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Abstract

Speech synthesis is the task of generating speech using computers. Due to the limitations

of classical techniques, these systems are normally not suitable for applications that would

benefit from expressiveness in the speech, such as audiobook reading.

In this project, we attempt to develop a text-to-speech speech synthesizer that is capable

of reacting to the semantic content of the input text to produce expressive speech. The

system is based on the Socrates text-to-speech framework developed in the VEU research

lab at UPC and the Keras deep learning library.

The first part of the project was to develop a baseline system based on RNN-LSTM

that doesn’t take into account the semantic content of the text. Once we had this baseline

system working, the additions for the expressive speech were developed. Throughout the

development, the Blizzard Challenge 2013 text-to-speech corpus, which contains audiobooks,

was used to train the systems. This corpus was chosen because of its richness in expressive

speech.

To develop the expressive speech, we used text classification to predict the meaning of a

given sentence, and used this information to improve the baseline system. This prediction

is trained using a Stanford dataset with movie reviews. Because the type of text on this

dataset is different from the Blizzard one, there is a domain adaptation that is performed to

transfer information from the Blizzard corpus into the Stanford one.

Three experiments have been carried out to find the set of expressive features that give

the best objective and subjective results by means of an evaluation done by nine volunteers.

According to the objective metrics, the baseline system is the one that performs best with

the Blizzard corpus, but the subjective evaluation shows some preference for the modified

systems.
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Resumen

La sintesis de voz consiste en utilizar ordenadores para generar voz humana. Debido a

las limitaciones de las técnicas clásicas, estos sitemas normalmente no son adecuados para

aplicaciones que requieren voz expresiva como en la lectura automática de audiolibros.

En este proyecto, tratamos de desarrollar un sintetizador de voz capaz de reaccionar al

contenido semántico del texto para producir voz expresiva. El sistema está basado en el

framework de śıntesis de voz Socrates, desarrollado en el grupo VEU de la UPC, y en la

libreŕıa de deep learning Keras.

La primera parte del proyecto consiste en desarrollar un sistema base que no tiene en

cuenta el contenido semántico, basado en redes neuronales recurrentes RNN-LSTM. Una

vez finalizada esta parte, se continuó con el desarrollo de la śıntesis expresiva. Durante el

proyecto hemos usado la base de datos Blizzard Challenge 2013, la cual contiene una serie

de audiolibros. Elegimos esta base de datos en particular por ser muy rica en expresividad

de la voz.

Para desarrollar la śıntesis de voz expresiva, usamos procesado del lenguaje natural (PLN)

para predecir el significado de las frases con un clasificador. Usamos esta informacion para

mejorar el sistema anterior. Esta parte se hizo usando una base de datos llamada Stanford

sentiment treebank, la cual contiene una serie de reseñas de cine. Debido a que esta base

de datos contiene texto de distinta naturaleza del de Blizzard, hacemos una adaptación del

dominio del clasificador.

Se han realizado tres experimento para su posterior evaluación objetiva y subjetiva, la

segunda preguntando a nueve personas voluntarias. Segun los resultados objetivos, el sistema

base es el que tiene mejores resultados, pero segun los subjetivos, hay una preferencia por

los experimentos expresivos.
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Resum

La śıntesi de veu consisteix en fer servir ordinadors per generar veu humana. Degut a

les limitacions de les tècniques clàssiques, aquests sistemes normalment no són adequats

per aplicacions que requireixen veu expressiva com és el cas de la lectura de audiollibres

automàtica.

En aquest projecte, desenvolupem un sintetitzador de veu capaç de reaccionar al contingut

semàntic del text per produir veu expressiva. El sistema està basat en el framework de śıntesi

de veu Socrates, desenvolupat al grup de recerca VEU de la UPC, i en la llibreria de deep

learning Keras.

La primera part del projecte consisteix en desenvolupar un sistema base que no tingui en

compte el contingut semàntic del text, basat en xarxes neuronals recurrents RNN-LSTM.

Finalitzada aquesta part, es va continuar amb el desenvolupament de la śıntesi de veu ex-

pressiva. Durant aquest projecte hem fet servir la base de dades Blizzard Challenge 2013

per fer la śıntesi, que conté audiollibres. Vam escollir aquesta base de dades en particular

per la seva riquesa en veu expressiva.

Per desenvolupar la śıntesi de veu expressiva, vam fer servir processat del llenguatge

natural (PLN) per predir el significat de les frases amb un classificador. Vam fer servir

aquesta informació per millorar el sistema anterior. En aquesta part, vam fer servir la base

de dades Stanford sentiment treebank, que conté una serie de ressenyes de cinema. Degut a

que el text d’aquesta base de dades es bastant diferent del Blizzard, semànticamente, es va

fer una adaptació del classificador per poder fer-lo servir en la śıntesi.

S’han realitzat i evaluat tres experiments de śıntesi i s’han valorar objectiva y subjec-

tivamnt, aquesta segona preguntant a nou voluntaris. Els resultats objectius mostren que

el sistema base és objectivament millor però els subjectius mostren una preferència pels

experiments expressius.
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Chapter 1

State of the art

This chapter gives a brief introduction to the background of this project. The first thing

that is discussed is classical methods of speech synthesis, as well as a brief mention of deep

learning methods used in this particular task. We also discuss text classification.

By the end of this chapter, the necessary background will have been introduced for its

application in the following chapters.

1.1 Speech synthesis

Speech synthesis is the process of generating a synthetic speech signal, emulating that of

a human being. More specifically, this project focuses on synthesizing the signal given text

level information. That means, mapping a piece of text to the sounds that a human would

make. It also has to be possible to generate any text that is given to the system.

Speech synthesis can be applied to designing computer interfaces such as Apple’s Siri

or Amazon’s Alexa. This section reviews some of the classical and more modern ap-

proaches.

1.1.1 Concatenative synthesis by unit selection

Unit selection systems render a speech signal by concatenating waveform fragments from a

large single-speaker database [18]. Each unit in the database is also associated by a prosodic

feature vector which contains information about pitch and duration of the single phonemes,

that is used when finding the best concatenation of waveforms that matches a given target

input (the phrase that is being synthesized).
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Input targets Unit Selection Post-processing Waveform

Database

Figure 1.1: Concatenation system scheme.

Figure 1.1 shows the concatenative scheme. The system is composed of two modules, the

first is the unit selection module where the best sequence of waveforms that matches the

desired input prosodic targets is selected from the database. This sequence is obtained by

minimizing the following expression using the Viterbi algorithm:

ûN
1 = argmin

uN
1

{
ρ

N∑
i=1

ctarget(ui, ti) + (1− ρ)

N∑
i=2

cconcat(ui−1, ui)

}
(1.1)

Where ûN
1 is the best selection of the ui units in the database and ti is the i-th target

input of the system. ctarget is the cost of using a particular unit to match a wanted prosodic

target, and cconcat is the cost of concatenation of two units. The expression has a weighting

term ρ that can be used to adjust the outcome.

The post-processing is used to fix the prosodic discontinuities of the raw selected units

using pitch-synchronous overlap-add (PSOLA) [26], either in the time domain (TD-PSOLA)

or the frequency domain (FD-PSOLA). This module is needed specially when the volume of

the phoneme database is not very big and the chances of having discontinuities is high.

The outcome of concatenative systems can be highly natural-sounding speech, but it has a

drawback: the database is always needed therefore the memory footprint of this technique can

be high. To remedy this, statistical approaches are used as seen in the following section.
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1.1.2 Statistical Parametric Speech Synthesis

Concatenative systems suffer from a large memory footprint due to the requirement of

a waveform fragment database. To remedy this, statistical parametric speech synthesis

(SPSS) is based on modeling the statistical properties of speech. To explain this approach,

the scheme from Figure 1.3 from the HTS framework [38] is used as a guide.

This technique is perfomed in two phases. The first one is a training phase (top half in

Figure 1.3) where each phoneme in a language is modeled by a finite-state structure called

Hidden Markov Model (HMM) using a speech corpus, and the second phase is the synthesis

(bottom half) where the trained models are used to synthesize the speech.

In the training phase, a large speech corpus is used. From this corpus we extract the

excitation and spectral parameters (acoustic features) from the audio files and the phoneme

representations of the transcripts (linguistic features or Labels in the figure). This data is

used to train a model for each phoneme. The models are HMMs from Figure 1.2

1 2 3

π1 π2 π3

b1(y) b2(y) b3(y)

a1→2 a2→3

a1→1 a2→2 a3→3

Figure 1.2: A 3-state left-to-right Hidden Markov Model.

Which can be represented by the touple λ = 〈A,B,Π〉 where A are the state transition

probabilities ai→j , B are the acoustic observation distributions bi(y), and Π are the initial

state probabilities πi. The acoustic observations {y1, y2, y3, ...} are modeled by Gaussian

Mixture Models (GMM). The parameters of the HMMs are estimated using the Baum-Welch

algorithm [4].

In the synthesis phase, the trained models are used to generate the acoustic observations,

also by means of ML, given set of linguistic features passed as inputs (text analysis block

in Figure 1.3). The HMM acoustic observations are processed through a synthesis filter

(generally a vocoder) to generate the final synthetic speech.
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Figure 1.3: SPSS system based on HMMs. This scheme corresponds to the HTS framework
[38].

SPSS systems are more efficient because they don’t require a large database in the syn-

thesis stage. Moreover, they also overcome another limitation of concatenative systems of

not being able to generate multiple voices and styles of speech. SPSS offer this flexibility

when the parameters are modified appropriately as described in [27] and [38].

1.1.3 Recurrent Neural Network-based Speech Synthesis

Another approach to speech synthesis more closely related to this project, is using re-

current neural networks (RNNs) to process a sequence of linguistic features and predict the

same excitation and spectral parameters than SPSS.

Figure 1.4 from [9] is used as a guide for this section, but only the synthesis part, since

the training will be covered later in this chapter. This one in particular uses a special kind

13



of RNN called LSTM-RNN, also covered later in this chapter.

This approach is similar to the HMM based one from the previous section, but this one

uses a special kind of neural networks called recurrent neural networks (more about them

later in this chapter) to generate the acoustic observations that are used to reconstruct the

speech signal. More specifically, it contains two models: a duration model, and an acoustic

model.

The input of this system is also a phonetic representation of the text (text analysis and

linguistic feature extraction in the figure). The model first predicts the duration of a frame

to obtain a phoneme duration using the duration model (bottom half of the figure).

Afterwards, the acoustic model (another LSTM-RNN) is used to generate as many acous-

tic predictions as to match the predicted duration of the phoneme, using the same linguistic

features and the predicted duration as inputs (note that the same linguistic features can be

used multiple times in this stage).

The predicted acoustic features are fed to a reconstruction filter or vocoder that generates

the speech signal.

1.1.4 Expressive speech synthesis

One common limitation in the sythesis techniques explained above is that they might not

be suitable for applications that benefit from expressive speech, such as audiobook reading.

Since this project focuses on overcoming this limitation, this section reviews how this problem

has been tackled in the past.

There exists several ways of obtaining expressive speech. One example involves defining

an emotion target which tells the synthesizer how to generate the final waveform. In [7]

and [14], different emotions are modeled using prosodic information such as pitch. They

implement this in a concatenative system like the one in Section 1.1.1.

Another way of obtaining expressive speech in the bibliography was developed in the

VEU research group [19]. In contrast with the previous examples, which involve manually

14



Figure 1.4: RNN-based SPSS scheme. Concepts such as LSTM that appear in the figure are
covered at later section of this chapter. The figure is originally from [9]
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selecting a desired emotion target, this work uses deep neural networks (more about them this

later in this chapter) to predict acoustic features of expressive speech from text, meaning

the exressiveness is obtained from the text itself, something that can be used to develop

synthesizers that have adaptive expressiveness.

1.2 Text classification and sentiment analysis

Text classification is a task in natural language processing [10] (NLP) where a text is

assigned a label automatically.

A classic model used used in text classification is bag of words [33] (BOW), where a piece

of text is assumed to be a sequence of words picked at random from a specific set. In the

topic of text classification, classifying text using BOW would involve predicting the set the

text belongs to, for example, the probability that an email is SPAM.

More recently, more modern techniques such as deep learning have been used to improve

the accuracy of these systems. In [39] text is treated as a signal and processed using Convolu-

tional neural networks (more on this in the next sections) and [20] uses vector representations

of words (word embeddings [15]) to classify text.

One well known application of text classification, that is used in this project, is sentiment

analysis (SA). SA can be applied to classification tasks such as the one from the Stanford

Sentiment Treebank dataset [31], which contains a list of movie reviews and the goal is to

predict how positive or negative they are based on the text.

1.3 Deep Learning

In recent years, deep structured learning, or more commonly called deep learning is a set

of techniques that has risen in popularity and established itself as a new area of machine

learning among the scientific and research communities. [13]

In [2] the authors discussed the limitations of shallow architectures and provided a theo-
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retical basis to the advantages of deeper ones. But it has only been in recent years that such

architectures have been able to be put into production with ever-growing popularity, thanks

to high performance compute technologies being every time more available and affordable to

consumers.

With deep learning architectures, it is possible to learn complex non-linear representations

from large amounts of data. Raw data can be processed and turned into several levels of

higher level representations to make it possible to reason about it and make tasks such as

classification easier and more effective.

In addition to more computational power, large datasets that can take advantage of deep

models such Imagenet [29] are being made publicly available. These datasets are often

used as benchmarks and serve as points of reference to drive research and development

forward.

1.3.1 Deep Neural Networks

In Deep Learning, a common architecture is the so called Deep Neural Network (DNN),

which is an artificial neural network with a large number of hidden layers. The desire to

decomposing a signal into higher levels of abstraction drives such neural networks configu-

rations, and since more layers require more trainable parameters, large amounts of training

data are also needed to train them.

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 1.5: Basic neuron (left) and neural network configuration (right).

DNNs are defined by stacking several layers of basic units called neurons. In each layer,

a linear operation takes place, where the inputs x = {1, x1, x2, ..., xN} (1 is for a bias term)

17



are linearly combined by a set of weights that are characteristic of each layer. The output of

this linear operation is fed to a non-linear activation function (such as a sigmoid ((1.3)) or a

tanh) which introduces the non-linearities of the system. Equation (1.2) shows the operation

that takes place in the i-th layer, where Wi is the matrix of weights, xi is the input vector

of the layer, yi is the output vector and σ is the activation function.

yi = σ (Wi · xi) (1.2)

σ(x) =
1

1 + e−x
(1.3)

The outputs of this activation function are fed to the next layer of neurons until the last

layer of a network, typically a softmax activation function for classification tasks or linear

operation in regression ones. Figure 1.5 shows a neural network configuration.

1.3.2 Optimization

Optimizing, or training, a DNN is the process of finding the best possible set of weights

that accomplish the best results in a given task. A task that DNNs are used for is classifica-

tion, where a label is assigned to each input vector (predicting whether an image is from a

cat or a dog) and also regression (predicting the expected cost of a property given the land

size and proximity to the coast).

To optimize the network a cost or loss function is defined to measure the error of the

predictions (such as the root mean square error or the cross-entropy error [16]). given a loss,

we can improve the performance of a model by translating the weight vector in the direction

of the gradient.

Equation (1.4) is a general loss function that is computed from a random batch B of

vectors from a dataset X where B ⊂ X.

18



L(X;w) =
∑
xk∈B

E(xk) (1.4)

Where w are the weights of the model and E(xk) is the contribution of the k-th vector

of the batch to the loss. This technique of not using the whole dataset to compute the loss

is called stochastic gradient descent (SGD) [6].

Before updating the weights, the partial derivatives of the loss function are computed

using the back-propagation algorithm [8]. For this we need to be able to compute the

derivatives of both the loss function and the activation functions of the neurons. The update

can be performed like this:

wi[n+ 1] = wi[n]− λ∂L(x;w[n])

∂wi
(1.5)

Where wi is the i-th weight of the model and ∂L(x;w[n])
∂wi

is the partial derivative of the loss

function (1.4) with respect to the i-th weight. w[n] are the weights of the model in the n-th

iteration.

The norm of the gradient is scaled by a factor called learning rate (expressed as λ in

Equation (1.5)) to speed-up or slow-down the convergence of the loss function during train-

ing.

There are more elaborated ways of performing these weight updates, such as the Adam

[22] and Adadelta [37] optimizers, which are the ones used in this project.

1.4 Recurrent networks

Recurrent neural networks (RNN) are a special type of architecture capable of modeling

sequences, where the outputs of a hidden layer are fed back to the inputs of the same layer.

This feedback loop introduces a state in the neurons and the output of the layers can be

rewritten as:

19



Figure 1.6: Unfolded RNN

yt = σ (W · xt + U · yt−1) (1.6)

Where xt is an input vector at the t-th timestep and U is an additional matrix of tranable

weights. Because of the introduction of a neuron state, RNNs can model various types of

sequential data (predict the next frame of a video given the N first or predict the duration

of each of the phonemes in a sentence as seen previously).

Recurrent networks can still be trained efficiently by using back-propagation through time

[34] which is specific case of back-propagation where the errors are also back-propagated back

in time. If we expand (1.6) we get:

yt = σ (W · xt + U · σ (W · xt−1 + U · σ (· · ·σ (· · · ) · · · ))) (1.7)

This expansion is graphically represented in Figure 1.6. The recursive multiplication of

Ut make RNNs a special case of DNNs, where the repeated multiplications can cause the

gradients to become too small or too big by the time they reach the inputs of the network

when doing back-propagation. This is known as vanishing or exploding gradient problem

[3], a phenomenon that occurs in SGD.

To mitigate this problem in RNNs, we use specially designed recurrent neurons such as

Long Short-Term Memory [17] (LSTM) as opposed to regular RNN neurons. These cells

work with a more sophisticated mechanism that controls the flow of information coming in

and out of the cells. LSTMs have proven to be effective at modeling long-term sequences

20



and that’s the reason why they are used in this project.

1.5 Convolutional Neural Networks

As seen in Equation (1.2), a neuron activation depends on all the output activation of the

previous layer. Convolutional neural networks (CNN) are a type of architecture that contains

a type of hidden layers called Convolutional layers. These architectures have proven to be

very effective in computer vision applications but they are also used with success in NLP

tasks [39].

Rather than combining all the outputs of the previous layer, CNN neurons only focus

on the activations of a fixed number of neurons from the previous layer [23]. While each

neuron focuses on a different set of inputs, the total number is fixed and the weights are

shared among the activations of the layer. Because of this, we can think of these layers as

having an associated kernel that is used to filter the previous layer by means of a convolution

to produce a feature map in the layer. The number of feature maps is a parameter of the

convolutional layer.

Once the state of the art and the deep learning concepts that are used throughout this

project have been reviewed, the next implementation chapters can be explained and dis-

cussed.
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Chapter 2

Baseline speech synthesis

2.1 Baseline development

The first stage of this project was to develop a baseline speech synthesizer. This model is

used as a reference when comparing the results of the experiments explained in the evaluation

chapter. The architecture (Figure 2.1) is based on the work done by [27] by using the

Socrates Text-to-speech framework developed in the VEU research group at UPC, which

is based on the Keras deep learning library. This is a RNN-LSTM based model, which,

as mentioned in section 1.1.3, contains a duration model and an acoustic model which are

trained independently.

Duration model

Input (330)

LSTM (256)

(Output) Fully connected (1)

Acoustic model

Input (332)

Fully connected (256)

Fully connected (256)

LSTM (512)

LSTM (512)

(Output) Fully connected (43)

Figure 2.1: Baseline models.

• The duration model predicts the duration of a phoneme. This model takes a vector of

linguistic features with information about the phoneme and its context and outputs a

single value that is the log-compressed duration of the phoneme (this log-compression

is explained in the data preparation section).

• The acoustic model predicts the excitation and spectral parameters of a frame of speech.
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The input of this system is the same vector of linguistic features, the normalized

duration of the predicted value from the previous model and the relative position

of the frame within the duration of the phoneme. The output of this model is also

explained in the next section.

2.2 Data preparation

The corpus that has been used for this project contains approximately 20 hours or au-

diobooks along with the transcripts. This corpus was originally produced for the Blizzard

Challenge 2013 [21] and is already segmented at the utterance level, removing the need to

align the whole audio stream with the raw text data. The reason we chose this corpus is

because of its richness in expressive content. Table 2.1 shows some information about the

audio files that we get from it.

Metric Value

Sampling rate (Hz) 16000
Bit depth (bits) 16
Channels mono
Length (seconds mean) 7.23
Length (seconds std) 4.52
Speakers 1

Table 2.1: Information about the Blizzard Challenge utterances.

2.3 Obtaining Acoustic features

As mentioned in section 1.1.3, this RNN based speech synthesizer is based on SPSS and

as such it doesn’t output the waveforms directly but the excitation and spectral parameters

before they are reconstructed by a vocoder. The vocoder that we used is Ahocoder [12].

Every audio file is framed by means of a sliding window with a stride of 5 milliseconds.

Ahocoder then processes each frame to produce a set of excitation and spectral parameters

which are:

• Mel Frequency Cepstral Coefficients (MFCC) of order p = 39, which corresponds to 40
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coefficients. This represents the information from the speech formants.

• Pitch contour (log(F0)). Unvoiced frames correspond to F0 = 0. Ahocoder outputs a

value of −108 when the frame is unvoiced.

• Maximum voiced frequency (fv), This value is 0 when a frame is unvoiced.

• Voiced/Unvoiced (UV) flag. This value indicates if a given frame of audio corresponds

to a voiced or unvoiced sound and is obtained using the log(F0) output of Ahocoder.

To perform this data extraction from the Blizzard corpus, the Python and Bash scripting

languages were used to parallelize the whole process. The basic unit of work of this step

is to spawn an Ahocoder process with the path of the file, and save the speech parameters

that it generates to disk. Because this operation is single threaded, and because of the large

amount of data that we had in the Blizzard Challenge dataset (20 hours of speech), this

process was parallelized in order to fully utilize the computing resources of the server. This

involved writing two scripts:

• split names.py is a Python script that takes a list of files (All the filenames from the

Blizzard corpus) and splits it into smaller chunks.

• process ahocode.sh is a Bash script that reads a list of files and processes each of

them through Ahocode and saves the speech parameters to the disk.

The filenames of the corpus was split into 30 chunks (the server has 32 CPUs) using

the split names.py script and each of the chunks was processed by process ahocode.sh.

Using this method inspired by [27] this whole data preparation process was accomplished in

less than one hour fully utilizing the system resources.

2.4 Acoustic feature normalization

The data is not used as it is at the output of the Ahocoder directly. These acoustic

predictors are normalized before they are used to train the acoustic model for a good behavior

of the back-propagation algorithm, as discussed in [27].
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The outputs of the Ahocoding process (MFCC, log(f0) and fv) were normalized so that

they were bound between a minimum and a maximum value range. This range is chosen to

be 0.01, 0.99. The normalization of the acoustic outputs is shown in equation 2.1

ŷ = 0.01 + (0.99− 0.01)
y − ymin

ymax − ymin
(2.1)

This doesn’t work for the log(F0) features however. Because Ahocoder outputs a value

of −108 when a frame is not voiced, equation (2.1) would compress the values from the

voiced frames too much. [27] solves it by keeping the values from the voiced frames and

interpolating the values in the unvoiced regions as shown in Equation 2.2:

logF i
0 = logF p

0 + (logFn
0 − logF

p
0 ) · i− p

n− p
(2.2)

Where n is the next voiced frame’s frame index, Fn
0 is the next voiced frame’s first value,

p is the previous voiced value’s frame index, F p
0 is the previous voiced value and F i

0 is the

i-th new interpolated value to be replaced in the original output of the Ahocoding process

(Figure 2.2 has an example of this interpolation). We can then use the UV flag to recover

the original format after denormalization and reconstruct the waveform.

Figure 2.2: F0 contour interpolation

These acoustic features are used to train the acoustic model of the system. The data

is structured for training as a series of input-output vector pairs laid out in the following

manner in the training data tables:
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< l i n g u i s t i c f e a t u r e s 1 , durat ion 1> <a c o u s t i c f e a t u r e s 1>
< l i n g u i s t i c f e a t u r e s 1 , durat ion 1> <a c o u s t i c f e a t u r e s 2>
< l i n g u i s t i c f e a t u r e s 1 , durat ion 1> <a c o u s t i c f e a t u r e s 3>
< l i n g u i s t i c f e a t u r e s 2 , durat ion 2> <a c o u s t i c f e a t u r e s 4>
< l i n g u i s t i c f e a t u r e s 2 , durat ion 2> <a c o u s t i c f e a t u r e s 5>
< l i n g u i s t i c f e a t u r e s 2 , durat ion 2> <a c o u s t i c f e a t u r e s 6>
< l i n g u i s t i c f e a t u r e s 2 , durat ion 2> <a c o u s t i c f e a t u r e s 7>
< l i n g u i s t i c f e a t u r e s 3 , durat ion 3> <a c o u s t i c f e a t u r e s 8>
< l i n g u i s t i c f e a t u r e s 3 , durat ion 3> <a c o u s t i c f e a t u r e s 9>
. . .

Figure 2.3: Training table used to train the acoustic model is stored in the server disk.

Which are the examples that are used to train the acoustic model. Some of the inputs are

repeated depending on the duration of the phonemes (the linguistic features are explained

in the next section). To create these tables, another python script gen aco tables.py was

written for the project. This script reads a list of files corresponding to the single sentences

from the Blizzard corpus and does the following:

1. Reads the file of linguistic features (explained in the next section) containing both the

phonetic segmentation and the phoneme durations.

2. Reads the corresponding acoustic features from Ahocoder (obtained in the previous

section) and writes a line containing: the vector of linguistic features, the log normal-

ized duration of the phoneme, the relative position of the ahocoder window within the

current phoneme, and the vector of acoustic features (MFCC, log(f0), fv and UV ).

This line in repeated for as many windows the phoneme lasts (modifying the relative

duration value every line). At the end there might be a remainder duration error be-

cause the number of windows the phoneme lasts might not be an integer number. This

remainder is carried to the next phoneme.

3. Once all the data has been collected, the values are normalized and written to disk for

use in Socrates.

We execute this script for both the training data, the test data and the validation data.

These can be done in parallel but it is not as critical.
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2.5 Obtaining linguistic features

Each of the audio transcriptions was transformed into a lower level phonetic representation

called Label that contains a set of both real and categorical descriptors with information

about each phoneme and its context within a sentence. Table 2.2 contains a description of

the values that are included in this representation.

When a phoneme is converted into a Label, it has the following format:

p1ˆp2$−$p3$+$p4$=$p5˜p6 p7/A: a1 a2 a3 /B: b1−b2−b3˜b4−b5&b6−b7#b8−b9$b10 . . .

−b11 ! b12−b13 ; b14−b15 | b16/C: c1+c2+c3/D: d1 d2/E: e1+e2˜e3+e4&e5+e6#e7+e8 . . .

/F : f 1 f 2 /G: g1 g2 /H: h1=h2˜h3=h4 | h4/ I : i 1 i 2 /J : j 1+j2−j 3

label format
Symbol Description

p1 phoneme identity before the previous phoneme
p2 previous phoneme identity
p3* current phoneme identity
p4* next phoneme identity
p5* the phoneme after the next phoneme identity
p6* position of the current phoneme identity in the current syllable (forward)
p7* position of the current phoneme identity in the current syllable (backward)

a1 whether the previous syllable is stressed or not (0; not, 1: yes)
a2 whether the previous syllable is accented or not (0; not, 1: yes)

a3 number of phonemes in the previous syllable
b1* whether the current syllable stressed or not (0: not, 1: yes)
b2* whether the current syllable accented or not (0: not, 1: yes)
b3* the number of phonemes in the current syllable
b4* position of the current syllable in the current word (forward)

Table 2.2 (continued)
b5* position of the current syllable in the current word (backward)
b6* position of the current syllable in the current phrase(forward)
b7* position of the current syllable in the current phrase(backward)
b8* number of stressed syllables before the current syllable in the current phrase
b9* number of stressed syllables after the current syllable in the current phrase
b10* number of accented syllables before the current syllable in the current phrase
b11* number of accented syllables after the current syllable in the current phrase
b12* number of syllables from the previous stressed syllable to the current syllable
b13* number of syllables from the current syllable to the next stressed syllable
b14* number of syllables from the previous accented syllable to the current syllable
b15* number of syllables from the current syllable to the next accented syllable
b16* name of the vowel of the current syllable
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c1* whether the next syllable stressed or not (0: not, 1:yes)
c2* whether the next syllable accented or not (0: not, 1:yes)
c3* the number of phonemes in the next syllable

d1 gpos (guess part-of-speech) of the previous word
d2 number of syllables in the previous word

e1* gpos (guess part-of-speech) of the current word
e2* number of syllables in the current word
e3* position of current word in the current phrase (forward)
e4* position of current word in the current phrase (backward)
e5* number of content words before the current word in the current phrase
e6* number of content words after the current word in the current phrase
e7* number of words from the previous content word to the current word
e8* number of words from the current word to the next content word

f1* gpos (guess part-of-speech) of the next word
f2 number of syllables in the previous word

g1 number of syllables in the previous phrase
g2 number of words in the previous phrase

h1* number of syllables in the current phrase

h2* number of words in the current phrase
h3* position of the current phrase in utterance (forward)
h4* position of the current phrase in utterance (backward)
h5* Phrase modality (question, exclamation, etc.)

i1* number of syllables in the next phrase
i2 number of words in the previous phrase

j1* number of syllables in this utterance
j2* number of words in this utterance
j3* number of phrases in this utterance

Table 2.2: Label format. The symbols tagged with an asterisk reference the future context
of the phoneme.

A full example of this conversion is shown in Figure 2.4:

To obtain the Labels of the Blizzard corpus, first the sentences were phonetically seg-

mented. This process was done using the Ramses and Ogmios [5] software. The whole

process was mostly automated following a guide:

1. The text files are converted to their phonetic representation. Speech parameters are

also computed from the audio files from where a codebook is created and quantized.

2. The next step estimates a semi-continuous HMM, where only the GMM parameters are
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pauˆD−i+O:= t ˜2 1 /A:0 0 2 /B:0−0−2˜1−1&1−10#0−0$0−2!0−0;3−4| i /C:0+0+1/D:NN 2/E:DT+1˜1+5&0+3#0+1/F : . . .
Dˆ i−O:+t=@˜1 1 /A:0 0 2 /B:0−0−1˜1−6&2−9#0−0$0−2!0−0;4−3|O:/C:0+0+2/D:DT 1/E:NN+6˜2+4&0+3#1+1/F : IN . . .
i ˆO:− t+@=b˜1 2 /A:0 0 1 /B:0−0−2˜2−5&3−8#0−0$0−2!0−0;5−2|@/C:0+0+2/D:DT 1/E:NN+6˜2+4&0+3#1+1/F : IN . . .
O: ˆ t−@+b=aI ˜2 1 /A:0 0 1 /B:0−0−2˜2−5&3−8#0−0$0−2!0−0;5−2|@/C:0+0+2/D:DT 1/E:NN+6˜2+4&0+3#1+1/F : IN . . .
t ˆ@−b+aI=Q˜1 2 /A:0 0 2 /B:0−0−2˜3−4&4−7#0−0$0−2!0−0;6−1| aI /C:0+1+1/D:DT 1/E:NN+6˜2+4&0+3#1+1/F : IN . . .
@ˆb−aI+Q=g˜2 1 /A:0 0 2 /B:0−0−2˜3−4&4−7#0−0$0−2!0−0;6−1| aI /C:0+1+1/D:DT 1/E:NN+6˜2+4&0+3#1+1/F : IN . . .
bˆaI−Q+g=r ˜1 1 /A:0 0 2 /B:0−1−1˜4−3&5−6#0−0$0−1!0−0;7−5|Q/C:0+0+3/D:DT 1/E:NN+6˜2+4&0+3#1+1/F : IN . . .
aI ˆQ−g+r=@˜1 3 /A:0 1 1 /B:0−0−3˜5−2&6−5#0−0$1−1!0−0;1−4|@/C:0+0+2/D:DT 1/E:NN+6˜2+4&0+3#1+1/F : IN . . .
Qˆg−r+@=f ˜2 2 /A:0 1 1 /B:0−0−3˜5−2&6−5#0−0$1−1!0−0;1−4|@/C:0+0+2/D:DT 1/E:NN+6˜2+4&0+3#1+1/F : IN 1 . . .
gˆr−@+f=i ˜3 1 /A:0 1 1 /B:0−0−3˜5−2&6−5#0−0$1−1!0−0;1−4|@/C:0+0+2/D:DT 1/E:NN+6˜2+4&0+3#1+1/F : IN 1 . . .
r ˆ@−f+i=@˜1 2 /A:0 0 3 /B:0−0−2˜6−1&7−4#0−0$1−1!0−0;2−3| i /C:0+0+2/D:DT 1/E:NN+6˜2+4&0+3#1+1/F : IN 1 . . .
@ˆ f−i+@=v˜2 1 /A:0 0 3 /B:0−0−2˜6−1&7−4#0−0$1−1!0−0;2−3| i /C:0+0+2/D:DT 1/E:NN+6˜2+4&0+3#1+1/F : IN 1 . . .
f ˆ i−@+v=@˜1 2 /A:0 0 2 /B:0−0−2˜1−1&8−3#0−0$1−1!0−0;3−2|@/C:0+0+1/D:NN 6/E: IN+1˜3+3&1+2#1+2/F :DT 1 . . .
i ˆ@−v+@=h˜2 1 /A:0 0 2 /B:0−0−2˜1−1&8−3#0−0$1−1!0−0;3−2|@/C:0+0+1/D:NN 6/E: IN+1˜3+3&1+2#1+2/F :DT 1 . . .
@ˆv−@+h=O:˜1 1 /A:0 0 2 /B:0−0−1˜1−1&9−2#0−0$1−1!0−0;4−1|@/C:0+1+3/D: IN 1/E:DT+1˜4+2&2+1#1+1/F :NN 1 . . .
vˆ@−h+O:=s ˜1 3 /A:0 0 1 /B:0−1−3˜1−1&10−1#0−0$1−0!0−0;5−0|O:/C:0+0+0/D:DT 1/E:NN+1˜5+1&2+1#2+0/F : SI . . .
@ˆh−O:+s=pau˜2 2 /A:0 0 1 /B:0−1−3˜1−1&10−1#0−0$1−0!0−0;5−0|O:/C:0+0+0/D:DT 1/E:NN+1˜5+1&2+1#2+0/F : . . .
hˆO:− s+pau= ˜3 1 /A:0 0 1 /B:0−1−3˜1−1&10−1#0−0$1−0!0−0;5−0|O:/C:0+0+0/D:DT 1/E:NN+1˜5+1&2+1#2+0/F : . . .
O: ˆ s−pau+ = ˜1 1 /A:0 1 3 /B:0−0−1˜1−1&0−11#0−0$0−2!0−0;1−0| /C:0+0+0/D:NN 1/E: SIL+1˜0+6&0+3#1+0/F : . . .

Figure 2.4: Truncated label representation of the phrase ”the autobiography of a horse.”

quantized, for every phonem using the speech parameters. Using these HMM models

and the phonetic transcriptions, a force alignment is performed to find the transitions

of the phonemes and the internal pauses and silences in the sentences using the Viterbi

algorithm.

3. Next it creates a diphone transcription [24] of the sentences and estimates an HMM of

them.

4. Finally, a force alignment is performed again to obtain the diphone transitions in order

to compute the duration of each phoneme.

5. A script is called to convert the outputs from the Ogmios program to the Label repre-

sentation with the phoneme durations.

2.6 Linguistic features normalization

The linguistic features, also had to be normalized prior to training. As seen previously, the

label format contains both categorical features and real features. The categorical information

was encoded so that all categories are orthogonal to each other by using a one-hot encoding.

As a small example of a one-hot encoding, consider the three categories {A,B,C}. The

one-hot encoding for the three categories is {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

The real features from the acoustic features are normalized so that the mean equals zero
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and the standard deviation equals one for each of them. This operation is called z-norm and

it is shown in 2.3.

z =
x− µ
σ

(2.3)

The predicted duration of each phoneme was log-compressed to avoid having a long-tailed

distribution that can distort the training of the model when using the Mean Square Error

(MSE) minimization as discussed in [27]. Figure 2.5 contains the histogram of the raw pre-

dicted durations and the histogram after the log-compression operation. This operation was

performed by simply taking the natural logarithm of the stored phoneme durations:

d̂ = log(d) (2.4)

Figure 2.5: Histogram of the phoneme duration predictions by Ogmios.

Once we have obtained the linguistic features, we discard of those who reference the past

and only keep the ones tagged with an asterisk (∗) in Table 2.2. This is because the models

are based on LSTM-RNN which are known to be good at modeling long term dependencies

from the past[17].

2.7 Training of the baseline

As mentioned before, the system is developed within the Socrates Test-to-speech frame-

work. In the version that was used, this program allows us to define the full architecture in a
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plain-text configuration file. In this file we specify the number of layers, inputs parameters,

the paths where the training, test and validation data are stored in the disk, and the path

where to store the intermediate files that the framework generates during training (network

weights, loss curves and cached information). An example of configuration file is shown in

Figure 2.6.

[ [ t t s c o r e ] ]
name=”labdecode co re ”

[ [ t t s c o r e ] ]
name=”dur rnn core ”
topology=”b a s e l i n e / dur rnn core−eng . c f g ”
d u r s t a t s=”model /73/ dur/dur . s t a t s . t r a i n ”
t r a i n t a b l e =”. ./ t a b l e s / durat ion / b a s e l i n e / t r a i n . dur”
t e s t t a b l e =”. ./ t a b l e s / durat ion / b a s e l i n e / t e s t . dur”
v a l i d t a b l e =”. ./ t a b l e s / durat ion / b a s e l i n e / v a l i d . dur”
l o s s p a t h=”b a s e l i n e / l o s s c u r v e s /”
t a b l e s c a c h e p a t h=”b a s e l i n e / t a b l e s c a c h e ”

[ [ t t s c o r e ] ]
name=”dur2aco norm core ”
d u r s t a t s=”model /73/ dur/dur . s t a t s . t r a i n ”

[ [ t t s c o r e ] ]
name=”aco rnn co r e ”
d u r s t a t s=”model /73/ aco /dur . s t a t s . t r a i n ”
a c o s t a t s=”model /73/ aco/ aco . s t a t s . t r a i n ”
t r a i n t a b l e =”. ./ t a b l e s / a c o u s t i c / b a s e l i n e / t r a i n . aco ”
t e s t t a b l e =”. ./ t a b l e s / a c o u s t i c / b a s e l i n e / t e s t . aco”
v a l i d t a b l e =”. ./ t a b l e s / a c o u s t i c / b a s e l i n e / v a l i d . aco ”
topology=”b a s e l i n e / aco rnn core−eng . c f g ”
t a b l e s c a c h e p a t h=”b a s e l i n e / t a b l e s c a c h e ”
l o s s p a t h=”b a s e l i n e / l o s s c u r v e s /”

[ [ t t s c o r e ] ]
name=”ahodecode core

Figure 2.6: Configuration example for the baseline system. Some options have been omitted.

In this example, we specify that this model is composed of five modules, called cores

within the framework. Each of these cores perform the following actions

1. labdecode core decodes the label format from Section 2.5 and converts it to the input

that the model expects (converts the categories to one-hot and normalizes the numeric

values)

2. dur rnn core predicts the duration of the phoneme that was provided from the pre-
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vious core.

3. dur2aco norm core denormalizes the predicted duration and generates the input

features that are feed to the acoustic model. It also adds the durations and relative

durations as mentioned at the beginning of this chapter.

4. aco rnn core predicts the acoustic features explained in Section 2.3.

5. ahodecode core takes the output from the previous core, formats the data to be input

to the Ahodecoder, and produces a WAVE file containing the synthesized speech.

The configuration file also has access to the ”stats” of the features that contain the

minimum and maximum values so that the compression from 2.1 can be undone.

As mentioned previously, the Blizzard Challenge corpus contains roughly twenty hours of

speech data. Due to complications loading the data into memory using the framework, we

had to cut the total amount down to 30% to train the acoustic model. Newer releases of this

framework deal with this problem so it can handle the full corpus data.

This chapter has covered the baseline architecture, data preparation and training. The

next step of the project was to add expressive features to the system. The following chapter

focuses on this.
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Chapter 3

Expressive speech synthesizer

Once we had the system up and running it was time to introduce the modifications that

would allow for expressive speech to be modeled by the system. The way this is done in this

project is by introducing a new set of features as inputs to the system (both the duration

and acoustic model). These are known as the embeddings that encapsulate the information

about the way a given sentence is supposed to be synthesized like, given its semantic content,

and they are used alongside the linguistic features from the baseline system. In this section

we describe the process of obtaining these new features. Other than these new inputs, the

developed system shares the same architecture from the baseline system.

3.1 Sentiment analysis & embedding extraction task

Once the baseline system was developed, the additions to the initial system were de-

veloped. These involve obtaining the expressive paragraph embeddings that would allow

for the modeling of the expressiveness of the speech signal. We used sentiment analysis to

capture the expressive information of the Blizzard Challenge dataset that was used in the

baseline system. Because the sentences on this dataset are not made for sentiment analysis

tasks, they lack the information to train a text classification system. To perform this text

classification task, we used the Stanford sentiment treebank dataset [31], which contains a

list of movie reviews. An example of a tagged sentence from this dataset is shown in figure

3.1.

Each of the nodes on the tree is tagged in a scale from 0 to 4, 0 meaning very negative

and 4 being a very positive text. Each sub-sentence was tagged down to the single words

of the sentence. We used this dataset to train a CNN-based classifier similar to [20]. This

architecture is shown in Figure 3.2.
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(2 (3 (3 E f f e c t i v e ) (2 but ) ) (1 (1 too−t ep id ) (2 b i o p i c ) ) )

Tag Sentence
2 E f f e c t i v e but too−t ep id b i o p i c
2 E f f e c t i v e but
3 E f f e c t i v e
2 but
1 too−t ep id b i o p i c
1 too−t ep id
2 b i o p i c

Figure 3.1: Example of sentence tree corresponding to the sentence ”Effective but too-tepid
biopic”

Figure 3.2: Text classification architecture. The figure is originally from [20]

• The first layer is an embedding layer. Each word is transformed into a low dimensional

(300) representation. This step converts a sentence into a signal suitable for the next

convolutional layer. The embedding layer consists of a (N+1)*300 matrix where N is

the size of the vocabulary and the n-th vector column corresponds to the embedding

of the n-th word in the vocabulary. An extra column is used for words that are not

from the vocabulary and contains a random value. This architecture in particular has

two-channel inputs, one with trainable embeddings, and the other with fixed ones.

Both embedding matrices are initialized to the Glove embeddings [28].

• A convolutional layer with filters of sizes 3, 4 and 5 with 100 feature maps each.

• A max-over-time pooling operation [11], where we select the maximum value from each

of the feature maps.

34



• A Fully connected layer with softmax activations that give the output of the classifica-

tion task. This layer is regularized using the dropout method with dropout probability

of 0.5 [32] and the weights of this network are constrained using l2 regularization.

We choose the max-over-time pooling layer activations to obtain the additional inputs

that added to the baseline synthesizer model. There is an issue with using the Stanford

treebank dataset to train this system. Because the dataset is based on movie reviews, the

text domain doesn’t belong to the same from the Blizzard challenge data, which is the one

we use to train the synthesizer models. Therefore, the sentiment analysis network has to

be adapted. The following section explains the methodology that was followed in order to

attempt to achieve this task.

3.2 Network domain adaptation

To perform the domain adaptation, we do the same classification task on a different

architecture using the Blizzard challenge data. This network makes the prediction with the

audio files as inputs. As explained before, this dataset is not prepared for text classification

therefore they lack the class tags needed. We obtain these by using the network from the

previous section after it has been trained using the Stanford sentiment treebank dataset. In

[1] they train a waveform classifier using unlabeled audio files and a pre-trained network to

obtain them from the video frames. We perform the same task using audio and text data

instead.

This task is performed in two steps:

1. We train the audio based network by using the text network to obtain the labels.

Because the labels that we obtain for the Blizzard sentences are probabilities, we

optimize the network using KL-divergence using standard back-propagation [1].

2. After a fixed number of iterations, we fine tune [36] the text network by using labels

obtained from the audio network. At this point, the two networks take turns to perform

a back-propagation pass. Because the state of the weight of each network is constantly
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changing, we intend to leak information about the audio files into the text network.

3.3 Training embeddings extraction and expressive synthe-

sis

Sentiment analysis task

In order to train the embedding extraction, the Keras deep learning framework was used

to define the two networks. First, the data had to be processed in order to train the system.

As shown in Figure 3.1, the sentences in the Stanford sentiment treebank are provided by a

tree representation. Each of these trees were traversed in order to collect all the sentences

and sub-sentences of the dataset. Figure 3.3 shows the distribution of sentence lengths:

Figure 3.3: Distribution of sentence lengths in the Stanford sentiment treebank dataset.

To train this sentiment analysis task, we use all the sentences from the training dataset

that are ≥ 3 in length (words). The test data however, only contains the root nodes of the

sentences like they do in [20] and in the original paper from the dataset.
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conv pool conv pool conv pool conv conv conv

Feature maps 32 32 64 64 128 128 256 512 5
Filter size 64 8 32 8 16 8 8 4 5
Stride 2 2 2 2 4 2 4 1 1

Table 3.1: CNN used to process the Blizzard waveforms.

Domain adaptation task

Once the sentiment analysis task is done, the same network has to be adapter for the

aforementioned reasons. To perform this task, we define a CNN from Table 3.1. The reason

for choosing a CNN architecture as opposed to a different one such a DNN is because of the

high dimensionality of the input. As aforementioned, this network takes whole waveforms

from the Blizzard corpus. Convolutional layers have less trainable parameters since the

number only depends on the size of the filters and the number of feature maps. This network

also contains pooling layers which reduce the dimensionality of the input [30] and PReLU

activations [35] which are activations with trainable parameters. We then use the following

methodology:

1. The audio network is trained using the Blizzard challenge WAVE files. The label of a

file is obtained by using the sentiment analysis network with the transcript. Perform a

fixed number of back propagation passes to initialize the weights of the network. From

this point, the networks will take turns in performing back-propagation steps.

2. We perform a back-propagation in the text network using a batch of sentences from the

Blizzard corpus. The labels are obtained like in step 1 using audio network to obtain

the labels.

3. We perform a back-propagation in the audio network using a batch of wave files from

the Blizzard corpus. Again, use the text network to obtain the labels.

4. repeat step 2 for a fixed number of iterations.
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3.4 Training the expressive speech synthesizer

Once the expressive embeddings are extracted for every sentence in the Blizzard Challenge

corpus, we include the new inputs to both the duration and the acoustic model from the

baseline system. This is specified in a new Socrates configuration file. Every linguistic feature

vector that is input to the system includes the additional features that correspond to the

full sentence the given phonemes belong to. After that, the process of training the models

is the same that was followed in the baseline system.

One last processing step is to normalize the embeddings by compressing them between

the [0, 1] range.

The next chapter shows the evaluation results of the project.
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Chapter 4

Evaluation & Results

In this chapter we explained how the evaluation of the developed tasks and systems was

done.

4.1 Sentiment analysis and domain adaptation

As mentioned previously, the sentiment analysis task was trained using a dataset from

Stanford. To perform this task we used the same test and train splits used in [31] which

is the same from [20]. During training, both the loss and the prediction accuracy (from a

five class prediction, as sen in the previous chapter) of this classification task were recorded

(Figure 4.1) but only the loss is used in back-propagation.

The loss function was chosen among the ones available in the Keras framework to be the

categorical cross-entropy [16] and the optimizer was Adadelta [37]. The batch size was set

to 50 to stay as close as possible to the experiment conditions from [20].

Figure 4.1: Training and validation curves of the sentiment analysis task.

We obtain 47.9% accuracy in this task. In [20] they obtain 47.4% performing the same

task with a very similar architecture. Looking at the curves from Figure 4.1, it seems like
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the model could still be trained for a few more epochs.

The learned function from this model is transferred to the neural network from Table

3.1 using the KL loss as explained in the previous chapter. The optimizer is Adam. The

evolution of the KL can be seen in Figure 4.2.

Figure 4.2: Evolution of the KL loss.

From Figure 4.2 we see how the Adam optimizer escapes a local minima. The adaptation

from Section 3.3 step is performed afterwards, with the weights initialized from this transfer

operation. This adaptation is shown in Figure 4.3

Figure 4.3: Evolution of the loss function for both the sentiment analysis network (text
network in the figure) and the audio based one (audio network).

Figure 4.3 shows that the loss of the adapted sentiment analysis network (Text network

in the figure) drops at the beginning but it continues to grow. Despite that, we keep the

weights from the 100-th iteration to obtain the adapted embeddings.

40



4.2 Speech synthesis evaluation

This section contains both the objective and subjective evaluation results and how they

were performed. A total of three experiments were evaluated. These experiments are:

1. Baseline system (only linguistic features from section 2.5)

2. Embeddings without doing the domain adaptation.

3. Embeddings but with the domain adaptation.

4.2.1 Objective evaluation

To perform the objective evaluation the Socrates framework keeps track of the loss evo-

lution during the training. At the end of each batch, it saves the batch loss and at the end

of each epoch, the validation data is used to obtain the validation loss of the models.

The metric that are computed by Socrates are the root mean square error (RMSE) for the

duration predictions, mel cepstral distortion [25] (MCE) for the MFCC predictions, RMSE

for the F0 predictions and accuracy (%) for the UV flag.

Duration MFCC F0 UV

Random weights 152.75 22.35 58.50 34.31
Baseline 49.17 7.18 37.67 95.32
Expressive embeddings 51.76 7.35 41.46 94.72
Adapted embeddings 49.37 8.24 42.04 66.28

Table 4.1: Objective metrics.

Both the duration and acoustic models were trained minimizing the mean square error

(MSE) using the Adam [22] optimizer. Figure 4.4 contains the training curves of the dura-

tion model and Figure 4.5 the acoustic model. We see that the baseline system is the one

that reaches the lowest loss on both models. The acoustic model shows that the adapted

embeddings are the worst in comparison.
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Figure 4.4: Duration model’s training curves

Figure 4.5: Acoustic model’s training curves

4.2.2 Subjective evaluation

To perform the subjective evaluation, six sentences were chosen from the test split from

the Blizzard corpus. To choose the sentences, all the transcripts from the corpus were

processed with the sentiment analysis classifier from Section 3.1 and a score was computed

for each of them:

s = 2 · pnn + ·pn − ·pp − 2 · ppp (4.1)

Where pnn is the probability of the sentence being very negative, pn is the probability of

being negative, pp is the probability of the sentence being positive and ppp is the probability of

being very positive. The probability of a sentence being neutral is not used in the score.
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The scored sentences were sorted in a list and two were picked from the top (as negative

sentences), two from the bottom (positive sentences) and two from the middle (neutral

sentences).

A web based application (Figure 4.7) was developed with the selected audio files obtained

from the experiments and volunteers were asked to rate how appropriate the voices were in

a scale from one to five, one being very inappropriate and five being very appropriate. The

results were saved in an SQL database in the server side of the application.

The test was performed by a total of nine volunteers who gave a rating to all the samples,

therefore we end up having a total of fifty-four subjective evaluations for each of the three

experiments. Figure 4.6 contains a box plot of the collected data:

Figure 4.6: Subjective evaluation results.

Which shows that the expressive experiments have had a more positive reception than

the baseline.
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Figure 4.7: Screenshot of the subjective evaluation’s web application.
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Chapter 5

Budget

The cost of this project comes from the sever uptime and the salary of the author and

advisors.

The project was developed using the computing resources from the VEU lab, and we’ve

estimated its cost by using the pricing from Amazon Web Services.

The supervisors and advisors are assumed to have the wage of senior engineers, and my

position to be that of a junior engineer.

The time spent on this project was 20 weeks in total.

Amount Wage/hour Dedication Total

Junior engineer 1 15.00 e/h 40h/week 12,000 e

Senior engineer 2 60.00 e/h 2 h/week 2,400 e

Amount Hours Cost/hour Total

Servers 1 3,360 h 0.99 e/h 3,326.4 e

Total 20,126.4 e

Table 5.1: Estimated budget of the project
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Chapter 6

Conclusions

In this project, a speech synthesizer has been developed using the Socrates framework

and Keras deep learning library. All the work has been developed with the help of members

of the VEU research lab at UPC.

The used databases for training the systems were the Stanford sentiment treebank and

the Blizzard challenge. The first one was already prepared for easy use but the second one

had to be prepared to be used in the developed speech synthesizers. To perform this step, we

used the Ogmios and Ramses software from the VEU research lab. We then used sentiment

analysis to obtain expressive information about the training and test data.

The total amount of speech data had to be cut down to 30% of the total so this had

an impact in the naturalness of the synthesized voice. But we stayed with this conditions

because the goal of the project was to improve the expressiveness and not the clarity of the

speech. In the end, the speech is still intelligible.

To adapt the sentiment analysis task to the Blizzard corpus, an adaptation step was

performed which in the end did not improve the objective metrics of the system. This could

be because the followed strategy was not the appropriate one. This is a potential area where

this project could potentially be improved in the future.

Another thing to notice is that the Blizzard corpus contained several audiobooks, but we

did not mix them in the train, test and validation sets. An improvement would involve using

data from all the audiobooks in the train, test and validation data.

A listening test was performed by nine volunteers who rated the synthesized voices from

appropriate to not appropriate in a scale. This subjective evaluation shows some preference

to the developed systems. We included speech with and without the adaptation step, but

the one without it performed better.
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Regarding the initial work plan, a few modifications were made to simplify the system.

Initially we had planned to perform the adaptation using a new model instead of reusing

the one trained with the Stanford dataset. Also the preparation of the Blizzard corpus was

delayed a few weeks from the original plan.

The classical and modern techniques of speech synthesis have been reviewed as part of this

project, as well as natural language processing techniques for text classification and sentiment

analysis. I also could develop this project in a high-performant computational environment,

something I normally don’t have access to. I have deepen in statistical parametric speech

theory and application, as well as natural language processing. As a side result, there is a

new properly segmented corpus available to deepen in the topic of expressive speech synthesis

in the future, and a web application that could be reused in the future to perform subjective

evaluations.
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Appendix A

Keras model summaries

A.1 Keras summary of the sentiment analysis network

Result of calling the summary method on the keras model.

Layer ( type ) Output Shape Param # Connected to
====================================================================================================
input 1 ( InputLayer ) (None , 128) 0

input 2 ( InputLayer ) (None , 128) 0

embedding 1 (Embedding ) (None , 128 , 300) 120000300 input 1 [ 0 ] [ 0 ]

embedding 2 (Embedding ) (None , 128 , 300) 0 input 2 [ 0 ] [ 0 ]

convo lut ion1d 1 ( Convolution1D ) (None , 126 , 82) 73882 embedding 1 [ 0 ] [ 0 ]

convo lut ion1d 2 ( Convolution1D ) (None , 126 , 82) 73882 embedding 2 [ 0 ] [ 0 ]

convo lut ion1d 3 ( Convolution1D ) (None , 125 , 82) 98482 embedding 1 [ 0 ] [ 0 ]

convo lut ion1d 4 ( Convolution1D ) (None , 125 , 82) 98482 embedding 2 [ 0 ] [ 0 ]

convo lut ion1d 5 ( Convolution1D ) (None , 124 , 82) 123082 embedding 1 [ 0 ] [ 0 ]

convo lut ion1d 6 ( Convolution1D ) (None , 124 , 82) 123082 embedding 2 [ 0 ] [ 0 ]

a c t i v a t i o n 1 ( Act ivat ion ) (None , 126 , 82) 0 convo lut ion1d 1 [ 0 ] [ 0 ]

a c t i v a t i o n 2 ( Act ivat ion ) (None , 126 , 82) 0 convo lut ion1d 2 [ 0 ] [ 0 ]

a c t i v a t i o n 3 ( Act ivat ion ) (None , 125 , 82) 0 convo lut ion1d 3 [ 0 ] [ 0 ]

a c t i v a t i o n 4 ( Act ivat ion ) (None , 125 , 82) 0 convo lut ion1d 4 [ 0 ] [ 0 ]

a c t i v a t i o n 5 ( Act ivat ion ) (None , 124 , 82) 0 convo lut ion1d 5 [ 0 ] [ 0 ]

a c t i v a t i o n 6 ( Act ivat ion ) (None , 124 , 82) 0 convo lut ion1d 6 [ 0 ] [ 0 ]

merge 1 (Merge ) (None , 126 , 164) 0 a c t i v a t i o n 1 [ 0 ] [ 0 ]
a c t i v a t i o n 2 [ 0 ] [ 0 ]

merge 2 (Merge ) (None , 125 , 164) 0 a c t i v a t i o n 3 [ 0 ] [ 0 ]
a c t i v a t i o n 4 [ 0 ] [ 0 ]

merge 3 (Merge ) (None , 124 , 164) 0 a c t i v a t i o n 5 [ 0 ] [ 0 ]
a c t i v a t i o n 6 [ 0 ] [ 0 ]

g lobalmaxpool ing1d 1 (GlobalMaxPo (None , 164) 0 merge 1 [ 0 ] [ 0 ]

g lobalmaxpool ing1d 2 (GlobalMaxPo (None , 164) 0 merge 2 [ 0 ] [ 0 ]

g lobalmaxpool ing1d 3 (GlobalMaxPo (None , 164) 0 merge 3 [ 0 ] [ 0 ]

merge 4 (Merge ) (None , 492) 0 globalmaxpool ing1d 1 [ 0 ] [ 0 ]
g lobalmaxpool ing1d 2 [ 0 ] [ 0 ]
g lobalmaxpool ing1d 3 [ 0 ] [ 0 ]

dropout 1 (Dropout ) (None , 492) 0 merge 4 [ 0 ] [ 0 ]

dense 1 (Dense ) (None , 5) 2465 dropout 1 [ 0 ] [ 0 ]

a c t i v a t i o n 7 ( Act ivat ion ) (None , 5) 0 dense 1 [ 0 ] [ 0 ]
====================================================================================================
Total params : 120593657
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A.2 Keras summary of the network used for adaptation

Result of calling the summary method on the keras model.

Layer ( type ) Output Shape Param # Connected to
====================================================================================================
input 1 ( InputLayer ) (None , 160000 , 1) 0

convo lut ion1d 1 ( Convolution1D ) (None , 80000 , 32) 2080 input 1 [ 0 ] [ 0 ]

batchnormal i za t ion 1 (BatchNormal (None , 80000 , 32) 64 convo lut ion1d 1 [ 0 ] [ 0 ]

p r e l u 1 (PReLU) (None , 80000 , 32) 2560000 batchnormal i za t ion 1 [ 0 ] [ 0 ]

maxpooling1d 1 (MaxPooling1D ) (None , 10000 , 32) 0 p r e l u 1 [ 0 ] [ 0 ]

convo lut ion1d 2 ( Convolution1D ) (None , 5000 , 64) 65600 maxpooling1d 1 [ 0 ] [ 0 ]

batchnormal i za t ion 2 (BatchNormal (None , 5000 , 64) 128 convo lut ion1d 2 [ 0 ] [ 0 ]

p r e l u 2 (PReLU) (None , 5000 , 64) 320000 batchnormal i za t ion 2 [ 0 ] [ 0 ]

maxpooling1d 2 (MaxPooling1D ) (None , 625 , 64) 0 p r e l u 2 [ 0 ] [ 0 ]

convo lut ion1d 3 ( Convolution1D ) (None , 157 , 128) 131200 maxpooling1d 2 [ 0 ] [ 0 ]

batchnormal i za t ion 3 (BatchNormal (None , 157 , 128) 256 convo lut ion1d 3 [ 0 ] [ 0 ]

p r e l u 3 (PReLU) (None , 157 , 128) 20096 batchnormal i za t ion 3 [ 0 ] [ 0 ]

maxpooling1d 3 (MaxPooling1D ) (None , 19 , 128) 0 p r e lu 3 [ 0 ] [ 0 ]

convo lut ion1d 4 ( Convolution1D ) (None , 5 , 256) 262400 maxpooling1d 3 [ 0 ] [ 0 ]

batchnormal i za t ion 4 (BatchNormal (None , 5 , 256) 512 convo lut ion1d 4 [ 0 ] [ 0 ]

p r e l u 4 (PReLU) (None , 5 , 256) 1280 batchnormal i za t ion 4 [ 0 ] [ 0 ]

convo lut ion1d 5 ( Convolution1D ) (None , 5 , 512) 524800 p r e lu 4 [ 0 ] [ 0 ]

batchnormal i za t ion 5 (BatchNormal (None , 5 , 512) 1024 convo lut ion1d 5 [ 0 ] [ 0 ]

p r e l u 5 (PReLU) (None , 5 , 512) 2560 batchnormal i za t ion 5 [ 0 ] [ 0 ]

convo lut ion1d 6 ( Convolution1D ) (None , 1 , 5) 12805 p r e lu 5 [ 0 ] [ 0 ]

batchnormal i za t ion 6 (BatchNormal (None , 1 , 5) 10 convo lut ion1d 6 [ 0 ] [ 0 ]

p r e l u 6 (PReLU) (None , 1 , 5) 5 batchnormal i za t ion 6 [ 0 ] [ 0 ]

f l a t t e n 1 ( Flatten ) (None , 5) 0 p r e l u 6 [ 0 ] [ 0 ]

a c t i v a t i o n 1 ( Act ivat ion ) (None , 5) 0 f l a t t e n 1 [ 0 ] [ 0 ]
====================================================================================================
Total params : 3904820
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