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Abstract—In this paper a trajectory generation approach using
quadratic programming is described for aerial manipulation,
i.e. for the control of an aerial vehicle equipped with a robot
arm. The proposed approach applies the online active set strategy
to generate a feasible trajectory of the joints, in order to
accomplish a set of tasks with defined bounds and constraint
inequalities. The definition of the problem in the acceleration
domain allows to integrate and perform a large set of tasks
and, as a result, to obtain smooth motion of the joints. A
weighting strategy, associated with a normalization procedure,
allows to easily define the relative importance of the tasks.
This approach is useful to accomplish different phases of a
mission with different redundancy resolution strategies. The
performance of the proposed technique is demonstrated through
real experiments with all the algorithms running onboard in
real time. In particular, the aerial manipulator can successfully
perform navigation and interaction phases, while keeping motion
within prescribed bounds and avoiding collisions with external
obstacles.

Index Terms—Aerial Manipulation, Trajectory Generation,
Aerial Robotics, Mobile Manipulation.

I. INTRODUCTION

IN the past few years, unmanned aerial vehicles (UAVs),
and in particular multirotor systems, have received special

attention by the research community thanks to the improve-
ment of payload capacity and maneuverability together with
a decrease in cost.Moreover, advances in the design of light-
weight arms opened new application domains for UAVs such
as to perform aerial manipulation [1], [2]. The UAVs incorpo-
rating one or more serial arms are known as unmanned aerial
manipulators (UAM).

The control of these platform-arm systems is a very chal-
lenging problem, considering the under-actuation of the plat-
form, the coupled dynamics between the two systems, and
the interaction with the environment during manipulation. In
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this regard [3] presented an adaptive controller to deal with
changes in the platform center of gravity (COG) produced
by a suspended load. A Cartesian impedance control was
designed and illustrated with a simulation case study in [4],
which provides a desired relationship between external wrench
and the system motion. A different approach is [5], where an
adaptive controller is set based on output feedback lineariza-
tion to compensate the unknown displacement of the center of
mass during aggressive maneuvers. However, only the case of
a quadrotor is studied. In [6] and [7] hierarchical control laws
are presented, considering the vehicle kinematics to achieve
several tasks during UAM missions. In this paper we follow a
similar idea of task definitions but focus instead on a numerical
optimization solution for the trajectory generation.

Even when the state of the art in control algorithms for
UAMs is extensive, solutions for trajectory generation using
optimal control in real time are rare. These methods usually
require powerful computational units due to their iterative
nature. [8] and [9] describe methods for 3D optimal trajectory
generation and control, however their works are focused only
on UAVs, thus considering few degrees of freedom (DOFs).
In [10], this trajectory generation is optimized for a vehicle
with a cable-suspended load computing nominal trajectories
with various constraints regarding the load swing. The appli-
cation of such optimal control for UAMs can be seen in [11],
where a nonlinear model predictive control scheme is proposed
to achieve pick-and-place operations. Another example is [12]
where a linear model predictive control is described using a
direct multiple shooting method. However, results for UAMs
are only shown in a simulated environment.

Drawing inspiration from other robotic fields (e.g., [13],
[14]), in this paper we take advantage of a quadratic program-
ming technique to solve several UAM tasks in real time, on
board and subject to constraints. Specifically we use the online
active set strategy ([15], [16]) which analyses the constraints
that are active at the current evaluation point, and gives us a
subset of inequalities to watch while searching for the solution,
which reduces the complexity of the search and thus the
computation time.

In contrast to global offline trajectory generation algorithms
(e.g., RRT* [17]) we obtain the trajectory by iteratively
considering local second order approximations of the system.
Although our approach can lose global optimality, the main ad-
vantages are twofold: First, the convex quadratic problem can
be solved online, thanks to the lower computational burden,
enabling a fast reactive behavior with environment changes.
Second, by representing the system in the accelerations domain
we obtain smooth trajectories in velocity and position spaces.
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A similar approach is [18], where the common idea consists
in dividing the problem in two parts, firstly accounting for
the trajectory generation and then implementing a reactive
controller guaranteeing bounds on velocities and accelerations
and enforcing a hierarchical structure of constraints. In contrast
to [18], in which the experimental case study is based on a 7
DOFs serial arm, we present a similar technique with specific
tasks, constraints and bounds designed for UAMs. In this case,
trajectory generation and redundancy resolution are integrated
in the same framework. To the knowledge of the authors this
is the first work applied to such robots with all computations
done in real time, and on board a limited computational unit.

The remainder of this article is structured as follows. In
the next Sections we develop the optimization methodology.
It includes the formulation of the proposed approach and the
specific design of tasks, constraints and bounds for UAMs.
The feasibility of the proposed method is shown through real
robot experiments in Section V. Finally, conclusions are given
in Section VI.

II. OPTIMIZATION-BASED TRAJECTORY GENERATION

The goal of this Section is to provide an optimization
method to generate feasible trajectories for all the joints of
a quadrotor-arm system. As quadrotor vehicles are under-
actuated systems (i.e., 4 actuations and 6 DOFs), roll and
pitch variables are used to control the translational velocities.
Moreover, UAMs are not meant for acrobatic maneuvers.
Hence, we have not included the platform tilt in the trajectory
generation algorithm (roll and pitch angles will be assumed
negligible in our analysis). Then, the robot is assumed to
have n DOFs, ξ ∈ Rn, ξ =

[
wp>b

wψb q>
]>

, namely,
the platform position and its yaw orientation in an inertial
frame (w) wpb ∈ R3 and wψb ∈ R, and the angles of the r
arm joints q ∈ Rr. In the first part of this Section, we will
assume that the inner control loop of the system can perfectly
track the computed references. However, this hypothesis will
be removed in Sec. II-C and its implications discussed.

A. Approach

The goal of a trajectory generation algorithm is to command
the robot DOFs to accomplish some given tasks while satis-
fying the system constraints. These tasks and constraints can
be generically expressed by

min fi(ξ, ξ̇, t) and fj(ξ, ξ̇, t) ≤ 0 , (1)

where min fi(ξ, ξ̇, t) represents the ith generic task and
fj(ξ, ξ̇, t) ≤ 0 stands for the jth constraint. For example,
a trajectory tracking task with the arm end effector can be
expressed as the minimization of the tracking error norm,
f(ξ, t) = ||xde (t) − xe (t) ||, where xde (t) and xe (t) are the
desired and actual end effector positions, respectively.

The key idea of this approach is to assign desired dynamics
to fi(ξ, ξ̇, t) and fj(ξ, ξ̇, t). In fact, by using the Gronwall
inequality as in [19], a constraint expressed as f ≤ 0 is
satisfied if

ḟ ≤ −λ1f, (2)

where λ1 is a positive scalar gain. Notice that it is just
a sufficient condition, since the inequality of (2) is more
restrictive than the original one.

By applying iteratively the Gronwall inequality on ḟ +
λ1f ≤ 0 from (2), we have

f̈ ≤ −λ2
(
ḟ + λ1f

)
− λ1ḟ , (3)

where λ2 is a positive scalar gain. Parameters λ1 and λ2 assign
the maximum convergence dynamics towards the constraint.
Similarly to the constraints, a task expressed by min f , where
f ≥ 0, can be formulated as

min ||f̈ + (λ2 + λ1) ḟ + λ2λ1f ||2. (4)

Notice that if the cost function in (4) is always kept at its
lower bound, the function f converges to 0 with a dynamics
assigned by eigenvalues λ1 and λ2.

This approach is useful to obtain constraints and cost
functions (i.e., tasks) in the acceleration domain, when the
original ones are expressed in the position domain. In fact,
considering the constraint fj(ξ) ≤ 0 depending only on robot
joint values, and applying this approach, we end up with

Aj ξ̈ ≤ uAj , (5)

where

Aj =
∂fj
∂ξ

, (6a)

uAj = −λ2λ1fj −
(
ξ̇
> ∂2fj

∂ξ2
+ (λ1 + λ2)

∂fj
∂ξ

)
ξ̇ . (6b)

On the other hand, when a constraint also depends on joint
velocities (fj(ξ, ξ̇) ≤ 0) the Gronwall inequality should be
applyied only once. While the constraint expression is the
same as in (5), in this case the terms Aj and uAj are computed
with

Aj =
∂fj

∂ξ̇
, uAj = −λ2fj −

∂fj
∂ξ
ξ̇ . (7)

Similarly to the linear formulation obtained for the con-
straints (see (5)), the cost functions can be defined as

min ||Fiξ̈ − bi||2, (8)

where, similarly to the constraints, the computations of Fi and
bi are straightforward.

Notice that, so far the analysis has been performed for scalar
functions fi, such that Fi results in a row vector, however
it can be easily extended to multidimensional tasks f i and
Jacobian matrices Fi.

B. Quadratic problem formulation

The formulation of the optimization problem is quite
straightforward. The cost function in (8) results in the
quadratic form

min
x
‖Fix− bi‖2 = min

x

(
x>F>i Fix− 2b>i Fix

)
, (9)

where the regressor variable ξ̈ has been replaced by x for
simplicity.



As we want to minimize different objective functions, two
different scenarios are possible. In the case that a strict
hierarchy between tasks is required, a hierarchical solver has
to be used (e.g., [13]). Alternatively, as in our case, if there is
no need for a hierarchy, a weighted sum of the NT objective
functions can be considered with

min
x

NT∑
i=1

Gi = min
x

NT∑
i=1

wi
hi

(
x>F>i Fix− 2b>i Fix

)
= min

x

NT∑
i=1

wi
hi

(
x>Hix+m>i x

)
,

(10)

where wi and hi are weights and a normalization factor,
respectively. When a weighted sum is employed, it is very
important to normalize the objective functions, in order to
effectively set the desired weights wi. Thus, we chose the
weights hi equal to the spectral norm of Hi, which is equal to
the square root of the largest eigenvalue of the product matrix
H>i Hi. Notice that this spectral norm of Hi equals the square
of the spectral norm of Fi when the objective function has the
form as in (9).

Remark I In order to effectively use the normalization factor
hi, it is beneficial to split the tasks that are not dimensionally
coherent. For instance, the end effector error is composed of
translational and rotational parts. Then, computing two differ-
ent factors hi improves the effectiveness of the normalization.

Remark II The norms of joint velocities and accelerations
define two useful cost functions. They assure the convexity of
the problem and allow the distribution of the motion on the
different joints a priori, by assigning different weights to each
joint. When these two cost functions are used together, the
weights on joint velocities should be larger by a factor 5 to
10 than the corresponding weights on joint accelerations, in
order to obtain a coherent behavior.

Finally, the complete optimization system combines the cost
functions and constraints, obtaining a quadratic problem with
linear constraints defined as

min
x

G = min
x

(
1

2
x>Hx+m>x

)
s.t. lb ≤ x ≤ ub and lA ≤ Ax ≤ uA ,

(11)

where G =
∑
Gi, H =

∑ wi

hi
Hi, m =

∑ wi

hi
mi and

A =
[
A>1 A>2 . . . A>NC

]>
with NC the number of

constraints. lb, ub, lA and uA assign lower (lx) and upper
(ux) bounds on acceleration and constraints respectively.

Then, we obtain a solution x0 of the system in (11) for
every time step k, thus the position and velocity references
can be updated, for example, with an Euler integration as

ξ (k) = ξ (k − 1) + ξ̇ (k − 1) δt+ x0
δt2

2
(12a)

ξ̇ (k) = ξ̇ (k − 1) + x0 δt. (12b)

where δt is the time step differential.
It is important to remark that the trajectory generation

algorithm can either be computed offline or online. As the
quadratic optimization method can be efficiently solved by

state of the art algorithms, it is particularly suitable to be
computed online even in limited computational units. Online
iteration allows to dynamically change the optimization param-
eters during specific phases of a mission. It can be particularly
useful to implement different redundancy resolution strategies,
by changing cost function weights, depending on the mission
phase or external triggers. This behavior is shown in the
experiments Section for an UAM mission.

C. Interface with the control algorithm

So far in this Section we have assumed a perfect tracking
of the generated reference trajectory by the inner controller.
With a real system, the performance of this closed control
loop is not ideal and dynamics between desired (ξd) and
actual (ξ) values of the robot DOFs are introduced. As a
consequence, the parameters λ1 and λ2 should be set low
enough with respect the control bandwidth such that the time
scale separation principle holds, and the reference can be
tracked. Alternatively, one can include a simplified model of
the closed loop system in the dynamics considered by the
optimization. Such dynamics analysis is out of the paper scope.
In addition, if the actual measures are fed into the optimization
algorithm (feedback scheme), feasibility and stability issues
can arise. In fact, using this feedback requires techniques of
robust optimization, as in [20], to prevent unfeasible points.
Moreover, the closed loop control can affect the stability of
the system, and the search for stability bounds and conditions
can be complicated by the nonlinearity of the optimization
method. For the previous reasons, in the rest of the paper
the trajectory generation algorithm, as it is common in all
robotic trajectory generation systems, is computed without any
feedback of joints measures, and parameters λ1 and λ2 are
chosen according to the inner control bandwidth and time step
δt.

III. UAM TASKS

We can consider several objective functions for UAMs, in
order to accomplish a given task or to preserve stability. In
this Section we present a number of useful cost functions with
the corresponding methods to compute the H matrix and m
vector. The weighting factors will not be mentioned because
they depend on the particular navigation phase and mission
objectives, as explained in Section V.

A. End effector tracking

The main interaction task with UAMs, in general, will be
executed by the arm end effector, thus it is important to be
able to track a desired end effector trajectory, xde ∈ R6. The
following cost function can be defined

G1 = ‖ee‖2 , (13)

where ee = xe (t)−xde (t) is the tracking error, which can be
written in acceleration form, following the procedure described
in Sec. II-A, as

F1 = 2e>e Je , (14)



with Je ∈ R6×n the end effector Jacobian matrix. The
expression of b1 can be easily obtained and is here omitted
for the sake of conciseness. Notice that, if the end effector
velocity reference is available, it is included in the b1 term,
providing an equivalent feed-forward action.

As pointed out in Sec. II-B, normalization factors for
the end effector task should be computed separately for the
translational and rotational parts of the Jacobian.

B. Robot center of gravity alignment

When the arm center of gravity (COG) is not coincident
with the gravitational vector of the platform, undesired torques
appear in the vehicle’s base, which must be compensated with
the action of the propellers. In order to minimize this actuation
effort and avoid instability, it is beneficial to design a task to
favor this alignment. Thus, we can easily compute the cost
function G2 and the related Jacobian F2 as

G2 = bx>c
bxc , and F2 = 2 bx>c

bJc , (15)

where bxc ∈ R2 is the displacement of the center of gravity
in the horizontal plane, expressed in the quadrotor body
frame, and bJc ∈ R2×n is its corresponding Jacobian. This
expressions can be obtained as in [6], [7].

Notice that we are assuming that the quadrotor is internally
balanced. Otherwise, a different equilibrium point should be
assigned for the arm COG.

C. Forces on quadrotor horizontal plane

Limiting the forces exerted by the robotic arm on the
quadrotor horizontal plane is beneficial because the vehicle
cannot oppose them due to its under-actuation. Thus, we can
consider the following objective function

G3 =
1

2
ξ̈
> bJ>c

bJc ξ̈ +
1

2
ξ̇
> bJ̇>c

bJ̇c ξ̇ + ξ̈
> bJ>c

bJ̇c ξ̇. (16)

In this case, we can compute directly the terms H3 and
m3 from the expression in (16). This cost function penalizes
the inertial forces exerted by the arm, by considering the
acceleration of its center of mass.

D. Limiting quadrotor accelerations

When rapid end effector motions are required, it is better to
distribute the motion in the arm joints instead of the platform.
This goal is achieved by penalizing quadrotor accelerations
with

G4 = wp̈>b
wp̈b . (17)

In fact, quadrotor accelerations in the horizontal plane are
obtained through platform tilting, which can potentially affect
other tasks if it is not compensated by the inner control loop.
In this case, the matrix H4 turns out to have an identity matrix
in the 3× 3 upper left block, while m4 is null.

E. Manipulability

During a manipulation task, a useful objective function is
represented by the arm manipulability index. A first direct way
of expressing this cost function is

G5 =
1

det
(
Je,qJ>e,q

) , (18)

where Je,q ∈ R6×r is the submatrix of the Jacobian Je
composed by the columns corresponding to the arm joints.

Notice that it is almost impossible to analytically compute
the required matrices to apply this objective function to a 6
DOFs robotic arm. Instead, we could compute it for a reduced
arm (e.g., a 4 DOFs robot) applied to the translational part of
the end effector, which effectively allows to obtain a smooth
behavior of the system, keeping the robot configurations far
from Jacobian singularities. An alternative formulation of the
cost function can be obtained by applying the gradient based
method of [21].

F. Desired joint position

We can choose a set of desired arm joint positions qd ∈ Rr
to achieve some favorable conditions such as distance from
joint limits, a high manipulability or a limited center of gravity
displacement. This configuration can be set as a reference
during the navigation phase, or just used as an attractor to
guide the optimization solution when the main tasks present a
nonempty null space. This goal can be achieved by applying
the cost function defined by

G6 =

r∑
i=1

(
qi − qdi

qM,i − qm,i

)2p

,

where qM,i and qm,i are upper and lower limits of the ith
joint, while factor p ∈ N is used to modulate the behavior
of the cost function between the limits. Notice that, this cost
function would be just preserving the joint bounds if infinite
values are assigned to the p factor and the weight w6.

G. Velocity minimization

We can apply different weights to the joint velocities in
order to arbitrarily distribute the motion on the UAM joints
with

G7,i = ξ̇i
2
. (19)

Here, the i subscript is used to remark that distinct weights are
assigned to the n velocity cost functions, in order to achieve
the desired behavior. This cost function is useful to assure the
convexity of the problem.

IV. UAM CONSTRAINTS AND BOUNDS

Important constraints, specific for aerial manipulators, are
described in the following.



A. Self-collision avoidance

With the arm mounted underneath the aerial platform, the
end effector is potentially subject to collisions with the vehicle
undercarriage, thus the first obvious constraint is that self-
collisions have to be avoided. Modeling the leg l of the
quadrotor as a line described by two points xl1 and xl2, the
distance dl between the leg and a point of the arm x can be
computed with

dl = ||Dl (xl1 − x) || , (20)

where Dl =
(
I − nlnl>

)
with nl =

(xl2−xl1)
||xl2−xl1|| . Notice how

the matrix Dl only depends on the position of the quadrotor
legs. Then, the following constraint can be enforced

d2l ≥ d2min , (21)

where dmin is the minimum acceptable distance between legs
and the arm point.

Considering x the arm end effector position with respect to
the quadrotor base, we have that x = bJe,qq̇, where bJe,q is
the submatrix of the translational Jacobian composed only by
the columns corresponding to the arm joints. This constraint
can be expressed in velocity form as

2(xl1 − x)>Dl
bJe,q q̇ ≤ −λ1

(
d2l − d2min

)
(22)

from which A1 = 2(xl1 − x)>Dl
bJe,q , and it is straightfor-

ward to compute the constraint in acceleration form.
Note that this constraint can easily be adapted to avoid any

external obstacle with cylindrical shape.

B. Obstacle avoidance

A simpler condition is to avoid an obstacle described as a
sphere. Given the obstacle center point xo ∈ R3 and a point of
the UAM (e.g., end effector or quadrotor positions) x ∈ R3,
we can define the inequality

(xo − x)>(xo − x) ≥ d2min . (23)

It results that A2 = 2(xo − x)> J , where J ∈ R3×n is the
Jacobian of the considered point x.

C. Position, velocity and acceleration bounds

The position, velocity and acceleration limits of the UAM
joints have to be included in the optimization problem. For
instance, the quadrotor height DOF has an obvious lower
bound, while arm joint bounds are given by the physical arm
structure. The bounds have to be reported in acceleration form
with the strategy presented in Section II. Given an upper bound
ξM,i on the ith joint position, the Gronwall inequality can
be applied twice, obtaining the following position bound in
acceleration form

ξ̈i ≤ − (λ1 + λ2) ξ̇i − λ1λ2 (ξi − ξM,i) . (24)

On the other hand, when an upper bound ξ̇M,i is given on the
ith joint velocity, the Gronwall inequality has to be applied
just once, resulting in the following velocity bound

ξ̈i ≤ −λ2
(
ξ̇i − ξ̇M,i

)
. (25)

Fig. 1: Experiment setup with the flying arena and a cylinder
pilar used as obstacle (the left frame corresponds to the telemetry
visualization).

Fig. 2: Overview of the architecture pipeline for trajectory generation
and UAM control with all algorithms running on board.

The vectors of lower and upper bounds (lb and ub) are formed
considering the most stringent conditions between position,
velocity and acceleration bounds, for each joint.

V. EXPERIMENTS

The proposed trajectory generation algorithm is imple-
mented on a real UAM, and the effectiveness of the approach
is demonstrated by performing an autonomous mission, by ac-
complishing different tasks while enforcing system constraints.
Notice that we do not compare our performance against other
methods because, to the authors knowledge, this is the first
work using an optimization based approach to achieve such
trajectory generation for UAMs with all algorithms running on
board in real time. Although simulations using Matlab, Gazebo
and ROS have been performed, their results are here avoided
for the sake of conciseness. These simulations together with
some of the lab experiments presented hereafter are also shown
in the accompanying video.

The quadrotor used in the experiments is the ASCTEC
Pelican research platform shown in Fig. 1 and its control
architecture is shown in Fig. 2. This platform has a position
controller in cascade with an off-the-shelf built-in autopilot
for attitude estimation and control, which are not the focus of
this paper. As for the robotic arm, we take advantage of a 6
DOFs really light structure with a kinematic design suitable
to compensate the possible noise existing in the quadrotor
positioning while hovering, and to avoid self collisions during
take off and landing maneuvers. The arm design is a result
of a trade-off between accuracy and payload, leading to a
weight of 200g including batteries . The complete UAM shows
an accuracy of about 0.2rad and 0.05m. Each joint has its
own proportional-integral-derivative controller. The Denavit-
Hartenberg parameters of the arm are reported in Tab. I. The
arm base is 10mm below the body frame along the vertical
axis. All algorithms are running on board in real-time using an
Intel Atom CPU (@1.6GHz) with Ubuntu 14.04LTS and ROS
Indigo. The optimized high-rate C++ implementation takes



Joint θ (rad) d (m) α (rad) a (m)
1 q1 0 0 0
2 q2 − π/2 0 -π/2 0
3 q3 − π/2 0 -π/2 0
4 q4 0 0 0.065
5 q5 + π/2 0.065 0 0.065
6 q6 0 π/2 0

TABLE I: Denavit-Hartenberg parameters of our 6 DOF arm.

Tasks

EE COG DesJPos
MinVel

Quad. Arm
Navigation 1 101 102 10−5 10−5

Interaction 1 10−2 10−2 103 10−5

TABLE II: Tasks weightings depending on mission phases.

advantage of QPoases as quadratic programming solver [22]
and is available upon request. All experiments have been
performed at Institut de Robòtica i Informàtica Industrial
(IRI), CSIC-UPC, equipped with an Optitrack motion capture
system running at 120Hz and used in the low-level quadrotor
position control. Notice how the trajectory is generated without
positioning feedback, hence with a less accurate localiza-
tion system (e.g., visual odometry) only the robot tracking
performance would be affected. In all the experiments the
quadrotor is autonomously taken off and landed, and both
maneuvers are considered out of the paper scope. Fig. 1 and
the accompanying video show the experiment setup with the
flying arena and the cylindrical pilar used as obstacle.

In the real platform, a subset of cost functions and con-
straints of Sections III and IV has been implemented. In
particular, the main task of the mission consists in the end
effector trajectory tracking, while complementary tasks used
to solve the system redundancy are the alignment of arm COG,
the positioning of arm joints to a favorable configuration, and
the minimization of joints velocity. The constraint avoiding
self-collision between robot end effector and quadrotor legs is
active for all the duration of the experiment. In addition, the
obstacle avoidance constraint is also tested. In particular, an
experiment without any obstacle in the path and another one
with a cylindrical shape obstacle will be compared. Finally,
position, velocity and acceleration of all DOFs are subject to
user selected bounds.

Therefore, we define a desired waypoint for the end effector
positioning task (3D position plus 3D orientation), which will
drive the whole robot. The waypoint presents a displacement
of 2m in both x and y directions, and 0.2m in z direction. The
mission is considered achieved when the linear and angular
positioning errors of the end effector are below certain thresh-
olds. These thresholds are selected considering the hardware
characteristics previously mentioned, which are 0.05m and
0.2rad of linear and angular Euclidean errors.

In order to show the effects of the different tasks and
constraints, we split the mission in two phases, navigation and
interaction. In the first phase, the navigation towards the way-
point has to be preferably performed with quadrotor degrees
of freedom, while arm joints should assume a configuration
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(a) 3D position of the quadrotor.
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(b) Quadrotor yaw angle and arm joint values.

Fig. 3: Values of the robot DOFs during a real experiment with an
obstacle inline between the initial and desired end effector positions.
The gray region in figure (a) corresponds to the activation of the
obstacle avoidance constraint. Notice how the x axis (continuous blue
line) is blocked. The vertical dashed line indicates the point where
the weights of the arm joints positioning and arm COG alignment
tasks are reduced, and quadrotor motion is penalized.

in order to maximize stability and minimize disturbances,
e.g., torques produced by displacement of the arm COG. In
the interaction phase, when the robot is close to the desired
waypoint (i.e., almost hovering for close manipulation), it is
preferable to perform the motion with arm joints, because
more accurate movements are needed and a minimum safety
distance with the interaction object can be kept.

The easiness of the proposed method allows to distinguish
the different phases by dynamically changing the weights
of the different tasks. The proposed normalization procedure
allows to effectively assign a relative priority to the tasks by
means of the weights, even with tasks of nonhomogeneous
dimensions. All these weights are summarized in Tab. II. In
the subsequent figures, the transition between navigation and
close interaction phases is shown with a black vertical dashed
line.

As presented in Section II, the dynamics of the joints, tasks
and the approach to constraints is governed by parameters λ1
and λ2. For the described system, they have been chosen equal
to 0.8 1

s and 4 1
s , respectively, in accordance with lower-level

control loop bandwidth.
In Fig. 3 the behavior of all UAM joints during the complete

experiment with the obstacle is reported. Fig. 4 shows the
task errors during the mission, whereas in Fig 5 the quadrotor
trajectories (x and y plot) are shown with and without an
obstacle lying in the middle of the shortest path. The different
motion profiles are discussed in the following.

A. Navigation phase

During the navigation, large weights are assigned to the
cost functions of COG alignment and desired joint positions.
Thus, long displacements are performed by the quadrotor and
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Fig. 4: Task errors corresponding to the real experiment of Fig. 3 with
an obstacle between the initial and desired end-efector positions. The
gray region in frame (a) corresponds to the activation of the obstacle
avoidance constraint. Notice how the error in the x axis (continuous
blue line) is increased to avoid the obstacle. The vertical dashed line
indicates the point where the weights of the arm joints positioning
and arm COG alignment tasks are reduced in favor of the end effector
positioning task.
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Fig. 5: Comparison between two real trajectories with the same initial
and final positions, but with (continuous brown line) and without
(dashed blue line) any obstacle lying between the initial and desired
end effector positions. The small red circle corresponds to the actual
obstacle and the yellow area (yellow circle with a dashed edge)
includes the inflation radius applied to the obstacle.

the arm is driven to a desired position while minimizing COG
misalignment. These profiles are reported in Fig. 3. The be-
havior of the end effector task error is reported in Fig. 4(a) and
Fig. 4(b), for the translational and rotational parts, respectively.
In Fig. 4(c) and 4(d), the profiles of the COG alignment and
the arm joints positioning can be analyzed. Notice that the
COG task is not completely accomplished, i.e., the task error
is not reduced to zero, because the latter has larger weight,
and the equilibrium solution is a weighted average between
the two goals.

The arm configuration is shown in Fig. 6, where frame (a)
is just after the take off, and frame (b) represents the robot
configuration during navigation where the COG alignment and
arm joints positioning tasks prevail. Frame (c) represents the
arm configuration during the interaction phase, that will be
described in the following.

To show the need for the collision avoidance constraint
we added an obstacle in the middle of the trajectory (i.e.,
shortest path). The quadratic programming solver generates a
feasible trajectory, and the UAM avoids the obstacle with the
minimum assigned distance of 0.6m (inflation radius around
the platform). To clearly see how the obstacle avoidance
works, we show in Fig. 5 a comparison between two trajec-
tories with the same parameters. A first trajectory is executed
without any obstacle (blue dashed line) and the computed path
corresponds to the shortest path as expected. When an obstacle
appears (defined by the red circle) the trajectory is modified
to avoid it (brown continuous line), satisfying the inflation
radius constraint (yellow area plotted, in this case, around the
obstacle).

This behavior is evident in the gray area of Fig. 3(a),
where the motion of the platform is prevented for the x axis
(continuous blue line). Once the obstacle has been avoided,
the trajectory is resumed.

As it can be seen in Fig. 3, the quadrotor motion is clearly
performed with constant velocity. In fact, for large end effector
errors, the maximum velocity bound is saturated and the
quadrotor moves with constant velocity. Notice that the two
curves of x and y quadrotor positions have the same slope,
because the same velocity bound has been assigned. On the
other hand, the z coordinate presents a smaller initial error,
thus the velocity is not saturated and, as a result, the behavior
is exponential because its dynamics is governed by parameter
λ1. Notice that the z position reference is reached after 6s and
7s, while the theoretical settling time 5

λ1
is equal to 6.25s.

B. Interaction phase

The second phase starts when the end effector is 15cm far
from the desired position. At this point, weights are changed to
the values of Tab. II. Notice how the arm joints move towards
the goal, see Fig. 6(c) that represents the robot configuration
during the interaction phase, and Fig. 3, which reports the
behavior of the joint variables. As a consequence, COG and
joint positioning task errors are increasing, as reported in
Fig 4(c) and Fig 4(d). The end effector task is performed to a
greater extent by robot arm joints, because the weights of the
cost functions corresponding to the joint velocity minimization
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Fig. 6: Samples of arm configurations depending on tasks weightings during a real experiment: (a) After taking off, (b) during navigation
and (c) in the close interaction zone.

are assigned such that quadrotor motions are more heavily
penalized than arm ones. Notice that the trajectory is computed
using the acceleration as a regressor and applying bounds to
it. For this reason, the transition between the two phases is
smooth, without discontinuities.

As a conclusive remark, our UAM can effectively accom-
plish the mission in the two distinct phases, avoiding an
obstacle and self-collisions and respecting variable bounds.

VI. CONCLUSIONS

In this work, we presented a trajectory generation method
for aerial manipulators using a quadratic programming ap-
proach and showed its execution on a real platform. The
method uses an online active set strategy to compute feasible
joints acceleration references, in order to accomplish given
tasks, while enforcing constraints and variables bounds. A
number of tasks and constraints specific to unmanned aerial
manipulators have been integrated in the algorithm. A weight-
ing factor, associated with a normalization procedure, allows to
define the relative importance of tasks, determining the redun-
dancy resolution. This is particularly important to effectively
perform distinct phases of an articulated mission. The viability
of the proposed approach is demonstrated through simulations
and real robot experiments. In particular, the objective func-
tions implemented in the real setup include the end effector
positioning task, the alignment of the arm COG with the
platform gravitational vector and the positioning of arm joints
to a favorable configuration. In addition, we demonstrated that
the robot can avoid collisions with known obstacles in the
scene and self-collision between end effector and quadrotor
legs. To the authors knowledge, this is the first work using an
optimization based approach to compute trajectories for aerial
robots with high number of DOFs, working onboard and in
realtime.
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