

CONTRIBUTION TO THE DEVELOPMENT OF A
HYPERVISOR IN A VIRTUALIZED MOBILE

COMMUNICATION NETWORK

A Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Irene Vilà Muñoz

In partial fulfilment

of the requirements for the degree of

MASTER IN TELECOMMUNICATIONS ENGINEERING

Advisor: Anna Umbert Juliana

Barcelona, July 2017

 1

Title of the thesis:

CONTRIBUTION TO THE DEVELOPMENT OF A HYPERVISOR IN A VIRTUALIZED

MOBILE COMMUNICATION NETWORK

Author:

Irene Vilà Muñoz

Advisor:

Anna Umbert Juliana

Abstract

Software Defined Networking (SDN) and Network Function Virtualization (NFV) are two

promising technologies that together provide a more efficient utilization of the network

resources and a reduction of operational costs. SDN and NFV enable the Radio Access

Network (RAN) slicing, in which the radio resources are shared, which can be controlled

through a hypervisor. In this thesis, a virtualized RAN Slicing simulator (ViRANsim)

programmed in Python and based on the 5G-EmPOWER, has been designed,

implemented and tested to validate and foresee the performance of two novel algorithms

before applying them in a real environment: the Air-Time Deficit Round Robin (ADRR)

algorithm, which is a time variant scheduling mechanism and will be used by the

hypervisor, and the weight compensation algorithm, which is placed in the network

controller and pretends to maximize the Access Points (APs) resource usage in order to

satisfy the traffic demand fluctuations in the short-term, while at the same moment

assuring the Service Level Agreement (SLA) of the different tenants in the long – term

perspective. Through this thesis, the performance of these algorithms has been studied,

providing different analysis based on simulation results.

 2

Acknowledgements

For the development of this project it has been fundamental the support of different

people, who have given me the strength to fulfil this thesis.

In first place, I would like to thank Dr. Anna Umbert, the tutor of this thesis, for giving me

the chance to develop this project. I express my gratitude for her technical advices, her

patience when correcting the documentation and her encouraging and motivating attitude

during the course of the project. Moreover, I want to acknowledge Dr. Katerina Koutlia,

who has been involved during all the thesis development giving me technical and mental

support as well as correcting the present document. I would also like to thank Dr. Ferran

Casadevall for his clarity when introducing the different algorithms and Sergio García for

the informatics support.

Last but not least, I would like to thank my parents, my couple, my brother and friends for

supporting me and cheering me up during these months in which I have been committed

to this thesis.

Thank you very much all of you.

 3

Revision history and approval record

Revision Date Purpose

0 12/07/2017 Document creation

1 14/07/2017 Document revision

2 17/07/2017 Document correction

Written by: Reviewed and approved by:

Date 12/07/2017 Date 17/07/2017

Name Irene Vilà Muñoz Name Anna Umbert Juliana

Position Project Author Position Project Supervisor

 4

Table of contents

Abstract .. 1

Acknowledgements .. 2

Revision history and approval record .. 3

Table of contents .. 4

List of Figures ... 7

List of Tables .. 13

1. Introduction .. 16

1.1. Objectives .. 17

1.2. Project Plan and deviations .. 18

2. State of the art ... 19

2.1. Software Defined Networking (SDN)... 19

2.2. Network Function Virtualization (NFV) .. 21

2.3. 5G-EmPOWER .. 22

2.4. Scheduling Algorithms .. 24

2.4.1. Round Robin (RR) Scheduler .. 24

2.4.2. Weighted Deficit Round Robin (WDRR) Scheduler 25

3. Project development .. 28

3.1. System architecture .. 28

3.2. Thesis motivation.. 29

3.3. ADRR scheduling algorithm .. 30

3.4. Weight compensation algorithm .. 32

3.5. ViRANsim Simulator ... 35

3.5.1. Requirements .. 35

3.5.2. Simulator Classes ... 36

3.5.3. Exportation results files ... 46

3.5.4. Time management... 47

4. Studies .. 49

4.1 Single WTP studies .. 49

4.1.1. Iterations Convergence Study ... 49

4.1.2. Scheduling algorithms comparison .. 51

4.1.3. Deficit counter adjustment: theoretical vs real packet time. 60

4.1.4. Time Convergence Study .. 63

4.1.5. Traffic Generation Analysis .. 64

 5

4.1.6. Study time for empty queue ... 72

4.1.7. System quantum study .. 74

4.2. Multi-WTP .. 76

4.2.1. Traffic generation deviation ... 76

4.2.2. Weight compensation period variation ... 80

4.2.3. Proportional sharing .. 87

4.2.4. Benefits of using the weights algorithm.. 90

5. Cost assessment ... 93

6. Conclusions and future development ... 95

6.1. Future development .. 96

Bibliography .. 97

Annex 1. ViRANsim Simulator Classes description ... 99

1. Channel Model .. 99

2. Tenant General.. 102

3. Tenant WTP .. 103

4. WTP .. 108

5. Controller ... 112

6. Scenario .. 113

Annex 2. Studies Detail .. 116

1. Single WTP ... 116

1.1. Iterations Convergence Study... 116

1.1.1. ADRR without 802.11g delays ... 117

1.1.2. ADRR with 802.11g delays .. 119

1.1.3. WDRR without 802.11g delays .. 121

1.1.4. ADRR without 802.11g delays and weights 80%-20% 122

1.2. Deficit counter adjustment: theoretical vs real packet time. 123

1.3. Time Convergence Study ... 128

1.3.1. Fixed traffic generation rate and single transmission rate 128

1.3.2. Fixed traffic generation rate and random transmission rate 130

1.3.3. Gaussian traffic generation rate and random transmission rate 131

1.3.4. Full Queue ... 132

1.4. Traffic Generation Analysis ... 133

1.4.1. Fixed Traffic Generator Rate ... 134

1.4.2. Uniform generator ... 143

 6

1.4.3. Gaussian Generator .. 144

1.5. Study time for empty queue .. 146

1.5.1. Fixed Generator without retransmissions compensation factor 147

1.5.2. Fixed Generator with retransmissions compensation factor 148

1.5.3. Gaussian Generator .. 150

2. Multi-WTP .. 151

2.1. Traffic generation deviation .. 152

2.2. Proportional sharing ... 158

ANNEX 3. ViRANsim simulator class and functions scheme .. 163

ANNEX 4. ViRANsim simulation script example ... 164

Glossary ... 165

 7

List of Figures

Figure 1. Project plan Gantt diagram .. 18

Figure 2. SDN architecture. (a) planes, (b) layers and (c) system design architecture 20

Figure 3. NFV virtualization concept ... 21

Figure 4. EmPOWER architecture .. 23

Figure 5. Scheduler algorithm ... 24

Figure 6. Initial conditions ... 25

Figure 7. Starting point. DCi initialization with Qi value. ... 26

Figure 8. Flow 1 turn. Transmission of first packet .. 26

Figure 9. Flow 2 turn. Transmission of first packet .. 26

Figure 10. Flow 2 turn. Transmission of second packet .. 26

Figure 11. Flow 3 turn. It does not transmit any packet. .. 27

Figure 12. Start of the following round. Upgrade of the DCi of all flows with Qi 27

Figure 13. Overall system architecture with the different elements 28

Figure 14. ADRR operation scheme ... 31

Figure 15. Weight compensation motivation ... 33

Figure 16. Block diagram of the hypervisor simulator with the different classes and scripts

 .. 37

Figure 17. Channel Algorithm ... 38

Figure 19. Initial traffic generator scheme ... 40

Figure 20. Fixed traffic generator scheme ... 41

Figure 21. Gaussian distribution ... 43

Figure 22. 802.11 error control in radio medium ... 44

Figure 23. 802.11g ofdm frame format .. 44

Figure 24. Parallelism by using multiprocessing ... 48

Figure 25. Parallelims using sequencial parallelism .. 48

Figure 26. Studies performed ... 49

Figure 27. Time dispersion over 0.5 for different number of iterations. Case considering

802.11g delays .. 51

Figure 28. Transmitted bytes dispersion over 0.5 for different number of iterations. Case

considering 802.11g delays ... 51

Figure 29. Used time dispersion around expected weight for the case of random data rate

and tp real ... 61

Figure 30. Transmitted bytes dispersion around expected weight for the case of random

data rate and tp real .. 62

 8

Figure 31. Used time dispersion around expected weight for the case of random data rate

and tp theoretical ... 62

Figure 32. Transmitted bytes dispersion around expected weight for the case of random

data rate and tp theoretical .. 62

Figure 33. Time deviation with logarithmical vertical axis for the case of Rb random and

fixed generation rate. ... 64

Figure 34. Transmitted bytes deviation with logarithmical vertical axis for the case of Rb

random and fixed generation rate. ... 64

Figure 35. Packets in queue during time .. 66

Figure 36. Packets in queue during time with retransmission and delays compensation.

Retransmission compensation set to 0.89 ... 68

Figure 37.Traffic generation rate (Gt) using a uniform generator..................................... 69

Figure 38. Packets in queue for the uniform generator simulation 70

Figure 39. Traffic generation rate (Gt) using a Gaussian generator. 71

Figure 40. Packets in queue for the Gaussian generator simulation 72

Figure 41. Traffic generation evolution for tenant 1 in WTP 1 with Gaussian deviation of

15% ... 78

Figure 42. Traffic generation evolution for tenant 1 in WTP 1 with Gaussian deviation of

40% ... 78

Figure 43. Weights evolution for the case of deviation of 15% .. 78

Figure 44. Weights evolution for the case of deviation of 40% .. 79

Figure 45. Comparison of the weights of tenant 1 when using a deviation of 15% and

40% ... 79

Figure 46. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 10s. .. 80

Figure 47. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 10s. .. 81

Figure 48. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 10s. .. 81

Figure 49. Weights evolution during simulation for each of the tenants. Weight

compensation period to 10 seconds with traffic generation period to 1s................... 81

Figure 50. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 20s. .. 82

Figure 51. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 20s. .. 82

Figure 52. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 20s. .. 82

Figure 53. Weights evolution during simulation for each of the tenants. Weight

compensation period to 20 seconds with traffic generation period to 1s................... 83

 9

Figure 54. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 60s. .. 83

Figure 55. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 60s. .. 84

Figure 56. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 60s. .. 84

Figure 57. Weights evolution during simulation for each of the tenants. Weight

compensation period to 60 seconds with traffic generation period to 1s................... 84

Figure 58. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 5 s

and weights compensation period to 20s. .. 85

Figure 59. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to 5 s

and weights compensation period to 20s. .. 85

Figure 60. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 5 s

and weights compensation period to 20s. .. 85

Figure 61. Weights evolution during simulation for each of the tenants. Weight

compensation period to20 seconds with traffic generation period to 5s. 86

Figure 62. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 5 s

and weights compensation period to 60s. .. 86

Figure 63. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to5 s and

weights compensation period to 60s. ... 86

Figure 64. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 5 s

and weights compensation period to 60s. .. 87

Figure 65. Weights evolution during simulation for each of the tenants. Weight

compensation period to 60 seconds with traffic generation period to 5s................... 87

Figure 66. Weight evolution and sum of weights with proportional sharing 88

Figure 67. Weight evolution and sum of weights without proportional sharing 88

Figure 68. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 20s without proportional sharing. 89

Figure 69. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 20s without proportional sharing. 89

Figure 70. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 20s without proportional sharing. 89

Figure 71. Traffic generation rates during simulation time ... 91

Figure 72. Queue evolution during simulation time when enabling the weight algorithm

every 10s for tenant 1. ... 91

Figure 73. Queue evolution during simulation time when disabling the weight algorithm

every 10s for tenant 1. ... 92

Figure 74. Queue evolution during simulation time when enabling the weight algorithm

every 10s for tenant 2. ... 92

 10

Figure 75. Queue evolution during simulation time when disabling the weight algorithm

every 10s for tenant 2. ... 92

Figure 76. Weights evolution during simulation ... 93

Figure 77. Channel Algorithm ... 99

Figure 78. Channel Model class properties(variables) and methods 100

Figure 79. Tenant General class properties(variables) and methods 102

Figure 80. Tenant WTP class variables and methods ... 104

Figure 81. Initial traffic generator scheme ... 105

Figure 82. Fixed traffic generator scheme ... 106

Figure 83. Gaussian distribution ... 108

Figure 84. WTP class properties (variables) and methods .. 109

Figure 85. 802.11 error control in radio medium ... 110

Figure 86. 802.11g ofdm frame format .. 110

Figure 87. Controller class variables and methods. .. 112

Figure 88. Scenario variables and functions ... 114

Figure 89. Time dispersion over 0.5 for different number of iterations. Case without

802.11g delays .. 118

Figure 90. Transmitted bytes dispersion over 0.5 for different number of iterations. Case

without 802.11g delays. ... 119

Figure 91. Time dispersion over 0.5 for different number of iterations. Case considering

802.11g delays .. 120

Figure 92. Transmitted bytes dispersion over 0.5 for different number of iterations. Case

considering 802.11g delays ... 120

Figure 93. Time dispersion over 0.5 for different number of iterations. Case of WDRR

without 802.11g delays .. 121

Figure 94. Transmitted bytes dispersion over 0.5 for different number of iterations. Case

of WDRR without 802.11g delays .. 122

Figure 95. Time dispersion over 0.5 for different number of iterations. Case of WDRR

without 802.11g delays .. 123

Figure 96. Used time dispersion around expected weight for the case of 54Mbps and tp

real .. 125

Figure 97 Transmitted bytes dispersion around expected weight for the case of 54Mbps

and tp real ... 125

Figure 98. Used time dispersion around expected weight for the case of 54Mbps and tp

theoretical .. 125

Figure 99. Transmitted bytes dispersion around expected weight for the case of 54Mbps

and tp theoretical ... 126

 11

Figure 100. Used time dispersion around expected weight for the case of random data

rate and tp real .. 126

Figure 101. Transmitted bytes dispersion around expected weight for the case of random

data rate and tp real .. 127

Figure 102. Used time dispersion around expected weight for the case of random data

rate and tp theoretical .. 127

Figure 103. Transmitted bytes dispersion around expected weight for the case of random

data rate and tp theoretical .. 128

Figure 104. Time deviation during the simulation time. ... 129

Figure 105. Time deviation with vertical axis in logarithmical scale 129

Figure 106. Transmitted bytes deviation with vertical axis in logarithmical scale. 130

Figure 107. Time deviation with logarithmical vertical axis for the case of Rb random and

fixed generation rate. ... 131

Figure 108. Transmitted bytes deviation with logarithmical vertical axis for the case of Rb

random and fixed generation rate. ... 131

Figure 109. Time deviation with logarithmical vertical axis for the case of Rb random and

Gaussian generation rate. ... 132

Figure 110. Transmitted bytes deviation with logarithmical vertical axis for the case of Rb

random and gaussian generation rate. .. 132

Figure 111. Time deviation with logarithmical vertical axis for the case of Rb random,

fixed generation rate and queue initially full. .. 133

Figure 112. Transmitted bytes deviation with logarithmical vertical axis for the case of Rb

random, fixed generation rate and queue initially full. .. 133

Figure 113. Packets in queue during time .. 136

Figure 114. Packets in queue during time with 802.11g delays compensation 138

Figure 115. Packets in queue during time with 802.11g delays compensation and

probability of error 0.001 .. 138

Figure 116. Packets in queue during time with retransmission and delays compensation.

Retransmission compensation set to 0.9 ... 139

Figure 117. Packets in queue during time with retransmission and delays compensation.

Retransmission compensation set to 0.89 ... 140

Figure 118. Packets in queue during time with retransmission and delays compensation.

Retransmission compensation set to 0.8 ... 140

Figure 119. Packets in queue for fixed generator and multi-data rates in WTP. 142

Figure 120.Traffic generation rate (Gt) using a uniform generator. 143

Figure 121. Packets in queue for the uniform generator simulation............................... 144

Figure 122. Traffic generation rate (Gt) using a Gaussian generator. 145

Figure 123. Packets in queue for the Gaussian generator simulation 146

 12

Figure 124. Traffic generation evolution for tenant 1 in WTP 1 with Gaussian deviation of

15% ... 153

Figure 125. Traffic generation evolution for tenant 2 in WTP 2 with Gaussian deviation of

15% ... 154

Figure 126. Traffic generation evolution for tenant 3 in WTP 2 with Gaussian deviation of

15% ... 154

Figure 127. Traffic generation evolution for tenant 1 in WTP 1 with Gaussian deviation of

40% ... 155

Figure 128. Traffic generation evolution for tenant 2 in WTP 1 with Gaussian deviation of

40% ... 155

Figure 129. Traffic generation evolution for tenant 3 in WTP 1 with Gaussian deviation of

40% ... 155

Figure 130. Weights evolution for the case of deviation of 15% 156

Figure 131. Weights evolution for the case of deviation of 40% 156

Figure 132. Comparison of the weights of tenant 1 when using a deviation of 15% and

40% ... 157

Figure 133. Comparison of the weights of tenant 2 when using a deviation of 15% and

40% ... 157

Figure 134. Comparison of the weights of tenant 3 when using a deviation of 15% and

40% ... 157

Figure 135. Weight evolution and sum of weights with proportional sharing 159

Figure 136. Weight evolution and sum of weights without proportional sharing............. 159

Figure 137. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 20s without proportional sharing. 161

Figure 138. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 20s without proportional sharing. 161

Figure 139. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 1 s

and weights compensation period to 20s without proportional sharing. 161

Figure 140. Overall ViRANsim simulator classes and variables 163

 13

List of Tables

Table 1. Modulation schemes data rates, occurrence probability, cumulated probability

and success probability ... 38

Table 2. 802.11g delays considered ... 44

Table 3. Packet transmission results example .. 46

Table 4. Packet transmission detailed example .. 46

Table 5. Weights compensation exportation file example ... 47

Table 6. Packet lengths and probabilities.. 50

Table 7. Data rate, probability and success probability of each modulation scheme 50

Table 8. Results obtained for RR, DRR and ADRR for the case of fixed 54Mbp without

802.11 g delays and 50%-50% sharing for both tenants. ... 52

Table 9. Time needed to transmit each type of packet .. 53

Table 10. Percentage that represents each packet length over the sum of both lengths . 53

Table 11. Results obtained for DRR and ADRR for the case of fixed 54Mbp without

802.11 g delays and 80%-20% sharing for Tenant 1 and Tenant 2. 54

Table 12. Results obtained for RR, DRR and ADRR for the case of fixed 54Mbp with

802.11 g delays and 50%-50% sharing for both tenants. ... 55

Table 13. Contributions of body and 802.11g signalling to the total packet transmission

time. .. 55

Table 14. BW effective for Tenant 1 and Tenant 2 .. 56

Table 15. Results obtained for DRR and ADRR for the case of fixed 54Mbp with 802.11 g

delays and 80%-20% sharing for Tenants 1 and 2 respectively. 57

Table 16. Results obtained for RR, DRR and ADRR for the case of random MSC with

802.11 g delays and 50%-50% sharing for Tenants 1 and 2. 59

Table 17. Results obtained for DRR and ADRR for the case of random MSC with 802.11

g delays and 80%-20% sharing for Tenants 1 and 2. ... 60

Table 18. Simulation conditions .. 61

Table 19. Simulation conditions for fixed generator .. 66

Table 20. Simulation results with fixed generator and single Rb 66

Table 21. Simulation conditions for uniform generation test .. 68

Table 22. Results from simulator with uniform distribution .. 69

Table 23. Simulation conditions for Gaussian generator ... 70

Table 24. Results from simulator with Gaussian distribution ... 71

Table 25. Simulation Conditions for fixed generator without retransmissions

compensation factor .. 73

Table 26. Results with fixed generator and 10 us as empty queue time with

retransmission compensation factor .. 73

 14

Table 27. Results with fixed generator and 100 us as empty queue time with

retransmission compensation factor .. 73

Table 28. Results with fixed generator and 500 us as empty queue time with

retransmission compensation factor .. 73

Table 29. Simulation conditions for system quantum study ... 75

Table 30. Simulation results from testing different system quantum (Qs) values 75

Table 31 Simulation conditions ... 76

Table 32. Capacity average and deviations for each of the tenants 77

Table 33. Performance of tenants over the whole network for the case of 15% of

Gaussian deviation .. 79

Table 34. Performance of tenants over the whole network for the case of 40% of

Gaussian deviation .. 79

Table 35. Simulation Conditions pulse mode .. 90

Table 36. Traffic generation rates for each tenant and period ... 90

Table 37. Performance results when enabling the weight algorithm 91

Table 38. Performance results when disabling the weight algorithm 91

Table 39 Labour costs of the project ... 93

Table 40. Development tools costs ... 93

Table 41. Modulation schemes data rates, occurence probability, cummulated probability

and success probability ... 100

Table 42. 802.11g delays considered ... 110

Table 43. Scenario functions classification ... 115

Table 44. Packet lengths and probabilities .. 116

Table 45. Data rate, probability and success probability of each modulation scheme ... 116

Table 46. Percentages of average transmitted bytes over the total and dispersion around

0.5 for both Tenants .. 118

Table 47. Simulation conditions .. 124

Table 48. Simulation conditions for fixed generator .. 135

Table 49. Expected traffic generation parameters ... 135

Table 50. Simulation results with fixed generator and single Rb 135

Table 51. Expected traffic generation parameters with compensation of delays 137

Table 52. Simulation results with fixed generator and single Rb and delays compensation.

 .. 137

Table 53. Simulation conditions for multi-data rate test with fixed generator 141

Table 54. Traffic generation rate parameters for multi-data rate simulation 141

Table 55. Simulation results for multi-data rate test with fixed generator....................... 142

 15

Table 56. Simulation conditions for uniform generation test .. 143

Table 57. Results from simulator with uniform distribution .. 144

Table 58. Simulation conditions for Gaussian generator ... 145

Table 59. Results from simulator with Gaussian distribution ... 146

Table 60. Simulation Conditions for fixed generator without retransmissions

compensation factor .. 147

Table 61. Results with fixed generator and 10 us as empty queue time 148

Table 62. Results with fixed generator and 100 us as empty queue time 148

Table 63. Results with fixed generator and 500 us as empty queue time 148

Table 64. Results with fixed generator and 10 us as empty queue time with

retransmission compensation factor .. 149

Table 65. Results with fixed generator and 100 us as empty queue time with

retransmission compensation factor .. 149

Table 66. Results with fixed generator and 500 us as empty queue time with

retransmission compensation factor .. 149

Table 67. Results with Gaussian generator and 10 us as empty queue time 150

Table 68. Results with Gaussian generator and 100 us as empty queue time 151

Table 69. Results with Gaussian generator and 500 us as empty queue time 151

Table 70 Simulation conditions ... 152

Table 71. Capacity average and deviations for each of the tenants 153

Table 72. Performance results for the case of 15% of Gaussian deviation 158

Table 73. Performance of tenants over the whole network for the case of 15% of

Gaussian deviation .. 158

Table 74. Performance results for the case of 40% of Gaussian deviation 158

Table 75. Performance of tenants over the whole network for the case of 40% of

Gaussian deviation .. 158

Table 76. Performance results for the case of proportional sharing 160

Table 77. Performance of tenants over the whole network for the case of proportional

sharing .. 160

Table 78. Performance results without proportional sharing .. 160

Table 79. Performance of tenants over the whole network without proportional sharing160

 16

1. Introduction

Today’s wireless networks challenges include the necessity of being capable of

managing high levels of data traffic and providing a widespread connectivity to users

while being cost effective. In addition to this, the traffic and connectivity demands are

expected to keep growing during the following years. Because of the mentioned reasons,

the traditional network concept based on hardware components (i.e. switches, routers…)

with complex protocols, is evolving to a more flexible and efficient model. This evolution

goes hand in hand with Software Defined Networking (SDN) and Network Function

Virtualization (NFV), two promising technologies that together have the potential to

provide the network with the management and operation required to fulfil the current and

future connectivity demands.

SDN and NFV implementation allow the Radio Access Network (RAN) to share

dynamically the available resources and slice the RAN into different virtual slices. RAN

slicing can be the key to manage the traffic demand in wireless networks, as different

Mobile Virtual Network Operators (MVNO), also called tenants, could provide connectivity

to their users through a common network infrastructure by using the same Access Points

(APs). This would imply a reduction of network expenditures as well as an improvement

in terms of network efficiency, performance and user experience. This way, each tenant

can have its own logically isolated slice of resources with its own desired set of services

and the complete control of them. Slicing a RAN becomes particularly challenging due to

the inherently shared nature of the radio channel and the potential influence that any

transmitter may have on any receiver. In order to guarantee resource isolation between

tenants, a hypervisor must be introduced at the virtualization layer. Usually a fix share

between tenants of the available resources in every AP is assumed.

5G-EmPOWER is a Mobile Network Operating System for SDN and NFV research and

experimentation in heterogeneous mobile networks. The Mobile Communications

Research Group (GRCM) of UPC is developing a project together with CREATE-NET1i

using this platform. GRCM is in charge of the design and implementation of a new

hypervisor that exploits the concept of virtualization and considers a flexible resource

allocation per AP. This new hypervisor, along with a weight compensation algorithm

(explained later on) is focused on the RAN and its main objective is to maintain the

tenants Service Level Agreement (SLA) in a long-term perspective considering all the

APs of the network while satisfying traffic demand fluctuations in the short term in the

individual APs. With this purpose, two novel algorithms are introduced: a new scheduling

algorithm for the hypervisor in the Wi-Fi AP, called Air-Time Deficit Round Robin (ADRR),

and a weight compensation algorithm, capable of maximizing the resource usage of the

different APs of the network while assuring the SLA of the different tenants in a long –

term perspective in the network. The weight compensation algorithm is located in the

controller and together with the new hypervisor can provide the desired network

performance.

Based on the above, it arises the need of a simulator capable of validating and foreseeing

the network performance before the implementation of the new hypervisor and the weight

1 CREATE-NET (Center for REsearch And Telecommunication Experimentation for NETworked communities)

(http://create-net.fbk.eu/) is a research center established in Trento (Italy) since 2003. It is part of the FONDAZIONE
BRUNO KESSLER (FBK), a research non-profit public interest entity.

 17

compensation algorithm in the real-time 5G-EmPOWER testbed. In this Thesis, a

virtualized RAN Slicing simulator, called ViRANsim, that is based on the EmPOWER test-

bed and that contains the hypervisor and the controller simulators has been designed,

implemented and tested. The simulator consists of different Python programmed classes,

which correspond to the different elements defined in the 5G-EmPOWER architecture.

Throughout the implementation of this thesis, both the ADRR and the weight

compensation algorithms have been analysed using the developed simulator, as well as

different parameters related to these algorithms have been studied carefully in order to

set them to the most appropriate values.

This Thesis consists of 6 chapters, including this first introductory chapter, which also

includes the detail of the Thesis’ objectives and a project plan with its deviations.

The second chapter explains the technological context of the Thesis, starting with a

description of the concepts of SDN and NFV. After this, the 5G-EmPOWER architecture

and principle of operation is explained. To conclude the chapter, it has been included an

explanation of the scheduling algorithms in which ADRR is based on: Round Robin (RR)

and Weighted Deficit Round Robin (WDRR).

The third chapter contains the motivation for the ADRR and weight compensation

algorithm as well as a general description of the simulator python classes. Moreover,

there has been explained the exportation of simulation results as well as a justification of

the time management in the simulator.

The fourth chapter contains different case studies performed through the ViRANsim

simulator. The studies have been divided in two groups. The first group considers a

single AP in all the scenarios. The studies performed in this first section are focused in

the evaluation of the convergence of the ADRR algorithm, the comparison with reference

algorithms such as the RR and WDRR and the analysis of the different parameters

related to the ADRR. In addition, the performance of the different traffic generators

created in the simulator is also verified. The second group of studies involve a multi-AP

scenario and is focused on the weight compensation algorithm.

Finally, in the fifth chapter it can be found the cost assessment of the Thesis while in the

sixth chapter the conclusions of the Thesis and a discussion about future development of

the simulator are provided.

1.1. Objectives

The main objectives of the project are the following:

• To design a virtualized RAN slicing simulator, with main target to evaluate the

performance of ADRR and the weight compensation algorithms under different

scenarios.

• To implement the simulator using Python programming language in a modular

style to ease future upgrades.

• To be able to obtain measurable results from the simulations for their later

analysis.

• To study the performance of the ADRR and the weight compensation algorithms

in order to foresee possible issues about them before its implementation in the

 18

real-time 5G-EmPOWER test-bed and contrast the real results with theoretical

ones.

• To compare the ADRR operation with already existing algorithms in the state of

the art.

1.2. Project Plan and deviations

The project has been developed in different phases, as it can be observed in the

following Gantt diagram.

Figure 1. Project plan Gantt diagram

The first phase included the literature review related to the topic of the Thesis and the

study of Click For Routers and Python programming, as they were two language-

programming tools that had to be applied during the project. Moreover a Click manual

was developed, as the APs used in the EmPOWER architecture are programmed using

this language. Initially, the scope of the project was to develop the hypervisor in Click, but

it was finally considered that it would be more convenient to implement the ViRANsim

simulator in Python, so the Click programming has not been applied to the thesis.

The second phase of the thesis consists in designing the main blocks of the simulator

and specifying its requirements. After this, a first approach of the simulator was

implemented focusing in a single WTP scenario. Then, the simulator operation was

validated, readjusting the necessary parameters and algorithms and the first studies were

performed. The main focus of this section was the ADRR algorithm evaluation. This

phase required more time than the expected since it has been required the development

of different traffic generators in the simulator, which were not included in the initial

planning of the Thesis.

In the third phase, the simulator was upgraded to a Multi-WTP scenario, including the

implementation of the weight compensation algorithm. Further validations and studies

regarding the upgrades were performed.

The last phase of the development of the Thesis was the writing of this document.

 19

2. State of the art

This chapter explains the context of this project. It starts with the concepts of Software

Defined Network (SDN) and Network Function Virtualization (NFV). After this, it is

explained the 5G-EmPOWER, the project in which this thesis is based on. Finally, the

explanation of the scheduling algorithms Round Robin (RR) and WDRR (Weighted Deficit

Round Robin) is carried out, as they are the basis of the algorithm implemented in the

thesis.

2.1. Software Defined Networking (SDN)

Traditional networks are built from a large number of network devices like routers,

switches and numerous types of middleboxes with many complex protocols implemented

on them, resulting in a complex and hard to manage network. Operators are responsible

for configuring policies to respond to the huge demand of network events and

applications. Providing the lack of flexibility of the traditional network, operators have to

manually transform the high-level policies into low-level commands to configure each of

their network devices [2].

In this context, Software Defined Networking (SDN) tries to change the limitations of the

current network infrastructures, providing it with more flexibility and promoting its

evolution. SDN is referred to as network architecture defined by the next four features [4]:

• Decoupled control and data planes.

In current networks the control and data plane are tightly coupled inside the

networking devices. In SDN, control functionality is removed from the network

devices, which become simple forwarding devices for data plane.

• Forwarding decisions are flow based.

Instead of forwarding packets individually to a certain destination, SDN proposes

to define flows of packets that fulfil a certain filter with a set of actions. All the

packets in the flow receive identical service policies by the forwarding devices. In

this way, it is possible to unify the behaviour of different types of devices like

routers, switches, firewalls and middleboxes. Flow forwarding provides high

flexibility, only limited by flow tables’ capabilities.

• Control logic moved to SDN controller or Network Operating System (NOS).

The controller or NOS is a software platform that can be run on a server and

provides the essential resources and abstractions to facilitate the programming

and management of forwarding devices. The existence of the controller implies a

logically centralized network view.

• Programmable network.

The network can be programmable through software applications running on top

of NOS, which interacts with the forwarding devices.

 20

Figure 2. SDN architecture. (a) planes, (b) layers and (c) system design architecture

Figure 2 shows a scheme with the principal elements of the SDN architecture. It can be

seen from three different points of view:

a) Forwarding: It allows the forwarding behaviour desired by the network application

while hiding details of the underlying hardware. In this part, it is relevant to

mention OpenFlow [12], which is a standard to exchange information between the

data and control plane.

b) Distribution: SDN applications should have the sensation that the system is not

distributed, making transparent the distributed physical network. This abstraction

needs common distribution layer, which in SDN resides in the SDN controller or

NOS. The controller is the one in charge of installing the control commands on the

forwarding devices and collecting status information from the forwarding layer to

offer a global network view to network applications.

c) Specification: It should be possible that a network application can express the

desired network behaviour without being responsible for implementing that

behaviour itself. It can be achieved by virtualization of solutions as well as network

programming languages.

Notice that in Figure 2 it appears the concept of Hypervisor, which enables distinct virtual

machines to share the same hardware resources, what is known as network slicing. This

concept is quite important for this Thesis.

In terms of wireless networks, different attempts have been made to apply SDN to them.

This is the case of OpenRoads [13] project, which proposes a wireless architecture that is

backwards compatible and where is possible to share the network between different

operators. Moreover, there is Odin [14], which introduces programmability in enterprise

wireless LAN environments and OpenRadio [15], which focuses on deploying a

programmable wireless data plane that provides flexibility at the PHY and MAC layers [2].

 21

2.2. Network Function Virtualization (NFV)

Another important concept related to this Thesis is the so-called Network Function

Virtualization (NFV). NFV takes advantage of the IT2 virtualization and cloud computing

techniques and applies them to telecommunication networks. It virtualizes the networking

functions calling them Virtualized Network Functions (VNF). The concept is to transfer the

functions from dedicated hardware appliances to software-based applications running on

commercial off-the-shelf (COTS) equipment, without affecting the functionality. These

applications are then executed in datacentres, network nodes an end-user premises as

network requires [7].

Figure 3. NFV virtualization concept

The benefits of NFV [7] to the telecommunications industry are the following ones:

• Openness of platforms.

• Scalability and flexibility.

• Operating performance improvement.

• Shorter development cycles.

• Reduced CAPEX and OPEX investments.

The NFV framework is built of the following components, in which NFV is deployed:

• Physical server: it is the machine that has all the physical resources: CPU,

storage and RAM.

• Hypervisor: is the software that enables distinct virtual machines to share the

same hardware resources. It provides the virtual environment on which the guest

virtual machines are executed.

• Guest virtual machine: piece of software that emulates the architecture and

functionalities of a physical platform on which the desired application is executed.

2 IT calls for Information Technology

 22

The virtual machines (VM) can be located in high-volume servers (datacentres, network

nodes or end-user facilities) but also from the cloud using them as an Infrastructure as a

Service (IaaS).

While SDN and NFV are two different technologies, they are complementary to each

other. SDN can serve NFV by providing the programmable connectivity between VNF. A

VNF orchestrator can manage these connections, which is a homologous entity as the

SDN controller. Moreover, NFV can be used by SDN by using NFV network functions in a

software manner on COTSs servers. It can virtualize the SDN controller to run on cloud,

which could be easily migrated depending on the network needs.

NFV can be applied to wireless and mobile networks, improving them in terms of flexibility

and scalability [1]. Furthermore, the deployment of new applications and services will be

quicker and different network functions will be able to share the same resources.

Because of this, NFV can play a fundamental role in the fifth-generation mobile networks.

In this context, the Network-as-a-Service business model can provide operators with new

revenue strategies by slicing the network into services operated by different MVNOs.

Providing this, future wireless and mobile networks will further rely on virtualized

resources and on dynamic service orchestration. However, this implies that NVF also

needs to reach the radio access of the network, which is a challenge in terms of resource

provisioning and logical isolation.

2.3. 5G-EmPOWER

5G-EmPOWER [10] is an open Mobile Network Operating System for SDN and NFV

research and experimentation in heterogeneous mobile networks. It has a flexible

architecture and high-level programming APIs that allow a fast prototyping of novel

services and applications.

The EmPOWER is built upon a single platform that consists of general-purpose hardware

with operating system (Linux) in order to provide three types of virtualized network

resources: the forwarding nodes, the packet processing nodes and the radio processing

nodes.

The EmPOWER architecture can be observed in Figure 4. In EmPOWER, the Wi-Fi

Access Points are called Wireless Termination Points (WTP), the forwarding nodes with

packet processing capabilities are called Click Packet Processors (CPPs) and the virtual

LTE eNodeB(s) are called Virtual Base Stations (VBS). In the platform, the radio access

is treated as a VNF. In order to do so, a Light Virtual Access Point (LVAP) is created for

all wireless clients and runs on the WTPs. The LVAP concept facilitates the handover

mechanism between WTPs.

 23

Figure 4. EmPOWER architecture

Moreover, the platform also supports general purpose VNF named Light Virtual Network

Functions (LVNFs), which are an instance of the Click Modular Router with a particular

configuration.

The main elements in the architecture are described in the following points [5]:

• Controller

It is responsible for the deployment of LVAP/LVNF on the network devices. It

supports multiple virtual networks, also called Tenants, working on top of the

same physical infrastructure. Network apps run on top of the Controller in their

own slice of resources and exploit the controller programming primitives by using

a REST API or a native Python API. The controller ensures that Network Apps are

just presented with a view of the network related to its slice. The main features of

the controller are:

a) Soft State. The persistent information stored in the controller is the clients’

authentication method and the list of network slices currently defined.

LVAP/LVNF is kept using a distributed model and is synchronized when

the WTP connects to the controller. In this way, the network can operate

using the last known state even if the controller becomes unavailable.

b) Modular Architecture. Apart from the login subsystem, all the tasks in the

controller are implemented as plug-in that can be loaded at runtime.

c) Slicing. Multiple logical virtual networks can be instantiated on top of the

controller.

• Wireless Termination Points (WTPs)

The WTPs are the physical devices handling the low-level communication with the

clients. They consist of two components: one OpenvSwitch instance managing

the communication over the wired backhaul and one Click modular router instance

implementing WiFi. Click Modular Router [11] is a software architecture for

building flexible and configurable routers. The main features regarding Click are

the following ones:

▪ Modular architecture: Click architecture is focused on small components,

called elements that are interrelated or linked between them. A set of linked

 24

elements defines a configuration, which allows having control over the

forwarding path.

▪ Declarative language: configurations are based on definitions of elements

and their links. Element classes are written in C++ using an extensive support

library.

▪ Programmability and flexibility: Click language has been designed with low

restrictions so new methods in the way of how elements are programmed

could be invented.

Connection between Click and Controller take place over persistent TCP

connection. The Click instance can run over standard Wi-Fi devices.

Moreover, EmPOWER includes a Software Development Kit (SDK), which is Python-

based, available for application developers. The SDK is specifically tailored for Wi-Fi

technology. The SDK includes the tools to generate network applications and control the

behaviours of the different elements in the system.

The simulator designed in this thesis is based on the 5G-Empower architecture and

operation.

2.4. Scheduling Algorithms

A scheduler is an element that serves packets from different queues (or flows) with a

certain criterion. In this thesis, a new scheduling algorithm has been defined, which is

based on already existing schedulers: Round Robin (RR) [8] and Weighted Deficit Round

Robin (DRR). In this section, both of them are explained.

2.4.1. Round Robin (RR) Scheduler

To start, the packets coming from different flows are stored in different queues. After this,

the scheduler serves the queues in a Round Robin manner. The scheduler defines an

order in which it looks at the queues circularly. Each time it checks a queue, if there are

packets, it just transmits one of them.

Figure 5. Scheduler algorithm

In each round, if all the queues have packets, the same number of packets is sent from

each of the queues. RR achieves fairness when the packets in the queues have the

same size. If not, the number of bytes transmitted from each queue would not be the

same.

 25

Another important fact to comment about the Round Robin Scheduler is that it gives the

same chance to transmit to all the queues. This can be a disadvantage when it is desired

that a certain flow should have more chances to transmit than another.

2.4.2. Weighted Deficit Round Robin (WDRR) Scheduler

An upgrade of the RR scheduler is presented in this section, the Weighted Deficit Round

Robin (WDRR) [8]. This upgrade pursues to provide a fair scheduling algorithm when

there are packets of different sizes in the queue and it is desired to assign weights to

each of the queues. In this way, different resource allocation can be assigned to queues if

required.

For this type of scheduling it is necessary to define the following concepts:

• Deficit Counter (DCi): number of bytes that flow i can transmit when it is its turn.

• System Quantum (Qs): number of total bytes that the scheduler can serve during

a round.

• Weight (wi): proportion from Qs assigned to a certain flow i. It is in parts out of

one.

• Quantum (Qi): number of bytes added to the deficit counter of flow i in each

round. It can be also explained as the amount of credit per round. The Qi can be

computed through equation (1).

𝑄𝑖 = 𝑤𝑖 · 𝑄𝑠 (1)

As in RR, WDRR defines an order to check if there are packets in the different queues or

flows. At the start of each round, it is updated the DC of each flow by adding Qi and each

time the system can transmit a packet it is also reflected in its DC. The following example

explains the operation of this scheduling algorithm.

The starting point consists of defining the weights of each of the flows, the system

quantum (Qs) and the quantum of each of the flows (Qi). In this example, three flows with

the conditions shown in Figure 6 have been considered.

Figure 6. Initial conditions

After this, packets start arriving to the different flow queues. The DCi of each flow is

updated by adding its Qi value. In Figure 7, it is possible to observe the update of the DCi

of each of the flows and the packets in the queue of each flow, which have different

lengths.

 26

Figure 7. Starting point. DCi initialization with Qi value.

After the initialization of the DCi, the scheduler starts with the first flow. It looks at the first

packet in the queue, which has 800 Bytes. As the DCi of flow 1 is greater than the packet

length (1000 Bytes > 800 Bytes), it can be transmitted.

Figure 8. Flow 1 turn. Transmission of first packet

After transmitting the packet, the packet length is deducted from the DCi of the flow, so

the current DCi is 200 Bytes (1000 Bytes – 800 Bytes). After this, it is checked if the

following packet can be transmitted. As the packet length is greater than the DC1, the

packet cannot be transmitted and the scheduler moves to check flow 2. It operates in the

same manner.

Figure 9. Flow 2 turn. Transmission of first packet

Figure 10. Flow 2 turn. Transmission of second packet

As observed in Figure 9 and Figure 10, the scheduler transmits two packets from flow 2

and each time a packet is transmitted, the DC2 value is updated. Then the turn passes to

flow 3, which is not capable of transmitting any packet since its DCi is smaller than the

packet size, as it is also shown in Figure 12.

 27

Figure 11. Flow 3 turn. It does not transmit any packet.

Finally, when the next round starts the values of Qi are added to the DCi and the

scheduler starts again to look at the different flows to transmit packets, if possible. Notice

that, with this algorithm, the residual DCi of a round is taken into account for the following

round. In addition to this, if a certain queue is empty, the DCi is reset.

Figure 12. Start of the following round. Upgrade of the DCi of all flows with Qi

When using WDRR, it is possible to achieve weighted fairness, as it is assigned a

different flow quantum according to the specified weights of different flows. When all the

packets have the same length and the flow quantum Qi is the same for all flows, the

performance would be the same as in RR.

WDRR provides a fair sharing between flows, in terms of transmitted bytes. However,

when sharing the resources by using 802.11 WiFi protocol, it is more convenient to share

the resources in terms of time. In Wireless LAN, the available resources cannot be

shared with respect to the assigned bandwidth (BW), but must be shared in time [16].

This is a challenge has been faced in this Thesis.

 28

3. Project development

In this section, the different aspects studied during the project development will be

explained. As a first step, the system architecture and the thesis motivation will be

presented, in order to be able to analyse later on and in detail the novel Air-Time Deficit

Round Robin (ADRR) scheduling algorithm and the weights compensation algorithm.

Finally, the requirements and an overview of the ViRANsim simulator design will be given.

This ViRANsim simulator contains the hypervisor and the controller simulator.

3.1. System architecture

Before explaining the implemented simulator and the different algorithms designed, it is

important to understand the different elements in our system and how they are related.

The following image shows a map of the whole system and the relation between the

different elements:

Figure 13. Overall system architecture with the different elements

The main elements and their functions are the following ones:

• Tenants: Virtual operators giving a service in the network. Tenants have a SLA

(Service Level Agreement) guaranteed in the network.

 29

• Wireless Termination Points (WTP): The network element that provides client

with wireless connectivity, i.e. an Access Point in IEEE 802.11 terminology. 3

• Controller: Responsible of the management of tenants in the different WTPs of

the network. It also assures that the SLA is accomplished for all tenants in

average in the network.

• User Terminals: They are clients of the different tenants that want to use the

network.

The different elements are interconnected between them. Tenants provide their services

to their users or clients through the different WTPs in the network. The controller

manages the resources associated to each tenant in each WTP in the way that the SLA

is accomplished in average in the network.

3.2. Thesis motivation

In scenarios where several tenants use the same common network infrastructure, a fix

share between them of the available resources in every AP (WTP) is usually assumed,

however traffic demands from the different tenants are not constant. So the aim of this

thesis is to demonstrate the capabilities of a new strategy that exploits the concept of

virtualization and considers a flexible resource allocation per WTP. The introduction of

this new strategy in the controller aims at maintaining the SLA in a long term perspective

and considering all the WTPs of the network, while satisfying traffic demand fluctuations

in the short term in the individual WTPs, to which end a new hypervisor using the ADRR

has been defined. In order to validate the performance of the hypervisor and the

proposed algorithm for the controller with further objective the proper implementation of it

in the 5G-EmPOWER test-bed, a simulator part of the 5G-EmPOWER platform has been

developed.

In order to achieve the above-mentioned simulator, the following system operation is

desired. Initially, the different tenants negotiate the SLA with the controller. The controller

communicates the weights of each of the tenants to each WTP and the system operation

starts. Each WTP, through the hypervisor, shares its radio resources between the

different tenants according to the assigned weights. Every certain period of time, the

controller receives from each WTP the traffic that has been demanded from each of the

tenants during the last period. With this information and taking into account the SLA, the

controller adjust the weights of the tenants in each WTP, trying to optimize the network

resource usage. This information is communicated back to the WTP. In this way, it is

possible to satisfy the traffic demand fluctuation in the short-term while ensuring the SLA

in the long-term perspective.

In order to achieve the operation described above, the ADRR scheduling algorithm is

necessary for the hypervisor located in each WTP to share the resources focusing on the

transmission times. Furthermore, the weights compensation algorithm is required for the

controller to modify the weights assigned to each of the tenants in each WTP in response

of the tenant’s traffic demands while maintaining the SLA in the long-term perspective.

3 EMPOWER WIKI https://github.com/5g-empower/5g-empower.github.io/wiki/Glossary-of-
Terms

https://github.com/5g-empower/5g-empower.github.io/wiki/Glossary-of-Terms
https://github.com/5g-empower/5g-empower.github.io/wiki/Glossary-of-Terms

 30

3.3. ADRR scheduling algorithm

This project’s objective is to create a system capable of sharing the network resources

between different tenants given a Wireless LAN context. As it has already been

mentioned, the sharing of resources in this context is not possible to be performed with

respect to the assigned bandwidth to each of the tenants but it must be shared in terms of

transmission time. This is the main reason why a new scheduling algorithm has been

proposed in the Mobile Communications Research Group (GRCM) of UPC. This

algorithm has been tested through the ViRANsim simulator.

The new scheduling algorithm is called Air-Time Deficit Round Robin (ADRR) and it is

based on the principles of the WDRR. The most important feature of this algorithm is that

it is capable of sharing the resources based on the transmission time, while considering a

given weight for each of the tenants in the system. This algorithm will be used by the

WTP since it is responsible for the management of its tenant’s traffic.

In order to fully understand the algorithm, it is necessary to define some variables: the

system quantum (Qs), which is a system variable that corresponds to the time needed to

transmit the packet of maximum size at the lowest bit rate, and the tenant quantum (Qi),

which is the proportional part of the Qs taking into account the agreed SLA’s weight for

the tenant i (wi). So, the tenant quantum Qi can be computed as in equation(2).

Moreover, each tenant is assigned with a Deficit Counter (DCi), which is the variable that

is actually used for controlling the tenant’s available time for transmitting packets.

𝑄𝑖 = 𝑤𝑖 · 𝑄𝑠 (2)

Figure 14 consists of a scheme describing the ADRR algorithm. Notice that its operation

is really similar to that of the WDRR, however the ADRR instead of considering bytes it

considers time units. When the system starts, the Qs, the Qi and the DCi are initialized.

Notice that the initial value of the DCi is the same as the Qi for all tenants. After initializing

the variables, the first tenant is chosen and it is checked if it has packets in its queue. If

the queue is empty, its DCi is set to 0, as it will not require time to transmit any packets. In

the contrary case, when the queue has packets, the first packet in the queue is selected

and the system computes a theoretical expected value for the packet transmission time

(tp). In the simulator, this expected value (tp) is computed considering the packet length

and a data rate chosen randomly considering the different available data rates

probabilities, which are based on Minstrel [17], a 802.11 rate control algorithm. Then, the

tp time is compared to the DCi of the tenant, and if DCi is greater or equal the theoretical

time, the packet can be transmitted, as the tenant has enough available credit time to

transmit it. After the packet transmission, the DCi is reduced considering equation (3).

𝐷𝐶𝑖 = 𝐷𝐶𝑖 − 𝑡𝑝 (3)

The following step in the algorithm is to check if there are more packets in the queue. If

so, the same procedure is repeated and if not, the next tenant queue is considered for

transmission. In the case that the DCi is smaller than tp, the packet is not transmitted and

the following tenant turn starts. When all the tenants have had the chance to transmit

their packets, a new iteration starts and the DCi is updated for all tenants, according to

equation (4).

 31

𝐷𝐶𝑖 = 𝐷𝐶𝑖 + 𝑄𝑖
(4)

Figure 14. ADRR operation scheme

 32

Notice that with the defined algorithm, the value of the DCi will never be negative. If in a

certain iteration the final DCi is not null, so not all the available time has been utilized, that

time will be used in the following iteration. However, let us notice that the DCi adjustment

was initially designed like in equation (5), using the real packet transmission time (tp,real).

In that case, the DCi could have been negative in the case the tpreal was greater than the

tp, for example due to unexpected retransmissions. Considering this, the DCi in the

following iteration would compensate the extra time used.

𝐷𝐶𝑖 = 𝐷𝐶𝑖 − 𝑡𝑝,𝑟𝑒𝑎𝑙 (5)

The initial design was modified, as in the real hypervisor it is not feasible to use the real

transmission time because of implementation reasons.

Concluding, with the proposed algorithm it is possible to share satisfactorily the time

resource according to the weight specified in each tenant’s SLA. Different studies have

been performed for the analysis of the algorithm, with respect to variations of the value of

the system quantum (Qs), the convergence time, as well as through comparisons with the

RR and WDRR. All these studies can be found in the Studies section of this Thesis.

3.4. Weight compensation algorithm

Our system not only wants to share the resources of the network between different

tenants but also to exploit the network resources, so that the WTP resources utilization is

maximized. That is why we define a weight compensation algorithm, which ensures that

the tenants SLA weights are satisfied in average considering the whole network in a long-

term perspective while satisfying the temporary traffic needs of the tenants in the WTPs.

It is supposed that the tenants respect their SLA, so no more traffic than contracted will

be generated in average over the entire network.

Figure 15 shows an example to justify the need of the weight compensation algorithm. At

the top, it can be observed the initial weights assigned by the controller to each of the

tenants in each WTP and the incoming average traffic demand for each of the tenants in

each WTP.

If no weight compensation algorithm is applied (middle part in the figure), it is not possible

to fulfil the traffic demands in all the WTPs considering the initial allocation of resources.

However, in WTP1 and WTP3 not all the resources are being used, which could be used

to serve the traffic of the two tenants.

In the second case (bottom part of the figure), when a weight compensation algorithm is

used, the WTP resource usage is maximized. In the case of the WTPs where there was

an excess of resources (WTP1 and WTP3), it has been possible to assign more

resources to the other tenant. Although it is not possible to fulfil the traffic demand of

tenant 2 in WTP2 as the traffic demands coming from both tenants is greater than 100%

of the available resources, the global average capacities of both tenants in the network

improve with the use of this weight compensation algorithm.

 33

Figure 15. Weight compensation motivation

It has to be considered that the traffic percentages have to be in average considering the

weight compensation in every certain period. The reason for this is that the weight

compensation algorithm does not pursue to compensate instantaneous traffic peaks but

to optimize the traffic allocation in a mid-term temporary scale.

The controller runs the weight compensation algorithm, since it has vision of the entire

network. The controller can obtain information from the different WTPs and modify the

weights applied in each of them to fulfil the traffic requirements and the SLA, maximizing

the resources utilized.

Considering a network with N WTPs, each one with an average data rate 𝑅𝑏(𝑛)̅̅ ̅̅ ̅̅ ̅̅ , the

global transmission capacity of the network is 𝑅𝑏,𝑔𝑙𝑜𝑏𝑎𝑙(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∑ 𝑅𝑏(𝑛)̅̅ ̅̅ ̅̅ ̅̅𝑁
𝑛=1 .

Each of the S Tenants contracts a certain capacity, so the SLA capacity in parts out of

one considering the requested capacity 𝑅𝑇𝑒𝑛 (𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is formulated in equation (6). It has to

be satisfied that ∑ 𝐶𝑆𝐿𝐴(𝑠)𝑁
𝑛=1 ≤ 1. In the case that a tenant exceeds its CSLA the controller

should notify it to the tenant.

𝐶𝑆𝐿𝐴(𝑠) =
𝑅𝑇𝑒𝑛 (𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑅𝑏,𝑔𝑙𝑜𝑏𝑎𝑙(𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(6)

Considering that, every certain period of time, the average capacity requested to each of

the WTPs by each of the Tenants is measured. The measured capacity in parts out of

 34

one is computed using equation(7), where GTen(s,n) is the generated traffic by tenant s

in WTP n. Notice that Cmeasured is measuring the traffic requested to a WTP during the last

period in relation to the average traffic the WTP can serve.

𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑛, 𝑠) =
𝐺𝑇𝑒𝑛 (𝑠, 𝑛)

𝑅𝑏,(𝑛)̅̅ ̅̅ ̅̅ ̅̅

(7)

It has to be considered that 𝑅𝑏,(𝑛)̅̅ ̅̅ ̅̅ ̅̅ has to be the average effective transmission rate that

the WTP can really support. In the studies of the weight compensation algorithm it is

discussed how to fix this value. In addition, the period in which the Cmeasured is computed

has also been studied. All these studies can be found in the Studies section.

Once the controller has measured the traffic level of each tenant in each WTP, it is

computed the capacity requested by each of the tenants in each WTP using equation

(8). Notice that the ∆𝐶𝑟𝑒𝑞(𝑙, 𝑗) is also in parts out of one and can be positive or negative.

∆𝐶𝑟𝑒𝑞(𝑙, 𝑗) = 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑙, 𝑗) − 𝐶𝑆𝐿𝐴(𝑗) ∀𝑗 ∈ {1, … 𝑆} 𝑎𝑛𝑑 ∀𝑙 ∈ {1 … 𝑁} (8)

Considering the value of ∆𝐶𝑟𝑒𝑞(𝑙, 𝑗), two different situations can result:

a) ∆𝑪𝒓𝒆𝒒(𝒍, 𝒋) ≤ 𝟎. If ∆𝐶𝑟𝑒𝑞(𝑙, 𝑗) is negative, it means that the tenant j in WTP i has not

generated all the capacity it has contracted in its SLA. In this case the weight of

the tenant is 𝑤(𝑙, 𝑗) = ∆𝐶𝑟𝑒𝑞(𝑙, 𝑗) as the WTP can proportionate the requested

capacity.

b) ∆𝑪𝒓𝒆𝒒(𝒍, 𝒋) > 𝟎 . When ∆𝐶𝑟𝑒𝑞(𝑙, 𝑗) is positive, it means that the tenant j has

generated more traffic than the agreed in the SLA in WTP i. When this happens, it

is checked if in WTP i there is capacity that is not being used. This way the

capacity excess of the WTP i is computed through equation (9) .

∆𝐶𝑒𝑥𝑐(𝑙) = 1 − ∑ 𝐶𝑆𝐿𝐴(𝑗) −

𝑆

𝑗=1

∑ {∆𝐶𝑟𝑒𝑞(𝑙, 𝑗)

𝑆

𝑗=1

𝑗→ ∆𝐶𝑟𝑒𝑞(𝑙,𝑗)≤0

 }

(9)

Then, it is checked if ∆𝐶𝑒𝑥𝑐(𝑙) is enough to satisfy all the requested capacity in

WTP i. In order to do so the total requested capacity in the WTP is computed

using equation (10)

∆𝐶𝑠𝑜𝑙(𝑙) ≡ ∑ {∆𝐶𝑟𝑒𝑞(𝑙, 𝑗)

𝑆

𝑗=1

𝑗→ ∆𝐶𝑟𝑒𝑞(𝑙,𝑗)>0

 }

(10)

 Once ∆𝐶𝑒𝑥𝑐(𝑙) and ∆𝐶𝑠𝑜𝑙(𝑙) are computed, two more situations can arise:

 35

• Csol ≤ Cexc. All the required capacity can be assigned to all tenants in the

WTP so the assigned weights for the tenants with ∆𝐶𝑟𝑒𝑞(𝑙, 𝑗) > 0 will be the

ones in equation (11).

𝑤(𝑙, 𝑗) = ∆𝐶𝑟𝑒𝑞(𝑙, 𝑗) (11)

• Csol >Cexc. The excess capacity is not enough to satisfy the requested

capacity in the WTP. In this case the excess of capacity is shared

proportionally through equation(12).

 𝑤(𝑙, 𝑗) = 𝐶𝑆𝐿𝐴(𝑗) + ∆𝐶𝑟𝑒𝑞(𝑙, 𝑗).
∆𝐶𝑒𝑥𝑐

∆𝐶𝑠𝑜𝑙
 ∀𝑗 → ∆𝐶𝑟𝑒𝑞(𝑙, 𝑗) > 0 (12)

Additionally, it has been defined a concept called proportional sharing, which deals with

the cases when the sum of the required capacity is smaller than 1, so not all the capacity

of the WTP is assigned to the tenants. With proportional sharing, the remaining capacity

not assigned to tenants is added proportionally to its SLA according to equation

𝑤(𝑙, 𝑗) ≡ 𝑤(𝑙, 𝑗) + (1 − ∑ 𝑤(𝑙, 𝑖)
𝑠

𝑖=1
) · 𝐶𝑆𝐿𝐴(𝑗) ∀𝑗 ∈ {1, … 𝑆} (13)

3.5. ViRANsim Simulator

This section explains the ViRANsim simulator’s principles of operation, as well as its

implementation details. The purpose of this simulator is to study the operation of the

different algorithms proposed, as well as to be proactive in addressing the issues related

to them before applying them in the real EmPOWER testbed. Firstly, the requirements of

the hypervisor will be listed and then an overview of the different simulator classes will be

explained. For interested readers more details are included in ANNEX 1.

3.5.1. Requirements

Regarding the desired scenario and operability, the ViRANsim simulator has the following

set of requirements:

▪ Python programming. The main part of the EmPOWER test-bed (i.e. the

Controller) is programmed using Python4, so it is convenient that the simulator is

also programmed in this language.

▪ Modular implementation. Giving that the simulator’s purpose is to test the

functionality of the different proposed algorithms, it needs to be easy to upgrade in

order to include new functionalities, but also having the different functionalities as

independent as possible. Because of this a modular implementation is required.

4 Python programming. https://en.wikipedia.org/wiki/Python_(programming_language)

https://en.wikipedia.org/wiki/Python_(programming_language

 36

▪ Object based. Considering the different elements in the system (tenants,

controller, WTPs…) the simpler way to implement the simulator in order to be

configurable is to be object based.

▪ Configurable. Different scenarios may be analysed to check the performance of

the system, so it is necessary that the simulator is easy to configure.

▪ Different scheduling algorithms. Taking into account that our system pretends

to check the performance of ADRR, it is necessary to contrast it with WDRR and

RR. So, the three scheduling algorithms need to be included in the simulator.

▪ Weight compensation algorithm. The simulator has to include the weight

compensation algorithm to test its operation.

▪ Different traffic generators modes. The algorithms may have different

behaviours depending on the traffic from the tenants, so different and configurable

traffic modes need to be included.

▪ Time management. The system needs to be synchronized in order to apply the

algorithms correctly and as close as possible to the reality.

▪ Exportation of results. Data results from simulations need to be provided by the

simulator to evaluate the performance of the algorithms. In addition, data has to

be effectively analysed and managed.

3.5.2. Simulator Classes

The simulator has been programmed using Python programming language, specifically

using the version 3. One important characteristic of the simulator is that it is modular, so

new functionalities can be easily added to the program.

Python is a programming language that lets you develop your programs quickly in a

readable way. It supports multiple programming paradigms, including object-oriented,

imperative, functional programming and procedural styles apart from relying on a wide

standard library.

Taking advantage of the object-oriented features of Python, the following classes have

been created in the simulation, representing different entities of the system:

▪ Channel Model

▪ Tenant General

▪ WTP

▪ Tenant WTP

▪ Controller

▪ Scenario

Notice that the user terminal has not been implemented as only the downlink is used.

Each of the classes are presented In the following sections, while their functions have

been detailed in ANNEX 1. Figure 16 shows a diagram of the different classes created

 37

and their relations between them. Moreover, it is included the scenario script, which is

related to all classes. In ANNEX 3 it is given a detailed scheme of the classes with all its

functions and attributes. Moreover, in ANNEX 4 it is included an example of how to run

the simulator.

Figure 16. Block diagram of the hypervisor simulator with the different classes and scripts

3.5.2.1. Channel Model

The channel model class simulates the effects of a wireless channel when packets are

transmitted from the WTP to the final user’s terminal. It gives a random behaviour to the

packet transmission, giving the possibility of packet retransmissions. As a result, the

channel model allows us to compute the time required to transmit a certain packet.

In order to do so, the algorithm in Figure 17 has been developed. For each packet, the

algorithm randomly selects a modulation scheme for the packet to be transmitted. After

this, it is checked if the packet has been transmitted successfully or not. If so, the

algorithm exits but if not, the algorithm checks how many times the packet has been

retransmitted. If the number of retransmissions is greater than 3, the modulation scheme

is decreased to a more robust modulation scheme (slower one) and then the packet is

retransmitted. If the number of retransmissions is less than 3, the packet is retransmitted

without modifying the modulation scheme. All transmission and retransmission

modulation schemes used during the packet transmission are stored in a list.

 38

Figure 17. Channel Algorithm

For testing, the following modulation schemes had been defined. In addition, these are

the default values used if no others are specified for a simulation.

Index MCS transmission rate MCS probability
MCS cumulated

probability
MCS success probability

1 54 Mbps 0.8 0.8 0.9

2 48 Mbps 0.1 0.9 0.95

3 24 Mbps 0.05 0.95 0.98

4 12 Mbps 0.03 0.98 0.99

5 6 Mbps 0.02 1 0.999

Table 1. Modulation schemes data rates, occurrence probability, cumulated probability and success

probability

3.5.2.2. Tenant General

The concept of tenant in the simulator has been split into two parts: the class Tenant

General and class Tenant WTP. The class Tenant General is the class in which the

global properties of a certain tenant in the system are specified, while the class Tenant

WTP consists of the instance of a certain tenant in a WTP. This has been divided in this

way in order to easily generate and manage the traffic of each of the tenants in each

WTP, but maintaining the entity of the Tenant as a general element in all the system.

 39

As mentioned, the class Tenant General defines a certain virtual operator in the entire

network. This class has been designed in a way that allows that all the Tenants WTP

instances of a certain Tenant General belong to it and can be accessed by it.

3.5.2.3. Tenant WTP

The Tenant_WTP class represents the instance of a certain Tenant_General in a certain

WTP, as it has already been mentioned.

An important variable that belongs to the tenant_WTP is the queue of packets of the

tenant in that WTP, which consists of a FIFO (First In First Out) queue.

The traffic generated by a certain tenant is not generated in the Tenant_General and then

passed to the Tenant_WTP, but instead it is generated in the Tenant_WTP. This decision

was taken for simplicity reasons, as it is easier to manage the queue locally, generating

its traffic and processing their packets in the Tenant_WTP. Considering this, different

traffic generators are included in the class Tenant_WTP. These traffic generators

generate traffic considering the SLA, so in average the traffic generated will not be

greater than the agreed.

The first traffic generator designed (Figure 18) was focused on having a certain amount

of bytes in the queue but had not into account the time synchronization between the

packet generation and the packet transmission. Moreover, for the studies of the different

algorithms, it was convenient to be able to establish a certain traffic generation rate

during the simulation, which is not possible with this first traffic generator.

 40

Figure 18. Initial traffic generator scheme

Considering the disadvantages of the initial proposed traffic generator, it was defined a

new traffic generator, which is time based and works at a fixed traffic rate. For this reason,

this second generator is called fixed generator and its principle of operation is described

in Figure 19.

 41

Figure 19. Fixed traffic generator scheme

A critical issue for the fixed generator is how to select the traffic generation rate. In the

traffic study of the section 4.1.5, different measures that have been carried out in order to

set the rate, are discussed. Through the study developed, it has been possible to

formulate the following equations that allow establishing a traffic generation rate for a

certain tenant, while avoiding the queues to indefinitely increase and use the maximum of

the capacity associated to the tenant. In order to establish the data rate, it is necessary to

compute the capacity of a WTP and then the capacity associated to the tenant in that

WTP.

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃𝑅𝑏𝑖
[𝑏𝑖𝑡𝑠] = 𝑅𝑏𝑖 [𝑏𝑝𝑠] · 𝑄𝑠[𝑠] 𝑓𝑜𝑟 𝑖 𝑖𝑛 1. (14)

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝑘𝑅𝑏𝑖
[𝑏𝑖𝑡𝑠] = 𝑤𝑘 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃𝑅𝑏𝑖

[𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖
 (15)

The capacity of the tenant depends on the capacity of the WTP, the SLA weight of the

tenant and the factors ri, which is used to compensate differences added by 802.11g

delays, and fretx, that compensates the effect of retransmissions. The fretx factor formula

has been fixed through simulations. Both factors are defined as:

 42

𝑟𝑖 =
𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑎𝑦𝑠𝑅𝑏𝑖

[𝑠]

𝑡𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑏𝑖
[𝑠]

(16)

𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖
= 𝑝𝑟𝑒𝑡𝑥𝑟𝑏𝑖

− 0.01
(17)

The capacity is computed for each possible data rate in the WTP. After this, the resultant

capacities are used to compute the traffic generation rate, considering the probabilities

associated to the data rate in which the capacity was initially computed.

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘 =
∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝐾𝑅𝑏𝑖

· 𝑝𝑖 [𝑏𝑖𝑡𝑠]𝑁
𝑖=0

𝑄𝑠[𝑠]
 (18)

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘 =
∑ 𝑤𝑘 · 𝑅𝑏𝑖[𝑏𝑝𝑠] · 𝑄𝑠[𝑠] · 𝑝𝑖 [𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖

𝑁
𝑖=0

𝑄𝑠[𝑠]

= 𝑤𝑘 · ∑ 𝑅𝑏𝑖[𝑏𝑝𝑠] · 𝑝𝑖 [𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖

𝑁

𝑖=0

(19)

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘 = 𝑤𝑘 · 𝑅𝑏𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒
 (20)

The effective data rate in the last equation corresponds to equation (21).

𝑅𝑏𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒
= ∑ 𝑅𝑏𝑖 [𝑏𝑝𝑠] · 𝑝𝑖 · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖

𝑁
𝑖=0 (21)

As one of the requirements of the simulator was to be able to have different traffic

generator modes, it has been designed a uniform traffic generator, and two Gaussian

traffic generators.

The uniform traffic generator has a uniform distribution, which in our case, the

minimum traffic generation rate is 0 Mbps and the maximum generation rate is computed

as in equation (22). This equation considers the maximum data rate that the WTP is

working with and the weight of the tenant. Notice that rRbmax corresponds to the delays

compensation ri at the maximum data rate Rbmax.

𝐺𝑇𝑚𝑎𝑥
[𝑏𝑝𝑠] =

𝑤 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑅𝑏_𝑚𝑎𝑥[𝑏𝑖𝑡𝑠]

𝑄𝑠[𝑠]
=

𝑤 · 𝑅𝑏𝑚𝑎𝑥 · (1 − 𝑟𝑅𝑏𝑚𝑎𝑥) · 𝑆𝑄[𝑠]

𝑄𝑠[𝑠]

= 𝑤 · 𝑅𝑏𝑚𝑎𝑥 · (1 − 𝑟𝑅𝑏𝑚𝑎𝑥) (22)

It is relevant to mention that the retransmission compensation factor is not considered in

the computation of Gtmax as it is computed as a peak value, so when no retransmissions

occur it could happen that the generation rate is the computed without that factor.

Moreover, two Gaussian generators have been designed. For the first Gaussian

generator, the mean of the Gaussian distribution has been set to half Gtmax. Gtmax is

computed in the same way as in the uniform generator. Considering Figure 20, most of

the probability is concentrated into the interval (µ-3σ, µ+3σ). So, it has been truncated the

function making this interval coincide with (0, Gtmax). The standard deviation (σ) and

 43

mean (µ) of our Gaussian distribution are computed in equations (23) and (24)

respectively.

𝜇 =
𝐺𝑡max

2
 (23)

µ − 3σ = 0 → σ =
𝐺𝑡max

6
 (24)

Figure 20. Gaussian distribution

The second Gaussian generator is called shifted Gaussian generator. In this case, the

mean has been shifted according to equation (25) and the standard deviation has been

defined as the 15% of the mean value, although it can be tuneable.

𝜇 = 𝑤𝑡𝑒𝑛𝑎𝑛𝑡 𝑖 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑤𝑡𝑝 (25)

 σ = 15% · 𝜇 (26)

The need of this last Gaussian generator has resulted during the weights algorithm tests,

as it was needed a generator in which sometimes the traffic requested was greater than

the capacity assigned to a tenant.

3.5.2.4. WTP

As it has already been defined previously, the WTP is the element in charge of providing

wireless connectivity to the different tenants’ users. In addition, in the WTP is where the

hypervisor is placed and the scheduling of packets is performed.

The WTP in the simulator is capable of scheduling packets by using the ADRR algorithm

as well as RR and WDRR. These two last algorithms have been included to be able to

compare them with the ADRR operation.

Considering that the WTP is responsible for running the scheduling algorithm, it contains

different variables related to the time spent in each of the iterations, as well as during all

the simulation. Because of this, in this class it has been required to compute different

times: the packet transmission time and the empty queue time, explained below.

For the computation of the packet transmission time, the simulator uses equation (27),

in which the 802.11g delays values shown in Table 2 are considered. It has not been

considered the back-off times in 802.11g as we are just focusing on the downlink so

collision avoidance is not needed. It is important to point out that in equation (27), it is

taken into account the transmission of the MAC data packet and MAC ACK packet like in

Figure 21. This is the reason why the physical layer and signal extension delays are

 44

multiplied by 2. Figure 22 shows the 802.11g frame format, where is possible to identify

the fields of physical layer and signal extension. It has to be considered that the column

physical layer in the table coincides with the preamble plus the signal in Figure 22.

𝑡𝑖𝑚𝑒𝑝𝑎𝑐𝑘𝑒𝑡_𝑡𝑥 = 𝑡𝐷𝐼𝐹𝑆 + 2 · 𝑡𝑝ℎ𝑦𝑙𝑎𝑦𝑒𝑟
+

𝑃𝑎𝑐𝑘𝑒𝑡𝑙𝑒𝑛𝑔𝑡ℎ

𝑅𝑏

+ 2 · 𝑡𝑠𝑖𝑔𝑛𝑎𝑙𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛
 + 𝑡𝑆𝐼𝐹𝑠 +

𝐴𝐶𝐾𝑙𝑒𝑛𝑔𝑡ℎ

𝑅𝑏
 (27)

DIFS(us) Physical layer (us) Signal extension (us) SIFS ACK length (bytes)

28 20 6 10 14

Table 2. 802.11g delays considered

Figure 21. 802.11 error control in radio medium

Figure 22. 802.11g ofdm frame format

As commented, this class considers an empty queue time, which is added to the iteration

time when the queue of a certain tenant is empty. This decision was taken in order to

simulate that when the queue is empty the time keeps running, as well as to consider the

processing time when looking at the queue.

Finally, the WTP class includes some computations required for the weight compensation

algorithm. It includes the computation of the WTP average capacity, which is defined as

the capacity that the WTP can serve, and the excess and solicited capacities in the WTP,

in which the traffic demands of the tenants in that WTP are considered.

The average capacity that a WTP can serve is computed taking into account equations

(28), (29) and (30). The capacity average computation uses the effective data rates

of the WTP (including 802.11g delays), its probabilities and a new compensation factor

fcomp, explained below.

 45

Equation (29) shows how the average time to transmit given a certain data rate Rbi is

computed. Notice that it is an approximation, as it just considers three retransmissions

while the programmed algorithm decreases the data rate if a packet is sent incorrectly

three times, which will have a low probability with the values given. Equation (30)

computes the new compensation factor, needed to avoid long queues. This is caused by

the difference of maximum and minimum data rate allowed in the WTP, as when a low

data rate is used it processes fewer packets, while new packets continue arriving to the

system, which results in an increase of the queue. Therefore, we use the relation of times

of the maximum data rate and the minimum data rate in the system to avoid packets to

be accumulated in the queue.

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑓𝑐𝑜𝑚𝑝 · ∑
𝑃𝑎𝑐𝑘𝑒𝑡𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑣𝑒𝑟𝑎𝑔𝑒

(𝑏𝑦𝑡𝑒𝑠) · 8
𝑏𝑖𝑡𝑠
𝐵𝑦𝑡𝑒

𝑡𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑏𝑖
· 𝑝𝑟𝑜𝑏(𝑅𝑏𝑖)

𝑁−1

𝑖=0

(28)

𝑡𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑏𝑖

= 𝑡𝑝(𝑅𝑏𝑖) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑜𝑘) + 2 · 𝑡𝑝(𝑅𝑏𝑖) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑜𝑘) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑁𝑜𝑘) + 3

· 𝑡𝑝(𝑅𝑏𝑖) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑜𝑘) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑁𝑜𝑘)2
(29)

𝑓𝑐𝑜𝑚𝑝 = 1 − (
𝑡𝑝(𝑀𝐴𝑋 𝑅𝑏, 𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔ℎ𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒)

𝑡𝑝(𝑀𝐼𝑁 𝑅𝑏, 𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔ℎ𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒)
)

(30)

3.5.2.5. Controller

The Controller is the element in charge of managing the different WTPs and assuring the

SLA of the different tenants in the network. The controller has a global vision of all the

elements in the system, being capable of acceding to all the WTPs and the tenants’

information.

In the simulator, the controller has three main responsibilities: creating the instances of

each of the tenants in the WTP, performing the weight compensation algorithm, whose

operation has already been described, and running all the system.

The controller creates the instances of the tenants in the WTP as it controls in which

WTP a certain tenant operates. It might be desired that a certain tenant does not operate

in a part of the network. Moreover, the controller has been chosen to run all the system

functions as it has accessibility to all the elements.

3.5.2.6. Scenario

The scenario is a python script, not a class, which contains different global system

variables and generic functions. It was decided to use a separated script for these

auxiliary functions, so that all the system classes can access them in a shared manner.

Moreover, some of these functions are used for checking the expected values of other

functions in a faster way. This is the case of some traffic generation rate functions.

The different functions included in the scenario can be found in ANNEX 1.

 46

3.5.3. Exportation results files

A relevant requirement for the simulator was the capability of exporting files with the

simulation results to be analysed and checked. To do so, it has been decided to generate

files using the format csv (comma-separated values format), which can be analysed using

excel.

Different exportation files are created during the simulation. Three different types of

exportation files have been designed are the following:

a) Packet transmission results aggregated by iterations. These files contain the

abstract of the data transmitted per iteration 5 for each tenant in each WTP.

In

Table 3 the results of the packets results exportation file during iterations 68 and 69 of

a simulation is shown. For each of the iterations, it is possible to consult the

simulation time reference, the iteration time, the transmitted bytes, the number of

packets transmitted and its type, the packets generated in the iteration and the

packets in the queue.

Table 3. Packet transmission results example

b) Packet transmission results detailed. In this file, it is possible to obtain more

details about the data obtained in the file of packet transmission results

aggregated by iterations. Table 4 depicts in detailed iterations 68 and 69 of the

same simulation as before. Notice that in this case, the details of each packet

transmission are exported: the packet length, the packets in the queue in that

instant, the generated packets in the iteration, the traffic generation rate, the initial

and final DC, the data rate used, and the theoretical and real times.

Table 4. Packet transmission detailed example

c) Weight compensation exportation files. It contains all the information about the

weight compensation algorithm. Table 5 shows an example of the weights

algorithm exportation file. In this file, it is detailed the computed variables Cmeasured,

Creq, Cexc and Csol for each tenant in each WTP for each of the times the weights

are modified.

5 An iteration is defined as the amount of time that a tenant_wtp has the opportunity to transmit, so that it is

checked its DC to see if it is possible to transmit a packet until it is not possible to transmit more packets.

 47

Table 5. Weights compensation exportation file example

3.5.4. Time management

Even though the time management has been commented when explaining the different

classes, it deserves to be explained separately to fully understand its operation.

Provided that in the simulator the packets are not transmitted at a real time, it has been

necessary to simulate the time dimension. The time management is fundamental for

generating traffic, running different WTPs and compensating the weights of the different

WTPs. Two main strategies for the time management were proposed:

a) System clock. This first option consists of creating a general clock in the

controller and defining a certain small period of time that could be passed to the

WTPs for giving them a reference time to operate. The problem of this solution is

that, in our system, it is not possible to interrupt the packet transmission. So, it is

really complex to have an entity controlling all the timers. For this solution, it would

be needed to have time compensation variables to compensate the differences in

the timers and the time period given to WTPs would have been critical.

b) WTP time controlled. In this mode, each WTP has its own time counter. By

defining a simulation time, the WTP will run until each of the WTP timer reaches

the simulation time. Differences in each WTP timers can be produced, as packet

transmissions cannot be stopped. However, these differences are really small.

With this option it is not needed to stop the WTP operation in the middle of

iterations or packet transmissions.

The strategy finally selected is the second one in order to keep the complexity of the

simulator at low levels. The key fact of this option is to count the time spend by each

WTP in each iteration. Thanks to this, it is not just possible to count the total time run in a

WTP, but also to generate traffic according to the time spent in the previous iteration. In

this way, it is possible to manage both the packet generation and transmission.

An important aspect of the synchronization is the parallel operation of the WTPs.

Although tenants in a WTP do not operate at the same time, different WTPs do. So,

different solutions regarding this have been tested:

a) Multiprocessing. An interesting approach is the use of threads through a Python

class called multiprocessing. Thanks to this class, it is possible to run the different

WTPs in parallel, giving them the time they need to run. The main disadvantage of

this solution is that the class multiprocessing does not allow to access the

variables inside the class being run, as it creates its own runnable objects. These

objects’ variables have to be accessed using other complex functions. In other

words, this means that it is not possible to easily access the variables of class

 48

WTP and consequently class Tenant_WTP, which is needed for the weight

algorithm. Giving the complexity that this solution adds to the simulation, its

application has been reconsidered.

Figure 23. Parallelism by using multiprocessing

b) Sequential parallelism. This solution tries to simulate a fictitious parallelism,

running the WTP operation of different WTPs at the same time but sequentially.

Each of the WTPs run the same amount of time and, as the different WTPs do not

interact, the same results than in the multiprocessing solution are found, being

capable of applying the weights compensation algorithm. The simulations with this

solution last longer than with multiprocessing solution, but it allows us to evaluate

the weight compensation algorithm.

Figure 24. Parallelims using sequencial parallelism

Considering the sequential parallelism, the different WTPs run during the defined period

before a weights change and then the weights are modified. Then the WTPs run during

this period as many times until the simulation time is reached. It has to be considered that

the WTPs will run exactly during the period before the weights change, so differences

between WTP timers may occur. However, the differences are extremely small so it can

be considered that they run the same time.

 49

4. Studies

During the development of the ViRANsim simulator, several studies have been performed

in order to evaluate the performance of the simulator and analyze the operation of the

different algorithms implemented. Through the studies, it has been possible to take

important decisions about the implementation of the simulator as well as to foresee

possible behaviors before applying the algorithms in the real EmPOWER testbed.

Figure 25 shows how the different studies performed are organized. In the first block,

there are included the simulations where a single WTP is considered while in the second

block scenarios with multiple WTPs have been analyzed. In addition, the different studies

have been classified depending on the topic they study: the simulator operation, the

ADRR algorithm operation or the weight compensation algorithm performance.

Figure 25. Studies performed

4.1 Single WTP studies

In this section different studies in which a single WTP is considered are presented. In

section 4.1.1 it can be found a convergence study in terms of iterations, while in section

4.1.2 a comparison between the ADRR, WDRR and RR is provided. Moreover, in section

4.1.3 a comparison between the use of the expected or real packet transmission time for

the DC adjustment is analyzed. Regarding the needs of studying the algorithm

convergence focusing on time, an analysis of the simulation results has been developed

in section 4.1.4. In section 4.1.5 the operation of the different traffic generators is tested.

The last two studies consist in the justification of the empty queue time in section 4.1.6

and a brief analysis of the system quantum value determination in 4.1.7.

4.1.1. Iterations Convergence Study

In this first study we focus on the convergence of the algorithm in order to determine the

necessary number of iterations, with main purpose to obtain valid results and minimize

the size of the result simulation files. It is worth of mentioning that this is the first study

 50

performed with the ADRR and it is being considered that the number of iterations is an

input parameter, as it is the initial implementation. This study is also focused to get a first

approach of the behavior of the ADRR and the simulator performance.

It is also important to point out that the DC adjustment in this section is performed by

reducing the real packet transmission time from the DC after the transmission, as in

equation(31).

𝐷𝐶𝑇𝑒𝑛𝑎𝑛𝑡 𝑖 = 𝐷𝐶𝑇𝑒𝑛𝑎𝑛𝑡 𝑖 − 𝑡𝑝𝑟𝑒𝑎𝑙
(31)

The scenario used for the simulations in this section consists in two tenants in one WTP

that share the available resources based on the given weights. The Modulation Coding

Scheme (MCS) and the packet length are chosen randomly, according to their associated

probabilities in Table 6 and Table 7, respectively.

Packet Length (Bytes) Packet probability

1514 0.7

512 0.3

Table 6. Packet lengths and probabilities

MCS transmission rate MCS probability MCS success probability

54 Mbps 0.8 0.9

48 Mbps 0.1 0.95

24 Mbps 0.05 0.98

12 Mbps 0.03 0.99

6 Mbps 0.02 0.999

 Table 7. Data rate, probability and success probability of each modulation scheme

The study has been developed focusing on the ADRR and it has been analyzed for both

cases of using and not using delays from the 802.11g protocol (SIFS, DIFS…) and when

varying the weights associated to the tenants. With this, it has been possible to prove that

the convergence is not affected by these parameters.

In order to determine the minimum number of iterations required to converge, for each of

the cases, different simulations of different number of iterations have been run. For each

of the simulations, the average time and transmitted bytes over all the iterations have

been computed and the percentage over the total time and bytes of both tenants has

been obtained. By doing this, it has been possible to study how both parameters are

shared when using ADRR. As ideally, for both tenants, the percentages of time and bytes

should be equal to its weight, it has been computed the dispersion in relation to specified

weight (i.e. for the case of 50%-50%, the dispersion is computed around 50%). With the

dispersion is possible to evaluate how close to the desired weight is sharing the

scheduler the resources to the different tenants.

In Figure 26, the dispersion when focusing on the time sharing obtained from a simulation

with 50%-50% sharing and considering 802.11g delays is depicted. It can be seen how

after 500 iterations, the dispersion decreases drastically to dispersions of the order of 1E-

4. However, when looking at the bytes sharing in Figure 27, higher dispersion values are

observed.

 51

Figure 26. Time dispersion over 0.5 for different number of iterations. Case considering 802.11g

delays

Figure 27. Transmitted bytes dispersion over 0.5 for different number of iterations. Case considering

802.11g delays

The difference in the dispersion between the two graphs is due to the fact that the ADRR

quantum is set in time units, so it adjusts the time used by each tenant. However, the

algorithm does not limit the number of bytes transmitted directly, but through the time

quantum.

Similar results have been observed when the 802.11g delays are not considered and with

different weight repartition. However, when performing the same simulations but using

the WDRR algorithm, the dispersion was lower for the transmitted bytes sharing than for

the time sharing, as the system quantum is set in bytes. The details of those simulations

can be found in ANNEX 2.

Regarding the dispersion threshold defined at 1E-4, it can be concluded that with more

than 500 iterations it is possible to achieve reliable simulations.

4.1.2. Scheduling algorithms comparison

The simulation results obtained with the ViRANsim simulator with purpose to verify and

study the operation of the employed scheduling algorithms are presented in this section.

The scenario consists in two tenants and one WTP, managed by the controller. The traffic

for the two tenants is generated with a fixed rate of 1Mbps for all simulations. Tenant 1

sends packets of 1514 bytes while Tenant 2 sends packets of 512 bytes.

 52

For each of the studied cases, the results presented correspond to 700 iterations, time

that is sufficient for the algorithm to reach convergence.

4.1.2.1. 54 Mbps without 802.11g delays: Tenant 1 50% - Tenant 2 50%

As a first approach, the transmission rate has been fixed to 54Mbps and the headers in

802.11g have been omitted. Moreover, the transmission error probability has been set to

0. In this case, for the WDRR and ADRR the weights of each tenant have been set to

50%.

Table 8 depicts the results for 700 iterations. The first three columns show the total of

time in microseconds, the transmitted bytes and the number of packets transmitted,

respectively. The fourth column is the computation of the bandwidth, which can be

understood as the effective data rate associated to a tenant in a WTP. This is computed

according to the equation (32) and it is the throughput that the tenant perceives when it

is its turn in the scheduling algorithm.

𝐵𝑊 =
𝑇𝑥𝑏𝑦𝑡𝑒𝑠 · 8 𝑏𝑖𝑡𝑠

𝑇𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒(𝑠)
 [

𝑏𝑖𝑡𝑠

𝑠
] (32)

Moreover, the fourth last columns compute the percentage of time used, the bytes

transmitted, the number of packets transmitted and the bandwidth of each tenant over the

total obtained by both tenants of each corresponding parameter. The following

expression shows how the percentage of time has been computed. The rest of the

percentages have been computed in a similar way.

%𝑇𝑖𝑚𝑒𝑇𝑒𝑛𝑎𝑛𝑡 1 =
𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒𝑇𝑒𝑛𝑎𝑛𝑡 1

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒𝑇𝑒𝑛𝑎𝑛𝑡 1 + 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒𝑇𝑒𝑛𝑎𝑛𝑡 2

 (33)

%𝑇𝑖𝑚𝑒𝑇𝑒𝑛𝑎𝑛𝑡 2 =
𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒𝑇𝑒𝑛𝑎𝑛𝑡 2

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒𝑇𝑒𝑛𝑎𝑛𝑡 1 + 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒𝑇𝑒𝑛𝑎𝑛𝑡 2

 (34)

RR Total time (us) Tx bytes Packet Tx BW (bps) %Time %Bytes %Tx Packets %BW

Tenant 1 158407.41 1059800 700 53522749.59 0.74403 0.7473 0.5000 0.50429

Tenant 2 54496.30 358400 700 52612749.76 0.25597 0.2527 0.5000 0.49571

WDRR Total time (us) Tx bytes Packet Tx BW (bps) %Time %Bytes %Tx Packets %BW

Tenant 1 78503.70 529900 350 54000000.00 0.50023 0.5002 0.2529 0.5000

Tenant 2 78430.81 529408 1034 54000000.00 0.49977 0.4998 0.7471 0.5000

ADRR Total time (us) Tx bytes Packet Tx BW (bps) %Time %Bytes %Tx Packets %BW

Tenant 1 78728.00 531414 351 54000000.00 0.49998 0.49998 0.2527 0.5000

Tenant 2 78734.22 531456 1038 54000000.00 0.50002 0.50002 0.7473 0.5000

Table 8. Results obtained for RR, DRR and ADRR for the case of fixed 54Mbp without 802.11 g delays

and 50%-50% sharing for both tenants.

In order to correctly understand the results obtained, it is necessary to know the time

required to send each of the packet types, when no headers are considered. This is

shown in Table 9.

 53

 Packet length (Bytes) Time to transmit a packet (us)

Tenant 1 1514 224.3

Tenant 2 512 75.85

Table 9. Time needed to transmit each type of packet

In the case of Round Robin (RR), in each step, each tenant will send one packet if there

is one in its queue. As the simulation consists of 700 iterations, the total number of

packets transmitted by each tenant is 700 packets. Moreover, if we look at the

percentage of time and bytes transmitted by each tenant, it can be observed the relation

between the packet lengths of each tenant in Table 10.

 Packet Length (Bytes) % Packet Length

Tenant 1 1514 0.747285291

Tenant 2 512 0.252714709

Table 10. Percentage that represents each packet length over the sum of both lengths

In the case of the percentage of time, in order to send a packet of 1514 bytes, it will take

the 74,7% of the time and to send a packet of 512 it will take the 25,27% of the time since

in RR each tenant sends one packet at each iteration and retransmissions are not

considered in this first simulation. For the same reason, the percentage of transmitted

packets follows the same relation, as Tenant 1 will transmit the same number of packets

as Tenant 2 but with its associated lengths.

In the case of the Weighted Deficit Round Robin (WDRR), the weights for both tenants

are 50%, and the system quantum is set to 1514 bytes, so each tenant can transmit up to

757 bytes (1514 bytes ·50%) per iteration. In the simulation results, it is shown how the

percentage of time and bytes used by each tenant is set as desired (50-50%). The

reason why the time used by each of the tenants is the same, is that both have to send

the same amount of bytes and both transmit at the same rate (54Mbps) even though the

packets of each tenant have different sizes. However, the percentage of packets

transmitted is the inverse of the packet relation, shown before. This is because Tenant 1,

which sends packets of 1514 bytes, has 714 bytes to transmit in each iteration, so it will

transmit fewer packets than Tenant 2, which sends packets of 512 bytes, but both will

transmit the same amount of bytes.

As already explained, Air Time Deficit Round Robin (ADRR) works like WDRR but the

quantum is set in units of time. In this case, the system quantum is set to 225us.

Considering that each tenant has a weight of 50%, each of them will have 112,5us to

send its packets. The selected system quantum assures the transmission of the larger

packet (1514 bytes) at a data rate of 54Mbps. Equation (35) computes the minimum

required system quantum for this system.

𝑄𝑆 =
1514 𝑏𝑦𝑡𝑒𝑠 · 8

𝑏𝑖𝑡𝑠
𝑏𝑦𝑡𝑒

54 𝑀𝑏𝑝𝑠
= 224.29 𝜇𝑠 ~225 𝜇𝑠 (35)

The number of packets transmitted in each of the iterations in ADRR depends on the

system quantum, which is set to 225us (112,5us for each tenant). Considering the times

to transmit packets of 1514 bytes and 512 bytes, the number of packets expected to be

send in an iteration of each of the lengths is the following one, which is the same as

obtained through simulation.

 54

𝑛𝑢𝑚𝑏𝑒𝑟𝑝𝑎𝑐𝑘𝑒𝑡𝑠(𝑝𝑎𝑐𝑘𝑒𝑡 1514 𝑏𝑦𝑡𝑒𝑠) =
112.5 𝑢𝑠

224.3 𝑢𝑠
= 0.5015

𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
→ 700 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ~351 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 (36)

𝑛𝑢𝑚𝑏𝑒𝑟𝑝𝑎𝑐𝑘𝑒𝑡𝑠(𝑝𝑎𝑐𝑘𝑒𝑡 512 𝑏𝑦𝑡𝑒𝑠) =
112.5 𝑢𝑠

75.85 𝑢𝑠
= 1.48

𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
→ 700 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ~1038 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 (37)

4.1.2.2. 54 Mbps without 802.11g delays: Tenant 1 80% - Tenant 2 20%

 In this case, for WDRR and ADRR, the weight of tenant 1 has been set to 80% and

tenant 2 to 20%.

Table 11. Results obtained for DRR and ADRR for the case of fixed 54Mbp without 802.11 g delays

and 80%-20% sharing for Tenant 1 and Tenant 2.

This case has not been applied to RR, as there is no possibility to apply weights to the

different tenants. For WDRR and ADRR, the weights of each tenant are shown in the

percentages of time and bytes. However, the percentage of transmitted packets does not

follow the relation between packet sizes as before. This percentage can be obtained as

follows (example with WDRR) considering a system quantum of 1514 bytes. Equations

(38), (39) and (40) compute the parameters for tenant 1, while equations (41), (42)

and (43) for tenant 2.

𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝑡𝑒𝑛𝑎𝑛𝑡1 = 1514 𝑏𝑦𝑡𝑒𝑠 · 80% = 1211.2 𝑏𝑦𝑡𝑒𝑠 (38)

𝑛𝑢𝑚𝑏𝑒𝑟𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑡𝑒𝑛𝑎𝑛𝑡1
= 1211.2 𝑏𝑦𝑡𝑒𝑠 ·

1 𝑝𝑎𝑐𝑘𝑒𝑡

1514 𝑏𝑦𝑡𝑒𝑠
= 0.8

𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (39)

% 𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑡𝑒𝑛𝑎𝑛𝑡1 =
0.8

0.8 + 0.59
· 100 = 57% (40)

𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝑡𝑒𝑛𝑎𝑛𝑡2 = 1514 𝑏𝑦𝑡𝑒𝑠 · 20% = 302.8 𝑏𝑦𝑡𝑒𝑠 (41)

𝑛𝑢𝑚𝑏𝑒𝑟𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑡𝑒𝑛𝑎𝑛𝑡2
= 302.8 𝑏𝑦𝑡𝑒𝑠 ·

1 𝑝𝑎𝑐𝑘𝑒𝑡

512 𝑏𝑦𝑡𝑒𝑠
= 0.59

𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (42)

% 𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑡𝑒𝑛𝑎𝑛𝑡2 =
0.59

0.8 + 0.59
· 100 = 42% (43)

WDRR Total time (us) Tx bytes Packet Tx BW (bps) %Time %Bytes %Tx Packets %BW

Tenant 1 165754.96 1118846 739 54000000 0.8001 0.8001 0.5751 0.5000

Tenant 2 41415.11 279552 546 54000000 0.1999 0.1999 0.4249 0.5000

ADRR Total time (us) Tx bytes Packet Tx BW (bps) %Time %Bytes %Tx Packets %BW

Tenant 1 125830.22 849354 561 54000000 0.7999 0.7999 0.5748 0.5000

Tenant 2 31478.52 212480 415 54000000 0.2001 0.2001 0.4252 0.5000

 55

In this way, it can be justified the percentages observed in the simulation results.

4.1.2.3. 54 Mbps with 802.11g delays: Tenant 1 50% - Tenant 2 50%

As a second approach, the transmission rate has been fixed to 54Mbps and the header

times in 802.11g have been considered. Moreover, the transmission error probability has

been set to 0. In this case, for the WDRR and ADRR the weights of each tenant have

been set to 50%.

RR Total time (us) Tx bytes Packet Tx BW (bps) %Time %Bytes %Tx Packets %BW

Tenant 1 221459.26 1059800 700 38284242.57 0.6533 0.7473 0.5000 0.6108

Tenant 2 117548.15 358400 700 24391707.10 0.3467 0.2527 0.5000 0.3892

WDRR Total time (us) Tx bytes Packet Tx BW (bps) %Time %Bytes %Tx Packets %BW

Tenant 1 110729.63 529900 350 38284242.57 0.3894 0.5002 0.2529 0.6108

Tenant 2 173635.41 529408 1034 24391707.10 0.6106 0.4998 0.7471 0.3892

ADRR Total time (us) Tx bytes Packet Tx BW (bps) %Time %Bytes %Tx Packets %BW

Tenant 1 111995.11 535956 354 38284242.57 0.5003 0.6112 0.3471 0.6108

Tenant 2 111838.67 340992 666 24391707.10 0.4997 0.3888 0.6529 0.3892

Table 12. Results obtained for RR, DRR and ADRR for the case of fixed 54Mbp with 802.11 g delays

and 50%-50% sharing for both tenants.

The headers added by 802.11g affect to the final performance, since for each packet

transmission they add 92.07us. Equation (27) shows how the packet transmission time

is computed and Table 2 contains the values of the 802.11g delays considered in this

study. In this section, we will see how these headers impact to the different algorithms.

In the case of RR, the percentage of transmitted packets is preserved, as in each of the

iterations each tenant sends one packet. The main difference we find in comparison to

Table 8 is in the bandwidth and time percentages, which is caused by the addition of the

headers. The following table shows the contribution of the 802.11g signaling and data to

the total packet transmission time, which explains the results in terms of time percentage

obtained in the simulation:

Packet
length

(Bytes)

Total Packet
Transmission

(us)

Signalling
Time

(us)

Body
Time
(us)

%
Signalling/Packet

transmission

% Body / Total
Packet

Transmission

Tenant 1 1514 316.37 92.07 224.3 0.2910 0.709

Tenant 2 512 167.92 92.07 75.85 0.5483 0.4517

Table 13. Contributions of body and 802.11g signalling to the total packet transmission time.

In order to justify the percentage of time obtained in Table 12, equations (44) and (45)

compute the relation between the total packet transmission times for each of the tenants.

%𝑇𝑖𝑚𝑒𝑇𝑒𝑛𝑎𝑛𝑡 1 =
316.37𝑢𝑠

316.37𝑢𝑠 + 167.92𝑢𝑠
= 0.6533 (44)

%𝑇𝑖𝑚𝑒𝑇𝑒𝑛𝑎𝑛𝑡 1 =
167.92𝑢𝑠

316.37𝑢𝑠 + 167.92𝑢𝑠
= 0.3467 (45)

Moreover, the percentage of bandwidth or effective data rate was expected to be equal

for both tenants, but they are not. This occurs since in order to transmit a packet of 1514

 56

bytes, the headers have less weight in front of the body of the message than when

sending a packet of 512 bytes. In this way, the bandwidth is greater when transmitting

packets of 1514 bytes than when a short 512 bytes packet is sent. This can be proven

with the following equation:

𝑅𝑏𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 ∗ %𝑡𝑖𝑚𝑒𝑏𝑜𝑑𝑦 = 𝑅𝑏𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 (46)

The results obtained using the previous equation and the percentages obtained in Table

13 are written in Table 14.

 BW theoretical (bps) % Body BW effective (bps)

Tenant 1 54000000 0.7090 38286000

Tenant 2 54000000 0.4517 24391800

Table 14. BW effective for Tenant 1 and Tenant 2

Taking the effective BW obtained, it is possible to prove the percentage of BW in Table

12, which represents the contribution of each tenant to the total effective bandwidth to

users.

%𝐵𝑊𝑇𝑒𝑛𝑎𝑛𝑡 1 =
38286000 bps

38286000 bps + 24391800 bps
= 0.3873 (47)

%𝐵𝑊𝑇𝑒𝑛𝑎𝑛𝑡 2 =
24391800 bps

38286000 bps + 24391800 bps
= 0.6127 (48)

Because of this, the bandwidth or effective data rate has decreased considerably when

considering the headers for the three algorithms.

For WDRR, the results show that the algorithm preserves the desired weight (50% each

tenant) in the number of transmitted bytes while the percentage of time is the same as

the bandwidth percentage but inverted. This is because in WDRR the bytes to be sent

are fixed so the additional header time will be less when transmitting larger packets.

For ADRR what is preserved is the percentage of time (50%) but the percentage of

transmitted bytes and bandwidth are equally affected as in the previous algorithms. The

percentage of time can be justified also by the body percentage used in RR, although

applied to the number of packets to be sent in each of the iterations. For this case, the

minimum required system quantum has been computed considering the 802.11g delays

as in equation (49), where the time to transmit the larger packet using the lowest data

rate is taken into account.

𝑄𝑠 =
1514 𝑏𝑦𝑡𝑒𝑠 · 8

𝑏𝑖𝑡𝑠
𝑏𝑦𝑡𝑒

54 𝑀𝑏𝑝𝑠
+ 92.07𝑢𝑠 = 316.37 𝜇𝑠 ~320 𝜇𝑠 (49)

Considering the computed system quantum and that both tenants share the time equally,

each tenant has a quantum of 160us. The number of packets sent in each iteration can

be computed as in equations (50) and (51).

𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝑇𝑒𝑛𝑎𝑛𝑡 1(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) = 160𝑢𝑠 ·
1 𝑝𝑎𝑐𝑘𝑒𝑡

316.37 𝑢𝑠
= 0.5057

packets

iteration
 (50)

 57

𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝑇𝑒𝑛𝑎𝑛𝑡 2(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) = 160𝑢𝑠 ·
1 𝑝𝑎𝑐𝑘𝑒𝑡

167.92 𝑢𝑠
= 0.9528

packets

iteration
 (51)

From these values, it is possible to compute the percentage of packets transmitted

obtained in Table 12, which represents the contribution of each tenant to the total of

packets transmitted in the system.

%𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑𝑇𝑒𝑛𝑎𝑛𝑡 1 =
0.5057 packets

0.5057 packets + 0.9528 packets
= 0.347 (52)

%𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑𝑇𝑒𝑛𝑎𝑛𝑡 2 =
0.9528 packets

0.5057 packets + 0.9528 packets
= 0.653 (53)

It is worth to point out that even having into account the 802.11g delay times, RR adjusts

well the percentage of number of packets transmitted to the initially specified weights,

while WDRR adjusts the number of transmitted bytes and ADRR adjusts the time to

transmit all the packets.

4.1.2.4. 54 Mbps with 802.11g delays: Tenant 1 80% - Tenant 2 20%

In this case, for WDRR and ADRR the weight of Tenant 1 has been set to 80% and

Tenant 2 to 20%. 802.11g delays have been taken into account.

WDRR Total time (us) Tx bytes Packet Tx BW (bps) %Time %Bytes %Tx Packets %BW

Tenant 1 177167.41 847840 560 38284242.6 0.7187 0.8004 0.5755 0.6108

Tenant 2 69353.41 211456 413 24391707.1 0.2813 0.1996 0.4245 0.3892

ADRR Total time (us) Tx bytes Packet Tx BW (bps) %Time %Bytes %Tx Packets %BW

Tenant 1 179065.63 856924 566 38284242.6 0.8004 0.8629 0.6803 0.6108

Tenant 2 44668.30 136192 266 24391707.1 0.1996 0.1371 0.3197 0.3892

Table 15. Results obtained for DRR and ADRR for the case of fixed 54Mbp with 802.11 g delays and

80%-20% sharing for Tenants 1 and 2 respectively.

As shown before, WDRR and ADRR adjust the desired weights in terms of percentage of

transmitted bytes and time, respectively. The effective BW follows the same reasoning as

in the previous case.

For WDRR, the percentage of transmitted packets follows the same tendency as in the

case without headers, but the relation between the times is quite different. It is shown as

follows (considering that the system quantum is 1514 bytes):

𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝑇𝑒𝑛𝑎𝑛𝑡 1 = 1514 · 0.8 = 1211,2 𝑏𝑦𝑡𝑒𝑠 (54)

𝑇𝑖𝑚𝑒𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑛𝑎𝑛𝑡1
= 1211,2 𝑏𝑦𝑡𝑒𝑠 ·

1 𝑝𝑎𝑐𝑘𝑒𝑡

1514 𝑏𝑦𝑡𝑒𝑠
·

316.37 𝜇𝑠

1 𝑝𝑎𝑐𝑘𝑒𝑡
= 253,096𝜇𝑠 (55)

𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝑇𝑒𝑛𝑎𝑛𝑡 2 = 1514 · 0.2 = 302,8 𝑏𝑦𝑡𝑒𝑠 (56)

 58

𝑇𝑖𝑚𝑒𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑛𝑎𝑛𝑡 2
= 302,8 𝑏𝑦𝑡𝑒𝑠 ·

1 𝑝𝑎𝑐𝑘𝑒𝑡

512 𝑏𝑦𝑡𝑒𝑠
·

167.92 𝜇𝑠

1 𝑝𝑎𝑐𝑘𝑒𝑡
= 99.31 𝜇𝑠 (57)

From the iteration times obtained through the previous expressions, it is possible to justify

the contribution of each tenant to the total simulation time:

%𝑇𝑖𝑚𝑒𝑇𝑒𝑛𝑎𝑛𝑡 1 =
253.096 𝜇𝑠

253.96 𝜇𝑠 + 99.31 𝜇𝑠
= 0.718 (58)

%𝑇𝑖𝑚𝑒𝑇𝑒𝑛𝑎𝑛𝑡 1 =
99.31 𝜇𝑠 𝜇𝑠

253.96 𝜇𝑠 + 99.31 𝜇𝑠
= 0.282 (59)

For ADRR, the percentage of transmitted bytes follows the same tendency as in the case

without headers but, in this case, the affected parameter is the relation of transmitted

packets as it can be similarly shown in the case of WDRR:

𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑛𝑎𝑛𝑡 1
= 320 𝜇𝑠 · 0.8 ·

1 𝑝𝑎𝑐𝑘𝑒𝑡

316.37 𝜇𝑠
= 0.8092

𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (60)

𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑒𝑛𝑎𝑛𝑡 2
= 320 𝜇𝑠 · 0.2 ·

1 𝑝𝑎𝑐𝑘𝑒𝑡

167.92 𝜇𝑠
= 0.3811

𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (61)

With these values, it is possible to compute the contribution of each tenant to the total of

packets transmitted during the simulation.

%𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑𝑇𝑒𝑛𝑎𝑛𝑡 1 =
0.8092 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

0.8092 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 + 0.3811 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
= 0.68 (62)

%𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑𝑇𝑒𝑛𝑎𝑛𝑡 2 =
0.3811 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

0.8092 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 + 0.3811 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
= 0.32 (63)

4.1.2.5. Random Rb with 802.11g delays: Tenant 1 50% - Tenant 2 50%

As a third approach, the transmission rate is chosen randomly and the 802.11g delay

times have been considered. In addition, the transmission error probability depends on

the modulation scheme used (data rate chosen), which allows packet retransmissions. In

this case, for WDRR and ADRR the weights of each tenant have been set to 50%. The

modulation schemes used and its probabilities are the same as specified in Table 7.

It is important to point out that in this simulation we consider retransmissions. Table 16

show the results obtained through simulation.

 59

Table 16. Results obtained for RR, DRR and ADRR for the case of random MSC with 802.11 g delays

and 50%-50% sharing for Tenants 1 and 2.

The results are similar to the ones obtained in Table 12. When comparing, it is easy to

notice that there is a clear decrease of the effective bandwidth. This is because different

modulation schemes are used. Moreover, it can be observed a difference in the

percentages of transmitted packets that is due to retransmissions. However, in this case

it can be seen again that RR adjusts the sharing specified percentages (50%-50%) for

the transmitted packets (%Tx packets), WDRR adjusts the number of transmitted bytes

(%Bytes) and ADRR adjusts the time (%Time).

Since in this case retransmissions are possible, it is also presented the number of

retransmissions occurred during the simulation, the percentage of retransmissions of

each tenant over the total of retransmissions of both tenants and the relation between the

number of retransmitted packets over the total of packets transmitted. It is shown that for

the three algorithms, the number of retransmissions is around the 10% of the packet

transmission, which makes sense, as the most probable modulation scheme is the one

operating at 54Mbps and its success probability is 90%. Moreover, the percentage of

retransmissions of each tenant over the total of retransmissions during the simulation is

similar to the percentage of transmitted packets, as when more packets are transmitted

more retransmissions will occur.

In this case, the system quantum used for the ADRR has been set to 340us and it has

been computed having into account the average data rate and the maximum packet

length. The average data rate is 49.68Mbps and it has been calculated from the data in

Table 7 using equation (64).

𝑅𝑏,𝑎𝑣𝑔 = 𝑅𝑏1 ∗ 𝑝54 + 𝑅𝑏2 ∗ 𝑝48 + 𝑅𝑏3 ∗ 𝑝24 + 𝑅𝑏4 ∗ 𝑝12 + 𝑅𝑏5 ∗ 𝑝6 (64)

The system quantum has been computed with equation (65), where it has been

considered the data rate average in the denominator.

𝑄𝑠 =
1514 𝑏𝑦𝑡𝑒𝑠 · 8

𝑏𝑖𝑡𝑠
𝑏𝑦𝑡𝑒

49.68 𝑀𝑏𝑝𝑠
+ 92.25 𝜇𝑠 = 336.05 𝜇𝑠 ~340 𝜇𝑠 (65)

Notice that, in this case, the delay times considered also uses the data rate average for

the transmission of the ACK packet, so it is a slightly greater than the one considered in

the previous section.

RR
Total time

(us)
Tx

bytes
Packet

Tx
BW (bps) Retx % Time % Bytes

% Tx
packets

% BW
%

Retx
Retx/

Packet Tx

Tenant 1 287148.44 1059800 700 29526191.6407 58 0.66206 0.7473 0.5000 0.6015 0.4531 0.0829

Tenant 2 146573.30 358400 700 19561544.1042 70 0.33794 0.2527 0.5000 0.3985 0.5469 0.1000

DRR
Total time

(us)
Tx

bytes
Packet

Tx
BW (bps) Retx % Time % Bytes

% Tx
packets

% BW
%

Retx
Retx/

Packet Tx

Tenant 1 153255.48 529900 350 27661000.8270 27 0.41303 0.5002 0.2529 0.5872 0.2500 0.0771

Tenant 2 217794.11 529408 1034 19446182.3527 81 0.58697 0.4998 0.7471 0.4128 0.7500 0.0783

ADRR
Total time

(us)
Tx

bytes
Packet

Tx
BW (bps) Retx % Time % Bytes

% Tx
packets

% BW
%

Retx
Retx/

Packet Tx

Tenant 1 118721.63 393640 260 26525242.3659 26 0.49958 0.5734 0.3125 0.5738 0.3171 0.1000

Tenant 2 118919.19 292864 572 19701715.8867 56 0.50042 0.4266 0.6875 0.4262 0.6829 0.0979

 60

We can conclude that the best scheduling algorithm to share resources in time (as it

happens in Wi-Fi devices) is the proposed novel algorithm ADRR.

4.1.2.6. Random Rb with 802.11g delays: Tenant 1 80% - Tenant 2 20%

In this case, for WDRR and ADRR the weight of Tenant 1 has been set to 80% and

Tenant 2 to 20%. 802.11g headers are taken into account and the data rate is chosen

randomly.

WDRR
Total time

(us)
Tx

bytes
Packet

Tx
BW (bps) Retx % Time % Bytes

% Tx
packets

% BW %Retx
Retx/

Packet Tx

Tenant 1 351913.30 847840 560 19273838.390 54 0.6716 0.80038 0.5755 0.6622 0.5567 0.0964

Tenant 2 172084.74 211456 413 9830319.601 43 0.3284 0.19962 0.4245 0.3378 0.4433 0.1041

ADRR
Total time

(us)
Tx

bytes
Packet

Tx
BW (bps) Retx % Time % Bytes

% Tx
packets

% BW %Retx
Retx/

Packet Tx

Tenant 1 1115995.48 2688864 1776 19275088.795 180 0.7996 0.88761 0.7276 0.6644 0.6923 0.1014

Tenant 2 279754.81 340480 665 9736525.900 80 0.2004 0.11239 0.2724 0.3356 0.3077 0.1203

Table 17. Results obtained for DRR and ADRR for the case of random MSC with 802.11 g delays and

80%-20% sharing for Tenants 1 and 2.

Once again, the results are really similar to the case with fixed MSC in Table 15, but with

lower bandwidth. The results related to retransmissions follow the same tendency as in

the previous case (50%-50%).

4.1.3. Deficit counter adjustment: theoretical vs real packet time.

In this study, it is discussed the difference between adjusting the deficit counter (DC)

using the real time in which packets are transmitted or using a theoretical time in the

ADRR algorithm.

The first approach of the ADRR algorithm for the simulator assumed that the DC was

reduced using the real time in which the packet was transmitted, as in equation (66). In

this way, the exact time that the tenant had spent transmitting the packet was taken into

account, considering the data rate in which it was transmitted and the retransmissions.

𝐷𝐶𝑇𝑒𝑛𝑎𝑛𝑡 𝑖 = 𝐷𝐶𝑇𝑒𝑛𝑎𝑛𝑡 𝑖 − 𝑡𝑝𝑟𝑒𝑎𝑙
(66)

Although this solution is the fairer, when thinking of the real implementation of the

hypervisor it is not a feasible option. The reason of this is that in the real hypervisor

computing the real time in which a packet is transmitted involves having to read the ACK

packets. This would increase the complexity of the algorithm, introducing latency to the

system when serving packets. Because of this, it was decided to change the initial

assumption and use the initial expected time as in equation (67).

𝐷𝐶𝑇𝑒𝑛𝑎𝑛𝑡 𝑖 = 𝐷𝐶𝑇𝑒𝑛𝑎𝑛𝑡 𝑖 − 𝑡𝑝𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
(67)

Moreover, in the first approach the expected time was always computed using the most

probable data rate without considering retransmissions so the expected time was always

the same. In our case, the expected time was always considering the 54Mbps rate. After

deciding to use the expected time, it was opted to modify the computation of the expected

theoretical time, to include the possibility of different data rates in its computation. In this

way, the DC reduction, in average, is nearer the first approach, since the expected packet

 61

transmission time is not always the same and has similar statistical behavior to the real

packet transmission time.

Considering this, it is required to check the differences between the two approaches. The

main difference between them is reflected in the convergence study, as their behavior

differs. In order to compare both approaches, it has been considered the simulation

conditions in Table 18. The explanantion of the field empty queue is provided in section

4.1.6.

Number of WTP 1

Tenants 2

Tenant 1 SLA 0.7

Tenant 2 SLA 0.3

Packet lengths 1514 Bytes (both)

System quantum 2ms

802.11g delays ON

Empty queue time 100us

Traffic generation mode Fixed

Simulation time 60 s

Table 18. Simulation conditions

The same simulations have been performed, but in this the WTP is allowed to transmit at

different data rates, as specified at Table 7. Big differences can be observed when

comparing the performances in terms of convergence. In Figure 28 and Figure 30, the

dispersion of the time percentage used by each tenant is depicted. It can be seen how, in

the case of using the tp real, the dispersion reaches smaller values than when using the

tp theoretical. The same happens in Figure 29 and Figure 31 for the transmitted bytes

dispersion. This is caused by the differences between the tp theoretical and tp real as

different data rates are possible. When considering the real time, the algorithm is being

more accurate in the time sharing between the different tenants. However, when using

the theoretical time, the accuracy is decreased in both the time and transmitted bytes

sharing.

Figure 28. Used time dispersion around expected weight for the case of random data rate and tp real

 62

Figure 29. Transmitted bytes dispersion around expected weight for the case of random data rate

and tp real

Figure 30. Used time dispersion around expected weight for the case of random data rate and tp

theoretical

Figure 31. Transmitted bytes dispersion around expected weight for the case of random data rate and

tp theoretical

In conclusion, in the case of using different data rates in a WTP, the resource sharing is

more accurate and fairer when using the real transmission time in the DC adjustment.

Although this, it is needed to use the expected or theoretical packet transmission time

because of implementation issues for the real hypervisor so a dispersion of 1E-2 will be

 63

achieved focusing in both used time and transmitted bytes. Giving this, the time

convergence has been analyzed in the following section.

A more detailed analysis about this study can be found in ANNEX 2.

4.1.4. Time Convergence Study

A key factor when studying the performance of the simulator is to determine the amount

of time needed to obtain reliable results, what means to study the convergence of the

system.

This convergence study focuses on the convergence time, while in the previous studies

the focus was on the necessary number of iterations. The reason of this is that for the

EmPOWER testbed it would be much useful to know the convergence in time units, to set

a coherent simulation time. Moreover, in the study of this document, the expected

theoretical packet transmission time is subtracted from the DC instead of the real time, as

in equation (67).

For all the tests performed, the simulation scenario considers two tenants with a SLA of

the 60% for Tenant 1 and 40% for Tenant 2 and a single WTP. Both tenants just transmit

packets of 1514 Bytes and the system quantum is set to 2ms. Moreover, the queues are

initially empty. Different generators and transmission rates have been used in the

following sections to study how the convergence is affected. It has been observed that

the convergence behavior in all the studies is quite similar.

In order to see how the convergence behaves, from all the simulation performed, in this

document it is included the simulation in which a fixed generator was used and the WTP

can transmit using different data rates, chosen randomly according to the probabilities in

Table 7. The fixed generation rate is computed as concluded in section 4.1.5.1, where it

is considered an average of the different rates, as well as the delays and the related data

rates probabilities.

In Figure 32, it can be seen the dispersion in terms of time-sharing when running a

simulation of 60s. It can be found that the dispersion is stabilized after 20s approximately.

The dispersion converges to 0.6E-3. In Figure 33 it can be observed that the transmission

bytes dispersion has the same behavior as the time dispersion. This difference in

comparison to the first convergence study, when tp real was used for the DC, is due to

the fact that in order to compute the theoretical time, it is selected a data rate randomly

according to the Rb probabilities. Nevertheless, the real data rate used can be totally

different, which can introduce big differences in the number of packets sent during an

iteration.

 64

Figure 32. Time deviation with logarithmical vertical axis for the case of Rb random and fixed

generation rate.

Figure 33. Transmitted bytes deviation with logarithmical vertical axis for the case of Rb random and

fixed generation rate.

It has to be considered that in this simulation, the queue had no packets when the

simulation started. It has been performed a simulation starting the system with packets

and the algorithm converged faster, in about 5s.

In the ANNEX 2, it is possible to find more details about the different simulations

performed to study the time convergence, when using a single data rate in the WTP, a

Gaussian generator or starting the queue with packets.

4.1.5. Traffic Generation Analysis

In this study, a description of how the traffic is generated in the ViRANsim simulator is

presented. One requirement for the simulator was to be able to control the traffic

generation of the different tenants but also to simulate the real traffic expected from them.

In order to do so, different traffic generators have been designed with this purpose.

All the designed simulators work using the same principle of operation, which will be

explained in the first sub-section of this section. Moreover, different issues corresponding

to the generators design as well as its results will be discussed. It has to be commented

 65

that this section consist in an overview of the study performed. The complete analysis

can be found in ANNEX 2.

4.1.5.1. Fixed Traffic Generator Rate

The fixed traffic generator rate sets a rate at the beginning of the simulation that is not

modified again during the simulation.

An important issue related to this generator is how to fix the traffic rate. The traffic

generation rate of each of the tenants is related to the traffic that a given WTP can

manage. This is why for each WTP its capacity (in bits) is computed . As a first approach,

it was supposed that a WTP was just serving at a single Rb, so the WTP capacity in a

system quantum (Qs) has the expression in equation (68):

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃[𝑏𝑖𝑡𝑠] = 𝑅𝑏 [𝑏𝑝𝑠] · 𝑄𝑠[𝑠] (68)

According to this, each of the tenants in a WTP could transmit the following amount of

bits, considering its weight in the WTP, as it is specified in equation (69):

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝑖[𝑏𝑖𝑡𝑠] = 𝑤𝑖 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃[𝑏𝑖𝑡𝑠] (69)

So the traffic generation rate (GT) for a given tenant in a WTP follows equation (70),

considering that we are working in a system quantum interval of time.

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑖
[𝑏𝑝𝑠] =

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝑖[𝑏𝑖𝑡𝑠]

𝑄𝑠[𝑠]
 (70)

If expressions (68), (69) and (70) are written together, the traffic generation rate (GT)

of a given tenant in a WTP could also be written as in equation (71).

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑖
[𝑏𝑝𝑠] =

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝑖[𝑏𝑖𝑡𝑠]

𝑄𝑠[𝑠]
=

𝑤𝑖 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃[𝑏𝑖𝑡𝑠]

𝑄𝑠[𝑠]
=

𝑤𝑖 · 𝑅𝑏 [𝑏𝑝𝑠] · 𝑆𝑄[𝑠]

𝑄𝑠[𝑠]

= 𝑤𝑖 · 𝑅𝑏 [𝑏𝑝𝑠] (71)

In the simulator, it is more convenient to consider the capacity of the WTP so we will work

with equations (68), (69) and (70) but for validation purposes it will be also useful

equation (71).

In order to evaluate the performance of the proposed algorithm a simulation was

performed. The conditions for the simulation are specified in Table 19.

Simulation Conditions

Rb 54Mbps

Probability of error 0.1

Generation rate Fixed mode

802.11g delays ON

System Quantum 2 ms

Retransmissions ON

Simulation time 60s

Number of WTP 1

Number of tenants 2

Weight Tenant 1 0.6

 66

Weight Tenant 2 0.4

Packet length (Both tenants) 1514 Bytes

Time empty queue 100us

Table 19. Simulation conditions for fixed generator

The results of the simulations performed can be observed in Table 20.

Tenant 1 Tenant 2

Total Time (us) 59998936 59998936

Utilized Time (us) 36021614 23978659.48

Transmitted bytes 155106272 103403172

Number of packets generated 160499 106999

Number of packets transmitted 102448 68298

BW (Mbps) 20.68 13.78

Gt (Mbps) 32.399 21.599

Number of packets in queue 58051 38701

Table 20. Simulation results with fixed generator and single Rb

However, the effective throughput6 (referred as BW) provided to users is smaller than the

traffic generation rate. This causes that the number of packets in the queue at the end of

the simulation is really high, as it can be observed in Figure 34.

Figure 34. Packets in queue during time

One of the reasons of the growth of the queue is that the system does not transmit

packets at a single nominal data rate (54Mbps in the simulation) and that 802.11g Wi-Fi

protocol introduces delays that affect to the data rate. In order to face this fact it has been

introduced a delay compensation factor considering the average packet length and all

the nominal data rates. The delay compensation factor (ri) is the relation of the delays in

front of the time required to send a packet, at a certain nominal rate i. This factor will be

computed for each of the tenants in each WTP as it depends on the packet length as well

as on the effective data rate. Equation (16) shows how to compute it:

6 The effective bandwidth is the real data rate provided to users considering retransmissions, packet transmission delays, the total

simulation time and the bytes transmitted.

 67

𝑟𝑖 =
𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑎𝑦𝑠𝑅𝑏𝑖

[𝑠]

𝑡𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑏𝑖
[𝑠]

(72)

Another reason why the queue grows is that packets retransmissions are possible. In

order to solve this issue, it is proposed to incorporate a compensation factor for

retransmissions (fretx, rbi) that will be different for each data rate. After doing some tests, it

has been concluded that the best way to include the compensation factor is to multiply

the generation rate by a factor slightly smaller than the probability to transmit a packet

correctly. It has been observed that it is important to set the compensation factor slightly

smaller than the probability of success, since giving that a retransmission occurs, another

retransmission could occur.

The expressions used to obtain the generation rate of tenant k considering the delay and

retransmission compensation factors are the following ones:

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝑘𝑅𝑏𝑖
[𝑏𝑖𝑡𝑠] = 𝑤𝑘 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃𝑅𝑏𝑖

[𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖
 (73)

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘
=

∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝐾𝑅𝑏𝑖
· 𝑝𝑖 [𝑏𝑖𝑡𝑠]𝑁

𝑖=0

𝑆𝑄[𝑠]
 (74)

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘
=

∑ 𝑤𝑘 · 𝑅𝑏𝑖[𝑏𝑝𝑠] · 𝑆𝑄[𝑠] · 𝑝𝑖 [𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖
𝑁
𝑖=0

𝑆𝑄[𝑠]

= 𝑤𝑘 · ∑ 𝑅𝑏𝑖[𝑏𝑝𝑠] · 𝑝𝑖 [𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖

𝑁

𝑖=0

(75)

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘
= 𝑤𝑘 · 𝑅𝑏𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒

 (76)

The average effective data rate can be expressed like in equation (21).

𝑅𝑏𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
= ∑ 𝑅𝑏𝑖 [𝑏𝑝𝑠] · 𝑝𝑖 · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖

𝑁
𝑖=0 (77)

There have been performed different simulations studying which would be the convenient

value for the retransmission compensation factor, setting it to 0.9, which is the probability

of correct packet, to 0.89 which is slightly smaller than the probability of correct packet

and to 0.8, which is a much lower value. All these simulation results can be found in

ANNEX 2. It has been concluded that the best option is using a value slightly smaller than

the probability packet (0.89) as it allows maximizing the traffic we are sending to the

system without accumulating packets in the queue.

This is why the compensation factor has been defined as in equation (17). The packets

in queue for Tenant 1 are represented in Figure 35. It can be observed how the system is

capable of processing the packets without accumulating them in the queue.

𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖
= 𝑝𝑟𝑒𝑡𝑥𝑟𝑏𝑖

− 0.01 (78)

 68

Figure 35. Packets in queue during time with retransmission and delays compensation.

Retransmission compensation set to 0.89

Moreover it has been studied the performance of the system when the WTP can operate

using different data rates available. However, in the simulations performed, it has been

found that the queue grow when more than a single Rb value are considered in a WTP.

This is because it is more difficult to control the traffic generation so it will be more likely

the queue to grow. It has to be taken into consideration that in a real scenario, a tenant

would not be generating traffic constantly, so this generator is just to study the

performance of the algorithm as an experiment.

4.1.5.2. Uniform generator

Another requirement for the simulator was to test its performance when different traffic

generation rates are taken into account and the traffic is not constant. This is why a

generator that chooses the traffic rates using a uniform distribution has been designed.

This generator has been tested doing a simulation where the traffic generation rate is

modified in every iteration. After this the time to generate a packet is computed and, if

possible, packets are generated. The conditions of the simulation are the ones in Table

21. In this case, different modulation schemes are possible in the WTP, so different data

rates are available with its success probabilities, which are the ones specified in Table 7.

Simulation Conditions

Rb 54Mbps, 48 Mbps, 24 Mbps, 12 Mbps, 6 Mbps

Generation rate Uniform mode

802.11g delays ON

System Quantum 2ms

Retransmissions ON

Simulation time 500ms

Number of WTP 1

Number of tenants 2

Weight Tenant 1 0.6

Weight Tenant 2 0.4

Packet length (Both tenants) 1514 Bytes

Time empty queue 100us

Table 21. Simulation conditions for uniform generation test

 69

The traffic generation rates of the first 35ms of the simulation for Tenant 1 have been

represented in Figure 36. It has not been represented all the simulation as it was clearer

to represent less time. It has to be considered that the maximum generation rate for this

tenant is computed in equation (79) :

𝐺𝑡𝑚𝑎𝑥 = 54 𝑀𝑏𝑝𝑠 · (1 − 0.291) · 0.6 = 22.97𝑀𝑏𝑝𝑠 (79)

In the simulation, the values range from 0 to 22.97Mbps, so the uniform generator is

working properly.

Figure 36.Traffic generation rate (Gt) using a uniform generator.

It has also been analysed the consequences of using a uniform generator in the

performance of the system. The results obtained with this simulator are the ones in Table

22.

 Tenant 1 Tenant 2

Total Time (us) 499931.678 499931.678

Utilized Time (us) 292560.963 208922.444

Transmitted bytes (us) 964418 654048

Number of packets generated 637 432

Number of packets transmitted 637 432

BW (Mbps) Average 15.4328 10.4662

Gt (Mbps) Average 15.4328 10.4662

Number of packets in queue 0 0

Table 22. Results from simulator with uniform distribution

From the results, it is observed how the generation rate is smaller than the one obtained

with the fixed traffic generation. If we consider the average traffic generation rates for

Tenant 1 and 2, it has a middle value between the maximum generation rate and 0. It is

also interesting to see the evolution of the queue with this traffic generator, which is

represented in Figure 37. It is observed that the number of packets in the queue is really

low and that the system is capable of managing the queue when it grows.

 70

Figure 37. Packets in queue for the uniform generator simulation

4.1.5.3. Gaussian Generator

Moreover, it has been designed a Gaussian generator, as it is expected to generate

traffic similarly to the reality.

After designing the Gaussian generator and implementing it, it has been tested with the

conditions shown in Table 23. The nominal data rate probabilities are the ones in Table 7.

Simulation Conditions

 Rb 54Mbps, 48 Mbps, 24 Mbps, 12 Mbps, 6 Mbps

Generation rate Gaussian mode

802.11g delays ON

System Quantum 2 ms

Retransmissions ON

Simulation time 500ms

Number of WTP 1

Number of tenants 2

Weight Tenant 1 0.6

Weight Tenant 2 0.4

Packet length (Both tenants) 1514 Bytes

Time empty queue 100us

Table 23. Simulation conditions for Gaussian generator

From the simulation results, it has been represented the traffic generation rates obtained

by the Gaussian generator during the first 35ms for Tenant 1 (Figure 38), which has a

maximum traffic generation rate of 22.97Mbps. As represented, the Gaussian generator

sets traffic generation rates in its range of possible values (0, 22.97Mbps), generating

more traffic generation rates around the mean.

 71

Figure 38. Traffic generation rate (Gt) using a Gaussian generator.

If we compare Figure 38 (Gaussian Generator) and Figure 36 (Uniform Generator), it can

be observed that with the Gaussian Generator there are more values around the mean

while with the Uniform Generator the traffic generator rates take more dispersed values.

Like in the uniform generator, it has been analysed the consequences of using a

Gaussian Generator. Table 24 summarizes the obtained results when using Gaussian

generator.

 Tenant 1 Tenant 2

Total Time (us) 498993.9 498993.9

Utilized Time (us) 285417.778 215122.741

Transmitted bytes (us) 823616 563208

Number of packets generated 544 372

Number of packets transmitted 544 372

BW (Mbps) Average 13.204 9.029

Gt (Mbps) Average 13.204 9.029

Number of packets in queue 0 0

Table 24. Results from simulator with Gaussian distribution

When we use a Gaussian generator, the average generation rate obtained is a bit lower

than when a uniform generator is used (Table 22). Moreover, it has been analysed the

evolution of packets in the queue for Tenant 1, which is represented in Figure 39. As

fewer packets are generated, there are fewer packets in the queue and they do not

accumulate.

Finally, it could be concluded that the Gaussian generator is the one that is thought to be

nearer a real scenario, so problems in queue would not be a problematic issue.

 72

Figure 39. Packets in queue for the Gaussian generator simulation

For further information about the traffic generation, it is recommended to check ANNEX 2,

where a more extended version of this study is included.

4.1.6. Study time for empty queue

In this section, it is discussed the performance of the ViRANsim simulator when the

queue is empty. As a first approach, no additional time was taken into account when the

queue was empty, which is not realistic because when the queue is empty the time keeps

running. As the simulator tries to be as closer as possible to the reality, the management

of the time when the queue is empty has been studied and designed.

The approach chosen for the empty queue issue, involves the definition of a fixed time to

be added only when the queue is empty. Moreover, with this approach, instead of fixing a

number of iterations per simulation, what is fixed is a time for the whole simulation

because, if the fixed time for empty queue is too small, it could happen that the number of

iterations is not enough to generate packets to transmit.

A key factor with this approach is to determine the fixed time value for the empty queue..

In this section, the most relevant abstractions of this study have been included but the

complete study performed can be found in ANNEX 2.

To study the effect of the empty queue, three different empty queue times have been

considered: 10us, 100us and 500us. Moreover it has also been taken into account a fixed

generator with retransmissions compensation factor. Using the retransmission

compensation factor, as showed in the previous study, the system is capable of

managing the queue, in other words clearing it when it grows. The simulation conditions

can be found in Table 25.

For each simulation, it has been obtained the total time of the simulation, the used time

by each tenant, the number of bytes sent during the simulation, the number of packets

generated and transmitted as well as the number of packets in the queue at the end of

the simulation. Moreover, the effective bandwidth for each of the tenants and the time

added by the empty queue have been computed.

 73

Simulation Conditions

Rb 54Mbps

Success probability 0.9

Generation rate Fixed mode

802.11g delays ON

System Quantum 2 ms

Retransmissions ON

Simulation time 30s

Number of tenants 2

Weight Tenant 1 0.6

Weight Tenant 2 0.4

Packet length (Both tenants) 154 Bytes

Table 25. Simulation Conditions for fixed generator without retransmissions compensation factor

 The results obtained are shown in Table 26, Table 27 and Table 28.

SIMULATION
10 us

Total
time(us)

Used time
(us)

Transmitted
bytes (bytes)

Packets
generated

Packets
transmitted

Packets
in the
queue

BW(bps)
Time added

by empty
queue (us)

Tenant 1 29998343.9 17951836.6 76653820 50634 50630 4 34.1597673 131010

Tenant 2 29998343.9 12048721.9 51102042 33756 33753 3 33.9302659 173760

Table 26. Results with fixed generator and 10 us as empty queue time with retransmission

compensation factor

SIMULATION
100 us

Total
time(us)

Used time
(us)

Transmitted
bytes (bytes)

Packets
generated

Packets
transmitted

Packets
in the
queue

BW(bps)
Time added

by empty
queue (us)

Tenant 1 29998767.1 17830188.1 76659876 50634 50634 0 34.3955433 21700

Tenant 2 29998767.1 12169844.4 51106584 33756 33756 0 33.5955545 258500

Table 27. Results with fixed generator and 100 us as empty queue time with retransmission

compensation factor

SIMULATION
500 us

Total
time(us)

Used time
(us)

Transmitted
bytes (bytes)

Packets
generated

Packets
transmitted

Packets
in the
queue

BW(bps)
Time added

by empty
queue (us)

Tenant 1 29998408.3 17756470.7 76656848 50634 50632 2 34.536975 500

Tenant 2 29998408.3 12244152.2 51103556 33756 33754 2 33.3896901 394500

Table 28. Results with fixed generator and 500 us as empty queue time with retransmission

compensation factor

When setting the empty queue time to 10 us the simulation takes a lot of time. This is

because when the queue clears, a lot of iterations are required until the generator is

capable of generating a new packet, as 10us is a really small value in comparison to the

times to generate packets, which are computed as follows:

𝑡𝑝𝑎𝑐𝑘𝑒𝑡𝑇1
=

1514 𝐵𝑦𝑡𝑒𝑠 · 8
𝑏𝑖𝑡𝑠
𝐵𝑦𝑡𝑒

20.44Mbps
= 592.45 𝑢𝑠 (80)

 74

𝑡𝑝𝑎𝑐𝑘𝑒𝑡𝑇2
=

1514 𝐵𝑦𝑡𝑒𝑠 · 8
𝑏𝑖𝑡𝑠
𝐵𝑦𝑡𝑒

13.63Mbps
= 888.68 𝑢𝑠 (81)

In the case of setting the empty queue time to 100us, the time required to obtain the

simulation results is reduced significantly in comparison to the 10us case, as the number

of iterations to generate a packet when the queue is empty is much smaller. Another

issue to point out is that the difference in time added by empty queue between both

tenants is much greater than in the case of 10us. This is because, when the queue is

empty and we add time, that time is added to the simulation time, so it affects both

tenants. In this way, when tenant 2 queue is empty and 100us are added, in the following

iteration, tenant 1 will be more capable of producing packets. As the generation rate of

tenant 2 is lower, its queue will be empty more times, so it will add more empty time, that

will make tenant 1 add more packets, which also avoids that tenant 1 empties its queue.

This effect is accentuated when the time added by empty queue is of the same

magnitude as the time to generate a packet.

In the third simulation, it is used 500us as empty queue time. The time required to obtain

the simulations results is similar to the case of 100us. The difference in time added by

empty queue between both tenants is extremely big. Tenant 1 just adds 500us in the first

iteration, so the queue never empties. 500us is nearly the time that Tenant 1 needs to

generate a packet (592.45 us), so when Tenant 2 is empty and adds 500us, in the

following iteration, Tenant 1 nearly always will produce a packet. Considering that when a

packet is correctly sent without retransmissions, the duration of the transmission is

316.37 us, adding 500us when the queue is empty is not really appropriate so a lower

value would have more sense.

Concluding, using a time per empty queue of 100us would be appropriate considering the

simulation results.

4.1.7. System quantum study

An important variable of ADRR is the system quantum (Qs). In this section, a brief study

about how different system quantum values affect the ADRR algorithm’s performance is

presented. The system quantum was initially defined in ADRR as the minimum time in

order to transmit the largest packet in the system at the slower data rate. According to

this, the system quantum should vary depending on the data rate and packet lengths in

the system.

The simulation conditions of this section are found in Table 29. The simulations use a

fixed generator with the assumptions taken in section 4.1.5.1. The possible data rates

that the WTP supports are specified in Table 7.

 75

Number of WTP 1

Tenants SLA Tenant 1 70%

Tenant 2 30%

WTP Data rates

(All WTP)

MCS RB (Mbps) MCS Probability MCS success probability

54 0.8 0.9

48 0.1 0.95

24 0.05 0.98

12 0.03 0.99

6 0.02 0.999

802.11g Delays ON

Packet lengths 1514 Bytes for all tenants

Simulation time 20s

Scheduling algorithm ADRR

Time Empty queue 0.01ms

Traffic generation mode Fixed generator

Table 29. Simulation conditions for system quantum study

The system quantum has been set to three different values. The first value is 340us, as a

result of computing the packet transmission time considering the data rate average and

the packet length. Secondly, it has been selected the value 2130us, result of the same

computation but considering the slower data rate (6Mbps) and the packet size. Finally a

larger value has been selected, 21300us, which is ten times the previous value and it has

been chosen to be able to contrast the system quantum effect with larger values.

Qs=340us Qs=2130us Qs=21300us

Tenant 1 Tenant2 Tenant 1 Tenant2 Tenant 1 Tenant2

Total
time(us)

19999795.37 19999795.37 19998338.7 19998338.7 19995548.93 19995548.93

Used time
(us)

14012368.44 6249758.296 13750008.3 6249758.296 13968613.78 6049588.519

Tx bytes 49577444 21350428 49015750 22122568 49616808 21742554

BW(Mbps) 19.5744 8.4297 19.6065 8.8491 19.8287 8.6891

%Used time 0.6916 0.3084 0.6875 0.3125 0.6978 0.3022

%Tx bytes 0.6990 0.3010 0.6890 0.3110 0.6953 0.3047

Table 30. Simulation results from testing different system quantum (Qs) values

In Table 30, it is shown that for the different system quantum values, the percentage of

time used and the percentage transmitted bytes is really close to the weights specified for

each of the tenants. Moreover, it has been computed the average bandwidth(BW) that

each of the tenants perceives and no relevant differences are observed.

Although there is slightly no difference between the results obtained, the system quantum

modification is relevant for the running simulation time. When a small system quantum

value is used, as the simulator will process more iterations, the running simulation time is

longer than when the system quantum is larger.

The criterion taken for the system quantum determination is to continue computing the

system quantum as the minimum time in order to transmit the largest packet in the

system at the slower data rate. The reason of this is that in the EmPOWER testbed this

same assumption has been taken, so results can be compared easily. Another reason is

 76

that with this definition, it is prevented the use of large system quantum’s, that in a real

environment would cause a less dynamic system as the turns of each of the tenants

would be slower.

4.2. Multi-WTP

The studies of this section consider more than a single WTP. As a result of this, the

different studies included are related to analyse the performance of the compensation

weight algorithm. In addition to running different WTPs in parallel, the purpose of these

studies is to analyse the performance of the weight compensation algorithm as well as to

determine which are the appropriate input values to perform the simulations, considering

different scenarios: different traffic deviation, slow and fast traffic change.

For all the following simulations, the scenario chosen consists of two WTP and three

Tenants with the weights shown in Table 31.

Number of WTP 2

Tenants SLA Tenant 1 50%

Tenant 2 30%

Tenant 3 20%

WTP Data rates

(All WTP)

MCS RB (Mbps) MCS Probability MCS success probability

54 0.8 0.9

48 0.1 0.95

24 0.05 0.98

12 0.03 0.99

6 0.02 0.999

802.11g Delays ON

Packet lengths 1514 Bytes for all tenants

Simulation time 180.1 s

Scheduling algorithm ADRR

System Quantum 2 ms

Time Empty queue 0.01ms

Traffic generation mode Gaussian Shifted

Table 31 Simulation conditions

4.2.1. Traffic generation deviation

The first study performed consists of varying the deviation of the Gaussian shifted traffic

generation. For this analysis, the traffic generation rate changes every 1-second for each

of the tenants and WTP. The proportional sharing strategy is enabled. Moreover, the

weights are compensated every 20 seconds.

The deviations for the Gaussian shifted generator tested are 15% and 40%. The capacity

average for the WTP is 28.16Mbps, which is computed from the effective data rates of

the WTP (including 802.11g delays), its probabilities and a compensation factor, as

computed in equation (66).

Equation (83) shows how the average time to transmit, given a certain data rate Rbi, is

computed. Notice that it is an approximation, as it just considers three retransmissions

while the programmed algorithm decreases the data rate if a packet is sent incorrectly

three times, which will have a low probability with the values given. Equation (2)

 77

computes a new compensation factor, needed to avoid long queues and its purpose is to

compensate the effect of the difference of data rate allowed in the WTP. When a low

data rate (6Mbps) is used, it processes fewer packets while new packets are arriving to

the system, which results in an increase of the queue. Therefore, we use the relation of

times of the maximum data rate and the minimum data rate in the system, to avoid

packets accumulate in the queue.

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑓𝑐𝑜𝑚𝑝 · ∑
𝑃𝑎𝑐𝑘𝑒𝑡𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑣𝑒𝑟𝑎𝑔𝑒

(𝑏𝑦𝑡𝑒𝑠) · 8
𝑏𝑖𝑡𝑠
𝐵𝑦𝑡𝑒

𝑡𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑏𝑖

· 𝑝𝑟𝑜𝑏(𝑅𝑏𝑖)

𝑁−1

𝑖=0

(82)

𝑡𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑏𝑖

= 𝑡𝑝(𝑅𝑏𝑖) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑜𝑘) + 2 · 𝑡𝑝(𝑅𝑏𝑖) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑜𝑘) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑁𝑜𝑘) + 3 · 𝑡𝑝(𝑅𝑏𝑖)

· 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑜𝑘) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑁𝑜𝑘)2

(83)

𝑓𝑐𝑜𝑚𝑝 = 1 − (
𝑡𝑝(54𝑀𝑏𝑝𝑠, 1514𝐵𝑦𝑡𝑒𝑠)

𝑡𝑝(6𝑀𝑏𝑝𝑠, 1514 𝐵𝑦𝑡𝑒𝑠)
) = 0.85

(84)

The values of capacity average for each of the tenants and deviations for the case of

15% and 20% are specified in Table 32.

Tenant Capacity average (bps)
Deviation (15%)

(bps)

Deviation (40%)

(bps)

Tenant 1 (50%) 14079943.8 2111991.57 5631977.521

Tenant 2 (30%) 8447966.281 1267194.942 3379186.513

Tenant 3 (20%) 5631977.521 844796.6281 2252791.008

Table 32. Capacity average and deviations for each of the tenants

The capacity average and the deviation are computed by using equations (85) and (86).

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑇𝑒𝑛𝑎𝑛𝑡𝑖) = 𝑤𝑆𝐿𝐴 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃 (85)

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑇𝑒𝑛𝑎𝑛𝑡𝑖 , 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(%)) = 𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑇𝑒𝑛𝑎𝑛𝑡𝑖) ·
𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(%)

100
 (86)

The traffic generated by the tenants in WTP for the deviation of 15% and 40% is

represented in Figure 40 and Figure 41 respectively. More results can be found in

ANNEX 2. In the figure it is also checked the performance of the Gaussian Shifted

generator for tenant 1, but for tenant 2 and 3 the results would be similar but centred in

their Caverage. It can be validated that the traffic generator is working as expected.

 78

Figure 40. Traffic generation evolution for tenant 1 in WTP 1 with Gaussian deviation of 15%

Figure 41. Traffic generation evolution for tenant 1 in WTP 1 with Gaussian deviation of 40%

After analyzing the generation rates, it has been analyzed how the weights are

compensated during time. In order to do so, it has been represented the evolution of the

weights during the simulation for WTP1, as it is represented in Figure 42 and Figure 43.

Figure 42. Weights evolution for the case of deviation of 15%

 79

Figure 43. Weights evolution for the case of deviation of 40%

In Figure 42 and Figure 43, it is observed that when the weight of a tenant is increased,

the weight of the other tenants is decreased. Moreover, it is showed how the sum of the

weights of the system during all the simulations is always equal to 1, so we are assigning

the total of the capacity in the WTP. In Figure 44, it can be observed the variation of the

weights for tenants 1 in the case of deviation of 15% and 40%. For tenants 2 and 3

similar results are obtained. It can be stated that when a deviation of the Gaussian

Generator is set to 40%, the weights change to more dispersed values.

Figure 44. Comparison of the weights of tenant 1 when using a deviation of 15% and 40%

Finally, it has been analyzed if the SLA is accomplished in average for the whole network.

Table 33 and Table 34 show the average of the used time and transmitted bytes in the

whole network, for the case of 15% and 40% deviation. It can be observed how the SLA

is accomplished for the three tenants.

Tenant
Network % Used

Time
Network %Transmitted

bytes

Tenant 1 0.4958 0.5011

Tenant 2 0.2979 0.2972

Tenant 3 0.2063 0.2016

Table 33. Performance of tenants over the whole network for the case of 15% of Gaussian deviation

Tenant
Network % Used

Time
Network %Transmitted

bytes

Tenant 1 0.4863 0.4931

Tenant 2 0.3016 0.3005

Tenant 3 0.2121 0.2064

Table 34. Performance of tenants over the whole network for the case of 40% of Gaussian deviation

 80

4.2.2. Weight compensation period variation

The second study to evaluate the weights performance has been focused on the period

of weights variation. To do so, the period in which weights are compensated has been

varied. Moreover, it has also been modified the period in which the traffic generation

changes, so that the relation of both period of traffic change and period of weights

compensation can be analyzed.

With the purpose of visualizing variations in the weight algorithm easily, it has been

chosen a Gaussian dispersion of 40% for all simulations of this section. In addition, the

proportional sharing that will be analyzed later in this section is enabled. The rest of

conditions for the simulations are the same shown in Table 31.

4.2.2.1. High traffic variability

Firstly, the time in which the Gaussian traffic generator changes its rate has been set to 1

second. With this period of traffic generation variation, it has been performed three

simulations in which the period of weights compensation is set to 10s, 20s and 60s

respectively.

It has been observed that the period of weights compensation affects the size of the

queues of each of the tenants in each WTP, as the weight is applied to the tenant

quantum in each WTP. For a given tenant in a WTP, if the weight is set to a lower value

and then it has more traffic, the queue will grow and it would need a greater weight value.

So, to evaluate the weight compensation period, it will be analyzed the evolution of the

different queues.

Figure 45, Figure 46 and Figure 47 show the queue evolution for the three tenants in

WTP 1. The queue evolution for the tenants in WTP 2 is similar so the same conclusions

apply. Figure 48 shows how the weights vary during the simulation.

Figure 45. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 10s.

 81

Figure 46. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 10s.

Figure 47. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 10s.

Figure 48. Weights evolution during simulation for each of the tenants. Weight compensation period

to 10 seconds with traffic generation period to 1s.

The same graphics have been obtained for the case of setting the weight compensation

period to 20s. Figure 49, Figure 50 and Figure 51 show the evolution of the queues

during the simulation for each of the tenants in WTP 1. It can be observed how the queue

lengths are smaller than in the case of weight compensation period to 10s. Moreover,

Figure 52 contains the weights variation of each of the tenants for the same WTP, which

is slightly lower than the variation in Figure 48.

 82

The reason of this can be explained considering that the weight algorithm uses the

average traffic generated by each tenant during the last period. So, if the weight

compensation period is not the appropriate, the average traffic generated computed can

be affected by punctual peaks of traffic. This can produce that the weight compensation

algorithm computes weights that do not allow serving the traffic of each tenant

satisfactorily.

Figure 49. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 20s.

Figure 50. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 20s.

Figure 51. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 20s.

 83

Figure 52. Weights evolution during simulation for each of the tenants. Weight compensation period

to 20 seconds with traffic generation period to 1s.

The same representations have been generated for the case of setting the period of

weights compensation to 60s. In Figure 53, Figure 54 and Figure 55, it is represented the

queue evolution for all the tenants in WTP1. It can be observed how the queue sizes in

this case have the same range of values than the case where the weights compensation

period is 20s, but the queue size variation is more frequently.

In Figure 56, it is possible to observe how the weights nearly change during all the

simulation. As the weights compensation period is higher, the traffic average takes more

values so it will converge to the Caverage, so the weights will not change much, as

observed in the results.

Figure 53. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 60s.

 84

Figure 54. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 60s.

Figure 55. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 60s.

Figure 56. Weights evolution during simulation for each of the tenants. Weight compensation period

to 60 seconds with traffic generation period to 1s.

4.2.2.2. Lower traffic variability

In second place, the same study has been performed when the traffic change period is

set to 5s, so the traffic changes more slowly. Considering this, it will be tested the

performance of the system when the weights compensation period is set to 20s and 60s.

It will not be considered the case of a weights compensation period of 10s, as the traffic

change period is set to 5s so the weight compensation algorithm would not be based on a

reliable traffic average.

In Figure 57, Figure 58 and Figure 59, it is represented the queue evolution for the case

of weight compensation period of 20s when the traffic varies every 5s. It can be observed

 85

how the queues are much larger than in Figure 49, Figure 50 and Figure 51, the

homologous case with traffic variation every 1 second but without the curly trace in those

graphs. This difference in the queue size is due to the relation between the weight

compensation period and the traffic variation period is much lower in this case. This

produces that the weight compensation values computed are more vulnerable to reach

values that produce the increase of the queue, as the Caverage computed does not take

into account sufficient values.

Figure 57. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 5 s and weights

compensation period to 20s.

Figure 58. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to 5 s and weights

compensation period to 20s.

Figure 59. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 5 s and weights

compensation period to 20s.

 86

Figure 60. Weights evolution during simulation for each of the tenants. Weight compensation period

to20 seconds with traffic generation period to 5s.

The same graphics have been created but setting the weight compensation period to 60

seconds. In Figure 61, Figure 62 and Figure 63 the queue evolution for each of the

tenants is plotted and in Figure 64 the variation of the weights for each of the tenants is

represented in WTP1. It can be observed how the queue lengths are slightly smaller but

still large. This means that having a window of 60s is still not enough to compute a

reliable Caverage.

Figure 61. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 5 s and weights

compensation period to 60s.

Figure 62. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to5 s and weights

compensation period to 60s.

 87

Figure 63. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 5 s and weights

compensation period to 60s.

Figure 64. Weights evolution during simulation for each of the tenants. Weight compensation period

to 60 seconds with traffic generation period to 5s.

Considering the different simulations performed, studying the effect of the weights

compensation period in relation to the traffic generation period, it can be stated that they

are two parameters that are strongly related. Considering the obtained results, it is

recommendable to use a weight compensation period at least 20 times the traffic

generation period. That means that for the second case studied, when the traffic

generation period is set to 5s, the weights compensation time should have been set to

100s.

Moreover, another issue to be considered is that if the weight compensation period is too

large, the weight compensation will not compensate periods of high traffic level, so a

balance has to be found. It is needed to study which are the traffic requirements for our

system and how relevant is to compensate high peaks of traffic.

4.2.3. Proportional sharing

Another study developed is the evaluation of the performance of the proportional sharing

algorithm. The weight compensation algorithm was initially defined in the way that if

during the previous period, the different tenants were not requesting the 100% of the

WTP capacity, not all the resources were assigned. That means that the sum of the

weights assigned to the different tenants in a WTP could be less than 1.

 88

Regarding this issue, it was decided to add a mechanism that allow the proportional

sharing of the non-assigned resources between the different tenants, having into account

its SLA. In this section, some of the results comparing the usage and non-usage of this

mechanism are provided. An extended analysis including more results can be found in

ANNEX 2.

The simulation conditions used consist of a weight compensation period of 20s, a traffic

generator with a Gaussian dispersion of 40% with a variation period of 1s. The

simulations have been run with proportional sharing and without proportional sharing.

Figure 65 shows the weight evolution and the sum of weights when proportional sharing

is enabled while in Figure 66 the proportional sharing is disabled. It can be observed that

in the first case the addition of all the weights is always equal to 1 while in the second

case sometimes the addition of weights is lower than 1. In both cases the sum of weights

never exceeds 1.

Figure 65. Weight evolution and sum of weights with proportional sharing

Figure 66. Weight evolution and sum of weights without proportional sharing

Figure 67, Figure 68 and Figure 69 show the queue evolution for each of the tenants

without proportional sharing. If those figures are compared to Figure 49, Figure 50 and

Figure 51 it can be observed how the queue lengths are much higher. This is caused by

the fact that not all the available resources are considered.

 89

Figure 67. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 20s without proportional sharing.

Figure 68. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 20s without proportional sharing.

Figure 69. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 20s without proportional sharing.

In a scenario where the capacity requested is low during a period, it could happen that

the computed weights without considering proportional sharing are smaller. So, if during a

period of low activity, a peak of traffic arrives, the fact that no proportional sharing is used

could result in a bad management of the resources: larger queues, latency… Proportional

 90

sharing can provide a softer transition between periods of high and low traffic levels and a

reduction of the queue lengths.

4.2.4. Benefits of using the weights algorithm

The last study performed has the purpose of demonstrating that the weights algorithm

improves the quality of the tenant’s service. To easily prove so, simpler simulation

conditions have been considered.

Number of WTP 1

Tenants SLA Tenant 1 70%

Tenant 2 30%

WTP Data rates

(All WTP)

MCS RB (Mbps) MCS Probability MCS success probability

54 0.8 0.9

48 0.1 0.95

24 0.05 0.98

12 0.03 0.99

6 0.02 0.999

802.11g Delays ON

Packet lengths 1514 Bytes for both tenants

Simulation time 60 s

Scheduling algorithm ADRR

System Quantum 2 ms

Time Empty queue 0.01ms

Traffic generator Fixed traffic with pulse of 30s

Time change weights 10s

Proportional sharing Enabled

Table 35. Simulation Conditions pulse mode

As it can be observed in Table 35, to generate the traffic of each of the tenants it has

been used a traffic generator that changes the traffic generator rate of both in the middle

of the simulation. This way, it is possible to manually set the traffic generation rate of both

tenants to force certain conditions to easily observe the effect of the weight algorithm.

For this simulation, it has been forced that in mean both tenants generate traffic

according to its SLA, as it is shown in Table 36. Figure 70 show the traffic generation

rates obtained from simulation results.

 Period 1 (0s - 30s) Period 2 (30s - 60s) Mean Traffic Rate

Traffic Generated Tenant 1 27.59 Mbps 11.83 Mbps 19.712 Mbps

Traffic Generated Tenant 2 3.38 Mbps 13.51 Mbps 8.45 Mbps

Table 36. Traffic generation rates for each tenant and period

 91

Figure 70. Traffic generation rates during simulation time

Considering the traffic generation rates of each tenant, two simulations have been run:

one using the weight algorithm and the other without using it. The results of both

simulations are represented in Table 37 and Table 38, where no important differences

are found.

WTP Tenant
Used Time

(us)
Transmitted

bytes
Packet

transmitted
Packets

generated
%Used
Time

%Transmitted
bytes

WTP 1

Tenant 1 41865457.56 147836044 97646 97646 0.6978 0.7000

Tenant 2 18131896.44 63362414 41851 41851 0.3022 0.3000

TOTAL 59997354 211198458 139497 139497 1.0000 1.0000

Table 37. Performance results when enabling the weight algorithm

WTP Tenant
Used Time

(us)
Transmitted

bytes
Packet

transmitted
Packets

generated
%Used
Time

%Transmitted
bytes

WTP 1

Tenant 1 41563227.41 147837558 97647 97647 0.6928 0.7000

Tenant 2 18433511.56 63362414 41851 41851 0.3072 0.3000

TOTAL 59996738.96 211199972 139498 139498 1.0000 1.0000

Table 38. Performance results when disabling the weight algorithm

However, when looking at the queues evolution of each of the tenants when using and

non-using the weight algorithm, differences are found.

Figure 71. Queue evolution during simulation time when enabling the weight algorithm every 10s for

tenant 1.

 92

Figure 72. Queue evolution during simulation time when disabling the weight algorithm every 10s for

tenant 1.

Figure 73. Queue evolution during simulation time when enabling the weight algorithm every 10s for

tenant 2.

Figure 74. Queue evolution during simulation time when disabling the weight algorithm every 10s for

tenant 2.

Looking at the graphics, it can be seen how in Figure 71 and in Figure 73, where the

weight algorithm is enabled, the size of the queues are smaller and decrease faster than

in Figure 72 and Figure 74. This proves that the weight compensation algorithm is useful

to improve the performance of the system, as the packets will be processed faster.

In Figure 75 it can be observed that, in the first 30s when tenant 1 has a higher traffic

level, the weight of tenant 1 is incremented while the weight of tenant 2, with lower traffic

lever, is lowered. In the last 30s, the weights of both tenants are set approximately to

50%-50% as the traffic requirements are similar, as it can be observed in Figure 70.

 93

Figure 75. Weights evolution during simulation

5. Cost assessment

In this chapter it is included an estimation of the costs of the project. The different costs

have been split into labour cost and development tools cost.

The labour costs have been computed considering a Junior Engineer receiving 10,30

€/hour. To this, has to be added a 30% of fees and social insurance, so the hour

remuneration is 13,30€

Project stage Hours Cost (€)

Formation 120 h 1596 €

Development and analysis of
single WTP solution

360 h 4788 €

Development and analysis of
Multi-WTP solution

240 h 3192 €

Thesis Documentation 160 h 2128 €

Total 880 h 11704 €

Table 39 Labour costs of the project

The tools used during the project consist in the items presented in Table 40. For all the

items, it has been considered a certain amortization time and that the project has lasted 6

months. The editor used of the simulator programming is Sublime Text, which is free.

Concept Price
Amortization time

(months)
Project cost
(6 months)

Development PC 900€ 36 months 150 €

Microsoft Windows 10
Pro Licence

279€ 60 months 27.90 €

Microsoft Office 2016
Licence

149€ 36 months 24.80 €

Total 202.70€

Table 40. Development tools costs

By considering both costs it can be obtained the total project cost.

Concept Cost

 94

Labour 11704 €

Development tools 202.70€

Total 11906.7 €

 95

6. Conclusions and future development

In this Thesis, it has been designed, implemented and validated a Python hypervisor and

controller simulator, called ViRANsim, which is based on the 5G-EmPOWER platform.

The virtualized RAN slice simulator (ViRANsim) includes two novel algorithms: the ADRR,

a time-based scheduling algorithm, and the weight compensation algorithm, which allows

maximizing the use of the WTP resources while assuring the SLA in a long-term

perspective. Thanks to the simulator, it has been possible to obtain a first theoretical

analysis of the performance of these algorithms before implementing them in the real 5G-

Empower testbed.

An important part of this project has been the development of the ViRANsim simulator

that includes the hypervisor and the controller simulator. Python is a programming

language that has ease the implementation of the simulator, making it simple to create

classes and develop the different functions in a modular style. A key aspect of Python is

the existence of a large number of libraries, which has been extremely useful and time

saving for the project. In addition, the possibility of exporting files has facilitated the

analysis of the results in a practical manner. However, in the development part, many

problems have been faced related to the time management and synchronization, which

has been finally solved by running the different WTPs the same amount of time

sequentially, which give the sense of running them in parallel.

Thanks to the simulator, it has been possible to study the behaviour of the ADRR and the

weight compensation algorithms. For the testing and validation of both algorithms, it has

been fundamental to control the traffic generation, in order to correctly evaluate their

performance in different case studies. Moreover, computing the capacity that a WTP can

support has been challenging since 802.11g delays and packet retransmissions have

introduced additional complexity to the computation. Nevertheless, the consideration of

those parameters has helped to evaluate the algorithms in much more realistic conditions

In the case of the ADRR, different abstractions have been obtained from the different

studies performed. An important consideration for the ADRR is the use of the computed

theoretical packet transmission time for the Deficit Counter (DC) adjustment, which

implies a reduction of the precision of the resource sharing percentage with respect to the

case of using the real packet transmission time. However, as shown in the algorithm time

convergence, in less than 20s is possible to obtain values around the desired weight with

a very small dispersion (1E-2). Another important conclusion taken from the ADRR study

is that the system quantum value (Qs) in a simulation does not affect the final

performance of the algorithm in terms of percentage of used time and bytes or bandwidth.

However, in a real implementation, the value of the system quantum should be carefully

chosen, as a large value could affect the dynamism of the algorithm. Overall, it can be

stated that the ADRR algorithm is capable of sharing the resources by using them

successfully.

For the weight compensation algorithm, it has been proved that it allows improving the

system performance, as the WTP resources assigned to the users are maximized and

the system is able to adjust the weights depending on the traffic demand. In order to

reach this resource assignment maximization, the need to define a proportional sharing

mechanism that modifies the weights of each of the tenants in a WTP assigning all the

resources in the WTP has arisen. For this algorithm, it has been obtained that it is

 96

important to control the traffic variability and define the time in which the weights

compensate it, as the algorithm will be more or less reactive depending on this. The

weight compensation period is recommended to be set 20 times the time traffic variation

period.

From the simulations, it has been possible to extract relevant information for the real

implementation of the hypervisor and weight compensation algorithm in the EmPOWER

platform. Part of the simulator information and results have been included in a paper

submitted to the IEEE Conference on Network Functions Virtualization and Software

Defined Networking (IEEE NFV-SDN 2017) [16].

In conclusion, thanks to the ViRANsim simulator, it has been possible to analyse both

algorithms and verify their correct execution, providing relevant abstractions to its real

implementation in the 5G-EmPOWER. Both algorithms operate as expected, making

possible a fair weighted sharing of the resources in the WTP while exploiting the

resources of the network, without wasting them.

6.1. Future development

This thesis offers the possibility of continuing using the simulator to study more aspects

related to the RAN slicing. In the following, different proposals to keep extending the

simulator are given:

• Create a User GUI to easily configure the simulation scenario before running

simulations.

• Upgrade the simulator to enable different traffic modes in different tenants in a

WTP. Study the consequences of different traffic modes in this case.

• Include new traffic shapes in the simulator to study the different algorithms in

more situations: pulse, ramp…

• Incorporate an algorithm that controls that the tenants do not generate more traffic

than agreed in their SLA. Current model assumes tenants generate the agreed

traffic in average. The system could advise the tenant to request a lower traffic

level.

• Include the concept of Active List (tenants with packets in its queue) in the

hypervisor simulator. This concept is being implemented in the 5G-EmPOWER

hypervisor. It would be required to study its consequences in the system

performance.

• Propose and include alternative compensation algorithms with different criteria

than proportional sharing.

• Extend the simulator to support LTE RAN slicing.

 97

Bibliography

[1] A. Bradai, K. Singh, T. Ahmed, T. Rasheed. “ Cellular Software Defined Network-a

Framework”. IEEE Communications Magazine. vol. 53, pg. 36-43, June 2015

[2] B-Astuto, M. Mendonca, X. Nguyen, K. Obrackzka, T. Turletti. "A Survey of Software-

Defined Networking: Past, Present, and Future of Programmable Networks". IEEE

Communications Surveys & Tutorials, vol. 16, no. 3, Third quarter 2014.

[3] R.Riggio, T. Rasheed, F. Granelli. “EmPOWER: A Testbed for Network Function

Virtualization Research and Experimentation”. IEEE SDN for Future Networks and

Services, November 2013

[4] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, S. Uhlig. "

Software-Defined Networking: A Comprehensive Survey". Proceedings of IEEE, vol.

103, pg 14-76, Jan. 2015.

[5] R.Riggio, K. Mabell, T. Rasheed, J. Schulz-Zander, S. Kuklinski, M. K. Marina,

“Programming Software-Defined Wireless Netorks”. 10th International Conference on

Network and Service Management (CNSM) and Workshop. 17-21 Nov. 2014.

[6] R.Riggio, A. Bradai, T. Rasheed, D. Harutyunyan, T. Ahmed “Scheduling Wireless

Virtual Networks Functions”. IEEE Transaction on Network and Service Management,

vol. 13, no. 2, June 2016.

[7] H. Hawilo, A. Shami, M. Mirahmadi, R. Asal “NFV: State of Art, Challenges, and

Implementation in Next Generation Mobile Networks (vEPC)”. IEEE Network,

November/December 2014.

[8] "Deficit Round Robin". [Online] Available:

http://www.mathcs.emory.edu/~cheung/Courses/558/Syllabus/11-Fairness/DRR.html

[Accessed: 13 July 2017].

[9] “Packet transmission time in 802.11” [Online] Available: https://sarwiki.informatik.hu-

berlin.de/Packet_transmission_time_in_802.11 [Accessed 24 March 2017]

[10] “5G-EmPOWER Wiki” [Online] Available: https://github.com/5g-empower/5g-

empower.github.io/wiki/Overview [Accessed 4 July 2017]

[11] “The Click Modular Router Project”[Online] Available:

http://read.cs.ucla.edu/click/click [Accessed 1 February 2017]

[12] “OpenFlow” [Online] Available: https://www.opennetworking.org/en/sdn-

resources/openflow [Accessed 16 July 2017]

[13] K.K. Yap, M. Kobayashi, R. Sherwood, T.Y. Huang, M. Chan, N. Handigol, and N.

McKeown. “Openroads: Empowering research in mobile networks.” ACM SIGCOMM

Computer Commun. Review, 40(1):125–126, 2010.  

[14] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao. “Towards

programmable enterprise wlans with odin”. In Proc. 1st workshop on Hot topics in

software defined networks, HotSDN ’12, pages 115–120, New York, NY, USA, 2012.

ACM.  

[15] M. Bansal, J. Mehlman, S. Katti, and P. Levis. “Openradio: a pro- grammable

wireless dataplane.” In Proc. 1st workshop on Hot topics in software defined

networks, pages 109–114. ACM, 2012.  

http://www.mathcs.emory.edu/~cheung/Courses/558/Syllabus/11-Fairness/DRR.html
https://sarwiki.informatik.hu-berlin.de/Packet_transmission_time_in_802.11
https://sarwiki.informatik.hu-berlin.de/Packet_transmission_time_in_802.11
https://github.com/5g-empower/5g-empower.github.io/wiki/Overview
https://github.com/5g-empower/5g-empower.github.io/wiki/Overview
http://read.cs.ucla.edu/click/click
https://www.opennetworking.org/en/sdn-resources/openflow
https://www.opennetworking.org/en/sdn-resources/openflow

 98

[16] K. Koutlia, A. Umbert, R. Riggio, I. Vilà and F. Casadevall. “RAN slicing for multi-

tenancy support in WLAN scenario”. IEEE NFV-SDN [Submitted for revision].

[17] “Minstrel” [Online] Available:

https://wireless.wiki.kernel.org/en/developers/documentation/mac80211/ratecontrol/

minstrel [Accessed 16 July 2017]

https://wireless.wiki.kernel.org/en/developers/documentation/mac80211/ratecontrol/minstrel
https://wireless.wiki.kernel.org/en/developers/documentation/mac80211/ratecontrol/minstrel

 99

Annex 1. ViRANsim Simulator Classes description

In this annex is provided a detailed description of the ViRANsim simulator, including

programming abstracts.

1. Channel Model

The channel model class simulates the effects of a wireless channel when packets are

transmitted from the WTP to the final user’s terminal. It gives a random behaviour to the

packet transmission, giving the possibility of packet retransmissions. As a result, the

channel model allows us to compute the time required to transmit a certain packet.

In order to do so, the following algorithm has been developed:

Figure 76. Channel Algorithm

For each packet to be transmitted, the algorithm randomly selects a modulation scheme

for the packet to be transmitted. After this, it is checked if the packet has been transmitted

successfully or not. If so, the algorithm exits but if not, the algorithm checks how many

times the packet has been retransmitted. If the number of retransmissions is greater than

3, the modulation scheme is decreased to a more robust modulation scheme (lower one)

and then the packet is retransmitted. If the number retransmissions are less than 3, the

 100

packet is retransmitted without modifying the modulation scheme. All transmission and

retransmission modulation schemes used during the packet transmission are stored in a

list.

The class programmed has the following class variables and functions, which implement

the algorithm:

Figure 77. Channel Model class properties(variables) and methods

The first step that the algorithm does is to initialize the class variables. In the channel,

different modulation schemes have to be defined, specifying its data rate, the probability

of using that modulation scheme and its probability of error. Those values are the

variables msc_rb[] , msc_prob[] and msc_success_prob[], respectively. Moreover, the

modulation scheme cumulated probabilities are computed in order to easily select a MSC

randomly and are stored in the variable msc_prob_cum[]. In these lists the modulation

schemes have to be sorted from the faster to the lower modulation scheme and the same

index in all the lists refer to the same modulation scheme (e.g. msc_rb[1], msc_prob[1],

msc_success_prob[1] and msc_prob_cum[1] refer to the transmission rate, probability,

success probability and cumulate probability of the first modulation scheme).

For testing, the following modulation schemes had been defined. In additions, these are

the default values used if no others are specified for a simulation.

Index MCS transmission rate
MCS

probability
MCS cumulated

probability
MCS success probability

1 54 Mbps 0.8 0.8 0.9

2 48 Mbps 0.1 0.9 0.95

3 24 Mbps 0.05 0.95 0.98

4 12 Mbps 0.03 0.98 0.99

5 6 Mbps 0.02 1 0.999

Table 41. Modulation schemes data rates, occurence probability, cummulated probability and

success probability

In addition, the variables total_retx and current_MSC are defined. The total_retx variable

is a list in which there are stored the modulation schemes used for the transmission and

retransmission of the packet. The current_MSC variable is used to know which is the

modulation scheme that the packet is using. For both variables, the modulation schemes

stored in them are referred to its position in the msc_rb variable, which has to be sorted

from the faster to the slower modulation scheme. For instance, if the value of

current_MSC is 2, it will mean that the modulation scheme with 48Mbps is being used.

 101

The three functions defined inside the ChannelModel class, apart from the initialization

function, are the functions chooseMSC(), success() and packet_tx(). The function

packet_tx() is the one that performs all the steps needed to perform the algorithm already

explained. The other two functions are used inside packet_tx(). The function

chooseMSC() generates a random number between [0,1]. The random number is

compared to msc_prob_cum and a modulation scheme is associated to it. This is only

done for the first transmission of the packet, not for the retransmissions. The function

success() also generates a random number and giving the current modulation scheme it

states if the packet has been successfully transmitted or not.

In order to better understand the algorithm, we will put an example of how it operates.

1. All the variables are initialized with the default modulation scheme values. The list

total_retx is empty and the current_MSC=0.

2. The current_MSC is computed through chooseMSC() function. The random value

obtained is 0.83, so the modulation scheme used will be the one operating at

48Mbps as 0.83 is between 0.8 and 0.9. Then, the current_MSC=2 as the chosen

modulation scheme is the second one in the list.

3. The packet is transmitted. The current_MSC is stored in the total_retx list. So,

total_retx= [2].

4. It is computed if the packet is sent successfully through success() function. The

random number generated in success() is 0.98. As 0.98 is greater than 0.95 the

packet is not transmitted successfully. The number of retransmissions is

incremented. Retx=1

5. It is checked if the number of retransmissions is greater than 3. The packet has

been sent once for the moment, so we go to the next step.

6. The packet is transmitted again. The current_MSC is stored in the total_retx list.

So, total_retx= [2, 2].

7. The packet is not successfully transmitted again. The random number obtained is

0.96, which is greater than 0.95. The number of retransmissions is incremented.

Retx=2

8. It is check if the number of retransmissions is greater than 3. It is not, so we go to

the next step.

9. The packet is transmitted again. The current_MSC is stored in the total_retx list.

So, total_retx= [2, 2, 2].

10. The packet is not successfully transmitted again. The random number obtained is

0.97, which is greater than 0.95. The number of retransmissions is incremented.

Retx=3

11. It is check if the number of retransmissions is greater than 3. It is so the current

modulation scheme is decremented and the number of retransmissions with the

current modulation scheme is set to 0. Retx=0 and current_MSC=3 (24Mbps).

12. The packet is transmitted again. The current_MSC is stored in the total_retx list.

So, total_retx= [2, 2, 2, 3].

13. The packet is successfully transmitted. The random number obtained is 0.76,

which is lower than 0.98.

The example has been forced to show how the retransmissions are managed as well as

modulation schemes. With the default input values, most of the times the packet is

 102

successfully transmitted considering the probabilities introduced and the modulation

scheme are rarely decreased, as the number of retransmissions is low.

2. Tenant General

The concept of Tenant in the simulator has been split into two parts: the class Tenant

General and class Tenant WTP. The class Tenant General is the class in which the

global properties of a certain tenant in the system are specified while the class Tenant

WTP consists of the instance of a certain tenant in a WTP. This has been divided in this

way in order to easily generate and manage the traffic of each of the tenants in each

WTP but maintaining the entity of the Tenant as a general element in all the system.

As mentioned, the class Tenant General defines a certain virtual operator in the entire

network. In Figure 78 it is shown the properties (variables of a class in python) and

methods implemented in Tenant General class.

Figure 78. Tenant General class properties(variables) and methods

As shown in Figure 78 in bold, in order to create a Tenant_General object, it is necessary

to give it an identifier, which usually will be a number, and the SLA agreed for the tenant

in parts out of one (e.g. w_sla=0.6 instead of 60%). Moreover, each Tenant_general will

have all the instances of tenant in each WTP, which means all the tenant_wtp objects

associated to the tenant. All the objects of tenant_wtp associated to a Tenant, will have

the same identifier as its Tenant_general. Moreover, the Tenant_general has the

identifiers of the WTPs in which it has instances (tenant_wtp). It is important to point out

that the indexes in the lists tenant_wtps[] and wtp_ids[] are related; the tenant_wtp object

in the position n, tenant_wtps[n], is located in the WTP with identifier in the position n in

the list wtps_ids[], so wtp_ids[n].

The methods add_tenant_wtp() and remove_tenant_wtp() are useful for adding and

removing objects tenant_wtp to the list tenant_wtps[] and from wtp_ids[].

In this way, the Tenant_General allows us to control and access to all the information

from the tenant_wtp objects associated to a certain Tenant_General object. Moreover, it

allows us not to lose the entity of the general as a transversal element present in all the

system.

 103

3. Tenant WTP

The Tenant_WTP represents the instance of a certain Tenant_General in a determinated

WTP, as has already been mentioned. This class contains all the variables and methods

in Figure 79. In order to be initialized, the tenant_WTP needs to know to which

Tenant_general it belongs (tenant_id) as well as the wtp_id in which is located (WTP).

Moreover, it needs to know which is the SLA weight negotiated by the tenant and which is

the capacity of the WTP it has been assigned (wtp_capacity). Moreover, for the

initialization, it is also needed a variable related to the traffic level (tl), which has not

finally been used during the studies but it could be used in future. The value of this

variable is always set to 1, representing the 100% of the traffic level.

An important variable that belongs to the tenant_WTP is the queue of packets of the

tenant in that WTP. The queues of tenant_WTP are FIFO (First In First Out) queues,

which have been programmed through a Python class that is called deque from the

module collections, which has to be imported in the python script. With this class it is

possible to add packets at the end of the queue and to obtain and remove the first packet

in the queue by using the functions append() and popleft().

The traffic generated by a certain Tenant is not generated in the Tenant_General and

then passed to the tenant_WTP, but instead it is generated in the tenant_WTP. This

decision was taken for simplicity reasons, as it is easier to manage the queue locally,

generating its traffic and processing their packets in the tenant_WTP. Considering this,

different traffic generators are included in the class tenant_WTP. These traffic generators

generate traffic considering the SLA, so in average the traffic generated will not be

greater than the agreed.

 104

Figure 79. Tenant WTP class variables and methods

The first traffic generation approach was to implement a traffic generator that generates

random traffic according to Figure 80. This first traffic generator is programmed in the

method traffic_generation() and it uses the functions number_bits_average(),

number_bits_actual() and fill_queue().

This traffic generator has the inconvenient that it was focused on having a certain amount

of bytes in the queue but had not into account the time synchronization between the

 105

packet generation and the packet transmission. Moreover, for the studies of the different

algorithms it was convenient to be able to establish a certain traffic generation rate during

the simulation, which is not possible with the initial traffic generator.

Figure 80. Initial traffic generator scheme

Considering the disadvantages of the initial proposed traffic generator, it was defined a

new traffic generator, which is time based and works at a fixed traffic rate. The algorithm

is called fixed generator and it is programmed inside the function

traffic_generation_fixed(). Its operation can be found in Figure 80. Basically, the

tenant_wtp computes the time required to generate a packet at the specified traffic

generation rate and it waits until enough time has passed to generate a packet. As the

algorithm works based on the time already spent by the WTP when sending packets, it is

needed an initial sufficient time to generate a packet for the correct initialization of the

system.

 106

Figure 81. Fixed traffic generator scheme

A critical issue for the traffic_generator_fixed is how to select the traffic generation rate. In

the traffic study, different measures that have been carried out in order to set the rate are

discussed. Through the study developed, it has been possible to formulate the following

equations, that allow establishing a traffic generation rate for a certain tenant while

avoiding the queues to indefinitely increase and using the maximum of the capacity

associated to the tenant. In order to establish the data rate, it is necessary to compute the

capacity of a WTP and then the capacity associated to the tenant in that WTP.

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃𝑅𝑏𝑖
[𝑏𝑖𝑡𝑠] = 𝑅𝑏𝑖 [𝑏𝑝𝑠] · 𝑄𝑠[𝑠] 𝑓𝑜𝑟 𝑖 𝑖𝑛 1. (87)

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝑘𝑅𝑏𝑖
[𝑏𝑖𝑡𝑠] = 𝑤𝑘 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃𝑅𝑏𝑖

[𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖
 (88)

The capacity of the tenant depends on the capacity of the WTP, the SLA weight of the

tenant and the factors ri, which is used to compensate differences added by 802.11g

delays, and fretx, that compensates the effect of retransmissions. The fretx factor formula

has been fixed through simulations.

𝑟𝑖 =
𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑎𝑦𝑠𝑅𝑏𝑖

[𝑠]

𝑡𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑏𝑖
[𝑠]

(89)

𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖
= 𝑝𝑟𝑒𝑡𝑥𝑟𝑏𝑖

− 0.01
(90)

 107

The capacity is computed for each possible data rate in the WTP. After this, the resultant

capacities are used to compute the traffic generation rate, considering the probabilities

associated to the data rate in which the capacity was initially computed.

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘 =
∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝐾𝑅𝑏𝑖

· 𝑝𝑖 [𝑏𝑖𝑡𝑠]𝑁
𝑖=0

𝑄𝑠[𝑠]
 (91)

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘 =
∑ 𝑤𝑘 · 𝑅𝑏𝑖[𝑏𝑝𝑠] · 𝑄𝑠[𝑠] · 𝑝𝑖 [𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖

𝑁
𝑖=0

𝑄𝑠[𝑠]

= 𝑤𝑘 · ∑ 𝑅𝑏𝑖[𝑏𝑝𝑠] · 𝑝𝑖 [𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖

𝑁

𝑖=0

(92)

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘 = 𝑤𝑘 · 𝑅𝑏𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒
 (93)

The effective data rate in the last equation corresponds to equation(94) .

𝑅𝑏𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒
= ∑ 𝑅𝑏𝑖 [𝑏𝑝𝑠] · 𝑝𝑖 · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖

𝑁
𝑖=0 (94)

As one of the requirements of the simulator was to be able to have different traffic

generator modes, it has been designed a uniform traffic generator, and two Gaussian

traffic generators. The three generators are more of the form of a traffic shaper than a

traffic generator. This is because the three generators change the traffic generation rate

every certain time period and then the packets are generated by the function

traffic_generation_fixed(). So the responsible of generating packets in all modes is the

function traffic_generation_fixed() while the other functions just shape the traffic

according to a certain distribution.

The uniform traffic generator is programmed using a python function from class

random that is called ‘uniform’. This function, whose name is

traffic_generation_rate_uniform(), needs to be called specifying in which range of values

it has to generate a value. In our case, the minimum traffic generation rate is 0 Mbps and

the maximum generation rate is computed as in equation (22), considering the

maximum data rate that the WTP is working with and the weight of the tenant. Notice that

rRbmax corresponds to the delays compensation and ri at the maximum data rate Rbmax.

𝐺𝑇𝑚𝑎𝑥
[𝑏𝑝𝑠] =

𝑤 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑅𝑏_𝑚𝑎𝑥[𝑏𝑖𝑡𝑠]

𝑄𝑠[𝑠]
=

𝑤 · 𝑅𝑏𝑚𝑎𝑥 · (1 − 𝑟𝑅𝑏𝑚𝑎𝑥) · 𝑆𝑄[𝑠]

𝑄𝑠[𝑠]

= 𝑤 · 𝑅𝑏𝑚𝑎𝑥 · (1 − 𝑟𝑅𝑏𝑚𝑎𝑥) (95)

It is relevant to mention that the retransmission compensation factor is not considered in

the computation of Gtmax as it is computed as a peak value, so when no retransmissions

occur it could happen that the generation rate is the computed without that factor. The

delays compensation factor is included as the 802.11g delays are always considered in

the transmission of packets.

There have been designed two gaussian generators. For the first Gaussian generator

designed, whose function name is traffic_generation_rate_gaussian(),a python function

from class random called ‘gauss’ is used, which needs the mean and the deviation of the

 108

Gaussian distribution. The mean of the Gaussian distribution has been set to half Gtmax.

Gtmax is computed in the same way as in the uniform generator. Considering Figure 82,

most of the probability is concentrated into the interval (µ-3σ, µ+3σ). So, it has been

truncated the function making this interval coincide with (0, Gtmax). The standard deviation

(σ) and mean (µ) of our Gaussian distribution are computed in equations (96) and (97)

respectively.

𝜇 =
𝐺𝑡max

2
 (96)

µ − 3σ = 0 → σ =
𝐺𝑡max

6
 (97)

Figure 82. Gaussian distribution

The second gaussian generator has been called shifted Gaussian generator

(traffic_generation_rate_gaussian_shifted()). This Gaussian generator works in the same

way as the traffic_generation_rate_gaussian() but it shifts the mean of the Gaussian

distribution to the average capacity that the tenant can request. The standard deviation

has been defined as the 15% of the mean value, but it can be tuneable.

𝜇 = 𝑤𝑡𝑒𝑛𝑎𝑛𝑡 𝑖 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑤𝑡𝑝 (98)

 σ = 15% · 𝜇 (99)

The need of this last Gaussian generator was caused by tests of the weights algorithm,

as it was needed a generator in which sometimes the traffic requested was greater than

the capacity average of the WTP.

Apart from the traffic generation, the class Tenant_wtp is in charge of generating some

exportation files with the system performance data, which will be explained deeply in the

Exportation Files section.

4. WTP

As it has already been defined previously, the WTP is the element in charge of providing

wireless connectivity to the different tenants’ users. Figure 83 contains all the WTP class

variables and methods included in the class WTP.

 109

Figure 83. WTP class properties (variables) and methods

When a WTP is created, it is necessary to give to it an identifier (wtp_id) and it needs to

be given a list of the instances of the WTP (tenants[]), which are tenant_wtp objects.

However, the class also contains a function to add new tenant instances, called

add_tenant_wtp(), so the WTP can be initialized with an empty list and then add the

instances of the tenants. In this way, the WTP can access to tenant_wtp objects, which

allows the scheduling of their packets and management of their traffic.

A relevant functionality of the WTP is the scheduling of packets. In this class, it can be

found the functions rr() for Round Robin, wdrr() for Weighted Deficit Round Robin and

adrr() for Air-Time Deficit Round Robin. The algorithm is stored in the variable algorithm

and the possible values are ‘rr’, ‘wdrr’ and ‘adrr’. The default algorithm is ADRR but it can

be changed by the function set_algorithm(). Each of the scheduling function access to the

tenant_wtp queues to transmit its packets and modify its deficit counter (DC). Inside the

three scheduling functions, it is created an object of ChannelModel and the packets are

sent using the function packet_tx(), previously explained.

Besides the already explained operation of the algorithms, ADRR, WDRR and RR

functions have to translate the retransmissions list returned by the function packet_tx() to

time in microseconds. In order to do so, it uses a function located in the script scenario.py

called tp_real_computation(), which needs as a input the list of retransmissions and the

packet length. It has to be remembered that the list returned by the fuction packet_tx() is

a list of the data rates used in each of the retransmissions. So, the function

tp_real_computation() computes the time per each transmission/retransmission and adds

all the times.

 110

The time of a single transmission (or retransmission) is computed considering the

802.11g delays values in Table 42 and using the equation (100). It has not been

considered the back-off times in 802.11g as we are just focusing on the downlink so

collision avoidance is not needed. It is important to point out that in the equation it is

taken into account the transmission of the MAC data packet and MAC ACK packet like in

Figure 21. This is the reason why the physical layer and signal extension delays are

multiplied by 2. Figure 22 shows the 802.11g frame format, where is possible to identify

the fields of physical layer and signal extension. It has to be considered that the column

physical layer in the table coincides with the preamble plus the signal in Figure 22.

DIFS(us) Physical layer (us) Signal extension (us) SIFS ACK length (bytes)

28 20 6 10 14

Table 42. 802.11g delays considered

Figure 84. 802.11 error control in radio medium

Figure 85. 802.11g ofdm frame format

𝑡𝑖𝑚𝑒𝑝𝑎𝑐𝑘𝑒𝑡_𝑡𝑥 = 𝑡𝐷𝐼𝐹𝑆 + 2 · 𝑡𝑝ℎ𝑦𝑙𝑎𝑦𝑒𝑟
+

𝑃𝑎𝑐𝑘𝑒𝑡𝑙𝑒𝑛𝑔𝑡ℎ

𝑅𝑏

+ 2 · 𝑡𝑠𝑖𝑔𝑛𝑎𝑙𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛
 + 𝑡𝑆𝐼𝐹𝑠 +

𝐴𝐶𝐾𝑙𝑒𝑛𝑔𝑡ℎ

𝑅𝑏
 (100)

Considering that the WTP is the responsible of running the scheduling algorithm, it

contains different variables related to the time spent in each of the iterations as well as

during all the simulation. Moreover, it contains the variable time_empy_queue, which is

added to the iteration time when the queue of a certain tenant is empty. This decision

was taken in order to simulate that when the queue is empty the time keeps running, as

well as to consider the processing time when looking at queue. It also includes the

variable it that corresponds to the current iteration number.

 111

In addition, in the WTP there are called the functions to generate traffic of each of the

tenant instances in the WTP. In order to do so, it is necessary to specify which traffic

generation mode is desired. The traffic mode is stored in the variable

traffic_generation_mode and the default value is ‘Fixed’. The traffic generation mode can

be modified by the function modify_traffic_generation_mode(), and the other modes that

the function accepts are ‘Uniform’, ‘Gaussian’ and ‘Gaussian Shifted’. In the WTP there is

a variable called initial_time needed for the tenant_wtp objects to generate traffic, as they

generate traffic from the time that has already been spent.

All the WTP operation is runnable from the functions wtp_operation() and

wtp_operation2(). The difference between them is that the function wtp_operation()

generates the traffic randomly using the tenant_wtp function traffic_generation() while the

function wtp_operation2() allows to generate the traffic using the functions

traffic_generation_fixed(), traffic_generation_rate_uniform(),

traffic_generation_rate_gaussian() and traffic_generation_rate_gaussian_shifted(). The

three last functions are possible to be called just once every time_change_gt, so the

traffic generation rate is just modified every certain period of time. In order to do so, a

variable called accum_time_gt is created and counts the time since the last traffic

generation rate update. When accum_time_gt is equal or greater than time_change_gt,

one of these functions is called when selected.

Finally, the WTP class includes some variables used by the weight compensation

algorithm. These variables are the capacity_average that specifies which is the average

capacity that the WTP can afford in bytes, the c_exc, which is the excess of capacity and

the c_sol, which is the solicited capacity.

The capacity_average of a WTP is computed through the function

compute_rb_average_WTP_v2() in the script scenario.py and takes into account the

equations (101), (102) and (103). The capacity average computation uses the

effective data rates of the WTP (including 802.11g delays), its probabilities and a new

compensation factor fcomp, explained below.

Equation (101), shows how the average time to transmit given a certain data rate Rbi is

computed. Notice that it is an approximation, as it just considers three retransmissions

while the programmed algorithm decreases the data rate if a packet is sent incorrectly

three times, which will have a low probability with the values given. Equation (103)

computes the compensation factor, needed to avoid long queues. This is caused by the

difference of data rate allowed in the WTP, as when a low data rate is used, it processes

fewer packets while new packets are arriving to the system, which results in an increase

of the queue. Therefore, we use the relation of times of the maximum data rate and the

minimum data rate in the system to avoid that packets accumulate in the queue.

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑓𝑐𝑜𝑚𝑝 · ∑
𝑃𝑎𝑐𝑘𝑒𝑡𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑣𝑒𝑟𝑎𝑔𝑒

(𝑏𝑦𝑡𝑒𝑠) · 8
𝑏𝑖𝑡𝑠
𝐵𝑦𝑡𝑒

𝑡𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑏𝑖
· 𝑝𝑟𝑜𝑏(𝑅𝑏𝑖)

𝑁−1

𝑖=0

(101)

 112

𝑡𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑏𝑖

= 𝑡𝑝(𝑅𝑏𝑖) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑜𝑘) + 2 · 𝑡𝑝(𝑅𝑏𝑖) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑜𝑘) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑁𝑜𝑘) + 3

· 𝑡𝑝(𝑅𝑏𝑖) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑜𝑘) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑁𝑜𝑘)2
(102)

𝑓𝑐𝑜𝑚𝑝 = 1 − (
𝑡𝑝(𝑀𝐴𝑋 𝑅𝑏, 𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔ℎ𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒)

𝑡𝑝(𝑀𝐼𝑁 𝑅𝑏, 𝑝𝑎𝑐𝑘𝑒𝑡 𝑙𝑒𝑛𝑔ℎ𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒)
)

(103)

5. Controller

The Controller is the element in charge of managing the different WTP and assuring the

SLA of the different Tenants in the network. Figure 86 shows the variables and the

methods of class Controller.

Figure 86. Controller class variables and methods.

Giving that the controller manages all Tenants and WTPs, to create a Controller it is

needed to introduce a list with all the Tenant General objects (tenants[]) and a list with

the WTP objects (wtp[]) in the system. The controller has three main responsibilities: the

tenant_wtp creation, the weight compensation algorithm and the run of all the WTP

operations.

The first responsibility is the creation of the tenant_wtp. The Controller class has the

method tenant_wtp_creation(), which adds a tenant_wtp per each Tenant_General and

per each WTP. It starts creating the tenant_wtp in the Tenant_General through the

function add_tenant_wtp() in Tenant_General, and then the tenant_wtp is added at the

 113

WTP tenant list (tenants[]). This function has to run before starting the simulation, for all

the tenant_wtp to be initialized.

Secondly, the Controller class is in charge of performing the weight compensation

algorithm, which has been previously explained. The function in charge of this is called

weights_wtp(). In relation to the weight compensation algorithm there are two functions

related to the exportation of results: the first to create the exportation files for the weight

compensation algorithm, which is called weight_create_exportation_files() and the

second to export the results provided by the weights_wtp() function, which is called

export_weight_results().

Moreover, the Controller has a variable called enable_weights_compensation, which is

used to enable or disable the weights compensation, and the variable

enable_proportional_sharing, to enable or disable the proportional sharing. The state of

the variables can be modified through the functions enable_disable_weights(), for

enable_weights_compensation, and enable_disable_proportional_sharing(), for the

enable_proportional_sharing. Both variables can take two values: ‘on’ or ‘off’. There is still

another two-variable called weight_comp_time, which corresponds to the period in which

weights are compensated, and the variable time_last_w_change, which counts how much

time since the last weight compensation has passed.

Finally, the Controller is the element responsible of running all the WTPs operation

through functions wtp_operation() or wtp_operation2() in WTP class.

There are different run_wtps() versions. The first version is based on iterations and the

wtp_operation(). When the function wtp_operation2() was designed it was integrated in

the second version. After deciding that there was the need for the simulations to be

based on a simulation time instead of iterations, the versions 3 and 4 were also designed

for both wtp_operation() and wtp_operation2(). In version 5 it was included the weight

compensation algorithm. In that version, the operation of different WTPs did not work as

desired so it was designed v6, which is capable to run the multi-WTP solution properly.

The most upgraded version, run_wtps_v6(),works as explained in the following. In order

to run the different WTP and change the tenant’s weights, each WTP is run every

weight_comp_time. The function wtp_operation2() of the different WTPs in the system is

called sequentially and once all WTP have finished, the weights are changed through

weights_wtp(). Then, the procedure is repeated until the simulation time is reached. It has

to be pointed out that, the WTP may run different times but really close to

weight_comp_time, as the WTP are not exactly synchronized. This will be discussed in

the section of ‘Time synchronization’.

6. Scenario

The scenario is a python script, not a class, that contains different global system

variables and generic functions that may be used by different classes of the system. The

values of variables in scenario are not modified during all the simulation.

 114

Figure 87. Scenario variables and functions

Some important system parameters are configured through this script before starting the

simulation. This is the case of the different modulation schemes data rates (msc_rb), its

probabilities (msc_prob) and its success packet transmission probability

(msc_success_prob). Moreover, the packets lengths (packet_length) and their probability

(packet_prob) can be set in this script. Another important variables are set in this

scenario script: the system quantum (sytem_quantum), the time in which weights are

changed (weight_comp_time) and the 802.11g delays (difs, sifs, ack_80211,

signal_extension and phy_layer).

As mentioned, the script not only includes global variables but also generic functions,

accessible by all the elements in the system. Different groups of functions have been

programmed in this script and can be classified as shown in Table 43.

 115

Function type Description Functions

Conversion units Functions that allow the conversion
of magnitudes.

from_megas_to_bits()

convert_l_to_bytes()

capacity_to_packets()

Time Functions related to the time
computation.

tp_calculation_old()

tp_calculation()

tp_real_calculation()

Data rate related Functions that work with the data
rate

rb_average()

chooseRb()

Status These functions return the status of
a certain element. The status is
return by using a print

Queue_status()

ddr_results()

queue_bits()

print_iteration_results()

Traffic generation
rate

Functions related to the traffic
generation computation and the
capacity of a WTP.

generation_rate_packets_it()

generation_rate_from_capacity()

generation_rate_avg_from_capacities_list()

generation_rate_single_rb()

retx_factor_compensation()

WTP Capacity Compute the WTP capacity
considering different assumptions

capacity_average_wtp()

capacity_peak_wtp()

capacities_wtp()

compute_rb_average_WTP()

compute_rb_average_WTP_v2()

Statistical Provide statistical computations. Cumulate_probs()

Table 43. Scenario functions classification

It was decided to use a separated script for these auxiliary functions, as all the system

classes can access them, so they can be shared. Moreover, some of these functions are

used for checking the expected values of other functions in a faster way. This is the case

of some traffic generation rate functions.

 116

Annex 2. Studies Detail

In this annex is provided the extended version of some of the studies already explained in

the Studies section of the thesis. As before, these studies have been slit into single WTP

and Multi-WTP.

1. Single WTP

In this section, the extended version of some single-WTP studies is provided.

1.1. Iterations Convergence Study

In this first study, it is found the convergence study done in order to determine which is

the adequate number of iterations needed to obtain valid results and minimize the size of

result simulation files. It deserves to be pointed out that this is the first study performed

with the ADRR and it is being considered that the input to run the WTP operation is the

number of iterations, as it is the first implementation. This study also wants to have a first

approach of the behavior of the ADRR and the simulator performance.

It is also important to point out that the DC adjustment in this section is performed by

reducing the real packet transmission time from the DC after the transmission, as in

equation (31).

𝐷𝐶𝑇𝑒𝑛𝑎𝑛𝑡 𝑖 = 𝐷𝐶𝑇𝑒𝑛𝑎𝑛𝑡 𝑖 − 𝑡𝑝𝑟𝑒𝑎𝑙
(104)

The scenario used for the simulations in this section consists of two tenants in one WTP

that share the available resources based on given weights. Moreover, the modulation

scheme and the packet length are chosen randomly. The function used to generate traffic

is traffic_generation(). The probabilities for selecting the packet length and the modulation

coding schemes (MCS) are shown in Table 44 and Table 45, respectively.

Packet Length (Bytes) Packet probability

1514 0.7

512 0.3

Table 44. Packet lengths and probabilities

MCS transmission rate MCS probability MCS success probability

54 Mbps 0.8 0.9

48 Mbps 0.1 0.95

24 Mbps 0.05 0.98

12 Mbps 0.03 0.99

6 Mbps 0.02 0.999

 Table 45. Data rate, probability and success probability of each modulation scheme

The study has been developed focusing on ADRR and it has been analyzed for both

cases of using and not using delays from the 802.11g protocol (SIFS, DIFS…), in order to

prove that the use of these delays does not affect the convergence. Moreover, it has also

been contrasted the convergence when WDRR is used.

 117

In order to determine which is the minimum number of iterations, for each of the cases,

different simulations of different number of iterations have been run. For each of the

simulations, the average time and transmitted bytes over all the iterations has been

computed. Afterwards, it has been obtained the percentage of time and transmitted bytes

over the total time and bytes of each of the tenants in order to obtain how both

parameters are shared. As ideally, both tenants should equally share the resources, it

has been computed the dispersion in relation to the ideal value that is the weight initially

specified for each of the tenants. For the first simulations it is 50% for both tenants.

This document wants to analyze which is the adequate number of iterations needed for

the algorithm to converge. This is why the dispersion threshold has been set to 1E-4 for

the parameter so, dispersion greater than 1E-4 will not be acceptable for the optimized

parameter.

1.1.1. ADRR without 802.11g delays

As a first step, the convergence has been analyzed for the case of ADRR without having

into account 802.11g delays (SIFS, DIFS…) for the packet transmission. The analysis

has been performed for both time and transmitted bytes. For ADRR the quantum has

been set to 2ms, which takes into account the maximum packet length (1514 bytes) and

the slower data rate (6Mbps).

In this case, the time considered for a packet transmission is computed according to the

following equation:

𝑡𝑖𝑚𝑒𝑝𝑎𝑐𝑘𝑒𝑡_𝑡𝑥[𝑠] =
𝑃𝑎𝑐𝑘𝑒𝑡𝑙𝑒𝑛𝑔𝑡ℎ [𝑏𝑦𝑡𝑒𝑠]

𝑅𝑏[𝑏𝑝𝑠]
 (105)

1.1.1.1. Time convergence

As a first step, we will look at the results in terms of percentage of time used by each of

the tenants over the total time per iteration. This can be found in the first two columns of

Table 46. The expected or ideal percentage is the 50%. From the average values, it has

been computed the dispersion towards the theoretical value 50%. The values used are in

parts out of one (0.5 instead of 50%) per each tenant according to the following

expression:

𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 = |%𝑡𝑖𝑚𝑒𝑡𝑒𝑛𝑎𝑛𝑡𝑋
− 0.5| (106)

The dispersion results are shown in the third and fourth columns of Table 46. The values

in the table are in parts per unit.

 118

% TOTAL TIME % Time Tenant 1 % Time Tenant 2 Dispersion Tenant 1 Dispersion Tenant 2

100 Iterations 0.500213 0.499787 2.1339E-04 2.1339E-04

500 Iterations 0.499943 0.500057 5.6794E-05 5.6794E-05

600 Iterations 0.499968 0.500032 3.1920E-05 3.1920E-05

750 Iterations 0.499980 0.500020 2.0350E-05 2.0350E-05

1000 Iterations 0.500005 0.499995 4.5657E-06 4.5657E-06

2000 Iterations 0.499993 0.500007 7.3106E-06 7.3106E-06

3000 Iterations 0.499992 0.500008 7.9232E-06 7.9232E-06

4000 Iterations 0.500002 0.499998 1.7524E-06 1.7524E-06

5000 Iteracions 0.500006 0.499994 5.7905E-06 5.7905E-06

10000 Iterations 0.500001 0.499999 1.1519E-06 1.1519E-06

Theoretical 0.500000 0.500000 0 0

Table 46. Percentages of average transmitted bytes over the total and dispersion around 0.5 for both

Tenants

The dispersion for both tenants is the same because it is computed as the absolute value

of the difference between the obtained percentage and the theoretical one (0.5). In Figure

88 it is plotted the dispersion results of the table, which will be the same for both tenants.

Figure 88. Time dispersion over 0.5 for different number of iterations. Case without 802.11g delays

In the represented dispersion graphic in Figure 88, it can be observed that the difference

between the ideal value and the obtained through simulations decreases drastically at

500 iterations. At 600 iterations, the difference between the ideal and simulated values is

of order 1E-5.

Giving this result, the minimum number of iterations to converge are 500 iterations

considering that our criteria is that the dispersion must be lower than 1E-4.

1.1.1.2. Transmitted bytes convergence

Secondly, it has been analyzed the convergence when focusing on the percentage of

transmitted bytes per iteration in average. The statistics analyzed are the same as

previous ones. The table has not been included as the dispersion results can be

observed in Figure 89.

 119

Figure 89. Transmitted bytes dispersion over 0.5 for different number of iterations. Case without

802.11g delays.

When looking at the results obtained with the number of transmitted bytes, it can be

observed that the dispersion values are greater than the values when focusing on the

time in Figure 88. This difference is due to the fact that the ADRR quantum is set in time

units, so it adjusts the time used by each tenant. However, the algorithm does not limit

the number of bytes transmitted directly but through the time quantum. If the time

considered did not consider retransmissions, the transmitted bytes would coincide to the

time one, as they would be directly connected. However, when retransmissions are

considered, this is not the case.

Even though the dispersion observed in Figure 89 is greater than 1E-4, the convergence

is reached at 500 as for ADRR the parameter that is optimized is the time, not the

transmitted bytes.

1.1.2. ADRR with 802.11g delays

In order to discard differences in the convergence when 802.11g protocol delays are

taken into account, it has been proven that the results obtained are quite similar.

1.1.2.1. Time convergence

The same parameters have been obtained and analyzed for the case of enabling 802.11g

protocol delays. In Figure 90 it is plotted the time dispersion around 0.5.

 120

Figure 90. Time dispersion over 0.5 for different number of iterations. Case considering 802.11g

delays

Comparing these results to the results in Figure 88, where not delays are considered, it

can be seen that the dispersion obtained for each number of iterations have the same

order. In addition, the dispersion decreases drastically when using 500 iterations as

before. So, the use of 802.11g delays does not affect the convergence in time. In this

case, it can be also stated that the convergence is reached at 500 iterations, as the

dispersion is of the order of 1E-4.

1.1.2.2. Transmitted bytes convergence

It has also been checked the effect of 802.11g delays in the transmitted bytes

convergence. Once again, the dispersion evolution depending on the number of iteration

has been obtained.

Figure 91. Transmitted bytes dispersion over 0.5 for different number of iterations. Case considering

802.11g delays

When Figure 89 and Figure 91 are compared, it can be seen that the results are very

similar so the delays added by the 802.11g protocol do not affect the convergence study.

In this case it is also observed that the dispersion values are greater than in the time

analysis.

 121

1.1.3. WDRR without 802.11g delays

As the simulator can perform the scheduling by using different algorithms, it is relevant to

check the convergence when using these algorithms. In this section, the convergence is

analyzed for WDRR algorithm using a system quantum of 1514 bytes. For ADRR, the

time converged faster than for the transmitted bytes so, for this case, it is expected the

contrary because DRR controls how many bytes are transmitted per iteration.

For this case, the delays added by 802.11g are not taken into account but, as also shown

in the previous section, they do not affect the convergence study.

1.1.3.1. Time convergence

This time it has been studied the time convergence for WDRR using the same

parameters as in the previous sections. The sharing percentage time dispersion around

0.5 is plotted in Figure 92.

Figure 92. Time dispersion over 0.5 for different number of iterations. Case of WDRR without 802.11g

delays

As expected, the convergence results for the WDRR algorithm for the case of the time

are similar to the ones obtained for the transmitted bytes convergence of the ADRR. This

is because in WDRR the quantum is set in bytes so what is controlled in each iteration is

the number of bytes to be transmitted not the time for each tenant. As the transmission

time is related to the number of bytes transmitted, it is indirectly controlled. The

differences obtained are because for a packet transmission we only count how many

bytes has the packet sent but for the time we consider all the time needed to successfully

transmit the packet, including retransmissions.

1.1.3.2. Transmitted bytes convergence

Moreover, the convergence has been studied for the transmitted bytes for WDRR. The

dispersion around 0.5 for the percentage of transmitted bytes by each tenant is showed in

Figure 93.

 122

Figure 93. Transmitted bytes dispersion over 0.5 for different number of iterations. Case of WDRR

without 802.11g delays

For this last case, the convergence behavior for the transmitted bytes is similar to the

behavior obtained for the time convergence in ADRR in Figure 90. When comparing both

figures, it is shown a high similarity, as in both cases the dispersion decreases really fast

at 500 iterations. In this case the dispersion at 500 iterations is around 1E-4 so, according

to our criteria, with that number of iterations is enough to converge.

Finally, it can be concluded that the convergence for WDRR and ADRR behaves equally

for the quantum units (time for ADRR and transmitted bytes for WDRR).

1.1.4. ADRR without 802.11g delays and weights 80%-20%

In this section, it has been analyzed the convergence of ADRR when the resources are

not shared equally between the both Tenants. The weights of Tenant 1 and Tenant 2

have been set to 80% and 20%, respectively. In this case, no 802.11g delays have been

taken into account. The study has just been performed for the time convergence, as

during this convergence study, it has been seen that ADRR adjusts the time.

1.1.4.1. Time convergence

It has been studied the time convergence using the same parameters as in the previous

sections.

 123

Figure 94. Time dispersion over 0.5 for different number of iterations. Case of WDRR without 802.11g

delays

In the simulation results, it can be observed that the convergence of time when different

weights are applied to each Tenant is the same as in the equal weights case. In Figure

94, it is shown that the dispersion decreases drastically to 1E-5 at 500 iterations like in

Figure 88, where the weights were set to 50%-50%. As our dispersion threshold is 1E-4,

the minimum number of iterations needed would be 500 as in the previous cases.

With this last analysis, it can be stated that the convergence is not affected by the

weights used for each of the Tenants.

1.2. Deficit counter adjustment: theoretical vs real packet time.

In this study, it is discussed the difference between adjusting the deficit counter (DC)

using the real time in which packets are transmitted or using a theoretical time in the

ADRR algorithm.

The first approach of the ADRR algorithm for the simulator assumed that the DC was

reduced using the real time in which the packet was transmitted, as in equation (107). In

this way, the exact time that the tenant had spent transmitting the packet was taken into

account, considering the data rate in which was transmitted and the retransmissions.

𝐷𝐶𝑇𝑒𝑛𝑎𝑛𝑡 𝑖 = 𝐷𝐶𝑇𝑒𝑛𝑎𝑛𝑡 𝑖 − 𝑡𝑝𝑟𝑒𝑎𝑙
(107)

Although this solution is the fairer, when thinking of the real implementation of hypervisor

it is not a feasible option. The reason of this is that in the real hypervisor computing the

real time in which a packet is transmitted involves having to read ACK packets. This

would increase the complexity of the algorithm, introducing latency to the system when

serving packets. Because of this, it was decided to change the initial assumption and use

the initial expected time as in equation(108).

𝐷𝐶𝑇𝑒𝑛𝑎𝑛𝑡 𝑖 = 𝐷𝐶𝑇𝑒𝑛𝑎𝑛𝑡 𝑖 − 𝑡𝑝𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
(108)

Moreover, in the first approach the expected time was always computed using the most

probable data rate without considering retransmissions so the expected time was always

the same. In our case, the expected time was always considering the 54Mbps rate. After

deciding to use the expected time, it was opted to upgrade the computation of the

 124

expected theoretical time, to include the possibility of different data rates in its

computation. This is performed by using the function chooseRb().

With the upgrade, the expected time calculation uses the average packet length and a

randomly chosen data rate, which considers the probability of the different data rates. In

chooseRb(), it is generated a random number between 0 and 1 and this is related to a

certain data rate according to the probabilities of the different data rates. Therefore,

different data rates are considered but retransmissions are not taken into account, as its

probability is really low. In this way, the DC reduction, in average, is nearer the first

approach, as the expected packet transmission time is not always the same and has

similar statistical behavior to the real packet transmission time.

Considering this, it is required to check the differences between the two approaches. The

main difference between them is reflected in the convergence study, as their behavior

differs. In order to compare both approaches, it has been considered the simulation

conditions in Table 47. The justification of the field empty queue is provided later in this

ANNEX.

Number of WTP 1

Tenants 2

Tenant 1 SLA 0.7

Tenant 2 SLA 0.3

Packet lengths 1514 Bytes (both)

System quantum 2ms

802.11g delays ON

Empty queue time 100us

Traffic generation mode Fixed

Simulation time 60 s

Table 47. Simulation conditions

The first simulations have been performed fixing a single data transmission rate to

54Mbps. In this way, the theoretical time and the real time will just differ because of

retransmissions. From the simulation results, it has been computed the average

percentage of used time and the average percentage of transmitted bytes of each tenant

when using the real packet transmission time (tp real) and expected packet transmission

time (tp theoretical). After this it has been computed dispersion around the desired

percentage (0.7 for tenant 1 and 0.3 for tenant 2) and it has been plotted. The dispersion

graphics are equal for both tenants, as the dispersion is computed taking the absolute

value as in previous studies.

Figure 95 and Figure 97 show the dispersion focusing on the used time percentage,

which are similar. It must be pointed out that in the convergence study, when using real

transmission time, the simulations were performed focusing on iterations, so long time

dispersion like in this case was not performed. Comparing both graphics, it can be seen

how when using tp real, the value of dispersion is stabilized a little later than in the case

of tp theoretical. In Figure 96 and Figure 98 it is plotted the dispersion when paying

attention to the transmitted bytes. Once again, the graphics behaviors are extremely

similar, being more homogeneous in the case when tp theoretical is used. In all figures, a

logarithmical y axis has been used, to clearly show the results.

 125

Figure 95. Used time dispersion around expected weight for the case of 54Mbps and tp real

Figure 96 Transmitted bytes dispersion around expected weight for the case of 54Mbps and tp real

Figure 97. Used time dispersion around expected weight for the case of 54Mbps and tp theoretical

 126

Figure 98. Transmitted bytes dispersion around expected weight for the case of 54Mbps and tp

theoretical

Secondly, it has been performed the same simulations but allowing the WTP to transmit

at different data rates, specified at Table 45.

In this simulation, big differences are found when comparing the performances in terms

on convergence. In Figure 99 and, Figure 101 it is represented the dispersion in the

percentage used time by a tenant. It can be observed how in the case of using the tp real,

the dispersion reaches smaller values than when using tp theoretical. The same happens

in Figure 100 and Figure 102 for the transmitted bytes dispersion. This is caused by the

differences between the tp theoretical and tp real as different data rates are possible.

When considering the real time, the algorithm is being more accurate in the time sharing

between the different tenants. However, when using the theoretical time, the accuracy is

lost in both the time and transmitted bytes sharing.

Figure 99. Used time dispersion around expected weight for the case of random data rate and tp real

 127

Figure 100. Transmitted bytes dispersion around expected weight for the case of random data rate

and tp real

Figure 101. Used time dispersion around expected weight for the case of random data rate and tp

theoretical

 128

Figure 102. Transmitted bytes dispersion around expected weight for the case of random data rate

and tp theoretical

In conclusion, when using different data rates in a WTP, the resource sharing is more

accurate and fairer when using the real transmission time in the DC adjustment. Although

this, it is needed to use the expected or theoretical packet transmission time because of

implementation issues for the real hypervisor so a dispersion of 1E-2 will be achieved

focusing in both used time and transmitted bytes. Giving this, the time convergence has

been analyzed in the following section.

1.3. Time Convergence Study

A key factor when studying the performance of ViRANsim simulator is to determine the

amount of time needed to obtain reliable results, what means to study the convergence of

the system.

This convergence study focuses on time convergence while in the previous studies the

focus was on the number of iterations needed to converge. The reason of this is that for

the EmPOWER testbed is would be much useful to know the convergence in time units,

to set a coherent simulation time. Moreover, in the study of this document, the expected

theoretical packet transmission time is subtracted from the DC instead of the real time, as

in equation (107).

For all the tests performed, the simulation scenario considers two tenants with a SLA of

the 60% for Tenant 1 and 40% for Tenant 2 and a single WTP. Both tenants just transmit

packets of 1514 Bytes and the system quantum is set to 2ms. Moreover, the queues are

initially empty. Different generators and transmission rates have been used in the

following sections to study how the convergence is affected.

1.3.1. Fixed traffic generation rate and single transmission rate

The first convergence test has been performed when the WTP just works at a single

nominal transmission rate of 54Mbps and tenants generate traffic in a fixed mode. The

traffic generation rate of each of the tenants is set considering the weight of the tenant,

the transmission rate, the 802.11g delays and the effect of retransmissions.

To study the convergence, it has been computed the average percentage of used time

and the percentage of transmitted bytes for both tenants. Afterwards, it has been

 129

calculated the deviation around the expected percentages (60% for tenant 1 and 40% for

tenant 2).

In Figure 103 it is plotted the time deviation during all the simulation, that last 60s. As we

are working with small values, it has been generated Figure 104, which represents the

same values but using a logarithmical scale in the vertical axis. In that figure, it is possible

to observe in more detail that the deviation converges to a value around 0.5E-3, which is

achieved in 10 seconds.

Figure 103. Time deviation during the simulation time.

Figure 104. Time deviation with vertical axis in logarithmical scale

Figure 104 shows the deviation in the transmitted bytes using a logarithmical scale in the

vertical axis again. It can be observed that the deviation in the transmitted bytes reaches

smaller values than the deviation in time and it keeps decreasing during time.

It must be pointed out that in the, previous convergence study in section 1.1, when the

real time was discounted from the DC instead of the theoretical, it was obtained the

contrary; the time deviation was always decreasing while the transmitted bytes didn’t. So,

what makes that the time deviation does not keep decreasing is related to the fact that

the algorithm is not exactly subtracting the time used by each tenant from the DC. This is

because the theoretical time used does not take into account retransmissions, so the

theoretical and the real used time can be different. However, as we are just working with

 130

a single transmission rate and a single packet length, the number of bytes expected to be

transmitted into a certain theoretical time will coincide with the transmitted bytes into a

real time, as we are just counting correctly transmitted packets. That means that the sent

bytes in retransmissions are not considered.

Figure 105. Transmitted bytes deviation with vertical axis in logarithmical scale.

From this section, it can be concluded that the time needed to converge is approximately

10 seconds and that with the theoretical time modification in the algorithm, what the

algorithm adjusts is the percentage of transmitted bytes.

1.3.2. Fixed traffic generation rate and random transmission rate

In this section, the convergence is studied when the tenants are using a fixed generator

as before but the WTP can transmit at different transmission rates. The nominal

transmission rates (without considering 802.11g delays) with its related probabilities can

be found in Table 45.

The fixed generation rate is computed as concluded in the traffic generation section,

where it is considered an average of the different rates considering the delays and the

related data rates probabilities. Once again, the same graphics have been generated.

In Figure 106, it can be observed how the deviation is slightly greater than in Figure 103,

as in this case the deviation converges to 0.6E-3. However, in Figure 107 it is observed

that the deviation in the transmitted bytes is no longer decreasing during all the simulation

but it converges to 0.6E-3. This change is due to the possibility of a packet being

transmitted in different rates. To compute the theoretical time, it is selected a data rate

randomly according to the Rb probabilities. Nevertheless, the real data rate can be totally

different which can introduce big differences in the number of packets sent during an

iteration.

When looking at the time deviation, it can be observed that the deviation is stabilized at

20 seconds but looking at the transmitted bytes, the deviation stabilizes at 5 seconds.

 131

Figure 106. Time deviation with logarithmical vertical axis for the case of Rb random and fixed

generation rate.

Figure 107. Transmitted bytes deviation with logarithmical vertical axis for the case of Rb random and

fixed generation rate.

1.3.3. Gaussian traffic generation rate and random transmission rate

In this section, the transmission rate is random as in the previous section and the traffic

generation rate is changed following a Gaussian distribution every 1 second. The

Gaussian distribution has the following parameters as a mean and standard deviation,

where Caverage is the average capacity that the WTP can provide, considering 802.11g

delays. The function selected to generate the traffic is

traffic_generation_rate_Gaussian_Shifted(), previously explained.

𝜇 = 𝑤𝑆𝐿𝐴 · 𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (109)

𝜎 = 0.15 · 𝑤𝑆𝐿𝐴 · 𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (110)

This distribution has been selected as it approaches well a real scenario, where different

traffic generation rates can happen around the capacity average. In this case the

standard deviation of the Gaussian distribution has been set to 0.15 which could be

modified in the case of wanting to emulate more critical or relaxed distributions. This

 132

distribution is the one that will be used in future studies of other parts of the algorithm,

which makes it interesting to be analyzed.

The same convergence than in previous sections have been performed.

Figure 108. Time deviation with logarithmical vertical axis for the case of Rb random and Gaussian

generation rate.

Figure 109. Transmitted bytes deviation with logarithmical vertical axis for the case of Rb random and

gaussian generation rate.

In Figure 108, it can be observed how the time deviation is higher than in Figure 104 but

similar to Figure 106. This is because the only thing that changes in comparison to Figure

104 is the traffic generation mode so, once the queue has packets, the performance is

the same in both cases. For the transmitted bytes deviation, similar results to Figure 107

are found.

Looking at Figure 108 it can be stated that the convergence is reached approximately at

10 seconds, where the deviation is stabilized.

1.3.4. Full Queue

Another test performed is the same as in the previous section but initializing the system

with the queue full, to isolate the algorithm convergence analysis. Once again, the same

graphics have been generated.

 133

Figure 110. Time deviation with logarithmical vertical axis for the case of Rb random, fixed generation

rate and queue initially full.

 Figure 111. Transmitted bytes deviation with logarithmical vertical axis for the case of Rb random,

fixed generation rate and queue initially full.

As it can be observed in both Figure 110 and Figure 111, in comparison to Figure 108

and Figure 109 the algorithm converges faster. For both transmitted bytes and time

parameters, the system converges in 5s. Moreover, in both cases the dispersion

converges to approximately the same value.

1.4. Traffic Generation Analysis

In this study, a description of how the traffic is generated in the hypervisor simulator is

presented. One requirement for the simulator was to be able to control the traffic

generation of the different tenants but also to simulate the real traffic expected from them.

In order to do so, different traffic generators have been designed with this purpose.

All the designed simulators work using the same principle of operation, which will be

explained in the first part of this section. Moreover, different issues corresponding to the

generators design as well as its results will be discussed.

 134

1.4.1. Fixed Traffic Generator Rate

The fixed traffic generator rate sets a rate at the beginning of the simulation and that rate

is not modified again during the simulation.

An important issue related to this generator is how to fix the traffic rate. The traffic

generation rate of each of the tenants is related to the traffic that a given WTP can

manage. This is why for each WTP it is computed which is its capacity in bits. As a first

approach, it was supposed that a WTP was just serving at a single Rb, so the wtp

capacity in a system quantum (Qs) has the expression in equation (111) :

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃[𝑏𝑖𝑡𝑠] = 𝑅𝑏 [𝑏𝑝𝑠] · 𝑄𝑠[𝑠] (111)

According to this, each of the tenants in a WTP could transmit the following amount of

bits, considering its weight in the WTP, as it is specified in equation (112):

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝑖[𝑏𝑖𝑡𝑠] = 𝑤𝑖 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃[𝑏𝑖𝑡𝑠] (112)

So the traffic generation rate (GT) for a given tenant in a WTP follows equation (113),

considering that we are working in a system quantum interval of time.

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑖
[𝑏𝑝𝑠] =

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝑖[𝑏𝑖𝑡𝑠]

𝑄𝑠[𝑠]
 (113)

If expressions the previous equations are written together, the traffic generation rate (GT)

of a given tenant in a WTP could also be written as in equation (114).

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑖
[𝑏𝑝𝑠] =

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝑖[𝑏𝑖𝑡𝑠]

𝑄𝑠[𝑠]
=

𝑤𝑖 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃[𝑏𝑖𝑡𝑠]

𝑄𝑠[𝑠]
=

𝑤𝑖 · 𝑅𝑏 [𝑏𝑝𝑠] · 𝑆𝑄[𝑠]

𝑄𝑠[𝑠]

= 𝑤𝑖 · 𝑅𝑏 [𝑏𝑝𝑠] (114)

In the simulator, it is more convenient to consider the capacity of the WTP so we will work

with equations (111), (112) and (113) but for checking it will be also useful equation

(114).

In order to evaluate the performance of the proposed algorithm a simulation was

performed. The conditions for the simulation are specified in Table 48.

 135

Simulation Conditions

Rb 54Mbps

Probability of error 0.1

Generation rate Fixed mode

802.11g delays ON

System Quantum 2 ms

Retransmissions ON

Simulation time 60s

Number of WTP 1

Number of tenants 2

Weight Tenant 1 0.6

Weight Tenant 2 0.4

Packet length (Both tenants) 1514 Bytes

Time empty queue 100us

Table 48. Simulation conditions for fixed generator

With the specified conditions, the traffic generation parameters expected are showed in

Error! Reference source not found. and the equations above explained are used to o

btain its values.

Traffic generation parameters

Rb 54Mbps

System Quantum 2 ms

WTP capacity 108000 bits

Tenant 1 Capacity (w=0.6) 64800 bits

Tenant 2 Capacity (w=0.4) 43200 bits

Tenant 1 Gt 32.4 Mbps

Tenant 2 Gt 21.6 Mbps

Table 49. Expected traffic generation parameters

The results of the simulations can be observed in Table 50.

Tenant 1 Tenant 2

Total Time (us) 59998936 59998936

Utilized Time (us) 36021614 23978659.48

Transmitted bytes 155106272 103403172

Number of packets generated 160499 106999

Number of packets transmitted 102448 68298

BW (Mbps) 20.68 13.78

Gt (Mbps) 32.399 21.599

Number of packets in queue 58051 38701

Table 50. Simulation results with fixed generator and single Rb

As it can be seen in the simulation results, the generation rates (Gt) are really near the

expected ones in Table 49. However, the effective throughput7 (referred as BW) provided

7 The effective bandwidth is the real data rate provided to users considering retransmissions, packet transmission delays, the total

simulation time and the bytes transmitted.

 136

to users is smaller than the traffic generation rate. Moreover, the number of packets in the

queue at the end of the simulation is really high. All this informs us that the system is not

capable of managing the traffic generated, as the traffic generation rates are too high.

Figure 112 shows how the packets in queue grow as a function of the simulation time. It

can be observed that the packets in queue for Tenant 1 are greater than the packets in

queue for tenant 2 as the traffic generation rate is greater for Tenant 1.

Figure 112. Packets in queue during time

One of the reasons of the growth of the queue is that the system does not transmit

packets at a single nominal data rate (54Mbps in the simulation) and that 802.11g Wi-Fi

protocol introduces delays that affects to the data rate. This is why it has been designed a

mechanism to incorporate the effect of these delays to the computation of the traffic

generation rate in which packets have to be sent.

For each tenant in each WTP it will be necessary to compute a delay compensation

factor considering the average packet length and all the nominal data rates. The delay

compensation factor (ri) is the relation of the delays in front of the time required to send a

packet, at a certain nominal rate i. This factor will be computed for each of the tenants in

each WTP as it depends on the packet length as well as on the effective data rate.

Equation (115) shows how to compute it:

𝑟𝑖 =
𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑎𝑦𝑠𝑅𝑏𝑖

[𝑠]

𝑡𝑖𝑚𝑒𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑏𝑖
[𝑠]

(115)

Considering a general case, where in a WTP N different modulations schemes are

possible and, in consequence, different nominal data rates (Rbi) exist with different

probabilities (pi). So, for the N nominal data rates it will be obtained its system capacity

following in equation (116).

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃𝑅𝑏𝑖
[𝑏𝑖𝑡𝑠] = 𝑅𝑏𝑖 [𝑏𝑝𝑠] · 𝑆𝑄[𝑠] 𝑓𝑜𝑟 𝑖 𝑖𝑛 1. . 𝑁 (116)

For each WTP and tenant equation (117) computes the tenant capacity in the WTP:

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝑘𝑅𝑏𝑖
[𝑏𝑖𝑡𝑠] = 𝑤𝑘 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃𝑅𝑏𝑖

[𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) (117)

After this it is possible to compute the traffic generation rate of tenant k through equation.

 137

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘
=

∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝐾𝑅𝑏𝑖
· 𝑝𝑖 [𝑏𝑖𝑡𝑠]𝑁

𝑖=0

𝑆𝑄[𝑠]
 (118)

Working with equation (118), it can be obtained equation.(119).

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘
=

∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝐾𝑅𝑏𝑖
· 𝑝𝑖 𝑁

𝑖=0

𝑆𝑄
=

∑ 𝑤𝑘 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃𝑅𝑏𝑖
· 𝑝𝑖 · (1 − 𝑟𝑖)

𝑁
𝑖=0

𝑆𝑄

=
𝑤𝑘 · ∑ 𝑅𝑏𝑖 [𝑏𝑝𝑠] · 𝑆𝑄 · 𝑝𝑖 · (1 − 𝑟𝑖)

𝑁
𝑖=0

𝑆𝑄
= 𝑤𝑘 · ∑ 𝑅𝑏𝑖 [𝑏𝑝𝑠] · 𝑝𝑖 · (1 − 𝑟𝑖)

𝑁

𝑖=0

= 𝑤𝑘 · 𝑅𝑏𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒

(119)

Where the average effective data rate can be defined like in equation (120).

𝑅𝑏𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
= ∑ 𝑅𝑏𝑖 [𝑏𝑝𝑠] · 𝑝𝑖 · (1 − 𝑟𝑖)

𝑁

𝑖=0

(120)

The delay compensation has been included in the simulator and tested initially with a

single Rb. In order to do so, the same conditions as before were taken into account.

Considering the conditions of Table 48 and the traffic compensation factor, the expected

parameters are the ones in Table 51.

Traffic generation parameters

Rb 54Mbps

System Quantum 2 ms

Packet Length 1514 Bytes

WTP capacity 108000 bits

r delay compensation factor 0.291

Tenant 1 Capacity (w=0.6) 45943.2 bits

Tenant 2 Capacity (w=0.4) 30628.8 bits

Tenant 1 Gt 22.97 Mbps

Tenant 2 Gt 15.31 Mbps

Table 51. Expected traffic generation parameters with compensation of delays

The obtained results are resumed inTable 52.

 Tenant 1 Tenant 2

Total Time (us) 59999682.56 59999682.56

Utilized Time (us) 35987129.63 24013660.22

Transmitted bytes (us) 155086590 103391060

Number of packets generated 113790 75860

Number of packets transmitted 102435 68290

BW (Mbps) 20.6783214 13.7855476

Gt (Mbps) 22.97052953 15.31368635

Number of packets in queue 11355 7570

Table 52. Simulation results with fixed generator and single Rb and delays compensation.

With the last results, it is observed that the traffic generation rate is the expected so the

system is generating the packets correctly. However, the effective bandwidth in which the

 138

packets are sent is still lower than the traffic generation rates generated. In fact, the BW

has hardly changed. This produces that packets still accumulate in the queue. In Figure

113 it is represented how the number packets in the queue for Tenants 1 and 2 grows but

with a smaller slope in comparison to Figure 112.

Figure 113. Packets in queue during time with 802.11g delays compensation

The reason why the queue continues growing is that retransmissions of packets are

possible. As we are considering a situation where the 10% of the packet transmitted are

erroneous, many retransmissions are possible. If the probability of error is reduced to the

0.1%, the number of packets in queue decreases drastically but the system is still not

capable of managing them so the queue grows during the simulation. This can be

observed in Figure 114, which is the result of a simulation performed with the same

conditions as before but with a probability of error of 0.001.

Figure 114. Packets in queue during time with 802.11g delays compensation and probability of error

0.001

In order to solve this issue, it is proposed to incorporate a compensation factor for

retransmissions (fretx, rbi), that will be different for each data rate. After doing some tests,

it has been concluded that the best way to include the compensation factor is to multiply

the generation rate by a factor slightly smaller than the probability to transmit a packet

correctly. As it will be proven, it is important to set the compensation factor slightly

smaller than the probability of success, since giving that a retransmission occurs, another

retransmission could occur. The expressions used to obtain the generation rate of tenant

 139

k are equation (121), (122), (123), (124) and (125) which are similar to equations

(115), (116), (117), (118), (119) and (120) but considering fretx, rbi .

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝑘𝑅𝑏𝑖
[𝑏𝑖𝑡𝑠] = 𝑤𝑘 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃𝑅𝑏𝑖

[𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖
 (121)

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘
=

∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝐾𝑅𝑏𝑖
· 𝑝𝑖 [𝑏𝑖𝑡𝑠]𝑁

𝑖=0

𝑆𝑄[𝑠]
 (122)

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘
=

∑ 𝑤𝑘 · 𝑅𝑏𝑖[𝑏𝑝𝑠] · 𝑆𝑄[𝑠] · 𝑝𝑖 [𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖
𝑁
𝑖=0

𝑆𝑄[𝑠]

= 𝑤𝑘 · ∑ 𝑅𝑏𝑖[𝑏𝑝𝑠] · 𝑝𝑖 [𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖

𝑁

𝑖=0

(123)

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 𝑘
= 𝑤𝑘 · 𝑅𝑏𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒

 (124)

In this case the average effective data rate can be expressed like in equation (21).

𝑅𝑏𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
= ∑ 𝑅𝑏𝑖 [𝑏𝑝𝑠] · 𝑝𝑖 · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖

𝑁
𝑖=0 (125)

In the following figures, it is shown the queue evolution when different retransmission

compensation factors are tested for Tenant 1. For all the next figures, the probability of

error has been set to 0.1, so the probability that a packet transmission is correct is 0.9.

The first approach was to set the retransmission compensation factor to 0.9 and the

result can be seen inFigure 115. It can be observed how the packets in queue oscillate

more than in previous simulations and the number of packets in queue is reduced in

comparison to previous results. However, the queue keeps growing. In this case the

traffic generation rate is 20.67 Mbps while the bandwidth is 20.66 Mbps. As the traffic

generation rate is slightly greater than the bandwidth that the system can provide to

Tenant 1, the queue grows. This is why it is necessary to adjust the retransmission

compensation factor in the way that the generation traffic rate is a little bit smaller than

20.66 Mbps.

Figure 115. Packets in queue during time with retransmission and delays compensation.

Retransmission compensation set to 0.9

 140

The second approach was to set the compensation factor a little lower than 0.9, so a

value of 0.89 was chosen. Given a data rate Rbi with probability of retransmission pretx,

the retransmission compensation factor fretx has been defined in equation(126).

𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖
= 𝑝𝑟𝑒𝑡𝑥𝑟𝑏𝑖

− 0.01 (126)

The packets in queue for Tenant 1 are represented in Figure 116. It can be observed how

the system is capable of processing the packets without accumulating them in the queue.

Moreover, the traffic generation rate in this case is 20.44Mbps, which is really close to the

bandwidth that Tenant 1 was managing when the queue was full.

Figure 116. Packets in queue during time with retransmission and delays compensation.

Retransmission compensation set to 0.89

The third approach was to set the compensation factor to 0.8. In Figure 117, it is possible

to observe that the queue is nearly always empty. Setting the compensation factor to 0.8

do not maximize the traffic that we are introducing to the system. The traffic generation

rate in this case is 18.38 Mbps while when no compensation factor the bandwidth to

Tenant 1 was 20.68Mbps, which is the maximum generation rate that could afford the

system.

Figure 117. Packets in queue during time with retransmission and delays compensation.

Retransmission compensation set to 0.8

 141

In conclusion, it is necessary to set the compensation factor a little bit smaller than the

probability of sending correctly the packet but without setting it too small so that it is

possible to maximize the traffic we are sending to the system. So, from the tested

retransmission compensation factors, the most appropriate would be to set the factor to

0.89.

Taking into account the retransmission and delays compensation factors, it has also been

tested the performance of the system when different data rates are available in the WTP.

Each data rate has a certain probability and a probability of success, which can be found

in Table 45.

The simulation conditions when testing the performance of the system with different data

rates available in the WTP can be found in Table 53.

Simulation Conditions

Rb 54Mbps, 48 Mbps, 24 Mbps, 12 Mbps, 6 Mbps

Generation rate Fixed mode

802.11g delays ON

System Quantum 2ms

Retransmissions ON

Simulation time 60s

Number of WTP 1

Number of tenants 2

Weight Tenant 1 0.6

Weight Tenant 2 0.4

Packet length (Both tenants) 1514 Bytes

Time empty queue 100us

Table 53. Simulation conditions for multi-data rate test with fixed generator

Table 54 contains the parameters needed to compute the traffic generation rate of

Tenants 1 use, when using the values in Table 45, related to the data rates and its

probabilities.

Transmission Rate
System Capacity

(bits)
ri frtx, i

Capacity Tenant 1
(bits)

Capacity Tenant 2
(bits)

54 Mbps 108000 0.291 0.89 40889.448 27259.632

48 Mbps 96000 0.268 0.94 39633.408 26422.272

24 Mbps 48000 0.158 0.97 23522.112 15681.408

12 Mbps 24000 0.089 0.98 12856.032 8570.688

6 Mbps 12000 0.051 0.989 6757.6392 4505.0928

Table 54. Traffic generation rate parameters for multi-data rate simulation

The capacities of each of the tenants in the last two columns have been computed

through the following equation:

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 𝑘𝑅𝑏𝑖
[𝑏𝑖𝑡𝑠] = 𝑤𝑘 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃𝑅𝑏𝑖

[𝑏𝑖𝑡𝑠] · (1 − 𝑟𝑖) · 𝑓𝑟𝑒𝑡𝑥𝑟𝑏𝑖
 (127)

By using the values in Table 54, it is possible to compute the expected generation rate for

Tenant 1 and 2.

 142

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 1
=

∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 1𝑅𝑏𝑖
· 𝑝𝑟𝑜𝑏(𝑅𝑏𝑖) [𝑏𝑖𝑡𝑠]𝑁

𝑖=0

𝑆𝑄[𝑠]
= 19.19 𝑀𝑏𝑝𝑠 (128)

𝐺𝑇 𝑇𝑒𝑛𝑎𝑛𝑡 2
=

∑ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑇𝑒𝑛𝑎𝑛𝑡 2𝑅𝑏𝑖
· 𝑝𝑟𝑜𝑏(𝑅𝑏𝑖) [𝑏𝑖𝑡𝑠]𝑁

𝑖=0

𝑆𝑄[𝑠]
= 12.79𝑀𝑏𝑝𝑠 (129)

The results obtained through simulation are the ones in the following table.

 Tenant 1 Tenant 2

Total Time (us) 59998610.1 59998610.1

Utilized Time (us) 35556893.3 24443612.1

Transmitted bytes (us) 126898938 87226082

Number of packets generated 95037 63358

Number of packets transmitted 83817 57613

BW (Mbps) 16.9202504 11.6304137

Gt (Mbps) 19.1852468 12.7901646

Number of packets in queue 11220 5745

Table 55. Simulation results for multi-data rate test with fixed generator

In this case, it can be observed how the average bandwidth given to users is lower than

the traffic generation rate. This growth in the queue size can be also observed in Figure

118. The queue grows because the fact that there exist data rates lower than the traffic

generation rate, which makes the queue to grow. This is because the time to transmit a

packet will be greater when sending it with a lower data rate, which will also produce that

the generator generates more packets in the following iteration.

Figure 118. Packets in queue for fixed generator and multi-data rates in WTP.

Finally, it could be concluded that when more than a single Rb value are considered in a

WTP, it is more difficult to control the traffic generation so it will be more likely the queue

to grow. It has to be taken into consideration that in a real scenario, a tenant would not be

generating traffic constantly, so this generator is just to study the performance of the

algorithm as an experiment.

 143

1.4.2. Uniform generator

Another requirement for the simulator was to test its performance when different traffic

generator rates are taken into account and the traffic is not constant. This is why a

generator that chooses the traffic rates using a uniform distribution has been designed.

This generator has been tested doing a simulation where the traffic generation rate is

modified in every iteration. After this is computed the time to generate a packet and, if

possible, packets are generated. The conditions of the simulation are the ones in Table

56. In this case, different modulation schemes are possible in the WTP, so different data

rates are available with its success probabilities, which are the ones specified in Table 45.

Simulation Conditions

Rb 54Mbps, 48 Mbps, 24 Mbps, 12 Mbps, 6 Mbps

Generation rate Uniform mode

802.11g delays ON

System Quantum 2ms

Retransmissions ON

Simulation time 500ms

Number of WTP 1

Number of tenants 2

Weight Tenant 1 0.6

Weight Tenant 2 0.4

Packet length (Both tenants) 1514 Bytes

Time empty queue 100us

Table 56. Simulation conditions for uniform generation test

The traffic generation rates of the first 35ms of the simulation for Tenant 1 have been

represented in Figure 119. It has not been represented all the simulation as it was clearer

to represent less time. It has to be considered that the maximum generation rate for this

tenant is computed in the following equation:

𝐺𝑡𝑚𝑎𝑥 = 54 𝑀𝑏𝑝𝑠 · (1 − 0.291) · 0.6 = 22.97𝑀𝑏𝑝𝑠 (130)

In the simulation, the values range from 0 to 22.97Mbps, so the uniform generator is

working properly.

Figure 119.Traffic generation rate (Gt) using a uniform generator.

 144

It has also been analysed the consequences of using a uniform generator in the

performance of the system. The results obtained with this simulator are the ones in Table

57.

 Tenant 1 Tenant 2

Total Time (us) 499931.678 499931.678

Utilized Time (us) 292560.963 208922.444

Transmitted bytes (us) 964418 654048

Number of packets generated 637 432

Number of packets transmitted 637 432

BW (Mbps) Average 15.4327968 10.4661981

Gt (Mbps) Average 15.4327968 10.4661981

Number of packets in queue 0 0

Table 57. Results from simulator with uniform distribution

From the results, it is observed how the generation rate is smaller than the one obtained

with the fixed traffic generation. If we consider the average traffic generation rates for

Tenant 1 and 2, it has a middle value between the maximum generation rate and 0. It is

also interesting to see the evolution of the queue with this traffic generator, which is

represented in Figure 120. It is observed that the number of packets in the queue is really

low and that the system is capable of managing the queue when it grows.

Figure 120. Packets in queue for the uniform generator simulation

1.4.3. Gaussian Generator

Moreover, it has been designed a Gaussian generator, as it is expected to generate

traffic similarly to the reality.

After designing the Gaussian generator and implementing it, it has been tested with the

following conditions. The nominal data rate probabilities are the ones in Table 45.

 145

Simulation Conditions

Rb 54Mbps, 48 Mbps, 24 Mbps, 12 Mbps, 6 Mbps

Generation rate Gaussian mode

802.11g delays ON

System Quantum 2 ms

Retransmissions ON

Simulation time 500ms

Number of WTP 1

Number of tenants 2

Weight Tenant 1 0.6

Weight Tenant 2 0.4

Packet length (Both tenants) 1514 Bytes

Time empty queue 100us

Table 58. Simulation conditions for Gaussian generator

From the simulation results, it has been represented the traffic generation rates obtained

by the Gaussian generator during the first 35ms for Tenant 1 (Figure 121), which has a

maximum traffic generation rate of 22.97Mbps. As represented, the Gaussian generator

sets traffic generation rates in its range of possible values (0, 22.97Mbps), generating

more traffic generation rates around the mean.

Figure 121. Traffic generation rate (Gt) using a Gaussian generator.

If we compare Figure 121 (Gaussian Generator) and Figure 119 (Uniform Generator), it

can be observed that with the Gaussian Generator more values around the mean are

used while with the Uniform Generator the traffic generator rates take more dispersed

values.

Like in the uniform generator, it has been analysed the consequences of using a

Gaussian Generator. Table 59 summarizes the obtained results when using Gaussian

generator.

 146

 Tenant 1 Tenant 2

Total Time (us) 498993.9 498993.9

Utilized Time (us) 285417.778 215122.741

Transmitted bytes (us) 823616 563208

Number of packets generated 544 372

Number of packets transmitted 544 372

BW (Mbps) Average 13.204 9.029

Gt (Mbps) Average 13.204 9.029

Number of packets in queue 0 0

Table 59. Results from simulator with Gaussian distribution

When we use a Gaussian generator the average generation rate obtained is a bit lower

than when a uniform generator is used (Table 57). Moreover, it has been analysed the

evolution of packets in the queue for Tenant 1, which is represented in Figure 122. As

less packets are generated, there are less packets in the queue and they do not

accumulate.

Finally, it could be concluded that the Gaussian generator is the one that is thought to be

nearer a real scenario, so problems in queue would not be a problematic issue.

Figure 122. Packets in queue for the Gaussian generator simulation

1.5. Study time for empty queue

In this section, it is discussed the performance of the hypervisor simulator when the

queue is empty. As a first approach, no additional time was taken into account when the

queue was empty, which is not realistic because when the queue is empty the time keeps

running. As the simulator tries to be as closer as possible to the reality, the management

of the time when the queue is empty has been studied and designed.

Two different approaches were proposed. The first approach was to define a time per

iteration, so all the system could be synchronized, so if during a certain iteration the

queue was empty the time does not stop. The problem of this approach is that it adds

complexity to the simulator, having to incorporate time compensation variables for the

case when the transmission of a packet is greater than the time per iteration. Moreover, it

makes it difficult to synchronize the times of different WTP.

 147

The second approach, involves the definition of a fixed time to be added only when the

queue is empty. Moreover, with this approach, instead of fixing a number of iterations per

simulation, what is fixed is a time for the whole simulation because, if the fixed time for

empty queue is too small, it could happen that the number of iterations is not enough to

obtain packets in the queue.

The chosen approach is the last one. As explained, this option implies having to fix a time

when the queue is empty. In order to do so, different simulations have been performed to

study the behavior of the system when different values for empty queue are fixed and

choose an appropriate value for this parameter.

In the following sections, the results obtained fixing the value to 10us, 100us and 500us

considering different traffic generators are showed. In all simulations, the queue has been

initialized empty.

1.5.1. Fixed Generator without retransmissions compensation factor

The first simulation uses a generator that produces traffic at a fixed rate. This rate has

into account the effect of the delays introduced by the 802.11g Wi-Fi protocols so that the

traffic generation rate and the serving rate are similar. The simulation conditions are

shown in Table 60.

Simulation Conditions

Rb 54Mbps

Success probability 0.9

Generation rate Fixed mode

802.11g delays ON

System Quantum 2 ms

Retransmissions ON

Simulation time 30s

Number of tenants 2

Weight Tenant 1 0.6

Weight Tenant 2 0.4

Packet length (Both tenants) 154 Bytes

Table 60. Simulation Conditions for fixed generator without retransmissions compensation factor

Taking into account that the 802.11g delays represent the 29.1% of the time required to

send a packet for our simulation conditions, the generation rate (Gt) for each of the

tenants is the following one:

𝐺𝑡𝑇1 = 0.6 · 54 𝑀𝑏𝑝𝑠 (1 − 0.291) = 22.97Mbps (131)

𝐺𝑡𝑇2 = 0.4 · 54 𝑀𝑏𝑝𝑠 (1 − 0.291) = 15.31Mbps (132)

As it has been mentioned before, three different simulations have been run with the

following times per empty queue: 10us, 100us and 500us. The results obtained are

showed in the following tables.

 148

SIMULATION
10 us

Total
time(us)

Used time
(us)

Transmitted
bytes (bytes)

Packets
generated

Packets
transmitted

Packets
in the
queue

BW(bps)
Time added

by empty
queue (us)

Tenant 1 29997959.41 17989465.63 77433530 56891 51145 5746
34.4350550

9
330

Tenant 2 29997959.41 12010708.37 51621344 37927 34096 3831
34.3835466

9
340

Table 61. Results with fixed generator and 10 us as empty queue time

SIMULATION
100 us

Total
time(us)

Used time
(us)

Transmitted
bytes (bytes)

Packets
generated

Packets
transmitted

Packets
in the
queue

BW(bps)
Time added

by empty
queue (us)

Tenant 1 29999454.89 18004088.67 77671228 56894 51302 5592 34.51270628 400

Tenant 2 29999454.89 11997580.81 51780314 37929 34201 3728 34.52716997 500

Table 62. Results with fixed generator and 100 us as empty queue time

SIMULATION
500 us

Total
time(us)

Used time
(us)

Transmitted
bytes (bytes)

Packets
generated

Packets
transmitted

Packets
in the
queue

BW(bps)
Time added

by empty
queue (us)

Tenant 1 29997656.67 18013047.04 77475922 56890 51173 5717 34.40880239 500

Tenant 2 29997656.67 11987140.59 51650110 37927 34115 3812 34.47034568 500

Table 63. Results with fixed generator and 500 us as empty queue time

For each simulation, it has been obtained the total time of the simulation, the used time

by each tenant, the number of bytes sent during the simulation, the number of packets

generated and transmitted as well as the number of packets in the queue at the end of

the simulation. Moreover, the effective bandwidth for each of the tenants and the time

added by the empty queue has been computed.

With these results, it is shown that the time added by the empty queue is really small in

comparison to the total time of the simulation (approximately 30s). This is due to the fact

that with the generator mode used, the queue never empties because the traffic

generation rate is greater than the serving rate. It is shown in all cases, as the number of

packets generated is greater than the packets transmitted, and this difference is found in

the number of packets in the queue for each of the tenants. The reason of this is that in

the computation of the generation rate, the effect of retransmissions is not taken into

account. Because of all this, the effect of the empty queue in this case cannot be

evaluated, and the times added for all simulations correspond to the added time to

generate the first packet.

Moreover, another important fact to point out is that the generation rate for the three

cases is the same one as the number of packets generated in the three simulations is

really similar. The small differences between the values are because the simulations do

not exactly long 30s, just a little bit less.

1.5.2. Fixed Generator with retransmissions compensation factor

In this case, the effect of the retransmissions is taken into account in the computation of

the generation traffic rate. Considering that the probability of transmitting a packet

correctly is 0.9, it has been determined that if the traffic generation rate is multiplied by a

factor smaller than 0.9, the queue is stabilized. In this case the retransmission

compensation factor has been set to 0.89 and with this value the system is capable of

 149

managing the queue, clearing it when it grows. The generation rates obtained according

to what has been said are the following ones:

𝐺𝑡𝑇1 = 0.6 · 54 𝑀𝑏𝑝𝑠 · (1 − 0.291) · 0.89 = 20.44Mbps (133)

𝐺𝑡𝑇2 = 0.4 · 54 𝑀𝑏𝑝𝑠 · (1 − 0.291) · 0.89 = 13.63𝑀𝑏𝑝𝑠 (134)

The conditions for this case are the same as in the previous section, shown in Table 60

but including the retransmissions compensation factor. The results obtained are shown in

the following tables.

SIMULATION
10 us

Total
time(us)

Used time
(us)

Transmitted
bytes (bytes)

Packets
generated

Packets
transmitted

Packets
in the
queue

BW(bps)
Time added

by empty
queue (us)

Tenant 1 29998343.9 17951836.6 76653820 50634 50630 4 34.1597673 131010

Tenant 2 29998343.9 12048721.9 51102042 33756 33753 3 33.9302659 173760

Table 64. Results with fixed generator and 10 us as empty queue time with retransmission

compensation factor

SIMULATION
100 us

Total
time(us)

Used time
(us)

Transmitted
bytes (bytes)

Packets
generated

Packets
transmitted

Packets
in the
queue

BW(bps)
Time added

by empty
queue (us)

Tenant 1 29998767.1 17830188.1 76659876 50634 50634 0 34.3955433 21700

Tenant 2 29998767.1 12169844.4 51106584 33756 33756 0 33.5955545 258500

Table 65. Results with fixed generator and 100 us as empty queue time with retransmission

compensation factor

SIMULATION
500 us

Total
time(us)

Used time
(us)

Transmitted
bytes (bytes)

Packets
generated

Packets
transmitted

Packets
in the
queue

BW(bps)
Time added

by empty
queue (us)

Tenant 1 29998408.3 17756470.7 76656848 50634 50632 2 34.536975 500

Tenant 2 29998408.3 12244152.2 51103556 33756 33754 2 33.3896901 394500

Table 66. Results with fixed generator and 500 us as empty queue time with retransmission

compensation factor

In this simulation, the parameters obtained are the same ones as in the previous section.

With the retransmission compensation factor the number of packets generated and

transmitted are balanced, so the packets do not accumulate in the queue and sometimes

the queue is empty. In this case we will be able to analyze the effect of the time added

when the queue is empty.

When setting the empty queue time to 10 us the simulation takes a lot of time. This is

because when the queue clears, a lot of iterations are required until the generator is

capable of generating a packet. Considering the generation rates previously computed,

the time required to generate a packet for each of the tenants are the following ones:

𝑡𝑝𝑎𝑐𝑘𝑒𝑡𝑇1
=

1514 𝐵𝑦𝑡𝑒𝑠 · 8
𝑏𝑖𝑡𝑠
𝐵𝑦𝑡𝑒

20.44Mbps
= 592.45 𝑢𝑠 (135)

 150

𝑡𝑝𝑎𝑐𝑘𝑒𝑡𝑇2
=

1514 𝐵𝑦𝑡𝑒𝑠 · 8
𝑏𝑖𝑡𝑠
𝐵𝑦𝑡𝑒

13.63Mbps
= 888.68 𝑢𝑠 (136)

Considering these times, a lot of iterations are required to generate a packet when 10us

are chosen as time to add when the queue is empty. It can also be observed that the

time added by the empty queue is greater than the obtained in the previous section

because the queue is empty many times. It is observed that the time added by empty

queue for tenant 2 is greater since the time needed to create a packet is greater than for

tenant 1. According to this, the tenant 2 queue will be empty more times than tenant 1.

However, the time added for both tenants has the same order of magnitude.

In the case of setting the empty queue time to 100us, the time required to obtain the

simulation results is reduced significantly in comparison to the 10us case. This is

because the number of iterations to generate a packet when the queue is empty is much

smaller. Another issue to point out is that the difference in time added by empty queue

between both tenants is much greater than in the case of 10us. This is because, when

the queue is empty and we add time, that time is added to the simulation time, so it

affects both tenants. In this way, when tenant 2 queue is empty and 100us are added, in

the following iteration, tenant 1 will be more capable of producing packets. As the

generation rate of tenant 2 is lower, it will be empty more times, so it will add more empty

time, that will make tenant 1 add more packets, which also avoids that tenant 1 empties.

This effect is accentuated when the time added by empty queue is of the same

magnitude as the time to generate a packet.

In the third simulation, it is used 500us as empty queue time. The time required to obtain

the simulations results is similar to the case of 100us. The difference in time added by

empty queue between both tenants is extremely big. Tenant 1 just adds 500us in the first

iteration, so the queue never empties. 500us is nearly the time that Tenant 1 needs to

generate a packet (592.45 us), so when Tenant 2 is empty and adds 500us, in the

following iteration, Tenant 1 nearly always will produce a packet. Considering that when a

packet is correctly sent without retransmissions, the duration of the transmission is

316.37 us, adding 500us when the queue is empty is not really appropriate so a lower

value would have more sense. Using a time per empty queue of 100us would be

appropriate.

1.5.3. Gaussian Generator

The last group of simulations uses a Gaussian generator. The Gaussian generator

updates the traffic generation rate every iteration using a Gaussian distribution function

with mean of half the maximum possible generation rate and a variance of one third of

the mean. The results obtained are shown in the following tables.

SIMULATION
10 us

Total
time(us)

Used time
(us)

Transmitted
bytes (bytes)

Packets
generated

Packets
transmitted

Packets
in the
queue

BW(bps)
Time added

by empty
queue (us)

Tenant 1 29999804.5 17034410.9 58684154 38761 38761 0 27.5602858 3368160

Tenant 2 29999804.5 12965720 40828038 26967 26967 0 25.1913742 3484100

Table 67. Results with Gaussian generator and 10 us as empty queue time

 151

SIMULATION
100 us

Total
time(us)

Used time
(us)

Transmitted
bytes (bytes)

Packets
generated

Packets
transmitted

Packets
in the
queue

BW(bps)
Time added

by empty
queue (us)

Tenant 1 29999897.8 16361509.5 50887054 33611 33611 0 24.8813493 4555200

Tenant 2 29999897.8 13638588.3 35099062 23183 23183 0 20.5880909 5475600

Table 68. Results with Gaussian generator and 100 us as empty queue time

SIMULATION
500 us

Total
time(us)

Used time
(us)

Transmitted
bytes (bytes)

Packets
generated

Packets
transmitted

Packets
in the
queue

BW(bps)
Time added

by empty
queue (us)

Tenant 1 29999543.1 15400821.9 47029382 31063 31063 0 24.4295439 4462000

Tenant 2 29999543.1 14599537.6 32290592 21328 21328 0 17.6940355 7112000

Table 69. Results with Gaussian generator and 500 us as empty queue time

In this case, the times added by empty queue are greater for all cases. This is because

lower generation traffic rates are possible, so the time required to generate packets are

greater and the probability of having the queue empty is higher. The Gaussian generator

effect is shown in the number of packets generated, which is approximately half the

number of packets generated with the fixed generator. The time added by empty queue is

one order of magnitude greater than in section 2, which is produced due to the lower

generation rates.

Once again, the time added by Tenant 1 is lower than the time added by Tenant 2 as the

generation rates will be greater for Tenant 1 than for Tenant 2. The times added increase

when the time added by empty queue is greater as expected.

2. Multi-WTP

The studies of this section are focused on using more than a single WTP. As a result of

this, the different studies included are related to the compensation weight algorithm.

Apart from running different WTPs satisfactorily, the purpose of these studies is to study

the performance of the weight compensation algorithm as well as to determine which are

the appropriate input values, to perform the simulations, considering different scenarios:

different traffic deviation, slow and fast traffic change.

For all the following simulations, the scenario chosen consists of two WTP and three

Tenants with the weights shown in Table 31.

 152

Number of WTP 2

Tenants SLA Tenant 1 50%

Tenant 2 30%

Tenant 3 20%

WTP Data rates

(All WTP)

MCS RB (Mbps) MCS Probability MCS success probability

54 0.8 0.9

48 0.1 0.95

24 0.05 0.98

12 0.03 0.99

6 0.02 0.999

802.11g Delays ON

Packet lengths 1514 Bytes for all tenants

Simulation time 180.1 s

Scheduling algorithm ADRR

System Quantum 2 ms

Time Empty queue 0.01ms

Traffic generation mode Gaussian Shifted

Table 70 Simulation conditions

2.1. Traffic generation deviation

The first study performed consists of varying the deviation of the Gaussian shifted traffic

generation. Here there is an extended explanation of the study presented in section

4.2.1.For this analysis, the traffic generation rate changes every 1second for each of the

tenants and WTP. The proportional sharing is enabled. Moreover, the weights are

compensated every 20 seconds.

The deviations for the Gaussian shifted generator tested are 15% and 40%. The capacity

average for the WTP is 28.16Mbps, which is computed from the effective data rates of

the WTP (including 802.11g delays), its probabilities and a compensation factor, as in

equation (137).

Equation (138) shows how the average time to transmit, given a certain data rate Rbi, is

computed. Notice that it is an approximation, as it just considers three retransmissions

while the programmed algorithm decreases the data rate if a packet is sent incorrectly

three times, which will have a low probability with the values given. Equation (139)

computes the compensation factor, needed to avoid long queues. This was caused by

the difference of data rate allowed in the WTP, as when a low data rate (6Mbps) is used,

it processes fewer packets while new packets are arriving to the system, which results in

an increase of the queue. Therefore, we use the relation of times of the maximum data

rate and the minimum data rate in the system, to avoid packets accumulate in the queue.

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑓𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑜𝑟 · ∑
𝑃𝑎𝑐𝑘𝑒𝑡𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑣𝑒𝑟𝑎𝑔𝑒

(𝑏𝑦𝑡𝑒𝑠) · 8
𝑏𝑖𝑡𝑠
𝐵𝑦𝑡𝑒

𝑡𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑏𝑖

· 𝑝𝑟𝑜𝑏(𝑅𝑏𝑖)

𝑁−1

𝑖=0

(137)

𝑡𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑏𝑖

= 𝑡𝑝(𝑅𝑏𝑖) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑜𝑘) + 2 · 𝑡𝑝(𝑅𝑏𝑖) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑜𝑘) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑁𝑜𝑘) + 3 · 𝑡𝑝(𝑅𝑏𝑖)

· 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑜𝑘) · 𝑝𝑟𝑜𝑏(𝑝𝑎𝑐𝑘𝑒𝑡𝑁𝑜𝑘)2

(138)

 153

𝑓𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑜𝑟 = 1 − (
𝑡𝑝(54𝑀𝑏𝑝𝑠, 1514𝐵𝑦𝑡𝑒𝑠)

𝑡𝑝(6𝑀𝑏𝑝𝑠, 1514 𝐵𝑦𝑡𝑒𝑠)
) = 0.85

(139)

The values of capacity average for each of the tenants and deviations for the case of

15% and 40% are specified the following table.

Tenant Capacity average (bps)
Deviation (15%)

(bps)

Deviation (40%)

(bps)

Tenant 1 (50%) 14079943.8 2111991.57 5631977.521

Tenant 2 (30%) 8447966.281 1267194.942 3379186.513

Tenant 3 (20%) 5631977.521 844796.6281 2252791.008

Table 71. Capacity average and deviations for each of the tenants

The capacity average and the deviation are computed by using equations (140) and

(141).

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑇𝑒𝑛𝑎𝑛𝑡𝑖) = 𝑤𝑆𝐿𝐴 · 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑊𝑇𝑃 (140)

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑇𝑒𝑛𝑎𝑛𝑡𝑖 , 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(%)) = 𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑇𝑒𝑛𝑎𝑛𝑡𝑖) ·
𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(%)

100
 (141)

The traffic generated by the tenants in WTP for the deviation of 15% is represented in the

following figures. In the figures it is also checked the performance of the Gaussian Shifted

generator.

Figure 123. Traffic generation evolution for tenant 1 in WTP 1 with Gaussian deviation of 15%

 154

Figure 124. Traffic generation evolution for tenant 2 in WTP 2 with Gaussian deviation of 15%

Figure 125. Traffic generation evolution for tenant 3 in WTP 2 with Gaussian deviation of 15%

Looking at the graphics, it can be checked that the capacity average computed in Table

71 and the deviation are accomplished correctly. The same figures have been generated

when the Gaussian deviation is modified to 40%, which can be observed in the next

figures. They show how the traffic generation rates reach more dispersed values around

the capacity average.

 155

Figure 126. Traffic generation evolution for tenant 1 in WTP 1 with Gaussian deviation of 40%

Figure 127. Traffic generation evolution for tenant 2 in WTP 1 with Gaussian deviation of 40%

Figure 128. Traffic generation evolution for tenant 3 in WTP 1 with Gaussian deviation of 40%

After analyzing the generation rates, it has been analyzed how the weights are

compensated during time. In order to do so, it has been represented the evolution of the

weights during the simulation for WTP1, as it is represented in Figure 129 and Figure 130.

 156

Figure 129. Weights evolution for the case of deviation of 15%

Figure 130. Weights evolution for the case of deviation of 40%

In Figure 129 and Figure 130, it is observed that when the weight of a tenant is increased,

the weight of the other tenants is decreased. Moreover, it is showed how the sum of the

weights of the system during all the simulations is always equal to 1, so we are assigning

the total of the capacity in the WTP. In these figures, it can be slightly observed that the

changes of weight are larger when a deviation of the 40% is used than when the

deviation is set to 15%.

In Figure 131, Figure 132 and Figure 133, it can be observed the variation of the weights

for each of the tenants in the case of deviation of 15% and 40%. It can be stated that

when a deviation of the Gaussian Generator is set to 40%, the weights change to more

dispersed values. This difference is more visible for tenant 1 than for tenant 2 and 3, as

the dispersion values are greater in proportion.

 157

Figure 131. Comparison of the weights of tenant 1 when using a deviation of 15% and 40%

Figure 132. Comparison of the weights of tenant 2 when using a deviation of 15% and 40%

Figure 133. Comparison of the weights of tenant 3 when using a deviation of 15% and 40%

Finally, it has been analyzed if the SLA is accomplished in average for the whole network.

Table 72 shows the performance of each tenant separated per WTP. It can be observed

how the SLA is accomplished looking at the % of Used Time and the % of Transmitted

Bytes. Moreover, In Table 73 , it can be found the average of the used time and

transmitted bytes in the whole network, which also accomplishes the SLA.

 158

WTP Tenant
Used Time

(us)
Transmitted

bytes
 Packet

transmitted
Packets

generated
%Used
Time

%Transmitted
bytes

 WTP
1

Tenant 1 89158156 317243560 209540 209646 0.4950 0.5006

Tenant 2 53657359.56 187893456 124104 124343 0.2979 0.2965

Tenant 3 37284325.11 128564338 84917 84917 0.2070 0.2029

TOTAL 180099840.7 633701354 418561 418906 1.0000 1.0000

 WTP
2

Tenant 1 89417256.07 317450978 209677 209691 0.4965 0.5016

Tenant 2 53653286.22 188567186 124549 124765 0.2979 0.2980

Tenant 3 37028556.74 126814154 83761 83762 0.2056 0.2004

TOTAL 180099099 632832318 417987 418218 1.0000 1.0000

Table 72. Performance results for the case of 15% of Gaussian deviation

Tenant
Network % Used

Time
Network %Transmitted

bytes

Tenant 1 0.4958 0.5011

Tenant 2 0.2979 0.2972

Tenant 3 0.2063 0.2016

Table 73. Performance of tenants over the whole network for the case of 15% of Gaussian deviation

The same results have been generated for the case of 40% of deviation. Looking at Table

74, Table 75, it can be seen that similar results are obtained for this case.

WTP Tenant
Used Time

(us)
Transmitted

bytes
Packet

transmitted
Packets

generated
%Used
Time

%Transmitted
bytes

WTP 1

Tenant 1 86626618.89 302279184 199656 200418 0.4810 0.4906

Tenant 2 54056154 183902552 121468 122146 0.3001 0.2985

Tenant 3 39417752.96 130007180 85870 86465 0.2189 0.2110

TOTAL 180100525.9 616188916 406994 409029 1.0000 1.0000

WTP 2

Tenant 1 88418829.41 310056602 204793 207037 0.4916 0.4956

Tenant 2 54505631.41 189254542 125003 125003 0.3030 0.3025

Tenant 3 36950252.07 126267600 83400 83402 0.2054 0.2018

TOTAL 179874712.9 625578744 413196 415442 1.0000 1.0000

Table 74. Performance results for the case of 40% of Gaussian deviation

Tenant
Network % Used

Time
Network %Transmitted

bytes

Tenant 1 0.4863 0.4931

Tenant 2 0.3016 0.3005

Tenant 3 0.2121 0.2064

Table 75. Performance of tenants over the whole network for the case of 40% of Gaussian deviation

2.2. Proportional sharing

This is an extended version of the study presented in section 4.2.3. Another study

developed is the evaluation of the performance of the proportional sharing algorithm. The

weight compensation algorithm was initially defined in the way that if during the previous

period, the different tenants were not requesting the 100% of the WTP capacity, not all

the resources were assigned. That means that the sum of the weights assigned to the

different tenants in a WTP could be less than 1.

 159

Regarding this issue, it was decided to add a mechanism that allow the proportional

sharing of the non-assigned resources between the different tenants, having into account

its SLA. In this section, the whole results comparing the usage and non-usage of this

mechanism are provided.

The simulation conditions used consist of a weight compensation period of 20s, a traffic

generator with a Gaussian dispersion of 40% with a variation period of 1s. The

simulations have been run with proportional sharing and without proportional sharing.

Figure 134 shows the weight evolution and the sum of weights when proportional sharing

is enabled while in Figure 135 the proportional sharing is disabled. It can be observed

that in the first case the addition of all the weights is always equal to 1 while in the second

case sometimes the addition of weights is lower than 1. In both cases the sum of weights

never exceeds 1.

Figure 134. Weight evolution and sum of weights with proportional sharing

Figure 135. Weight evolution and sum of weights without proportional sharing

The following tables show the performance results with and without proportional sharing.

It can be observed how the results in both cases are similar.

 160

WTP Tenant
Used Time

(us)
Transmitted

bytes
Packet

transmitted
Packets

generated
%Used
Time

%Transmitted
bytes

WTP 1

Tenant 1 89106288.07 316515326 209059 209841 0.4948 0.4977

Tenant 2 54462038.52 192797302 127343 128070 0.3024 0.3032

Tenant 3 36530745.41 126653670 83655 84611 0.2028 0.1992

TOTAL 180099072 635966298 420057 422522 1.0000 1.0000

WTP 2

Tenant 1 93364591.56 333102710 220015 224429 0.5184 0.5217

Tenant 2 50690241.7 178873044 118146 120215 0.2815 0.2801

Tenant 3 36044057.41 126517410 83565 83611 0.2001 0.1981

TOTAL 180098890.7 638493164 421726 428255 1.0000 1.0000

Table 76. Performance results for the case of proportional sharing

Tenant
Network %
Used Time

Network %Transmitted
bytes

Tenant 1 0.5066 0.5097

Tenant 2 0.2919 0.2917

Tenant 3 0.2015 0.1987

Table 77. Performance of tenants over the whole network for the case of proportional sharing

WTP Tenant
Used Time

(us)
Transmitted

bytes
Packet

transmitted
Packets

generated
%Used
Time

%Transmitted
bytes

WTP 1

Tenant 1 90408199.56 322680334 213131 215218 0.5020 0.5063

Tenant 2 53785658.07 189617902 125243 126211 0.2986 0.2975

Tenant 3 35904870.81 125083652 82618 83322 0.1994 0.1962

TOTAL 180098728.4 637381888 420992 424751 1.0000 1.0000

WTP 2

Tenant 1 86072065.33 301753826 199309 199309 0.4779 0.4858

Tenant 2 56230642.07 193602750 127875 127875 0.3122 0.3117

Tenant 3 37795620.37 125814914 83101 83102 0.2099 0.2025

TOTAL 180098327.8 621171490 410285 410286 1.0000 1.0000

Table 78. Performance results without proportional sharing

Tenant
Network %
Used Time

Network %Transmitted
bytes

Tenant 1 0.4900 0.4960

Tenant 2 0.3054 0.3046

Tenant 3 0.2046 0.1994

Table 79. Performance of tenants over the whole network without proportional sharing

Figure 136, Figure 137, Figure 138 show the queue evolution for each of the tenants

without proportional sharing. If those figures are compared to Figure 49, Figure 50 and

Figure 51, of the weight compensation period study, it can be observed how the queue

lengths are much higher in this case. This is caused by the fact that not all the available

resources are considered.

 161

Figure 136. Queue evolution for tenant 1 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 20s without proportional sharing.

Figure 137. Queue evolution for tenant 2 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 20s without proportional sharing.

Figure 138. Queue evolution for tenant 3 in WTP 1. Case of period traffic change to 1 s and weights

compensation period to 20s without proportional sharing.

In a scenario where the capacity requested is low during a period, it could happen that

the computed weights without considering proportional sharing are smaller. So, if during a

period of low activity, a peak of traffic arrives, the fact that no proportional sharing is used

could result in a bad management of the resources: larger queues, latency… Proportional

 162

sharing can provide a softer transition between periods of high and low traffic levels and a

reduction of the queue lengths.

 163

ANNEX 3. ViRANsim simulator class and functions scheme

In this section it is included a global scheme of the entire ViRANsim simulator.

Figure 139. Overall ViRANsim simulator classes and variables

 164

ANNEX 4. ViRANsim simulation script example

This annex consists of an example of how to run a simulation using the simulator

designed.

It has to be mentioned that it has been used Sublime Text editor for the thesis

development.

 165

Glossary

SDN: Software Defined Networking.

NFV: Network Function Virtualization

RAN: Radio Access Network

MVNO: Mobile Virtual Network Operator

AP: Access Points

GRCM: Mobile Communications Research Group

CREATE-NET: Center for REsearch And Telecommunication Experimentation for NETworked

communities

SLA: Service Level Agreement

ADRR: Air-Time Deficit Round Robin

RR: Round Robin

WDRR: Weighted Deficit Round Robin

NOS: Network Operating System

IT: Information Technology

VNF: Virtualized Network Functions

COTS: Commercial Off-The-Shelf

CAPEX: CAPital EXpenditures

OPEX: OPerating EXpense

CPU: Central Processing Unit

RAM: Random Access Memory

VM: Virtual Machines

IaaS: Infrastructure as a Service

CPP: Click Packet Processors

LVAP: Light Virtual Access Point

WTP: Wireless Termination Point

LVNF: Light Virtual Network Function

TCP: Transmission Control Protocol

SDK: Software Development Kit

LAN: Local Area Network

MCS: Modulation Coding Scheme

FIFO: First In First Out

CSV: Comma-Separated-Values

DC: Deficit Counter

 166

