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Abstract

Mie’s solution to Maxwell’s equations describes the interaction of a light wave with a sphere.

This solution - for sphere dimensions comparable to the light wavelength- has a very a inter-

esting result. For some resonant frequencies and sphere radii, scattering section can be more

than ten times greater than actual geometric section. Furthermore, under some conditions, the

absorption cross section can also be larger than the real one. This means that the microsphere

would absorb more light than the one impinging on its surface. This would have a very impres-

sive consequence on light harvesting. In order to test this ability and applying Kirchho↵’s law

of thermal radiation - which states that the emissivity is equal to the absorptivity - we would

measure thermal radiation of a single microshpere.

In this project we design a optical set-up that will be part of the final set-up used to measure

the thermal radiation of a single microsphere. In order to perform the measurement Step-Scan

FT-IR spectroscopy combined with lock-in techniques were used. We where able to measure

an area of 10µm radius’ circle in contrast to the few millimetres that normal FT-IR measures.
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Chapter 1

Introduction

When speaking of semiconductors we must speak of Silicon. The importance of Silicon has

its reasons. Its natural abundance, a convenient band gap or an easy forming oxide (SiO2)

used as an insulator and passivisation layer. Thus, Silicon has become a very well known

material that has built a whole technology around it. Nowadays, it is possible to grow huge

pure monocrystalline blocks as well as micro- and nano- scale structures.

Silicon colloids 1.1, that are extremely spherical particles, have been capturing the attention of

researchers lately. These colloids have sizes varying from nanometers to micrometers, compa-

rable to light wavelength on the Infrared region.

Additionally, Silicon’s high refractive index and highly sphere-like shape drive the colloids to

behave like good resonators according to Mie’s theory. [6][7]

There are many potential applications for Silicon microspheres, especially concerning their

ultrahigh quality factor resonances. A very interesting application is the production of solar

cells with these microspheres. When they trap photons in Mie resonances, these photons stay

long periods of time in there, which is equivalent to travel hundreds of micrometers in bulk

silicon. Thanks to that, higher e�ciency can be achieved with less Silicon. [2].

Another interesting application is using these colloids as solar filter. A sunscreen based on a

mixture of oil and water with the microspheres was compared with a commonly used sunscreen

1



2 Chapter 1. Introduction

S ingle-junction photovoltaic devices suffer from intrinsic
obstacles limiting their efficiency to a top value dictated
by the well-known Shockley–Queisser (SQ) limit1.

The most fundamental limitation is given by the energy band
gap of the semiconductor, which determines the minimum
energy of photons that can be converted into electron–hole pairs.
The development of photodiode devices on micro and
nanophotonic structures has opened new possibilities over the
standard technology. The impinging light is strongly confined
inside those photonic structures enhancing the photocarrier
generation, as it has been observed in nanowire resonators2,3

and in the electrooptical response of the optical cavities4–6.
Simultaneously, photoexcited carriers are generated close to the
collecting electrodes, boosting the power generation in
photovoltaic cells7–11. Furthermore, thanks to an increased
absorption near the band gap edge, some recent works report
on efficiency values beyond the SQ limit10,11. However, due to the
intrinsic bulk properties of silicon, a large percentage of infrared
sunlight, with energy value below the fundamental absorption
edge of silicon, is still useless. To tackle this obstacle, new
resonant photodiode devices must be explored. One possibility
concerns developing photodiodes on high-quality-factor (Q)
silicon resonators. Infrared photons confined in high-Q
resonant devices stay in the cavity for very long times, thus
increasing their probability to be absorbed. It may result
in a photocurrent response enhancement even at photon
energy values below the absorption edge of silicon where the
absorption coefficient is extremely low. In particular, spherical
semiconductor microcavities can be a good platform for
processing such resonant photodiodes. Very recently, several
groups have developed silicon colloids12,13 that, owing to their
perfect spherical topology, sustain well-defined high-Q Mie
resonances allowing the development of optical microcavities12,
and metamaterials14.

The fabrication of rectifying junctions on such silicon micro
and nanocavities would open new possibilities over those so far
developed on nanowire-like devices. First, the spherical topology
would allow an omnidirectional light harvesting15. Second, in
addition to an enhanced photocurrent response above and near
the band gap edge, as reported for nanowire devices7–11, the
strong confinement effect appearing in high-Q optical resonances
would allow IR light dwelling for a time long enough to be
absorbed even beyond the absorption edge of silicon. For
instance, the light trapped in a Mie mode with QB6! 103, for
a typical wavelength of 1,100 nm, would stay in the microcavity
for 3,5! 10" 12 s, the time needed to travel a distance of 300 mm
in bulk silicon (equivalent to the thickness of a standard silicon
solar cell). Third, the development of electronic devices on
spherical shaped particles, together with the implementation of
the self-assembling methods, like those reported by Whitesides, to
build up three-dimensional16 (3D) electrically connected17

networks, may open new avenues for cost-effective large-area
processing of complex electronic architectures such as regular size
photodiode systems.

Very recently, p–n junction devices showing a rectifying
behaviour were developed on nanometre size silicon bi-spheres18.
In this paper, we report on the development of a photodiode
in a micrometre scale polysilicon sphere. The distinctive points
of our work are the following: First, the impinging light
couples to the resonant modes of the microcavity, resulting
in a unique photocurrent response, mimicking the Mie
modes of an optical resonator. Second, both the residual
absorption tail of polysilicon and the high-Q values of the
microcavity resonating modes allow extending the device
photoresponse into the infrared region far below the absorption
edge of silicon.

Results
Device processing and band structure. Silicon microspheres
have been obtained by chemical vapour deposition techniques12.
Figure 1 shows a scanning electron microscopy image of several
polycrystalline silicon microspheres. The inset of the figure shows
a high-magnification image of a single particle, with spherical
shape (diameter, d¼ 3.57 mm), where the small silicon nano-
crystallites can be appreciated, thanks to grain contrast effects.
To develop rectifying junctions in the particles, silicon colloids
were synthesized directly onto n-type silicon substrates with
an nþ -layer implanted on top. The samples were annealed
at temperatures between 850 and 1,100 !C, allowing a
recrystallisation of the silicon microspheres, an improvement of
the substrate–particle electrical contact, and a diffusion of
n-type impurities from the substrate into the bottom side of the
particles. After that, a very thin (10 nm) indium tin oxide (ITO)
conductive transparent layer was sputtered onto the system.
The process leaves an ITO-free gap region between the particles
and the substrate (see the schematic in Fig. 2). At this stage,
thousands of ITO/sphere/n-Si spherical devices, back-connected
through the substrate, are obtained. Finally, to test a single
device, an all-metallic platinum atomic force microscope (AFM)
tip is used to contact on a single sphere. This procedure is
appropriate to study the photoresponse of a single sphere,
offering a painless and fast way for selecting and contacting the
desired device.

During the annealing process, n-type impurities diffuse from
the nþ substrate into the core of the particle. Considering Fick’s
law (and for crystalline silicon), one wouldn’t expect a diffusion
length longer than 300 nm for the annealing temperatures and
time used. However, since spheres recrystallize at the same time,
we cannot discard the possibility that impurities could diffuse
much deeper inside the sphere. Therefore, we have two device
scenarios. In the first one, the impurities diffuse completely into
the whole volume of the silicon sphere. In the second one, the
impurities are localised within the sphere near the nþ silicon
substrate interface. It is agreed that sputtered ITO tends to
produce a rectifying structure when deposited over n-type
silicon19 but an ohmic contact when deposited over p-type
silicon20. Therefore, we can assume that the ITO layer behaves as
p-type electrode. Consequently, in the first scenario case, where
n-type impurities fill the whole silicon particle and reach the top
surface of the microresonator, the rectifying effect would come
from the ITO-nSi Schottky junction. However, in the second

Figure 1 | Scanning electron microscopy image of polydisperse silicon
colloids on a silicon substrate from a bird’s-eye point of view. The inset
shows a detailed view of a single sphere, where the polycrystalline
nature can be seen on its surface, thanks to grain contrast effects. The scale
bars are 20mm in the general view and 500 nm in the inset.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4440

2 NATURE COMMUNICATIONS | 5:3440 | DOI: 10.1038/ncomms4440 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

Figure 1.1: SEM images of spherical Silicon polydisperse colloids from [2]

with T iO2 nanoparticles - with the same concentration in weight of particles in both cases

-[8]. Silicon particle based sunscreen performed better than the T iO2 one in UV, VIS and IR

regions.

Initially, the aim of this project was the development of an experimental set-up to thermally

characterise these microspheres. However, due to several inconveniences encountered during

the process, only the optical set-up was carried out (and not the thermal set-up). The addition

of the thermal set-up, once the optical one has been achieved, would be straightforward though

not trivial. More details on both set-ups will be discussed in section 2.3. It must be noted that

throughout the whole document thermal characterisation will be referred to as the main goal

of all the involved processes.

1.1 Thermal Radiation

Light harvesting in solar cells relies on absorption of light of the semiconductor. The absorption

coe�cient is the fraction of incident light that is absorbed by the body when radiating and

absorbing in thermodynamic equilibrium. Similarly, the power emitted by an arbitrary body of

a fixed size and shape at an explicit temperature can be described by a dimensionless coe�cient,
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emissivity. This number is the ratio of emissive power of the body to the power that a perfect

Black Body of same size, shape and temperature would emit.

Assuming these definitions, Kirchho↵’s law of thermal radiation states that for an arbitrary

body emitting and absorbing thermal radiation in thermodynamic equilibrium, the emissivity

is equal to the absorptivity. We can also extract from the law that emissivity cannot exceed

one, which means that it is impossible to thermal radiate more energy than an ideal Black

Body. So an ideal Black Body would have ✏BB = 1 while every other body ✏(�) < 1. The

thermal power of the emitter follows Stefan-Boltzman law:

P = �sb✏AT
4 (1.1)

where T is the surface temperature, A the surface area, ✏ the emissivity of the body and �sb

the Stefan-Boltzmann constant.

Nowadays, these limits have been challenged at the nano- and micro- scale, where sizes of the

emitters (absorbers) are comparable to light wavelength.

1.1.1 Black Body Radiation

A Black Body is an idealised physical body that can absorb all incident electromagnetic ra-

diation independently of the frequency or angle of incidence. Hence, a Black Body does not

reflect or transmit radiation making it a perfect emitter as it has to emit all the energy that it

absorbs.

Plank’s law (1.2) describes the spectral radiance of electromagnetic radiation emitted by a

Black Body at a given temperature. It describes the amount of energy as radiation at di↵erent

frequencies, and it is measured in terms of the power emitted per unit area, unit solid angle

and per unit frequency.

LBB(�, T ) =
2hc2

�5

1

e
hc

�kT � 1
(1.2)
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Figure 1.2: Theoretical Black Body radiation a di↵erent temperatures and Wien’s law

We can extract two basic features:

• Total emitted power at all wavelength increases with temperature i.e. the curve’s integral

increases with temperature)

• The wavelength for the maximum emittance shifts to lower wavelength with increasing

temperature. Wien’s law (equation 1.3) states that the curve for di↵erent temperatures

peaks at a wavelength of the Black Body radiation is inversely proportional to the tem-

perature as we can see in Figure 1.2.

�max =
b

T
(1.3)

As already stated, for a given temperature, we can define the emittance as:

✏ (✓,',�, T ) =
B (✓,',�, T )

BBB✓,',�, T
 1 (1.4)

At the same temperature, all other emitters will produce a lower power than a Black Body [9].

However, introducing Mie’s solution to Maxwell’s equations, some structures can achieve higher

power with respect to their size than a Black Body. It is to note, that this property is local,
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when analysing the macroscopical radiation Kirchho↵’s law is still respected. Microshperes are

supposed to show this behaviour. [7]

1.2 Light Scattering

Light scattering is present in our daily life. The colour of the sky can be explained using

Rayleigh scattering theory; or rainbows, that are light scattered by cloud particles surrounded

by water vapour in the atmosphere. The scattering theory for a spherical particle was developed

by Mie in 1908. This theory describes the scattering response to an electromagnetic radiation

of the particle when its size is of the order of the incident wavelength.

When light collides with a random particle (Figure 1.3), light will be scattered in all directions of

space. There is also a part of the electromagnetic radiation that will be absorbed by the particle,

so the resulting wave will be attenuated with respect to the original one. From now on, we will

Particle

Incident light

Scattered light

Figure 1.3: Scattering of light by a random particle. The particle will absorb and scatter the
radiation in all directions

assume elastic scattering, that is to say that the scattered wave will have the same frequency

that the incident one. Moreover, our radiation source is not powerful enough to provoke non-

linear phenomena [6]. In the following section we will introduce the scattering theory in Mie

regime. We will study microspheres with sizes of the same order of the electromagnetic radiation

(we are interested in wavelength from ⇠ 2µm � 12µm).
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1.2.1 Mie Resonance

Figure 1.4: Spherical coordinates (r, ✓,'). Where r is the radial distance, ✓ the polar angle
and ' the azimuthal angle.

Mie’s solution to Maxwell’s equations describes the scattering of a wave by a sphere. The

formal solution for the sphere in a medium based on Mie theory can be expressed in the form of

equations that explicitly exhibit the refractive index of the medium as well as that of the sphere.

The equations are formally identical for an absorbing medium where both refractive indexes can

have an imaginary component. In order to solve the equations, a spherical coordinate system

(Figure 1.4) has to be used.

We consider the scattering of a wave by a sphere with radius r0 embedded in an absorbing

medium with a refractive index n. The origin of the coordinate system is placed in the centre

of the sphere and the positive z axis is placed along the direction of propagation of the incident

wave. This way, the scattered electric Es and magnetic Hs fields can be expressed like [10][11]:

Es =
1
X

n=1

En

⇣

ianN
(3)
e1n � bnM

(3)
o1n

⌘

(1.5)
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Hs =
k

!µ

1
X

n=1

En

⇣

anM
(3)
e1n + ibnN

(3)
o1n

⌘

(1.6)

with

En = inE0
2n+ 1

n (n+ 1)
(1.7)

Where k is the propagation constant, ! the angular frequency and µ the permeability of the

medium, E0 the amplitude of the incident electric field and i is the imaginary unit. The

superscript (3) indicates the type of Bessel function zn(⇢), in this case it is h(1)
n . The spherical

Bessel function of the third kind is defined as follow:

h(1)
n (⇢) = jn (⇢) + iyn (⇢) (1.8)

where jn and yn are the spherical Bessel function.

jn (⇢) = (�⇢)n
✓

1

⇢

d

d⇢

◆n sin ⇢

⇢
(1.9)

yn (⇢) = � (�⇢)n
✓

1

⇢

d

d⇢

◆n cos ⇢

⇢
(1.10)

and M01n, Me1n, N01n and Ne1n are given by (note that er, e✓ and e' stand for the unit vectors

of the spherical coordinate system):

Mo1n = cos'⇡n (cos ✓)h
(1)
n e✓ � sin' ⌧n (cos ✓)h

(1)
n e' (1.11)

Me1n = � sin'⇡n (cos ✓)h
(1)
n e✓ � cos' ⌧n (cos ✓)h

(1)
n e' (1.12)

No1n = sin'n (n+ 1) sin ✓ ⇡n (cos ✓)
h

(1)
n

⇢
er

+sin' ⌧n (cos ✓)

h

⇢h
(1)
n

i0

⇢
e✓ + cos'⇡n (cos ✓)

h

⇢h
(1)
n

i0

⇢
e'

(1.13)

Ne1n = cos'n (n+ 1) sin ✓ ⇡n (cos ✓)
h

(1)
n

⇢
er

+cos' ⌧n (cos ✓)

h

⇢h
(1)
n

i0

⇢
e✓ � sin'⇡n (cos ✓)

h

⇢h
(1)
n

i0

⇢
e'

(1.14)
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where ⇡n ⌧n are defined as:

⇡n =
P 1

n

sin ✓

⌧n =
dP 1

n

d✓

(1.15)

With P 1
n is the Legendre function of the first kind and ⇢ = kr is being a dimensionless variable.

Now, applying boundary conditions at the particle-medium interface we can find the coe�cients

an and bn.

an =
µm2jn (m↵) [↵jn (↵)]

0 � µ1jn (↵) [m↵jn (m↵)]0

µm2jn (m↵)
h

↵h
(1)
n (↵)

i0
� µ1h

(1)
n (↵) [m↵jn (m↵)]0

(1.16)

bn =
µ1jn (m↵) [↵jn (↵)]

0 � µjn (↵) [m↵jn (m↵)]0

µ1jn (m↵)
h

↵h
(1)
n (↵)

i0
� µh

(1)
n (↵) [m↵jn (m↵)]0

(1.17)

where a relative refractive index was m was introduced.

m =
n1

n
(1.18)

being ñ1 and ñ the refractive indices of the particle and the surrounding medium. These indices

are complex and can be expressed as ñ = n + i The permeability of the sphere, µ1, appears

in the expression. And we have introduced a new constant, the size parameter ↵.

↵ = kr0 =
2⇡r0

�
(1.19)

From equations 1.5 and 1.6 we can see that Mn and Nn are EM normal modes of the spherical

particle being the resulting EM scattered field the superposition of these modes weighted by

coe�cients an and bn. We can see that TE modes are weighted by bn and TM modes by an.

Now, we will take a closer look at the weights. Both coe�cients depend on wavelength and as

Bessel functions are oscillating we will expect very small denominators for some wavelengths.

When this happens, the resulting electromagnetic field is dominated by the mode that ”has

achieved” the small denominator, thus, there will exist a resonance that is commonly noted as

TMnm or TEnm being n the index of bn or an that is much more greater than the others and m

indexes the size parameter that achieves the resonance being 1 the lowest, 2 the next one and
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so on.

Total light scattered and absorbed by the microsphere can be determined by the absorption

cross section �a and the scattering cross section �s. We can obtain the scattering cross section

by means of the energy conservation rules. It expression is the following:

�s =
2⇡

k2

1
X

n=1

(2n+ 1)
�

|an|2 + |bn|2
�

(1.20)

In order to calculate the scattering cross section, we can use some available programs [6]. Some

of them calculate the scattering e�ciency Qs that can be related to �s as follow:

Qs =
�s

⇡r2
0

(1.21)

So this scattering e�ciency checks the ratio of the optical scattering area with the actual

geometric area seen by the radiation. Another interesting relation is the one concerning the

extinction cross section. According to the definition of extinction:

�e = �a + �s (1.22)

As done with scattering, we can define the extinction and absorption e�ciency as

Qe =
�e

⇡r2
0

Qa =
�a

⇡r2
0

(1.23)

and we can find that the expression of the extinction cross section is

�e =
2⇡

k2

1
X

n=1

(2n+ 1)< (an + bn) (1.24)

From equation 1.22 we get the final expression for absorption cross section

�a =
2⇡

k2

" 1
X

n=1

(2n+ 1)< (an + bn) �
1
X

n=1

(2n+ 1)
�

|an|2 + |bn|2
�

#

(1.25)
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Figure 1.5: Scattering and extinction e�ciency of a silicon sphere of 1.5µm. A refractive index
of 3.42 + i0.085 has been used. First peak correspond to TE1,1 and the second one to TM1,1.

Using the code already mentioned, we can obtain Qs, Qe and Qa. We can see in Figure 1.5

that the optical scattering and extinction are considerably larger than the geometric one. We

also observe the peaks of the di↵erent resonances. It has to be noticed that the resonance has

a high dependence on the refractive index of the particle.

For some resonant frequencies and radius, the scattering section can be more than ten times the

actual geometric section. Moreover, under some conditions, the spheres can show an absorption

cross section larger than the real section as shown in Figure 1.7. That would mean that the

microspheres would be able to absorb more light than the actual light impinging them.

From now on we are going to focus on a single term of the sumations in equations 1.20, 1.24 and

1.25. We will refer them as �0
s, �

0
e and �0

a. Due to the strong dependence of the scattering and

absorbing cross sections on ñ, high refractive particles as silicon have a very di↵erent spectra

from lower index ones. We know that the strongest resonances in the case of Silicon correspond

to low order resonances. We consider Mie resonances as classical resonators with Lorentzian

line-shapes in order to simplify coming analysis.

If we want to get the maximum profit of the absorption of the sphere, we should find the

values n and  that maximise it. In fact, we will keep n fixed at 3.42 as we want to study this
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absorption in the IR where silicon has a constant real refractive index. From [7] we know that

�0
a (k = kmax) = �0

s (k = kmax) =
�0

s (k = 0)

4
(1.26)

Using this relation, we can find the  for which �a and consequentlyQa are maximum. The value

for a sphere of 1.5µm is approximately  = 0.085. This maximum is placed at a wavelength

� = 7.4272µm.

From 1.6 and using the relation that relates the absorption coe�cient and the extinction coef-

ficient:

↵abs =
4⇡

�
(1.27)

We can find that this value of the extinction coe�cient  can be achieved by doping the

silicon with the doping density ND being between 3.210�17cm�3 and 1.710�17cm�3, that are

achievable doping densities.

Figure 1.6: Free carrier absorption vs. wavelength at di↵erent doping levels. From [3]

As we speak of silicon - widely used in light harvesting - this e↵ect has a very impressive

consequence. As we said, according to Kirchho↵s law, emissivity would be higher than one.

This would mean that when the microspheres would be heated, they would emit, with respect

to their size, more than a Black Body. We have to take into account that even if a single sphere
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is able to emit more than a Black Body, a macroscopical surface coated with microspheres

would still exhibit an emission lower than one. Fulfilling thermodynamics laws.

0.5 1 1.5 2 2.5
Size parameter (2 r0/ )

0

0.5

1

1.5

2

2.5
Computed Qa for a sphere of radius r0=1.5 m

Figure 1.7: Absorption e�ciency of a silicon sphere of 1.5µm. A refractive index of 3.42+i0.085
has been used. First peak correspond to TE1,1 and the second one to TM1,1



Chapter 2

Characterisation Techniques

Thermal characterisation of a single microsphere is not trivial. Ideally, we should isolate it

in vacuum, heat it to a known and controlled temperature and then measure its emission.

We are not able to perform that experiment; instead we want to measure the emissivity of a

single sphere in a substrate and then try to separate the substrate emission from the desired

emission. In order to do that, a Fourier Transform InfraRed spectrometer (FT-IR) will be used.

All the set-up is placed outside the FT-IR and so, background radiation will be strongly taken

into account. As the signal will be very low with respect to the ambient radiation, Lock-In

techniques will be combined with the spectrometer. In this chapter we will briefly comment on

the most relevant aspects of these techniques and the experimental set-up.

2.1 FT-IR Spectroscopy

2.1.1 The Michelson Interferometer

In order to understand FT-IR Spectroscopy, we should take a look at the Michelson Interfer-

ometer (Figure 2.1). First, let us consider a beam that comes from the source (S). The emitted

beam is directed towards a beam splitter that divides light into to two equal beams, but one

gets transmitted and the other reflected; so they follow di↵erent paths. The reflected wave

13
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travels to the fixed mirror (M1) and reflects back to the beam splitter. Let us assume that L is

the length of the fixed arm of the interferometer. This way, the beam total path length will be

2L. The same happens to the transmitted part of the beam. However, the second mirror (M2)

is not fixed. It can move a distance x, back and forward, from the zero displacement position

L. Hence, the total path length for this wave will be 2L+ x. When both beams recombine at

the beam splitter they exhibit an optical retardation � = 2x. After this, the beam leaving the

interferometer is focused on the detector (D).

Beam splitter

M1

M2S

D

x

Figure 2.1: The Michelson Interferometer

The detector will measure the intensity I (x) as a function of the mirror displacement. An

example of an interferogram is shown in Figure 2.2. It has to be noted that the interferogram

presented is single sided, meaning that data was not acquired for all possible negative displace-

ment x. We will explain below why we can do this. Wave will recombine with di↵erent phases.

Recombination would be constructive, yielding to a maximum detector signal when � is an

exact multiple of the wavelength of the beam.

� = 2x = n�

n = 0, 1, 2...
(2.1)
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A destructive interference will take place when � is an odd multiple of �/2. We can write

dependence of the intensity at the detector as:

I (x) = S (⌫) cos 2⇡⌫x (2.2)

We have defined wavenumber as ⌫ = 1/� and we have introduced S (⌫) as the intensity of the

monochromatic line at wavenumber ⌫. Sample spacing �x is inversely proportional to �⌫ so

maximum resolution in wavenumbers will be determined by the step x of the machine. Time

needed to move the mirror M2 is very low, as the mirror moves very fast, so we can get full

interferogram in fractions of a second [12]

In our case, this will not be like that since we will have to use a special mode of the FT-

IR spectrometer called Step Scan [13][14]. Step Scan mode is a technique that has to be

distinguished from the conventional Rapid Scan mode. In Rapid Scan mode the moving mirror

of the Michelson interferometer moves continuously. This allows scanning a full spectrum in

fractions of second, making possible the averaging of plenty of spectra. As opposed, Step Scan

the mirror is moved a single step to a fixed position and held there making the path di↵erence

constant during a desired time. In the FT-IR that has been used, the computer connected to

it can control the total number of detector digitisation for the averaging, the position of the

mirror and the time that the mirror is retained at the fixed position. It has to be noted that

FT-IR spectrometers - for Rapid Scan and Step Scan modes -, as opposed to conventional IR

spectrometers, can record all frequencies of the IR beam at the same time.

2.1.2 Fourier Transform

In order to understand data harvested by the FT-IR, we must make a rough introduction to

Fourier transform. Fourier transform decomposes a function of time into the frequencies that
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0.3
Single-sided interferogram of a Black Body at 900K

Figure 2.2: Signal measured by the detector. X axis is arbitrary. Y axis is the adimensional
responce of the detector

build it up. The FT and the inverse FT are defined as follow:

F (!) =

Z 1

�1
f (t) e�i!tdt

f (t) =
1

2⇡

Z 1

�1
F (!) ei!td!

(2.3)

F (!) is called Fourier transform of f (t) and is represented as F (!) = F [f (t)] and f (t) is called

the inverse Fourier transform of F (!) and is represented as f (!) = F�1 [F (!)]. Normally,

F (!) is said to be the frequency spectrum of f . Fourier Transform has been exhaustively

studied, and can find properties of the transformation in plenty of books as in [15] . One

interesting property that we will use in coming sections is the following:

X (!) = F [x (t)]

Y (!) = F [y (t)]

F [x (t) y (t)] = X (!) ⇤ Y (!)

(2.4)

As we will be dealing with digitised signals, we introduce the discrete version of the transform,

the Discrete Fourier transform (DFT), with the equivalent property (xn is a sequence of N
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complex numbers and Xn is the transformed sequence):

Xk =
N�1
X

n=0

xne
� i2⇡kn

N

xn =
1

N

N�1
X

k=0

Xke
i2⇡kn

N

Y = F [y]

X = F [x]

Fk [xy] =
1

N
(X ⇤ YN)k

(2.5)

2.1.3 Data Treatment

With the digitised interferogram I (x) we must use the DFT in order to extract the spectrum

S (⌫). That is because our interferogram is a discreet series of N points. We will also replace

continuous variables x and ⌫ by n�x and k�⌫ respectively. So applying equation 2.5 the

discrete spectrum is expressed as follow.

S (k�⌫) =
N�1
X

n=0

I (n�x) e
i2⇡nk

N (2.6)

Both spacing �⌫ and �x are related by

�⌫ =
1

N�x
(2.7)

The calculation of the spectrum must be done by computer. Plenty of DFT routines can be

found on the internet and several books. But some numerical problems must be overcome

[12][4]

First of all, if we recall equation 2.6, we see that the spectrum sampled at wavenumbers k�⌫

can be computed from the interferogram at � = n�x. Since n and k run from 0 to N � 1, we

will obtain a spectrum of N complex points. We would expect a single spectrum out of the

DFT, but we get a spectrum plus its mirror image. The ”second” spectrum starts at index
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k = N/2. That means that we will automatically discard a set of N/2 points. We can find this

peculiarity by substituting k by N � 1. Now, with the help of the identity:

ei2⇡k =
⇥

ei2⇡
⇤k

= 1k = 1 (2.8)

we get the mirror symmetry as:

S (N � k) = S (�k) (2.9)

where the folding wavenumber is:

⌫f =
n�

2
=

1

2�x
(2.10)

In fact, we can also extract that the equation 2.6 is valid for all k integers. If we replace k by

k+mN we get (equation 2.11 that the mirror symmetry is periodical and endless. We call the

replication of the original spectrum an alias. Figure 2.3 shows us this behaviour.

corresponds to a folding wavenumber of 
15800 cm-1, i.e. the maximum bandwidth 
which can be measured without overlap 
has a width of 15800 cm-1.  A larger range 
can be covered, if the laser frequency is 
electronically doubled (frequency 
multiplication). 
Very often, the investigated bandwidth is 
much smaller than 15800 cm-1, e.g. in 
mid-IR, where maxν  is generally less than 
4500 cm-1 and especially in the far-IR with 
wavenumbers below 200 cm-1. In these 
cases, one can choose x∆ to be an m-fold 
multiple of minx∆ . This leads to an m-fold 
reduction of the interferogram size. 
 
 
1.2 Undersampling 
 
An even greater reduction of the data size 
is possible, if the spectrum is zero below a 
lower band limit minν  and if minν is not 
zero as assumed above.  If the spectrum 
band limits minν  and maxν  lie between 
lower and upper folding wavenumbers 
fLν  and fUν  which are related by 

 

,...)3,2,1(
1

=
−

= n
n
n

fUfL νν  (8) 

 
it will look as indicated in Figure 1D for the 
case n  = 4. The upper folding 
wavenumber fUν  must be a natural 
fraction (or integer multiple) of the He-Ne 
laser wavenumber: 
 

,...)3,2,1,,...,15800 2
1

3
1=∗= frfrfUν  

 (9) 
 
If we now further increase the sample 
spacing by a factor n , the aliases of 
Figure 1D will overlap appreciably, thus 
filling the previously empty range from 0 to 
fLν  with n -1 further copies of the original 

spectrum.  This is shown in Figure 1E.  As 
all copies are identical (except that their 
absolute wavenumber scaling and their 
direction on the ν -axis can differ from the 
original), we need not calculate the 

spectrum at its true position by an 
nN / -point FT, but rather calculate the 

alias of lowest wavenumber by an  
nN / -point FT and correct its wavenumber 

scaling afterwards.  This further n -fold re-
duction of interferogram size compared to 
the conventional case, where minν  = 0, is 
termed 'undersampling'.  It should be 

noted that undersampling enables 
measurements with a maxν  higher than 
the original laser wavenumber, because 
only the difference fLfU νν −  and not the 
absolute values of the folding 
wavenumbers is to be considered in the 
sampling condition 

Figure 1: Effects of sampling.  A) Expected shape of the spectrum.  B) The DFT 
yields the spectrum and its mirror image.  Only the first 2/N  points contain 
useful information.  The second 2/N  points are redundant and discarded.  C) 
Aliasing: Figure 1B is endlessly replicated on the wavenumber axis.  Aliasing 
causes errors, if the spectrum is nonzero up to a wavenumber maxν  and if maxν  
is above the Nyquist wavenumber fν .  This happens if the sampling condition 

)2/(1 maxν∗<∆x  is violated.  D) Spectrum is zero below minν  and above maxν  this 
allows for undersampling.  E) Undersampling produces spectrum aliases.  The 
DFT calculates the alias of lowest wavenumber instead of the original.  The 
spectrum must be zero outside the bandpass defined by the upper and lower 
folding limits. 

Figure 2.3: E↵ects of sampling. A) Expected shape of the spectrum. B) DFT yields to the
spectrum and its mirror image. C) Aliasing: endless replication of B). Figure from [4]

S (k +mN) = S (k) (2.11)
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Problems from aliasing arise when the mirror spectrum overlaps with the desired spectrum.

The problem will disappear if the spectrum is zero above a maximum wavenumber ⌫max that

has to be smaller than ⌫f (equation 2.10). For a given wavenumber range, the FT-IR software

will choose the maximum sample spacing in order to avoid overlapping.

Position �x of the FT-IT are derived from zero crossings of a He-Ne laser wave with a wave-

length � = 1/15800cm. Zero crossings happen at �/2 so �xmin is 1/31600cm. From equation

2.10 we get a folding wavenumber of 15800cm�1. It means that the maximum bandwidth we

will be able to measure without overlapping will have a width of 15800cm�1. This will not

be a problem for us as we will be measuring far more small bandwidths (from 370cm�1 to

5000cm�1).

As an ideal interferogram should be infinite, we can express a truncated interferogram at optical

path di↵erence x = L by multiplying an infinite interferogram Iin (x) by a function B (x) that

is zero for x > L. We have to do this because having Iin (x) would mean an infinite range of

movement of the mirror in the Michelson interferometer.

IL (x) = Ii (x)B (x) (2.12)

If we define Si (⌫) and b (⌫) as the Fourier Transforms of Ii (x) and B (x) respectively and

SL (⌫) as the FT of IL and then apply equation 2.4, we get that the truncated spectrum is the

convolution of the infinite optical path spectrum with the Fourier transformed boxcar.

SL (⌫) = Si (⌫) ⇤ b (⌫) (2.13)

Intuitively one would take B(x) to be a boxcar function. It can easily be found, using the

definition or a Fourier Transform table, that:

b (⌫) = 2L sinc (2⌫L) (2.14)

In Figure 2.4 we can see that the instrument function b (⌫) has a maximum centered at ⌫ = 0

but other side peaks. This lobes cause leakage of the spectral intensity. This is a problem
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because these side lobes are an artifact created by the sudden truncation of the interferogram

at x = L. So we want to reduce the peaks amplitude. This practice is called apodization.

In order to do that, we have to cut the interferogram more softly. In Figure 2.4 we can also

see other examples of cuto↵ functions defined in Table 2.1. We see that apodization functions

reduce the size of the side lobes compared to the boxcar function. But this improvement comes

with a negative e↵ect. Width at Half Height (WHH) increases with respect to the boxcar

instrument function in apodization functions. This is a not desired behaviour since this width

defines the best resolution achievable (if two spectral lines are to appear resolved from one

another, they must be separated by at least the distance of their WHH, otherwise no dip will

occur between them). Some information of other apodization functions can be also found in

table 2.1.

Figure 2.4: Some commonly used apodization functions and their instrument function. L=1
was used and instrument functions where normalised

Apodization Function (|x|  L) Fourier Transform Image FWHM Resolution

Boxcar 1 2L sinc 2⌫L 0.6/L 0.68/L

Triangular 1 � |x|
L

L sinc2 ⌫L 0.88/L 0.88/L

Happ-Genzel 0.54 + 0.46 cos
�

⇡x
L

�

⇣

0.54
⇡⌫

+ 0.464⇡⌫L2

⇡2�(2⇡⌫L)2

⌘

sin 2⇡⌫L 0.91/L 0.89/L

Cosine cos
�

⇡x
2L

�

⇡L
(⇡/2)2�(2⇡⌫L)2

cos 2⇡⌫L 0.82/L 0.85/L

Gaussian exp�
�

2.23x
L

�2 L
p

⇡
2.24 exp

⇣

�
�

⇡⌫L
2.24

�2
⌘

1.17/L 1.16/L

Table 2.1: Some Apodization Functions with their FT, FWHM and resolution



2.1. FT-IR Spectroscopy 21

We find another problem dealing with the measured interferogram. We would expect a real

spectrum S (⌫), but generally we get a complex spectrum C (⌫). This is due to the asymmetry

of the interferogram with respect to x = 0. This is originated by three di↵erent sources:

• We decided to get a single-sided interferogram. Only one side is recorded completely and

only few hundred points are harvested from the other. Sometimes we decide to get a

single-sided interferogram in order to reduce time spend measuring.

• When sampling, no position coincides exactly with the real zero path di↵erence.

• The interferogram is asymmetric. This may be a consequence of wavenumber-dependent

phase delays of the optics, the detector or the electronic filters.

So we want to extract the real spectrum. We can express the complex spectrum C (⌫) as:

C (⌫) = R (⌫) + iI (⌫) (2.15)

were R (⌫) and I (⌫) are real functions. Alternatively, we can also represent it as:

C (⌫) = S (⌫) ei'(⌫) (2.16)

were S (⌫) is the amplitude spectrum and ' (⌫) is the phase. So we want to get the desired

spectrum S (⌫) from the actual output of the Fourier Transform C (⌫). The first option would

be:

S (⌫) =
p

C (⌫)C⇤ (⌫) =
p

R2 (⌫) + I2 (⌫) (2.17)

This method would be correct for data without noise, but when we have noisy data, noise

contribution is always positive if we use this method. In order to avoid that, we can take

another expression. This method is called Merz method. From equation 2.16 we get that:

S (⌫) = <
n

C (⌫) e�i'(⌫)
o

(2.18)
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were the phase can be calculated as:

' (⌫) = arctan
I (⌫)

R (⌫)
(2.19)

After all this data treatment, we can obtain the spectrum S (⌫). This raw spectrum is not

convenient for us to work with. We will rarely extract some useful information from it. This is

due to the response of the machine that is frequency dependent, dimensionless and measures the

emission from the sample and other external radiations such as the ambient radiation reflected

by the sample or self emitted radiation from the FT-IR spectrometer. Water and CO2 ambient

molecules absorption alter pretty much the spectrum.

We will have to calibrate the measure in order to make these contributions disappear to raw

spectrum. Each undesired radiation source will contribute with a di↵erent phase depending on

the moment they get into the interferometer. This would be an extra problem, but using the

data treatment commented on above we can solve this problem. Now, taking into account all

the radiation sources, we can write the raw complex spectrum as [5]

S (�, T ) = r (�) [e (�)LBB (�, T ) + r (�)Lamb (�) + L0 (�)] (2.20)

where T is the sample temperature; r (�) is the complex instrument responce function; e (�)

is the sample emissivity and LBB (�, T ) is the Black Body radiance (with the definition of

emissivity we know that e (�)LBB (�, T ) is the sample radiance; r (�)Lamb (�) is the radiance

reflected by the sample; r (�) the reflectance of the sample; Lamb (�) the ambient radiance; and

L0 (�) the complex background radiance. We consider the radiance reflected by the sample and

the emitted one to be real. In order to calibrate, we must determine the instrument response

function r (�) and the background radiance L0 (�). We can determine them by measuring the

radiation of a Black Body SBB at two di↵erent temperatures TL and TH . Arranging equation

2.20 we get:

r (�) =
SBB (�, TH) � SBB (�, TL)

LBB (�, TH) � LBB (�, TL)
(2.21)

L0 (�) =
SBB (�, TL)

r (�)
� LBB (�, TL) (2.22)
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With the instrument response function and the background radiance we can rewrite equation

2.20 as:

e (�)LBB (�, T ) + r (�)Lamb (�) = <
⇢

S (�, T )

r (�)
� L0 (�)

�

(2.23)

We take the real part in order to prevent noise from entering in the imaginary part. We still do

not have the emissivity. To get it we will assume that the ambient radiance is the radiance of

a Black Body at room temperature (Lamb = LBB (Tamb), and that transmission of the sample

is zero, r (�) = 1 � e (�). The final equation for emissivity is:

e (�) = <
( S(�,T )

r(�) � L0 (�) � LBB (�, Tamb)

LBB (�, T ) � LBB (�, Tamb)

)

(2.24)

2.2 Lock-In Amplifier

The thermal emission of a microsphere is a very small signal and since it will be buried in noise

we will use a Lock-in amplifier. These amplifiers are used to detect AC signals; they use a

technique known as Phase-Sensitive Detection (PSD) in order to find the signal at a reference

frequency rejecting all other frequencies. This way, only the desired signal is detected. We will

explain some details on this technique.

Let us suppose that the radiation we want to measure is oscillating at a fixed frequency. The

Lock-In takes a reference signal oscillating at !r. It can generate it by itself or get it through

a port. Let us assume that sample signal Vs (t) and reference signal Vr (t) are sinusoidal waves.

Vs (t) = Vsig sin (!st+ ✓s) (2.25)

being Vsig the signal amplitude.

Vr (t) = Vr sin (!rt+ ✓r) (2.26)
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The total signal entering the Lock-In amplifier can be expressed as:

Vin (t) = Vsig sin (!st+ ✓s) + Vnoise (t) (2.27)

The Lock-In amplifies the signal and then multiplies it by the Lock-In reference signal. So the

output of the Phase Sensitive Detection is [1]:

VPSD = Vsig sin (!st+ ✓s)Vr sin (!rt+ ✓r) + Vr sin (!rt+ ✓r)Vnoise (t) (2.28)

using basic trigonometric identities we get to:

VPSD =
VrVS

2
[cos ((!s � !r) t+ ✓s � ✓r) � cos ((!s + !r) t+ ✓s + ✓r)] + Vr (t)Vnoise (t) (2.29)

Now, if both frequencies !s and !r are the same, this will lead to a DC component, an AC

component at 2!r and other AC components at unknown frequencies. After mixing both

signals, Lock-In amplifier separates the DC component by the means of an adjustable low pass

filter. The filtered output will be

VPSD =
VrVS

2
cos ✓ (2.30)

where ✓ = ✓s � ✓r is the phase di↵erence between signal and the Lock-In reference oscillator.

Some Lock-In amplifiers have a second PSD in order to eliminate this phase dependence. This

new PSD multiplies the signal by the same wave as the first but shifted 90, so the resulting DC

component for this PSD will be:

VPSD2 =
VrVS

2
sin ✓ (2.31)

If we consider Vr = 2, the in-phase component X = Vs cos ✓ and the quadrature component

Y = Vs sin ✓ we can remove phase dependence by computing the magnitude of the signal vector:

R =
p

X2 + y2 = Vs (2.32)

The low pass filter has two characteristics, bandwidth and filter order. The filter is a typical

RC type filter. The filter bandwidth or �3dB point is the cuto↵ frequency where the signal



2.2. Lock-In Amplifier 25

power is divided by halfor is attenuated by 3dB. This frequency is inversely proportional to

the time constant ⌧ .

f�3dB =
1

2⇡⌧
(2.33)

On the one hand, choosing a wide bandwidth will lead to fast measurements but will introduce

systematic measurement errors as the ! component might be leaking to the output signal. A

larger bandwidth means more noise and so a lower signal to noise ratio. On the other hand, a

narrow bandwidth will reduce noise and increase signal to noise ratio but it will also increment

time spend for the measurement. We have to choose wisely the time constant.

We can also adjust the order of the filter. A higher order leads to a more ideal rectangular

filter transfer function that blocks frequencies outside the filter bandwidth more e�ciently, but

takes more time to settle to the final value. Wait time is the time required to get to 99% of the

final value. Another interesting value is the equivalent noise bandwidth (ENBW). It is defined

as the bandwidth of a brickwall filter which produces same integrated noise power as that of

an actual filter. In table 2.2 some waiting times and ENBW are shown.

The sensitivity of the lock-in is the rms amplitude of an input sine (at the reference frequency)

which results in a full scale DC output. For di↵erent measurements we will change this sensitiv-

ity. We will have to store the values for each measurement in order to make a correct calibration

and to obtain di↵erent coe�cients such as transmission coe�cient or emissivity. The output of

the lock-in is:

Output = (signal/sensitivity � offset)10V (2.34)

Last relevant consideration on the Lock-In is the dynamic reserve that quantifies the capabil-

ity of the Lock-In to reject unwanted signal component still providing accurate results. For

example, with a dynamic reserve of 60db, a 1µV signal with a specified accuracy of 1% nearby

disturbance from up to 1mV .

When combining Lock-in techniques with FT-IR spectroscopy, as our case, waiting time be-

comes a very relevant parameter to take care o↵. This is because, when using step scan mode,

we have to wait after each step of the mirror. The sum of all waiting times can be very high
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making measurements really slow. For example, if we want a resolution of 8cm�1 in a single-

sided interferogram the mirror will have to take 4442 steps, and if we take a not very large time

constant of 30ms we will have to wait 23min just for a single interferogram. Normally several

interferograms are averaged in order to get a better spectrum.

Slope ENBW Wait Time

6dB/oct 1/4⌧ 5⌧

12dB/oct 1/8⌧ 7⌧

18dB/oct 1/32⌧ 9⌧

24dB/oct 1/64⌧ 10⌧

Table 2.2: Waiting times and ENBW for di↵erent filters from [1]

2.3 Experimental Set-Up

If we want to measure the thermal emission of a single micro we will need to heat it with

a self-made accessory that must be placed outside the FT-IR spectrometer. Moreover, if we

want to compare this radiation with respect to the radiation emitted by a black body, we must

implement a set up for it. As already mentioned, the original plan has not been fully completed.

Only the design and general considerations of optical set-up were carried out. In order to test

the set-up we did a small modification of the final one to measure transmittance of a sample.

This part of the total experimental set-up is fundamental to then add the thermal one. In this

section, we will present a description of the set-up and all the changes made.

2.3.1 Optical Set-Up

A first transmittance set-up sketch is shown in Figure 2.5. The FT-IR spectrometer used has

several input beam ports. We used the rear one (see Figure 2.6). The radiation we want to

measure enters the spectrometer through a KBr window and then is collimated and directed

to the interferometer by the mirror M1. With the FT-IRs software we can easily configure the

machine to use this port as the IR source. As we want to combine FT-IR spectrometer with the
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Figure 2.5: First transmittance set-up

Lock-In amplifier, we must configure the output of the detector via the AC out port to the input

of the Lock-In and then bring back to spectrometer the final value via the DC in port. As we

saw, we must extract the R value from the Lock-In. Again, this is easy to configure selecting

the detector option to DC IN. For the Lock-In to perform the Phase-sensitive detection it

needs a signal at the reference frequency. This signal is provided by the chopper controller that

also controls the modulation of the emitted radiation of the Black-body. An optical chopper

interrupts periodically a light beam. It has a wheel with slot blades that cut the beam at a

desired frequency. Di↵erent slot ”designs” allow di↵erent frequencies. Figure 2.7 exemplifies

the operation of this device.

The output signal is a square signal. In order to understand the demodulation processes at

the Lock-In amplifier, we must use the Fourier theorem. It states that any periodic function

can be expressed as an infinite sum of linearly independent sin and cos terms. The first term

has the fundamental frequency that corresponds to the frequency of the square signal. Other

higher frequencies correspond to harmonics, which will be removed by means of the low pass
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Figure 3.2: Normal-angle thermal emission set-up.

Figure 3.2 shows schematically the main components of the commer-
cial thermal spectrometry equipment. Radiation of the measured sample
enters the spectrometer through a KBr window, and is collimated and
directed to the interferometer by the input mirror M1. The sample is
mechanically fixed to the surface of the heater, which is at a controlled
temperature. The whole heater is inside a water-cooled metallic closure
whose only purpose is to keep the user safe from any hot surface. Fi-
nally, the whole adapter is closed inside a box with blacked walls (not
represented in the figure).

The set-up is configured for Mid-IR spectrometry using a KBr beam-
splitter, a DLaTGS detector, and a KBr window in the input port. This
configuration allows measuring in a wavelength range from 5 to 25 µm
at the temperatures of operation. The active size of measurement is
5�5 mm (i.e. the size of image of the detector on the sample plane) and
the cone of measurement is ±7.5 deg (�� = 54 � 10�3 sr). The solid
angle of measurement, ��, and the sample surface measured, �Sobj , is
determined exclusively by the inner spectrometer optics, and cannot be
modified.

Angle Resolved Thermal Emission set-up

Angle resolved thermal emission measurements were done at the Labora-
toire d’Énergétique Moléculaire et Macroscopique, Combustion (EM2C),
in the École Centrale, Paris. The experimental set-up used was for-

Figure 2.6: Michelson Interferometer and rear beam port in FT-IR in the Bruker Vertex 70
spectometer. From [5]

filter. The black body is placed at the largest optical path. By the help of a controller, we

Figure 2.7: Chopper operation

can make this IR source emit as a Black Body at a selected temperature. It is an Infrared

System Corporations IR-519 with an emittance greater than 0.99. We will use this radiation to

calculate the transmission of di↵erent samples but also to calibrate the measures. The chopper

wheel is placed just after the black body. At first, it was placed between the second objective

and the iris due to space, but it chopped too much undesired light that also ”survived” the

PSD - we sent the radiation into the medium and then chopped it but it is better to send the

chopped beam to the medium -.

Now, with the help of a flat mirror we bring the beam to the first objective. The black body

was not placed with the beam exit directed towards the objective to try to minimise unwanted

radiation entering the spectrometer. We use this objective to focus the radiation on the sample.
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The sample is placed in a sample holder we had to design. This holder has a small hole to

let radiation pass through the sample. This accessory is attached to a manual XYZ stage to

adjust its position and bring the sample to the focal point of both objectives (See Figure 2.8).

After passing thorough the sample holder, the light beam gets focused again at 160mm from

the second. In this first set-up we did not place the iris at this distance. We did not place it

at the mentioned distance in order to get a bigger magnification. The function of this iris is

to ”select” the area we want to measure - ideally, when measuring the thermal emission of the

microspheres, we should close the iris andselect just the spheres emission-.

Figure 2.8: Ray diagram of the objectives

I order to adjust the area we are measuring, we use a CMOS camera with a lens of focal length

f = 100mm as shown in Figure 2.5. When we want to see the sample, we must bring the beam

splitter to interact with the ray (note that the position of the beam splitter when measuring is

away from the optical path). We illuminate the sample with a LED. The visible light travels

to the beam splitter splitting light into two new beams. One is transmitted and not useful and

the other gets reflected and focused by the objective. Now the sample reflects this light and

gets focused at the camera by the lens already mentioned. The moving mirror is used so that

the camera is not placed in the optical path of the radiation when measuring.

After the iris, two gold mirrors are placed in order to focus the radiation in the second iris next

to the spectrometer so that we can remove external radiation. Figure 2.10 shows a schema of

the equivalent optical set-up. This iris is set at the point that the internal optics of the FT-IR

focuses the radiation at the detector. The actual set-up can be seen in Figures 2.11 and 2.12.
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(a) (b)

Figure 2.9: a) Image of the ”ruler” used to know the measuring area and b) Image of a Silicon
microsphere from our microscope

Figure 2.10: Equivalent optical system for the optical path between both irises

The process of aligning the set-up was first done with a light fiber, setting it at the sample

compartment of the spectrometer. This beam focused at the second iris and then should focus

again at the Black body and we went step by step aligning each component. After that, due

to the low intensity of this light, we decided to use a laser to make the precise alignment.

A first possible modification of the set-up is not very di↵erent than the first one. The only

change is the first objective and flat mirror next to the Black Body for a spherical one as we

can see in Figure 2.13. This set-up would compensate the fact that both objectives are not the

same and have di↵erent collection angles.

The second modification of the set-up is directly putting the Black Body (and the chopper)

behind the sample, without any mirror or objective before the Black Body radiation impinges

the sample. Also placing the objective at 160mm from the iris to take profit of all the solid

angle of the objective and getting a stronger signal would be a reasonable idea, though it would

mean a lower magnification that would entail a bigger area of measurement if the iris was not
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Figure 2.11: Detail of the first set-up. We can see the Black Body, the laser used to align the
setting, the chopper wheel, both objectives and the sample holder.

changed for a pinhole.

2.3.2 Thermal Set-Up

The study of the thermal emission of Silicon microspheres would need a last change on the

set-up. The sample with the microspheres would be placed at the same spot where the sample

holder is. The chopper would have to be placed between the sample and the objective since our

new IR source will be the microspheres themselves. So the Black Body will no longer be our

source, but it will still have its spot in the set-up in order to calibrate the measurements. As

the goal is to measure the emission of a single sphere and that is not possible for us, changing

the iris for a pinhole smaller that the iris is a reasonable idea.

The biggest challenge concerns the actual heating of the microsphere due to its small size. The

accessory must be able to determine the real temperature of the sphere. Also problems emerge

from the thermal radiation of the substrate where the microspheres are placed. This radiation

will be significantly large and the signal from it will be also getting to the Lock-In oscillating

at the reference frequency.
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Figure 2.12: Detail of the first set-up. We can see the beam splitter, the LED used to illuminate
the sample, both irises, the camera and the rear input beam port of the FT-IR spectrometer.

Black Body 
controller

Figure 2.13: First modification of the set-up

A possible idea to reduce this unwanted thermal radiation, the microspheres could be attached

to a substrate with low emissivity, maybe a metal. Another idea to avoid thermal radiation

from the substrate could be the heating of the microsphere with the help of a laser. This would

reduce substrate radiation since we would be heating directly the microsphere. The problem

from this procedure is the precise determination of the temperature of the sphere. Knowing the

temperature is very important in order to prove that the particles have an absorption higher

than one. As we already said this would mean an emissivity higher than a Black Body at that

temperature. In order to compare the radiations we need to configure the Black Body at the

exact temperature, if not, we would see resonances in the thermal radiation spectrum of the

microspheres but we could not acquire emissivity.
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Another possible approach to the thermal measurement could be to separate the spectrum of

the microsphere by means of a piezo stage in order to make oscillate the microsphere mechan-

ically. The substrate with the particle would enter and exit the measuring area. With this

solution no chopper would be necessary, as the signal that the detector gets would oscillate as a

sinusoidal function with an o↵set - this o↵set would be the value of the detectors output when

no microsphere is present in the measuring area but only the substrate-.

Moreover, a more complex system could be tested. This set-up would consist of two pinholes

that would select two di↵erent measuring areas of the sample. One with a microsphere and

the other one without it. We should chop the signal in order to just detect the contribution of

one pinhole at a time. Like the solution with the piezo stage, the oscillating component of the

signal will be the contribution of the microsphere.
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Results and Discussion

As commented on throughout the text, the main aim of the project has become the design -and

the successive adjustments- of the optic set-up which, in the future, will let measure thermal

radiation of the silicon microspheres mixing Step Scan FT-IR spectroscopy together with lock-in

techniques.

Two of the main factors that have conditioned this research have been time and noise. Time has

conditioned not only the duration of the project itself but also the duration of the measurements

to test that we were approaching a valid set-up for the requirements of the experiment. In order

to get an understandable result we need to make three measurements. We need the spectrum

we want to know and also two extra spectra of the Black Body for calibrating the raw data we

get.

The problem concerning noise is closely related to time. For some sources of noise, if we want

to reduce it we need to get tens of spectra to average to zero this noise. This means making

the measurement even more slow. However, there are some intrinsic source of noise from the

lock-in and the spectrometer that we cannot eliminate.

In order to reduce measurement time, and as already commented on, data was not acquired

for all possible negative displacement x, only for a few steps of the mirror and the complete

positive x range. This should not be a problem as we saw that, ideally, the interferogram is

34
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Figure 3.1: Resulting raw spectra of the emission of a Black Body at 700K for a double-sided
and a single-sided interferogram of the same measurement

symmetric with respect to x = 0 but real ones were not symmetric.

In Figure 3.1 we can see that the spectra from the single-sided and double-sided interferograms

di↵er a bit. Measuring time of the double-sided interferogram almost doubles the time of the

single-sided one. The total measurement used to get this spectrum was one hour and twenty-six

minutes. So we decided to go with single-sided interferograms. As a note, in this spectrum

we can see approximately water vapour and CO2 absorption bands between 1000cm�1 and

2000cm�1 and between 2310cm�1 and 2380cm�1 respectively.

Resolution of the measurement also a↵ects dramatically the time of the measure since doubling

the resolution doubles the number of points. This is a problem since we should set a quite high

resolution in order to see peaks of absorption/emission of the microshperes.

In order to test the set-up, we measured the transmission coe�cient of di↵erent elements already

characterised. In order to calculate this coe�cient we have to measure a Black Body radiation

at a desired temperature with and without a sample in the sample holder. As always, two more

Black Body radiations without sample must be measure to calibrate results.

When analysing the obtained data, we have to take into account the sensibility from the lock in

to be able to compare spectra as we discussed. When doing this analysis we encountered some

problems. As seen in Figure 3.2 and 3.3, the shape of the obtained transmission coe�cient is
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correct, but absolute value is not. The ”real” transmission coe�cient was measured in Rapid

Scan in the FT-IR spectrometer with a measuring area of approximately 85mm2. When

Figure 3.2: Calibrated spectra, raw spectra and transmission coe�cient of a slice of Silicon

placing some samples in the optic path - for instance, the ones we wanted to characterise -,

the lock-in received more signal than when the samples were not there and the signal that

entered the lock-in was directly from the Black Body. When this happened, the lock-in got

overloaded and we had to chance the lock-in sensitivity. This makes it impossible to get a

reliable transmission coe�cient, though the shape is correct. We were not able to find a correct

explication for this behaviour, but we suspect it is an optical problem that further modifications

of the set-up must eliminate.

With the last adjustment we made of the set-up and fine alienation we obtained the radiation

of the Black Body at di↵erent temperatures (Figure 3.4). For this measure a time constant

⌧ = 30ms was used. Data used to calibrate the measure correspond to the Black Body radiation

at 850K and 650K, that is why the measured spectra have a 0% relative error. Experimental
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Figure 3.3: Transmission coe�cient of a cover glass

data is plotted as dots and theoretical spectra are plotted as solid lines. The area measured

was of the order of 300µm2. We know the approximate measured area by using the microscope

of the set-up with a sample in the sample holder which has a pattern of known measures as

seen in Figure 2.9 a).

In normal FT-IR spectroscopy, a typical measuring area of the order of 10mm2 is detected. This

means that the signals detected with our set-up had 10�3 % of power than normally detected

signals using normal FT-IR configuration. Though the relative error of the measure is quite

low - 1% in most part of the spectra- we still should decrease this error.
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Figure 3.4: Black Body radiation measured at di↵erent temperatures



Chapter 4

Conclusion

Initial goals of the project were not accomplished. Since the thermal set-up for the measurement

of the thermal radiation of a Silicon microsphere was not carried out. This objective was di�cult

to achieve. Though a great advance on the optical set-up for this measurement was reached.

Time has played a determinant role in this project. The realisation of the project was indeed

conditioned to characteristic time of the measurements themselves - that were necessary to make

small modifications in order to improve the implementation of the set-up- and unavailability of

lab equipment for a relative long period.

Taking into account all the factors we did get some reasonably successful results as we were able

to measure radiation with 0.001 of the power measured on normal mode in FT-IR spectrometers.

All this was possible by combining Step-Scan FT-IR spectroscopy and lock-in techniques. Much

more research ought to be carried out. Nevertheless, this project means a great start to be able

to measure the thermal radiation of the Silicon microspheres.
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