) = 2a

∫ t

0

∫
D(z)

exp(−2ωs)m0ki1φ̇φ̇,i da ds,

where m0 is given in Section 2.
We find, proceeding as above,

(3.5) G(z + h, t)−G(z, t) = 2a

∫ t

0

∫
R(z,z+h)

exp(−2ωs)m0(kijφ̇,iφ̇,j + φ̇(kijφ̇,i),j) dx ds.

Therefore, we see that

(3.6)
∂G(z, t)

∂z
= 2am0

∫ t

0

∫
D(z)

exp(−2ωs)(kijφ̇,iφ̇,j +K(φ̇)φ̇) da ds.

Next, we consider the function Hω = Fω +G. We have
(3.7)

Hω(z + h, t)−Hω(z, t) =
exp(−2ωt)

2

∫
R(z,z+h)

W ∗
1 dx+

∫ t

0

∫
R(z,z+h)

exp(−2ωs)W2 dx ds,

where

W2 = ωW ∗
1 +m0((φ̇)2 +2akijφ̇,iφ̇,j +a2(K(φ̇))2)+(dα−h−m0)(θ̇)

2 +kijφ,iφ,j +a(K(φ))2.
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We also have

(3.8)
∂Hω(z, t)

∂z
=

exp(−2ωt)

2

∫
D(z)

W ∗
1 da +

∫ t

0

∫
D(z)

exp(−2ωs)W2 da ds.

The next step consists in obtaining an estimate on |Hω| in terms of the spatial derivative
of Hω. First, we note that

(3.9) |Hω| ≤ |Fω|+ |G|.
In fact

|Fω| ≤ |I1|+ |I2|+ |I3|,
where

I1 =

∫ t

0

∫
D(z)

exp(−2ωs)ci1kluk,lu̇i da ds,

I2 =

∫ t

0

∫
D(z)

exp(−2ωs)ai1(θ + αθ̇)u̇i da ds,

and

I3 =

∫ t

0

∫
D(z)

exp(−2ωs)ki1φ,i(φ+ αφ̇) da ds.

We see that

|I1| ≤
(∫ t

0

∫
D(z)

exp(−2ωs)cijklui,juk,l da ds

∫ t

0

∫
D(z)

exp(−2ωs)cijklu̇inju̇knl da ds

)1/2

≤ (
c1

4ρ0ω2
)1/2(ω

∫ t

0

∫
D(z)

exp(−2ωs)cijklui,juk,l da ds+ ω

∫ t

0

∫
D(z)

exp(−2ωs)ρu̇iu̇i da ds).

|I2| ≤
(∫ t

0

∫
D(z)

exp(−2ωs)aijaij(θ + αθ̇)2 da ds

∫ t

0

∫
D(z)

exp(−2ωs)u̇iu̇i da ds

)1/2

≤ (
αβ

4ρ0ω2h0
)1/2

(
ω

∫ t

0

∫
D(z)

exp(−2ωs)
h

α
(θ + αθ̇)2 da ds+ ω

∫ t

0

∫
D(z)

exp(−2ωs)ρu̇iu̇i da ds

)
.

|I3| ≤
(∫ t

0

∫
D(z)

exp(−2ωs)kijφ,iφ,j da ds

∫ t

0

∫
D(z)

exp(−2ωs)k11φ
2 da ds

)1/2

+α

(∫ t

0

∫
D(z)

exp(−2ωs)kijφ,iφ,j da ds

∫ t

0

∫
D(z)

exp(−2ωs)k11(φ̇)2 da ds

)1/2

≤ k

(∫ t

0

∫
D(z)

exp(−2ωs)kijφ,iφ,j da ds

)
+k∗

(∫ t

0

∫
D(z)

exp(−2ωs)kijφ,iφ,j da ds+

∫ t

0

∫
D(z)

exp(−2ωs)m0(φ̇)2 da ds

)
,

where k and k∗ are given in Section 2.
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In a similar way we see that

|G| ≤ k∗∗
( ∫ t

0

∫
D(z)

exp(−2ωs)2am0kijφ̇,iφ̇,j da ds+

∫ t

0

∫
D(z)

exp(−2ωs)m0(φ̇)2 da ds
)
.

From the previous inequalities we can select

C3 = max

(
(

c1
4ρ0ω2

)1/2 + (
αβ

4ρ0ω2h0
)1/2, k + k∗, k∗ + k∗∗

)
.

We obtain

(3.10) |Hω(z, t)| ≤ C3
∂Hω(z, t)

∂z
,

for every t and z ≥ 0.
Inequality (3.10) is classical in the study of spatial estimates (see [9]) and yields a

Phragmén-Lindelöf alternative. If there exists z0 ≥ 0 such that Hω(t, z0) > 0, then the
solution satisfies the estimate

(3.11) Hω(t, z) ≥ Hω(t, z0) exp(C−1
3 (z − z0)), z ≥ z0.

This estimate gives information in terms of the measure defined in the cylinder. Indeed,
it follows that

(3.12)
exp(−2ωt)

2

∫
R(0,z)

W ∗
1 dx+

∫ t

0

∫
R(0,z)

exp(−2ωs)W2 dx ds

tends to infinity exponentially fast, where R(0, z) = {x ∈ R, x1 ≤ z}. On the contrary,
when Hω(z, t) ≤ 0, for every z ≥ 0, we deduce that Hω(z, t) ≤ 0 for every z ≥ 0 and the
solution decays and we can obtain an estimate of the form

(3.13) −Hω(z, t) ≤ −Hω(0, t) exp(−C−1
3 z), z ≥ 0.

This inequality implies that Hω(z, t) tends to zero as z goes to infinity. Furthermore, in
view of (3.13), we see that

(3.14) Eω(z, t) ≤ Eω(0, t) exp(−C−1
3 z), z ≥ 0,

where

(3.15) Eω(z, t) =
exp(−2ωt)

2

∫
R(z)

W ∗
1 dx+

∫ t

0

∫
R(z)

exp(−2ωs)W2 dx ds

and R(z) = {x ∈ R, x1 > z}.
Setting finally

(3.16) E(z, t) =
1

2

∫
R(z)

W ∗
1 dx+

∫ t

0

∫
R(z)

W2 dx ds,

we have the
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Theorem 3.1. Let (u, φ) be a smooth solution of the problem defined by (2.1)-(2.3), the
boundary conditions (2.13), (2.14) and the initial conditions (2.15). Then, either this
solution satisfies the growth estimate (3.11) or it satisfies the decay estimate

(3.17) E(z, t) ≤ Eω(0, t) exp(2ωt− C−1
3 z), z ≥ 0,

where the energy E is defined in (3.16) and Eω is given by (3.15).

3.2. The amplitude term. The spatial decay estimate obtained in the previous subsec-
tion is of limited use unless we have an upper bound on the amplitude term in terms of
the boundary conditions. The aim of this subsection is thus to obtain such a bound.

We denote by vi, ϕ functions satisfying the same boundary conditions as ui and φ and
such that they tend to zero in a fast way when x1 increases. We have

(3.18) −Hω(0, t) =

∫ t

0

∫
R

exp(−2ωs)(cijklui,j v̇k,l + aij(θ + αθ̇)v̇i,j + ρüiv̇i

+kijφ,i(ϕ,j + αϕ̇,j) + (K(φ))(ϕ+ αϕ̇)) dv ds

+2am0

(∫ t

0

∫
R

exp(−2ωs)((kijφ̇,i),jϕ̇+ kijφ̇,iϕ̇,j) dx ds

)
.

We note that
(3.19)∫ t

0

∫
R

exp(−2ωs)ρüiv̇i dv ds = exp(−2ωt)

∫
R

ρu̇iv̇idx−
∫ t

0

∫
R

exp(−2ωs)ρu̇iv̈i dx ds

+2ω

∫ t

0

∫
R

exp(−2ωs)ρu̇iv̇i dx ds.

We further see that∫ t

0

∫
R

exp(−2ωs)cijklui,j v̇k,l dx ds ≤
(∫ t

0

∫
R

exp(−2ωs)cijklui,juk,l dx ds

)1/2

×
(∫ t

0

∫
R

cijklv̇i,j v̇k,l dx ds

)1/2

,∫ t

0

∫
R

exp(−2ωs)aij(θ + αθ̇)v̇i,j dx ds ≤
(∫ t

0

∫
R

exp(−2ωs)aijaij(θ + αθ̇)2 dx ds

)1/2

×
(∫ t

0

∫
R

v̇i,j v̇i,j dx ds

)1/2

,

exp(−2ωt)

∫
R

ρu̇iv̇i dx ≤ exp(−2ωt)

(∫
R

ρu̇iu̇i dx

)1/2(∫
R

ρv̇iv̇i dx

)1/2

,

−
∫ t

0

∫
R

exp(−2ωs)ρu̇iv̈i dx ds ≤
(∫ t

0

∫
R

exp(−2ωs)ρu̇iu̇i dx ds

)1/2(∫ t

0

∫
R

ρv̈iv̈i dx ds

)1/2

,

2ω

∫ t

0

∫
R

exp(−2ωs)ρu̇iv̇i dx ds ≤ 2ω

(∫ t

0

∫
R

exp(−2ωs)ρu̇iu̇i dx ds

)1/2(∫ t

0

∫
R

ρv̇iv̇i dx ds

)1/2

,
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0

∫
R

exp(−2ωs)kijφ,i(ϕ,j + αϕ̇,j) dx ds ≤
(∫ t

0

∫
R

exp(−2ωs)kijφ,iφ,j dx ds

)1/2

×
((∫ t

0

∫
R

kijϕ,iϕ,j dx ds

)1/2

+ α

(∫ t

0

∫
R

kijϕ̇,iϕ̇,j dx ds

)1/2 )
,∫ t

0

∫
R

exp(−2ωs)(K(φ))(ϕ+ αϕ̇)) dx ds ≤
(∫ t

0

∫
R

exp(−2ωs)(K(φ))2 dx

)1/2

×
(∫ t

0

∫
R

(ϕ+ αϕ̇)2 dx

)1/2

,

2am0

∫ t

0

∫
R

exp(−2ωs)kijφ̇,iϕ̇,j dx ds ≤ 2am0

(∫ t

0

∫
R

exp(−2ωs)kijφ̇,iφ̇,j dx ds

)1/2

×
(∫ t

0

∫
R

kijϕ̇,iϕ̇,j dx ds

)1/2

,

2am0

∫ t

0

∫
R

exp(−2ωs)K(φ̇)ϕ̇ dx ds ≤ 2am0

(∫ t

0

∫
R

exp(−2ωs)K(φ̇)2 dx ds

)1/2

×
(∫ t

0

∫
R

(ϕ̇)2 dx ds

)1/2

.

Employing the arithmetic-geometric mean inequality, we see that

−Hω(0, t) ≤ ε1

∫ t

0

∫
R

exp(−2ωs)W2 dx ds+D1

∫ t

0

∫
R

cijklv̇i,j v̇k,l dx ds

+ε2

∫ t

0

∫
R

exp(−2ωs)W2 dx ds+D2

∫ t

0

∫
R

v̇i,j v̇i,j dx ds

+ε3
exp(−2ωt)

2

∫
R

W ∗
1 dx+D3

∫
R

ρv̇iv̇i dx

+ε4

∫ t

0

∫
R

exp(−2ωs)W2 dx ds+D4

∫ t

0

∫
R

ρv̈iv̈i dx ds

+ε5

∫ t

0

∫
R

exp(−2ωs)W2 dx ds+D5

∫ t

0

∫
R

ρv̇iv̇i dx ds

+ε6

∫ t

0

∫
R

exp(−2ωs)W2 dx ds+D6

∫ t

0

∫
R

(ϕ,iϕ,i + ϕ̇,iϕ̇,i) dx ds

+ε7

∫ t

0

∫
R

exp(−2ωs)W2 dx ds+D7

∫ t

0

∫
R

(ϕ2 + (ϕ̇)2) dx ds

+ε8

∫ t

0

∫
R

exp(−2ωs)W2 dx ds+D8

∫ t

0

∫
R

(ϕ̇)2 dx ds

+ε9

∫ t

0

∫
R

exp(−2ωs)W2 dx ds+D9

∫ t

0

∫
R

ϕ̇,iϕ̇,i dx ds.
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Here εi, i = 1, ..., 9, are positive constants that are as small as needed and Di are positive
constants depending on the constitutive tensors, the parameters εi, the parameter ω and
time. In fact, we can take

D1 = (4ε1ω)−1, D2 = αβ(4ε2ωh0)
−1, D3 = (2ε3)

−1, D4 = (4ε4ω)−1, D5 = ωε−1
5 ,

D6 = max(1, α)k1(4ε6)
−1, D7 = max(1, α)(2ε7a)−1, D8 = m0ε

−1
8 , D9 = am0k1(2ε9)

−1.

We can always select εi in such a way that ε1 + ε2 + ε4 + ε5 + ε6 + ε7 + ε8 + ε9 = 1/2
and ε3 = 1/2. We then obtain

−Hω(0, t) ≤ 2D1

∫ t

0

∫
R

cijklv̇i,j v̇k,l dx ds+ 2D2

∫ t

0

∫
R

v̇i,j v̇i,j dx ds

+2D3

∫
R

ρv̇iv̇i dx+ 2D4

∫ t

0

∫
R

ρv̈iv̈i dx ds+ 2D5

∫ t

0

∫
R

ρv̇iv̇i dx ds

+2D6

∫ t

0

∫
R

(ϕ,iϕ,i + ϕ̇,iϕ̇,i) dx ds

+2D7

∫ t

0

∫
R

(ϕ2 + (ϕ̇)2) dx ds+ 2D8

∫ t

0

∫
R

(ϕ̇)2 dx ds

+2D9

∫ t

0

∫
R

ϕ̇,iϕ̇,i dx ds.

We now select vi(x, t) = fi(x2, x3, t) exp(−mx1) and ϕ(x, t) = g(x2, x3, t) exp(−mx1),
where m is an arbitrary positive real number. We have∫ t

0

∫
R

cijklv̇i,j v̇k,l dx ds =
1

2

∫ t

0

∫
D

(mci1k1ḟiḟk+ci1kαḟiḟk,α+ciαk1ḟi,αḟk+
1

m
ciαkβ ḟi,αḟk,β) da ds,∫ t

0

∫
R

v̇i,j v̇i,j dx ds =
1

2

∫ t

0

∫
D

(mḟiḟi +
1

m
ḟi,αḟi,α) da ds,∫

R

ρv̇iv̇i dx ds =
1

2m

∫
D

ρḟiḟi da,∫ t

0

∫
R

ρv̈iv̈i dx ds =
1

2m

∫ t

0

∫
D

ρf̈if̈i da ds,∫ t

0

∫
R

ρv̇iv̇i dx ds =
1

2m

∫ t

0

∫
D

ρḟiḟi da ds,∫ t

0

∫
R

(ϕ,iϕ,i + ϕ̇,iϕ̇,i) dx ds =
1

2

∫ t

0

∫
D

(m(g2 + (ġ)2) +
1

m
(g,αg,α + ġ,αġ,α)) da ds,∫ t

0

∫
R

(ϕ2 + (ϕ̇)2) dx ds =
1

2m

∫ t

0

∫
D

(g2 + (ġ)2) da ds.

We then obtain

Eω(0, t) ≤ D1

∫ t

0

∫
D

(mci1k1ḟiḟk + ci1kαḟiḟk,α + ciαk1ḟi,αḟk +
1

m
ciαkβ ḟi,αḟk,β) da ds

+D2

∫ t

0

∫
D

(mḟiḟi +
1

m
ḟi,αḟi,α) da ds+

D3

m

∫
D

ρḟiḟi da
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+
D4

m

∫ t

0

∫
D

ρf̈if̈i da ds+
D5

m

∫ t

0

∫
D

ρḟiḟi da ds

+(D6 +D9)

∫ t

0

∫
D

(m(g2 + (ġ)2) +
1

m
(g,αg,α + ġ,αġ,α)) da ds

+
D7 +D8

m

∫ t

0

∫
D

(g2 + (ġ)2) da ds.

One would like to optimize the value depending on the parameter m. However, it is
clear that this is a very cumbersome task.

4. Lord-Shulman theory with two temperatures

In this section, we study the spatial behavior of the solutions of the problem determined
by the system (2.9)-(2.11) subject to the boundary conditions (2.13), (2.14) and the initial
conditions (2.15) whenever the assumptions (2.4), (2.5)-(2.7)-(2.8) hold. As in the case
of the Green-Lindsay theory with two temperatures, it is possible to obtain the spatial
decay of solutions.

We note that from the equation for the displacement in the Lord-Shulman theory we
obtain

(cijklûk,l + aij θ̂),j = ρ¨̂ui.

Now, we consider the equalities

((cijklûk,l + aij θ̂) ˙̂ui + kijφ,iφ̂),j

= (cijklûk,l + aij θ̂) ˙̂ui,j + (cijklûk,l + aij θ̂),j ˙̂ui + (kijφ,i),jφ̂+ kijφ,iφ̂,j

= (cijklûk,l + aij θ̂) ˙̂ui,j + ρ ˙̂ui ¨̂ui + (h1
˙̂
θ − aij ˙̂ui,j)φ̂+ kijφ,iφ̂,j

=
1

2

d

dt
(ρ ˙̂ui ˙̂ui + cijklûk,lûi,j) + aij θ̂ ˙̂ui,j

+(h1
˙̂
θ − ai,j ˙̂ui,j)θ̂ + a(kijφ,i),j(klmφ̂,l),m + kijφ,iφ,j + d1kijφ,iφ̇,j

=
1

2

d

dt
(ρ ˙̂ui ˙̂ui + cijklûk,lûi,j + h1(θ̂

2) + ad1(K(φ))2 + d1kijφ,iφ,j)

+a(K(φ))2 + kijφ,iφ,j.

Phragmén-Lindelöf alternative. As far as this theory is concerned, the analysis starts
by considering the function

(4.1) Fω(z, t) =

∫ t

0

∫
D(z)

exp(−2ωs)
(

(ci1klûk,l + ai1θ̂) ˙̂ui + ki1φ,iφ̂
)
da ds.

We have
(4.2)

Fω(t, z + h)− Fω(t, z) =
exp(−2ωt)

2

∫
R(z,z+h)

W ∗
1 dx+

∫ t

0

∫
R(z,z+h)

exp(−2ωs)W ∗
2 dx ds,

where R(z, z + h) has already been defined,

W ∗
1 = ρ ˙̂ui ˙̂ui + cijklûi,jûk,l + h1(θ̂)

2 + d1kijφ,iφ,j + d1a(K(φ))2



12 A. MIRANVILLE, R. QUINTANILLA

and
W ∗

2 = ωW ∗
1 + kijφ,iφ,j + a(K(φ))2.

We then obtain

(4.3)
∂Fω(t, z)

∂z
=

exp(−2ωt)

2

∫
D(z)

W ∗
1 da+

∫ t

0

∫
D(z)

exp(−2ωs)W ∗
2 da ds.

We need another function G. Here, we define the function G by

G(z, t) = aωh∗0

∫ t

0

∫
D(z)

exp(−2ωs)ki1φ̂φ̂,i da ds.

We have

(4.4)
∂G(z, t)

∂z
= aωh∗0

∫ t

0

∫
D(z)

exp(−2ωs)(kijφ̂,jφ̂,i + (kijφ̂,i),jφ̂) da ds,

As in Section 3, we define Hω = Fω +G. We also have
(4.5)

Hω(z + h, t)−Hω(z, t) =
exp(−2ωt)

2

∫
R(z,z+h)

W ∗
1 dx+

∫ t

0

∫
R(z,z+h)

exp(−2ωs)W2 dx ds,

where
W2 = ω(ρ ˙̂ui ˙̂ui + Cijklûi,jûk,l + d1kijφ,iφ,j + d1a(K(φ))2

+(h1 −
h∗0
2

)((θ̂)2 +
h∗0
2

(φ̂2 + 2akijφ̂,iφ̂,j + a2(K(φ̂))2) + kijφ,iφ,j + a(K(φ))2.

Similarly, we have
|Fω| ≤ |I1|+ |I2|+ |I3|,

where

I1 =

∫ t

0

∫
D(z)

exp(−2ωs)ci1klûk,l ˙̂ui da ds,

I2 =

∫ t

0

∫
D(z)

exp(−2ωs)ai1θ̂ ˙̂ui da ds,

and

I3 =

∫ t

0

∫
D(z)

exp(−2ωs)ki1φ,iφ̂ da ds.

We can estimate I1, ..., I3 in a similar way and we have

|I1| ≤
(∫ t

0

∫
D(z)

exp(−2ωs)cijklûi,jûk,l da ds

∫ t

0

∫
D(z)

exp(−2ωs)cijkl ˙̂uinj ˙̂uknl da ds

)1/2

≤ (
c1

4ρ0ω2
)1/2(ω

∫ t

0

∫
D(z)

exp(−2ωs)cijklûi,jûk,l da ds+ ω

∫ t

0

∫
D(z)

exp(−2ωs)ρ ˙̂ui ˙̂ui da ds),

|I2| ≤
(∫ t

0

∫
D(z)

exp(−2ωs)aijaij(θ̂)
2 da ds

∫ t

0

∫
D(z)

exp(−2ωs) ˙̂ui ˙̂ui da ds

)1/2

≤ (
β

2ρ0ω2h∗0
)1/2

(
ω

∫ t

0

∫
D(z)

exp(−2ωs)(h1 −
h∗0
2

)(θ̂)2 da ds+ ω

∫ t

0

∫
D(z)

exp(−2ωs)ρ ˙̂ui ˙̂ui da ds

)
,
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|I3| ≤
(∫ t

0

∫
D(z)

exp(−2ωs)kijφ,iφ,j da ds

∫ t

0

∫
D(z)

exp(−2ωs)k11φ̂
2 da ds

)1/2

+m∗(

∫ t

0

∫
D(z)

exp(−2ωs)d1kijφ,iφ,j da ds+

∫ t

0

∫
D(z)

ωh∗0
2

exp(−2ωs)(φ̂)2 da ds,

where

m∗ = (
sup k11
2d1h∗0ω

)1/2.

On the other hand

|G(z, t)| ≤ (2a)1/2
(∫ t

0

∫
D(z)

exp(−2ωs)ωah∗0kijφ̂,iφ̂,j da ds

∫ t

0

∫
D(z)

exp(−2ωs)ω
h∗0
2
k11φ̂

2 da ds

)1/2

≤ m∗∗
(∫ t

0

∫
D(z)

exp(−2ωs)ωah∗0kijφ̂,iφ̂,j da ds+

∫ t

0

∫
D(z)

ωh∗0
2

exp(−2ωs)(φ̂)2 da ds

)
,

where

m∗∗ = (a sup k11/2)1/2.

From the previous inequalities, we see that

(4.6) |Hω(z, t)| ≤ C3
∂Hω(z, t)

∂z
,

for every t and z ≥ 0, where

C3 = max((
c1

4ρ0ω2
)1/2 + (

β

2ρ0ω2h∗0
)1/2,m∗ +m∗∗).

From this equality on, the analysis is identical to the one proposed in the previous
section. If we define the functions Eω(z, t) and E(z, t) as in Section 3, but with the
functions W ∗

1 and W2 proposed in this section, we have the following result:

Theorem 4.1. Let (u, φ) be a smooth solution of the problem defined by (2.9)-(2.11),
the boundary conditions (2.13)-(2.14) and the initial conditions (2.15). Then, either this
solution satisfies the growth estimate (3.11) or it satisfies the decay estimate

(4.7) E(z, t) ≤ Eω(0, t) exp(2ωt− C−1
3 z), z ≥ 0,

where the energy E is defined in (3.16) and Eω is given by (3.15).

To have a complete description of this estimate, we need an upper bound on the ampli-
tude term Eω(0, t). This can be done by using an argument similar to the one proposed
in Section 3. However, we do not do it here to avoid repetitions.
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5. Conclusion

In this paper we have analyzed the spatial behavior of the solutions for the thermoelas-
ticity theory of Green-Lindsay with two temperatures and the thermoelasticity theory of
Lord-Shulman with two temperatures. We have seen that the alternative for the solutions
is of exponential type in both theories. In fact, the growth/decay are also quite similar,
but of course depending on the constitutive functions and tensors. It is worth noting that
from the first system we obtain the classical thermoelasticity when a = α = 0 and h = 0.
We then see that the growth/decay for the classical thermoelasticity could be faster in
general. A similar comment can be done for the Lord-Shulman theory. Another relevant
result is that both theories determine the infinite speed of propagation in view of the
alternative result obtained in each case.
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