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ABSTRACT 

Energetic isolation is one of the most wide-spread problems amongst rural communities in many regions 

of the planet. Solar off-grid installations stand out as one of the best solutions to help these communities 

obtain access to electricity. The project consists in the design of a solar micro-grid for the community of 

Mpaga in Gabon, managed and funded by ESPACE AFRIQUE FONDATION. The aim has been to 

design and dimension a viable project that considers all the phases and factors involved in the planning, 

development and operation of a solar energy system in a remote area. These combine social, economic, 

infrastructural, logistical and technical considerations and requirements. 

The first step is to find a suitable community upon which the study will be based. After a period of 

contacting many organisations in Africa, a collaboration agreement was reached with Engineers Without 

Borders in Gabon to carry out this project in the community of Mpaga, which is built around a boarding 

school.  The first section of the thesis consisted in the study of the community with the aim of 

understanding its energy needs. These included researching on its location, access, number of 

inhabitants, villagers’ habits, facilities, infrastructure, solar resources, etc...  

A load profile has been determined based on the devices and loads present in Mpaga and the villager’s 

lifestyle. For the design and dimensioning of the electrical installation, the general structure of the circuit 

has first been determined, only to proceed to the election of each electrical component based on cost-

effectiveness and performance indicators. Several energy-system optimizers have been useful to carry 

out the dimensioning of several components in the site. Acquisition, maintenance and replacement costs 

have been considered for every device. Other less obvious factors have proven to have a relevant impact 

on the total cost of the project, such as container ship transportation from Barcelona’s port to Mpaga or 

installation costs.  

The creation of a local institution in charge of managing the operation and maintenance of the site, as 

well as other less technical activities such as tariff design and collection or dealing with overconsuming 

villagers has proven to be an essential task if the installation is to operate successfully.  

Finally, after undergoing a 25-year long cashflow predictive analysis, the project has been confirmed as 

economically viable, and therefore the recommendation for ESPACE AFRIQUE is to proceed with the 

installation of the designed microgrid.  
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0 INTRODUCTION 

0.1  Purpose and scope of the thesis 

The main purpose of this thesis is to carry out the design and optimisation of a solar-powered microgrid 

for a rural and isolated community. The microgrid should help the community improve their daily life in a 

sustainable way, while at the same time reduce their actual or future carbon foot-print. Most of the 

technical study of this project will focus on the design and optimisation of the solar microgrid, and it would 

be technically possible to carry it out based on a virtual community with an estimated load distribution 

and energy needs. However, it was decided that finding a real suitable community to study, with all the 

extra effort this implies, was essential for several reasons. Firstly, and most important, it could help the 

inhabitants of a real and existing community improve their lives and commodities. But secondly, it was 

thought that having to adapt to real constraints (physical, economical, geographical...) would give the 

thesis a much more realistic perspective.  

In order to find a suitable community to study, many African institutions and NGOs were contacted. At 

first, it seemed that the project would be able to succeed alongside Engineers Without Borders Uganda, 

but once the conversation was at a considerably advanced stage, and due to funding and budget issues 

with the foundation, the collaboration came to an end.  

After this, we were forced to restart contacting Institutions, and in the end found a suitable partner with 

Engineers Without Borders Gabon. They were currently starting a project alongside ‘Foundation Espace 

Afrique’ in a village named Mpaga, regarding the rehabilitation of their health-centre and a restructuration 

of their waste management (see annex document). Both parties concluded that an energetic solution 

was also necessary for the village, and that they would be pleased if this study was focused in the Mpaga 

Community.  

As for the scope of the thesis, it will be divided in three main phases. Firstly, the community must be 

studied and analysed to have a clear picture of their energy needs. This phase’s tasks basically consist 

in carrying out a thorough research and conducting interviews with locals from the community to gather 

the necessary information.  Secondly, the proper design of the installation will be carried out. Once this 

phase has been successfully completed, several energetic optimisers will be used in order to help 

determine the most cost-effective distribution and dimension for some of the components in the site.  
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0.2  Definitions, acronyms and abbreviations 

 

Item Definition 

A Amps 

AC Alternating Current 

Ah Amp-Hour 

CC Charge Controller 

CPU Central Processing Unit 

CS Canadian Solar 

DC Direct Current 

DC-DC Direct Current to Direct Current Converter 

EWB Engineers Without Borders 

Gen. Generator 

I-V Intensity-Voltage 

IRR Intern Rate Return 

IMF International Monetary Fund 

LA Lead Acid 

LED Light Emitting Diode 

MPPT Maximum Power Point Tracker 

NPV Net Present Value 

O&M Order and Maintenance 

PG Port-Gentile 

PV Photovoltaic 

TV Tele Vision 

USD United States Dollar 

V Volts 

Table 1. Definitions, acronyms and abbreviations.  
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1 COMMUNITY STUDY 

 

1.1 General Information 

1.1.1 Location  

The village of Mpaga stands close to the west coast of Gabon, close to the economical capital of Port-

Gentil, which is its closest city and 104km away from Mpaga.  The community stands close to the Ogooue 

River, and adjoins the ‘Wonga Wongue National Park’, although this is actually more of a Presidential 

Natural Reserve than a public national park. 

The community can only be accessed by boat, from the city of Port Gentil or from Lambaréné, another 

town from Gabon. The following images show the community’s location on a world and country scale. 

 

 

Figure 1. Africa Political Map 
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Figure 2. Gabon Political Map 

 

 

Figure 3. Mpaga Satellite Image 
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1.1.2 Mpaga’s inhabitants 

Mpaga is home to 300 villagers, 200 of whom are students living in the Mpaga Boarding School, entirely 

funded by Espace Afrique. Therefore, it can be said that Education Service is the main activity in Mpaga. 

However, besides education, agriculture is probably the most important economic activity. Also, there 

are a few fishermen in the village.  Also, besides farming and teaching, the Foundation employs a few 

cooks to prepare the student’s food.  

1.2  Community Facilities and Infrastructure  

1.2.1 Access 

The only way to access the village of Mpaga is by boat, from the city of Port-Gentile or Lambére. From 

Port-Gentile it can take from 2 hours and a half up to 5 hours to get there, depending on the boat. On 

average, the cost of getting to Mpaga by a motored-pirogue is of 440$ USD (fuel expenses). However, 

to transport the solar panels a bigger boat would be needed, so the real transportation cost to Mpaga 

can’t be provided by EWB.  

The village has no proper roads. To get from the decks to the village some sandy pathways can be used. 

There is currently one van in the village that could help with the transportation from the river to the village. 

The following image shows the mentioned pathway.  

 

Figure 4. Pathway to Mpaga 
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1.2.2 Water Sources and Waste Management 

The nearest water-source to the village is the Ogooué River. The villagers, however, use the 

water from two water towers in the village. This water towers lack of a float system, so they tend 

to overflow when it rains heavily. People in Mpaga wash themselves with water buckets, as the 

towers cannot provide enough pressure. It still needs to be discussed with the foundation, but the 

new solar installation would be definitely able to power a new water pump.  

 

 

Figure 5. Ogooué River, Close to Mpaga 
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1.2.3 Village Facilities 

The village is mainly based on the structure built around a large boarding school and the medical centre 

which is being repaired by the Foundation Espace Afrique.  The following table provides more information 

on the village’s facilities, which are to be considered as plausible electrical load points. 

 

Service Description 

Education Primary School, Secondary School, Teacher and Students accommodation and School 

kitchen. 

Health One medical centre, currently has problems with bats living inside. 

Water Two water towers, lacking float system. 

Waste Management 
A pit has been dug. Waste is burnt in the pit. Currently can’t get rid of resistant packages 

such as cans, glass bottles, etc. 

Security Existing policemen houses, although only one is occupied. The rest are abandoned. 

Construction Space There is plenty of space to install the PVs. The terrain is sandy, but not aprubt. 

Energy Two diesel generators 

Other The village also has a market, and some shops and bars 

Table 2. Village’s Facilities 
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The following images show the village’s school and police houses. 

 

Figure 6. Policemen Houses 

 

Figure 7. Primary and Secondary School 
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1.3  Energetic Situation  

1.3.1 Current situation  

Mpaga village has two diesel generators totally funded by Espace Afrique as their only source of energy. 

The generators have a capacity of 150kVA and 80kVA respectively, with a power factor of 0.8  

The fuel needed to supply these generators is also funded by Espace Afrique, and it is actually a concern 

to the Foundation, as it is very expensive to transport the fuel to Mpaga. Since the village is hardly 

accessible and far away from the nearest city, the annual cost of diesel is around 80,000$ USD. For this 

reason, the construction of a solar self-sufficient microgrid would strongly help the community become 

more economically independent and less fragile, as well as economically positive for Espace Afrique on 

the mid-long term. 

The fact the actual cost of their energy source is so high is a positive factor when it comes to the microgrid 

design, as it ensures that the installation will be profitable on the long term. Once the microgrid is 

operating, the fuel costs will significantly decrease. The Foundation had these fuel costs planned for the 

following years, so these fuel savings will compute as income or profit when the economic balance is 

done. 

 

1.3.2 Energy Usage  

The energy consumption in Mpaga is basically used for lighting, powering fans and food conservation. It 

has been proposed to the foundation, that given that a big investment will be done to switch from diesel 

generators to solar energy, they might as well improve their energetic supply.  

Cooking in Mpaga is done in a traditional way (firewood) and no energy is used for water supply as there 

is currently no water pump.  
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2 MICROGRID DESIGN 

 

2.1  Community Current Situation 

2.1.1 Economic Situation and Power Supply 

As mentioned before, the community of Mpaga’s energy supply  relies on the energy provided by two 

diesel generators. Diesel generators are usually employed in communities such as Mpaga due to the 

fact that they are usually pretty straightforward to deploy and are relatively reliable, besides usually being 

an economically viable option. However, they also carry some obvious disadvantages when compared 

to renewable sources, which would be the cost of the fuel to supply the generator as well as the emissions 

it produces. Moreover, getting the fuel to Mpaga is extremely difficult due to the fact it can only be 

accessed by boat and after a several hour-long trip, which substantially adds to the cost of maintaining 

these generators in operation.  

These generators can deliver 150kVA and 80kVA of power respectively, but keeping the generators 

operating has an annual cost of 78,000$ USD. As mentioned before, when studying the economic 

performance of replacing the current energy system for a solar microgrid, these fuel expenses will be 

considered as profits, since ESPACE AFRIQUE will no longer have to pay for them. Therefore, to 

calculate some economic viability indicators such as pay-back time, an annual income of 78,000$ will be 

considered in the cases where the diesel supply is totally replaced.  

Another advantage of replacing the current electrical system is that most of the installation and cabling 

costs can be neglected, as these are already installed in the community of Mpaga, although some 

adaptation will be necessary.  
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2.1.2 Energy Solar Resources 

The community of Mpaga lies in the riverbed of Ogooué River, Gabon. To calculate the amount of energy 

that can be obtained by means of solar PVs, the radiation data for these coordinates is considered.  

 

  Latitude Longitude 

0º 56’ 57’’ S 9º 26’ 66’’ E 

Table 3. Community’s Coordinates 

 

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

KWh/m2/d 4.95 5.14 5.14 4.86 4.68 4.56 4.59 4.67 4.81 4.54 4.24 4.64 

Table 4.  Monthly Solar Irradiance in Mpaga  

 

It can be appreciated from the table above that solar irradiance in the region of Mpaga remains 

considerably steady throughout the whole year. This will be an advantage when it comes to the grid’s 

design, as we will be able to rely on a similar amount of solar energy for each month. The annual average 

solar irradiance is 4.74 KWh/m2/day.  
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2.2  Microgrid Structure and Dimensioning 

2.2.1 Microgrid General Structure 

The microgrid to be designed for the community of Mpaga will be formed by the following solar energy 

production and management components and a backup diesel generator used at specific times to lower 

the total cost of the installation. These diesel generators are already operating in the community, but the 

whole aim of the project is to lower their usage as much as possible so Mpaga can be more sustainable, 

but most importantly, more independent. Besides the generator, the PV modules, DC combiner box, 

MPPT trackers, charge controllers, battery bank, inverter, loads, circuit breakers and the AC service 

panel are the installation’s main components. Figure below illustrates this structure. 

 

Figure 8. Mpaga Solar Off-Grid Structure 
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Each PV module array is formed of one or more strings. A DC combiner box is used to wire together the 

cables from each string. After this, an MPPT tracker is used to optimize the power output coming from 

the solar panels. A charge controller stands between the MPPT tracker and the battery bank, and will 

act as a DC-DC converter to charge the batteries in the most suitable way. An inverter will be in charge 

of converting the DC current into AC current. The diesel generator may will supply the grid with power at 

specific times. Circuit Breakers will be placed between all the components for safety reasons. 

2.2.2 Load  

The first step in order to begin the actual dimensioning of the site, is to determine the load it will have to 

serve. To do that, some estimations have been done based on the information provided by EWB Gabon 

and ESPACE AFRIQUE foundation. These estimations are based in the facilities that were listed in the 

reports, the number of villagers, social activities and daily lifestyle. Firstly, the village has been separated 

in different groups based on the nature of the loads. The following table provides a list with all the devices 

that have been considered, as well as their power consumption and maximum operating quantity. 

 

Table 5. List of Mpaga Loads 
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Once the list of loads and their power consumption has been determined, it is necessary to know their 

operating hours, so a minimum energy production (kwh) can be approximated. The following table 

shows the operating hours of each load on an average day. These distributions have been estimated 

based on a natural community behaviour pattern. If further on it is determined that a different 

distribution of the demand hours could result more convenient, some limitations or demand hour 

modifications can be done, as the whole energy installation will be operated, managed and paid for by 

the foundation.  

 

 

Table 6. Operating Hours for each load 
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If the total estimated power output the installation must provide is represented on a bar graph, the 

following information is obtained. 

 

 

Figure 9. Hourly power consumption 

 

It is easily observed that Mpaga’s consumption shows two clear peak times. The first one is around noon, 

and is due to the school’s and other businesses’ busiest hours.  The next peak hour is approximately at 

8pm. This is due to the fact that at this time of the day the sun has already set but practically all villagers 

are still active, this resulting in a high demand of lighting. Also, during these leisure hours, villagers 

usually gather to watch some of the old TVs or radios, or spend some time at the bars.  The first peak 

happens during hours where solar incidence is almost at its highest point. The second peak time, 

however, happens during hours where the sun has already set. This may have significant consequences 

in the minimum storage capacity the installation shall require. 

 

 

 

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
er

 [
kW

]

Day Hours (h)

Título del gráfico

Variable

Fijo



Design of a Solar Microgrid for the Community of Mpaga, Gabon based on its social and economic context.  Pag. 22 

 

 

Another factor that will considerably increase the number of necessary batteries and storage capacity is 

the constant consumption of the freezers and refrigerators. These loads are consuming all the hours in 

a day, and this means that they are consuming during many non-solar-active hours. For these reason, 

a deeper insight has been considered for this load. Given the fact that temperatures decrease during 

night hours, and that the freezers’ and refrigerator’s doors are not opened (this results in heat entering 

the refrigerator, therefore an increase in power consumption in order to compensate the entrance of 

heat) during night hours, it was thought that power during night-hours may be slightly lower than during 

solar irradiant intervals.  

To verify this hypothesis, commercial refrigerators power consumption rates were investigated. The 

following graph shows an hourly average of energy consumption during an entire day of a typical 

commercial refrigerator. Although the refrigerators in Mpaga are larger and older, they work in an 

analogous way, so the information obtained by studying this graph can be considered in Mpaga too. 

 

 

Figure 10.Refrigerator Hourly Consumption 

 

It is clearly observed that the hypothesis is confirmed, given that during night hours the consumption is 

about 25 % lower than during other hours of the day. The peak in consumption is due to the fact that 

usually between 6pm and 9pm families have dinner and open and close the refrigerators more frequently. 

To a lesser extent, it is also more common for warm food and beverages to be introduced in the 

refrigerators and this interval of hours.  
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If we apply a 25% decrease to the power consumption of refrigerators and freezers during night hours 

(01am-06am), the consumption table is as follows: 

 

Table 7. Load Operating Hours considering Refrigerators power rates. 

 

When proceeding with the calculations and optimisation, a 15% day-to-day variation will be considered.  
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2.2.3 Fuel Price  

Having a back-up diesel generator can substantially lower the cost of off-grid renewable installations by 

producing energy at very specific moments. This basically allows the system to operate with far less 

energy storing capacity, which is usually one of the main costs. However, in order to determine whether 

it would be beneficial to use the generator at certain times during the day, it is essential to know the fuel’s 

price. Usually this would not be an issue, as diesel is widely commercialised in most regions, but as 

we’ve mentioned before, the diesel has to be brought to Mpaga by boat, after a several hour-long trip. 

For this reason, it becomes slightly more complex to determine the cost in $/litre of fuel. EWB were not 

able to provide us this information, but they did confirm their monthly expenses in diesel, which is roughly 

6500$. To determine the fuel’s price, we must firstly calculate each day’s fuel consumption in. Once we 

have this information, we know how many litres the generator is consuming per month, and we can 

therefore obtain an approximate value of the fuel’s price by dividing the total fuel costs by the monthly 

fuel consumption. 

The following table, which shows fuel consumption rates for different loads in a 120kW diesel generator, 

is used to calculate the amount of diesel litres consumed per day based in the estimated power 

consumption.  

 

 

Table 8. Fuel Consumption for a 120kW Diesel Generator 
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For each hour of the day, a constant power has been estimated. To obtain the fuel consumption for 

each hourly interval, the following graph has been used. The equation of the tendency line will allow us 

to estimate each hour’s specific consumption with an acceptable error margin.  

 

 

Figure 11. Fuel Consumption based on Load 

 

With the equation provided by the tendency line, and assuming it will carry a small error percentage, we 

obtain the following table.  
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Table 9. Mpaga’s Fuel Consumption 

If we now divide the monthly fuel costs by the monthly fuel consumption, we obtain an approximated 

value of the fuel’s price: 

 
6500 $

𝑚𝑜𝑛𝑡ℎ
·

𝑚𝑜𝑛𝑡ℎ

5650 𝑙𝑖𝑡𝑟𝑒𝑠
=  𝟏, 𝟏𝟓 $/  𝒍𝒊𝒕𝒓𝒆 

 

When optimizing the energy production’s distribution, this value will be used as an input value.  
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2.2.4 Solar Panels 

2.2.4.1 General Information 

As a basic introduction, all photovoltaic cells consist of two or more thin layers of semi-conducting 

material. These semi-conductor is usually silicon, and when exposed to light or solar radiation, it 

generates electrical charges that can be conducted as DC using metal contacts. This is at a considerably 

small scale and produces little energy. For these reason, cells are usually connected to form strings. 

When strings are again connected to one another, usually behind a glass protector, a module or panel 

is formed. Using several panels is usually enough for systems intended to power a single house-hold or 

a small building. However, for the Mpaga project, it is very likely that many solar arrays will be necessary, 

given the dimension of the project.  This basic information applies to every type of solar cell. However, 

based on their silicon or other material composition, several types of widely commercialised solar PVs 

are found, and each of them offers different performances and properties. In the following chapter these 

types will be analysed and the most suitable type for the Mpaga project will be chosen. 

 

2.2.4.2 Types of PVs 

When it comes to choosing which type of solar PV is going to be used in Mpaga, the following PV types 

must be considered: 

Monocrystalline silicon PV panels: Made using cells which are sliced from a single cylindrical crystal 

of silicon. These are the most efficient panels, as its efficiency rates range between 14%-19%. However, 

its manufacturing process is complicated, which results in slightly higher prices than other technologies. 

Polycrystalline Silicon PV panels: These are made from an ingot of melted and recrystallized silicon. 

These ingots are then cut into thin slices and assembled into cells. Given the manufacturing process is 

simpler, that are usually slightly cheaper than monocrystalline cells. However, its efficiency tends to be 

slightly lower, with efficiencies ranging around 12%-15%. 

Thick-film silicon PV panels: These PVs are built as a variation of the polycrystalline technology. In 

this case, silicon is continuously deposited onto a material acting as a base. This gives a fine, grained 

appearance. As the other technologies, they are usually encapsulated in transparent insulating polymers. 

Thin-film silicon PV panels: This amorphous silicon cells are made as silicon is deposited in a thin 

homogenous layer onto a substrate. Amorphous silicon allows deposition in a very wide range of 

substrates (rigid, flexible…). For this reason, they are very useful when it comes to designing PVs for 

curved surfaces. Also, its manufacturing price is lower than other technologies. Thin-filmed PVs, 

however, have efficiencies far lower than the other technologies, with values ranging from 4%-7%. 
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Although this list does include the most typically commercialised technologies for producing PV panels, 

there are two technologies that stand out from the rest when it comes to microgrid design and 

dimensioning. These are monocrystalline PVs and polycrystalline PVs. The following table helps us 

compare these two technologies: 

 

 

Property Monocrystalline Polycrystalline 

Efficiency 14%-19% 12%-15% 

Aesthetics Black Hue, Uniform Blue heterogenous colour 

Cost More Expensive Cheaper 

Longevity +25 years +25 years 

Table 10. PV Technology comparison 

 

It can be observed from the table above that these diverse types of technology both have advantages 

and disadvantages. In some situations, highly space-restricted projects will strongly prioritise efficiency, 

needing less surface area per kW installed. However, in projects where space is not a constraint, cheaper 

technologies may be a better solution. Aesthetics can also play a key role, but it is usually more relevant 

in small-scale housing projects, where rooftop appearance may be important to the customers. In Mpaga, 

there is plenty of space for placing the PVs, but transportation will be a relevant factor to consider. For 

this reason, efficiency may still be considered as a prime factor.  
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2.2.4.3 Solar Panel Election  

To choose the best panel for the solar installation in Mpaga, several factors have been considered. The 

two most important factors have been efficiency and cost as in $/W installed. Different models for some 

of the most commercialised manufacturers have been analysed, as show in the following table and 

graph.  

 

 

Table 11. Costs and Efficiency of PV Models 

 

It can be easily observed that all the efficiency values range from 15%-19%, although this table includes 

both mono and polycrystalline technologies. However, given the dimension of the installation will be 

considerably larger than a house-hold scale project, apparently small variations can still make a 

significant difference in the total cost and performance of the site. The following graphs allows an easier 

interpretation of these results.  
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Figure 12. Scatter Plot of PV model’s Cost and Efficiency 

 

After analysing these results, one of the models has been chosen to be the model upon which the solar 

installation is based. This model is highlighted in the graph, and is the model Canadian Solar CS6K-

290MS 290W Mono. 

The following tables provides more detailed information on the module’s mechanical and electrical 

characteristics and have been obtained from the official Datasheet for this model offered by Canadian 

Solar. 
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Table 12. CS6K.290MS Mechanical Data 

 

Additionally, the following table provides some extra information on the electrical characteristics of the 

PV. 

 

 

Table 13. CS6K.290MS Electrical Data 
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As it can be seen below Table 12, these performances indicators are under a solar irradiance of 

1000W/m2 and a cell temperature of 25ºC. These will most probably not be the operating conditions for 

Mpaga during most of the hours. Temperature effects and hourly solar irradiance considerations will be 

dealt with in further chapters.  

2.2.4.4 Solar Panels’ Location 

One of the most typical constraints when it comes to solar installations can be the space required to 

install the solar panels.  In Mpaga, however, this shouldn’t be a very restrictive condition. When this 

matter was discussed with members of the foundation, they assured there was plenty of space for solar 

panel installation. The area they had thought that may be suitable for this task was near the school. 

This spot has been studied and it does seem a convenient area for solar installation. Firstly, it is an open, 

shade-free spacious area. The solar panels will not be shaded at any time during the day, so no shading 

factor must be considered. The terrain in that area is relatively sandy, so building the racks for the panel 

installation should not be an issue. Also, as it is close the community’s main load, this will reduce wiring 

and installation costs.  

The following image should give a simple view of the community’s distribution and the areas where the 

PV panels could be located. 

 

 

Figure 13. Mpaga Map to Show Possible PV ubications 
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2.2.4.5 Temperature Considerations 

Solar Panels are power tested at 25 ºC, and the standard values provided by the manufacturer in the 

datasheet are obtained when the installation performs at this temperature. Although it may seem strange, 

temperature has a negative effect on solar panel’s efficiency. This effect is usually measured or scaled 

by a P max temperature coefficient. Other temperature coefficients affect the Open Circuit Voltage or the 

short circuit current.  

The following table, provided too by the manufacturer, shows the three temperature coefficients 

mentioned above: 

 

 

Table 14. CS6K.290MS Temperature Coefficients 

 

The following graphs show the effect these temperature coefficients have in the efficiency and Current-

Voltage performances of the panel. In the following chapters and optimisations, however, the effect on 

efficiency will stand as a more relevant parameter.  

The following graph is also provided by the manufacturer. However, for other calculations, an optimiser 

named PVSyst will be employed. This optimizer also has a data-base with performance indicators for 

almost every solar-model. The information provided by the manufacturer and the optimiser will be 

compared in order to be sure the optimizer bases its calculations in official data.  
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Figure 14. CS6K.290MS  I-V Curve based on Cell Temperature provided by manufacturer 

 

 

Figure 15. I-V Curve based on Cell Temperature provided by PVSyst Optimiser 
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Although it may not be a surprise, it is confirmed that the optimizer uses the manufacturer’s official data 

to proceed with its calculations.  

The following table is probably even more relevant, and shows the effect of cell temperature on the 

panels efficiency.  

 

 

Figure 16. Temperature effect on efficiency 

 

The negative effect of temperature on a cell’s efficiency is clearly observed. For instance while in a winter 

sunny day in Europe (10ºC) , the solar panel could be performing at a higher efficiency than the one 

stated in the manufacturer’s datasheet, in a typical day in Mpaga (40ºC cell operating temperature) , the 

solar panels will be probably performing at values ranging around 16%.  

Must be noted that the cell’s operating temperature, upon which this calculations and corrections are 

performed, will most probably not be the same as the location’s ambience temperature. 
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2.2.5 Charge Controller 

Solar charge controllers are in charge of managing the power that goes into the battery bank from the 

solar panels. It ensures that the deep cycle batteries do not overcharge during high irradiance periods 

(usually around noon), or that the power does not run backwards from the batteries to the solar panels 

during night time. They also typically include a DC-DC converter to ensure batteries are charged at their 

optimal voltage and current for every instant.  

Also, some charge controllers come with a previous MPPT (Max. Power Point Tracking) technology. 

These devices are used to at every given time, and using different algorithms depending on the model 

or technology, set the PV panels in the most optimal point of the I-V curve based on power production. 

Systems with MPPT technology are require a higher initial investment, but are profitable on the long 

term, as they significantly increase the efficiency of solar installations.  

From an even simpler point of view, the MPPT will ensure the PV arrays are producing as much power 

as possible under any condition (mainly solar irradiance variations). Afterwards, DC-DC converter in the 

charge controller will convert the current from the solar PV arrays so it matches the voltage of the battery 

bank. This results in a considerable decrease in lost power from the PV panels to the batteries.  

The chosen model is the LEONICS SOLARCOM SPM series model 24070.  This charge controller 

includes MPPT, and will PV array voltage input ranging from 170 to 220V. It can work under a maximum 

current of 70A and withhold a maximum power of 13,7 kW. Additionally, it is meant to charge battery 

banks of 240V nominal voltage.  To obtain these PV input requirements, the solar arrays and strings will 

have to be specifically designed for this purpose. Some other relevant features of this model are as 

follows: 

• Charge Controller Features 

- MPPT Tracker 

- Advanced microprocessor control. 

- High efficiency (>98%). 

- 3-Step charging to provide quick and safe charging. 

- Easily understandable LED and LCD display. 

- Overload, overcharge and undercharge alarm and protection. 

- Power and event data log.  
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• Array Calculations:  

- String Size: The desired input for the MMPT will limit the string size. Each of the chosen panels 

delivers a maximum of 32,1V.  To obtain a voltage in the desired range, 6 or 7 panels should be 

wired in series for each string. Given that 32,1 is the maximum voltage, it will be safer to make 

the strings seven panels long. This way, 224V would be obtained in optimal conditions. The 

dimensioning will ensure that the operating voltage of the string falls in the range of the Charge 

controller when conditions are not optimal 

- Number of Strings: The number of strings is limited by the maximum current the charge 

controller can take. In this case, the controller can take up to 70A. For this reason, given the 

chosen solar panel can provide up to 9,05A, six strings per charger is a sensible choice to ensure 

the limit will not be overpassed.  

The following image represents the array mentioned above for each of the MPPT charge controllers in 

Mpaga’s installation.  

 

Figure 17. Diagram of Designed PV Array with LEONICS CC 
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The following images show the Charge controller in its version for rack mounting (wall mounting is 

mainly designed for rooftop installations) and the main specifications of the charge controller. To see 

full datasheet, go to Annex.  

 

Figure 18. LEONICS SOLARCOM SPM CC prepared for Rack Mounting 

 

 

Figure 19. LEONICS SOLARCOM SPM CC Operating Specifications 

This charge controller comes at an approximate cost of 700$ USD.  
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2.2.6 DC Combiner  

Every PV system bigger than a single house-hold installation needs a DC combiner box.  In common PV 

systems, in each string several modules are wired together in series. This results in cumulative voltage 

throughout the string, why the current remains constant. For the strings to meet and be combined in 

parallel, a DC combiner box is needed.  It usually contains overcurrent protection devices and the 

necessary bus bars and terminals for the input combination. 

A DC combiner box capable of handling the voltage produced by the arrays planned in the previous 

chapter is required. The combiner model MidNite MNPV6-250  has been chosen to fulfil this task. It is 

designed to handle up to 250V to the charge controller and can hold up to 15 strings. Also, it is capable 

of withstanding 50kW of power. It comes at an approximate cost of 110€. 

The following table provides the DC combiner’s key features. Additionally, the following figure 

corresponds to the physical DC combiner device. 

 

Feature Value 

Model MidNite MNPV6-250 

Max Voltage 250V 

Number of Strings in BUS 15 

Max Power 50kW 

Cost 110€ 

Table 15. MidNite MNPV6-250 Features 

 

 

Figure 20. MNPV6-250 Combiner Box 
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2.2.7 Battery Bank 

One of the main goals when designing the site is for Mpaga to become energetically independent so the 

community’s dependency on diesel supply decreases significantly. To achieve this, reducing as much 

as possible fuel consumption will a relevant factor in the dimensioning of the site. For this reason, a 

reliable battery bank will be an essential component.  

Typically, most batteries used for solar installations were based on a lead acid technology. Lately, lithium 

ion batteries are becoming popular too. These are more efficient, weight efficient and can operate under 

more work cycles than lead acid batteries. Despite these advantages, their cost is still a difficult barrier, 

as lead acid batteries are a time-tested technology that can be purchased at a way lower price. For 

instance, Lead Acid batteries are widely commercialised at an approximate cost of 120$ /kWh battery, 

whereas lithium ion batteries will cost around 600$/kWh. (These prices depend on brand, model and 

system size).  Additionally, lead batteries are more widespread and can be more easily found.  The 

following table portrays performances indicators for both technologies in a 100kWh capacity storage 

installation. Lead Acid batteries are highly affected by operating temperature, so two columns 

corresponding to different temperatures are included. 

 

 Lead Acid (25ºC) Lead Acid (35ºC) Lithium-ion 

Battery Cost ($/kWh Storage) 120 120 600 

Cycle Life (at 50% Discharge) 1000 500 2500 

Transportation ($/kWh Storage) 28 28 5 

Average Lifetime Cost ($/kWh throughput) 0,34 0,67 0,42 

Table 16. Battery Technology Comparison 

 

Despite the values shown in the previous table, some factors should be considered:  The battery cost 

will depend on the chosen model (Voltage and AH capacity), transportation costs will depend on how 

easy to access the location is, and cycle life will again strongly depend on the brand and model. However, 

these values can be used as references or guidelines. In an extremely warm location, lead acid would 

probably not be recommended, as it significantly affects its life expectancy. Considering that Mpaga is a 

tropical region (low temperature variance during seasons) and that its yearly average temperature is 

25.28ºC, this should not be a major issue.   In conclusion, after analysing these indicators, it has been 

considered that although Li-ion batteries may have more optimal performance indicators from a technical 

perspective, its elevated cost makes Lead Acid batteries a better choice for the installation in Mpaga.  

Lead acid batteries usually consist of several single cells, which produce approximately 2.1V, which are 

connected in series to reach de battery nominal voltage. A battery cell consists of two leaded plates: a 

positive plate that is covered with a lead dioxide paste, and a negative plate, made of sponge lead.  
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These plates are separated by an insulated material. These plates are typically enclosed in a battery 

case and then submersed in an electrolyte, which consists of distilled water and sulfuric acid. The size 

of the plates and the amount of electrolyte will affect the amount of charge lead acid batteries can store. 

This is usually described as the amp hour (AH) rating of the battery. Different values of current will result 

in different maximum charging times. Still, batteries do have an operational current range, which is 

determined by the manufacturer.  The following figure provides a simple diagram of the already 

mentioned components in a lead acid cell and 12V battery formed of six cells connected in series.   

This kind of batteries suffer a decrease of the expected number of cycles as the discharge depth 

increases. A maximum discharge of 50% will be fixed for the installation. The necessary maintenance of 

these batteries will be explained in Chapter 2.3.2.  

 

 

Figure 21. Lead Acid Cell and Battery Diagram 

 

The next step in the design of Mpaga’s battery bank is to choose a LA battery model and analyse its 

electrical and mechanical properties. Firstly, the nominal operating voltage of each battery must be 

defined. Given that batteries will be connected in series to achieve a voltage of 240V to match the charge 

controllers’ and inverter’ (all inverter considerations explained in following section) requirements, 

choosing a nominal voltage for each battery may be slightly less relevant than in other designing 

circumstances.  
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Deep cycle batteries’ most common voltages are 2V, 6V, 12V and, although slightly less, 48V. Despite 

this, these batteries are made up of usually 2V cells wired in series. For the site in Mpaga, it has been 

determined that the nominal voltage of the batteries in the battery bank will be of 12V.  

The chosen battery mode is Rolls Surrete S-105. The model is a 85AH 12V flood lead acid battery that 

at 50% discharge cycles will be able of withstanding around 1200 cycles. Its terminals are Universal 

Type and it is formed of six 2V cells wired in series. The following graph shows an estimation of the 

number of cycles depending of the depth of discharge.  

 

Figure 22. Rolls S-105 Number of Cycles Graph 
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The profile for this model has been created with PVSyst according to the manufacturer’s specifications 

to obtain the following graph, which shows different discharge times for different discharge currents. 

 

 Figure 23. Discharge Times for Rolls S-105  

These batteries, of a nominal capacity of 85AH at 12V, have a nominal energy capacity storage of 

1,02kWh. Considering the size of the system and the commercialised prices for this model, the price for 

each kWh stored with the Rolls S105 model would be of 137,25 $. 
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2.2.8 Inverter  

Solar inverters, or converters, are used in solar installations to convert the variable direct current output 

of the PV panels into AC current, that can be used by the local villagers in Mpaga. Some inverters have 

special functions that are adapted for use of PV systems, such as the MPPT charge controllers 

mentioned above. To size the inverter, several factors must be considered: The energy and power output 

of the solar array, the total PV panel installed, whether a central inverter or a multiple inverter system is 

desired, etc. The exact current the inverter will have to convert is a value that will only be known when 

the optimisation process concluded and the most optimal iteration is selected. However, this exact value 

is not needed to choose a suitable inverter.  

After analysing several commercialised options that would fit in size with the installation’s dimension and 

requirements, the LEONICS Apollo MTP-410 series has been chosen as the most suitable inverter for 

the Mpaga project. This would act as a unique central inverter  and control unit for the entire site. 

Some features of this model are as follows: 

- Three phase bidirectional inverter with built-in output transformer, operating at 95% efficiency. 

- Separate DC Bus for multiple source charging. 

- It constantly minimizes the AC charging current from the generator, therefore lowering operation 

costs and emissions.  

- Allows for the generator to be controlled automatically or manually. 

- Automatic battery equalization. 

- Battery temperature compensation. 

-Optional parallel operation. 

- ISO 9001 and 1400. 

- 25+ years life cycle 

The following table provides information on which model from the MTP 410 series is the most suitable 

for different power needs. Given the fact the maximum power demands are around 50kW, and 

considering efficiency factors, the installation will probably need the MTP-417F Model. 

 

 

Table 17. MTP410 Series models according to Power output (kW) 
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Besides the proper inverter, the LEONICS Apollo MTP-417F has a battery equalizer, which manages 

and controls the charging of batteries.  Battery equalizer is designed to reduce loses and increase the 

battery bank life by preventing imbalances and different states of charge in batteries in a same string. 

They are used to charge strings of batteries connected in series and charged as a single unit. 

This device still operates under DC current, and is connected to the LEONICS APOLLO Control CPU. 

This device is in charge of minimizing the amount of power produced by the generator. Unless the solar 

panels or the battery bank cannot deliver the demanded supply, the generator will stay inactive.  

The following figure corresponds to the physical appearance of the chosen product.  

 

 

Figure 24. LEONICS Apollo MTP-417F  
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2.2.9 Wiring and Circuit Breakers 

Most of the wiring in Mpaga is already installed, as there is now an operative energetic system supported 

by diesel generators. Therefore, there is no need to model or design the wiring from the generator or 

inverter to the loads. The rest of components should, however, be considered in the modelling to the 

wiring section. Cables will be needed from the PV panels to the DC combiners, and from the DC 

combiners to the Inverter going through the MMPT and charge controllers. To decide which type of wiring 

is needed, the current going through the cable is a necessary input.  

A common method to dimension DC current wires is to use the following formula :  

𝑆 =
2 · 𝐿 · 𝐼 · 𝜌

𝑉𝐴 − 𝑉𝐵
 

Where: 

𝑆 = 𝐶𝑎𝑏𝑙𝑒 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 (𝑚𝑚2)                  𝐼 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴) 

𝐿 = 𝐶𝑎𝑏𝑙𝑒 𝐿𝑒𝑛𝑔𝑡ℎ (𝑚)                        𝜌 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦 ( Ω ·
𝑚𝑚2

𝑚
)                             

𝑉𝐴 − 𝑉𝐵 = 𝑇𝑒𝑛𝑠𝑖𝑜𝑛 𝐹𝑎𝑙𝑙 (𝑉) 

Three distinct types of cable will be needed. Firstly, the wires that will be used to connect every panel in 

one string. Secondly the wires used to deliver the power from the charge controller to the main DC Bus. 

Once all the cables from the charge controllers meet, a larger cable will be needed in order to deliver the 

power to the battery bank and the inverter. The following provides the variable values for each type of 

cable, as well as the section obtained by applying the previous formula.  

 

Table 18. Cable Section Calculation Parameters 

As it can be observed from the table, the last type of cabling should withstand a current value much 

higher than the other sections, as in this section all the power from the solar PV panels merges. To lower 

costs, this section has been designed to be as short as possible. By making the cables coming from 

each solar array / charge controller longer than necessary, it is possible to design a shorter DC Bus 

Cable. Following the formula above, the lower the cable length, the lower the section must be, the lower 

the cost for the wiring. It must be noted, however, that these values are approximations.  
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For the first cabling section, where a wire section of at least 1,58mm2 is needed, a  H07RNF 2.5 mm2 

section would be a safe model to choose.  For the second section, where at least 24,2 mm2 are needed, 

35 mm2 H07 RNF model would also be a suitable model. Lastly, for the DC BUS wire, where all the solar 

arrays meet, model 50 mm2 H07 BN4F would be a safe value to use. However, a H07 BN4F 70 mm2  

model has been chosen, in order to have a wider margin of error for the most critical section. Full product 

brochure is available in the annex.  

2.2.10 Mounting Racks 

Although these components may seem less relevant in the electric functionality of the site, they still need 

to be considered, as they are necessary to operate the solar panels. Some companies offer pre-sized 

sets for a certain installed power.  Company Sunforson provides Sets sized for 10kW of installed PV 

panels at a cost of 600$ USD /set, approximately. These racks have the following specifications: 

 

Model Number Installation Angle Wind Load Price Module Orientation Support Rail 

SFS-GM-04 0º-60º 42 m/s 600$/set Vertical Extruded Aluminium 

Table 19. SFS 10kW Rack Set 

Additionally, the following table provides all the components present in one of the mentioned Rack sets. 

 

 

Figure 25. Components Present in SFS Rack Set 



Design of a Solar Microgrid for the Community of Mpaga, Gabon based on its social and economic context.  Pag. 48 

 

 

2.2.11 Designed System with Chosen Components 

The following diagrams picture Mpaga’s microgrid with the chosen commercial components. This first 

diagram’s aim is to portray a physical representation of the chosen components’ appearance and their 

layout in the installation. 

 

.  

Figure 26. Mpaga Microgrid Commercial Component Layout 
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On the other hand, this second diagram shows the circuits main components. Some commercial devices 

include several components. These have been indicated with a dotted line, naming the commercial 

device as well as its different functionalities.  

 

 

Figure 27. Mpaga Microgrid System 
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2.3  Rural Electrification Considerations 

Before starting the design of Mpaga’s microgrid, several similar cases have been studied, and these 

have allowed us to take into consideration some factors that were probably not obvious. The IRENA 

institute provides more information on these cases and considerations.  

2.3.1 Business Model  

To begin evaluating the main factors that affect our design, it is essential to have a clear idea on the 

business model upon which the Microgrid will be based. Microgrids can usually be divided into three 

diverse kinds of business models, depending on the way they are funded or paid for. Firstly, some 

projects may be carried out for profit reasons, where economic viability and financial success are the 

main goal. A thorough tariff design and tariff collection is vital for these projects to succeed. Secondly, 

some projects are partially subsidized, meaning that while they still collect tariffs for energy usage, their 

main capital costs are paid by large subsidies. In this type of model, tariff collection is mainly used to 

cover operation and maintenance expenses. Lastly stand fully subsidized models, which is probably the 

model that would best suit Mpaga’s community situation. In this case, the costs are not fully subsidized 

by the local government but by ESPACE AFRIQUE foundation. These type of business models often 

collect below cost-recovery tariffs to cover O&M and administration expenses. In the following chapters, 

several features of the installations design that are essential for the project to succeed will be studied, 

bearing in mind that it’s a fully subsidized project.  

2.3.2 Key Factors 

When it comes to the design of any kind of Rural Microgrid, it has been proven that the project cannot 

only focus on purely technical premises, but instead, adapt to specific social and economic 

characteristics of the rural community. We find seven critical factors that must be thoroughly planned, 

which are as follows: 

• Tariff design 

• Tariff collection mechanisms 

• Maintenance & contractor performance 

• Theft management 

• Demand growth 

• Load limit  

• Local Training and Institutionalisation 
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In this chapter, the identified factors above will be analysed in detail according to Mpaga’s specific 

situation 

2.3.2.1 Tariff Design  

Being a fully subsidized project, this may seem a barely relevant factor for our project. However, after 

studying several real cases of design and installation of rural microgrids, we come to a clear conclusion: 

All projects where energy was given at zero cost, community members soon started giving it for granted 

and partially, if not fully, ceased to perform their duties. It has also been proved that projects where an 

external institution takes care of all capital and maintenance costs have really high chances of failure 

once the institution departs the site if community members do not feel involved in the project and its 

maintenance tasks. Therefore, an affordable-for-everyone tariff that at the same time makes every 

community member feel involved in the project seems necessary. 

However, Mpaga has a complex and unique social distribution. On one hand, as mentioned in previous 

chapters, the village’s main activity is the boarding primary and secondary school. ESPACE AFRIQUE 

FONDATION takes care of all the school’s costs.  In other words, being the foundation the funder of both 

the school and the microgrid installation, it would seem too productive to design a tariff thought for the 

school institution. Nonetheless, the rest of the community members, which are not enrolled in education 

tasks, could contribute with some kind of asset in exchange for the energy service provided. The most 

obvious solution would be to make estimations or calculations of what will be each villager’s or group of 

villagers’ consumptions, and decide a fair tariff (although far below market price) for these to pay. 

However, some villagers may be totally unable to provide any economic aid, regardless the amount. In 

these cases, given the microgrid is thought to provide energy for the whole community, other agreements 

could be arranged. For example, engaging in community services as a method of payment, or committing 

to help in the maintenance tasks that don’t require technical expertise. Some of these alternatives will 

be discussed in further chapters. 

 

2.3.2.2 Theft Management 

When rural electrification is implemented following profitable business models, theft managements is 

usually a very important issue to handle and plan thoroughly. However, in this type of business model, 

which is totally subsidized and meant for all community members, this will probably not be a relevant 

problem. However, inappropriate use of the installation, such as over-consumption, could indeed put at 

risk the performance of the microgrid, creating partial or total energy shortage. This matter will be 

analysed in the following chapters, and the most suitable over-usage prevention methods for Mpaga will 

be studied. 
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2.3.2.3 Demand Growth 

In order to design a suitable installation, it is not only necessary to consider the actual power and energy 

demands, but to also bear in mind that it is very possible the community may continue to grow. Therefore, 

a growth prediction must be considered when dimensioning the installation. Occasional over usage of 

the predicted consumption per load may be normal. However, under dimensioning the installation or 

failing to consider its probable growth could result in a constant energy shortage. 

Gabon’s main economic activity during the past decades has been crude oil extraction, and to a lesser 

extent, its refinement. It is Africa’s 5th largest producer of oil. This has typically represented a GDP annual 

growth of approximately a 4%. However, the price of oil has suffered severe decreases over the past 

three years, and this has represented a significant back down for the country’s economy, meaning it’s 

growth has decreased to a 1% -1.5%. This information is considered as something to bear in mind as a 

national general trend. Mpaga Community has a very specific framework and should also be considered 

individually.  

Having a constant, reliable, and very cheap source of energy available will definitely be an attractive 

asset for members of close-by communities or villages. For this reason, a successful installation of the 

microgrid could end in a significant increase of Mpaga’s population and social and professional activity. 

While this would be positive for the community’s economy and independency, it would mean that the 

initial necessary energy production could soon become outdated.  

For example, the water pump ‘s consumption has been considered, although it represents a relevant 

value compared to the total power. Additionally, a 15% variation has also been considered. If this 

happened to fall short, the installation has been designed so that  additional PVs can always be added 

in the form of new solar arrays without this having a critical impact on the global cost.. Under sizing the 

installation or failing to consider demand growth could have worse consequences if we were dealing with 

generators, as it would be far more difficult to increase the installation’s capacity. 
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2.3.2.4 Load Limit 

It has already been mentioned that the most dangerous issue in this project will not be power theft, but 

possible over-usage of the calculated consumptions. For example, if one of the bar or markets 

considerably surpassed its allowed consumption, this could mean the installation is unable to support 

the power needed by the school’s lighting or food conservation. Therefore, in order to prevent over-

usage, load limitation must be considered. Several actions can be performed in order to lower the risk of 

energy shortage. These are as follows: 

- Customer Agreement: This is the easiest prevention method to carry out, and should ideally be 

enough to preserve the installation in a constant performance. It basically consists in reaching an 

agreement with each consumer or load point as to their maximum power and energy consumption. Given 

the lack of technical understanding of the villagers, this information should be given not in typical energy 

or power units, but in appliances equivalencies. This method, although necessary, is likely to not be 

sufficient to prevent users consuming more energy than allowed. This must be a written and official 

agreement. For these reasons, other prevention methods will also be necessary.  

- Load Limits:  

If the written agreement fails, other methods must ensure the installation is not put at risk. Individual mini 

circuit breakers or fuses in each point of consumption could be used to ensure that users do not exceed 

their maximum power consumption. Also, load points should be equipped with a counter, so users can 

easily keep track of their consumption. 

-Penalties: 

If customers fail to achieve what is stated in the agreement, penalties should be applied to discourage 

consumers of over-consuming. Temporary disconnection for users who overstep their agreements are 

a simple solution. They may seem harsh, but it has been proven in other study cases that zero tolerance 

is necessary in these situations.  

-Limiting Business Hours: 

To avoid extremely high peak power hours, business hour limitation is a very useful prevention method. 

Mpaga’s most energy demanding hours will be during night-fall, as lighting will be most needed, and 

during business hours. Establishing limits to markets, shops, bars or any other consumption point as to 

at what hours their business can consume electricity is a straightforward way to avoid critical peak-times. 

In further chapters, where detailed consumption approximations are performed, we will see how this 

method has been applied. 
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2.3.2.5 Local Training and Institutionalisation 

The first step for starting the real implementation of the microgrid once the design is completed is the 

creation of a local institution within the community. This institution will oversee the installation’s 

management, maintenance schedule, tariff collection, theft management and load limitation. Members 

of the community can perform minor maintenance tasks, but these must be organised and monitored by 

an official local institution.  

Given the lack of technical expertise within Mpaga community, a long preparation period of the local 

institution will be necessary. This will include basic technical training for O&M, as well as capacity building 

and reaching load consumption agreements with community members. ESPACE AFRIQUE Foundation 

was on the verge on employing an electrical engineer to perform maintenance tasks on the diesel 

generators. He would be in charge of providing local villagers basic technical training so they can help 

with simple O&M tasks as a form of tariff payment. Other more complex tasks would be performed by 

this engineer.  

Making sure the installation does not put risk the health and well-being of any community member is 

essential. This may be a challenge, considering the total lack of electrical knowledge within villagers. For 

these reasons, implementation of comprehensive safety measures, such as illustrated posters or 

brochures, must be performed with enough time before the installation starts operating. 

Although all the community members have been considered in the design planning, some aspects of 

Mpaga’s daily routine may difficult to predict by a third’s party study. Therefore, it would be highly 

recommended to make sure all the stakeholders feel involved in every step of the process by holding 

constant consultations during the preparation process. 

 

2.3.2.6 Maintenance  

Local Institution will be in charge of performing basic maintenance tasks in the solar microgrid. Besides 

assigning the tasks to the community members, a thorough maintenance task will be kept in schedule 

maintenance sheets. The most typical O&M tasks in a solar off grid installation are: 

-PV Modules: PV modules are the component which needs maintenance more frequently. However, it 

usually does not require any technical expertise as it basically consists in cleaning the modules. When 

PVs are located in building roofs, extra safety measures are needed to perform these tasks, but in Mpaga 

the PVs will be placed on level ground, in a spacious sandy area close to the primary school. During 

rainy season, these tasks may not be necessary. 
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- Batteries:  

Generally, maintenance of batteries will concentrate on correct charging regimes, electrolyte condition, 

battery terminals and overall battery safety. The basic safety equipment consists of a hydrometer for 

checking specific gravity of the battery’s electrolytes, a glass bulb type thermometer, a container filled 

with distilled water to rinse the hydrometer, handheld multi-meter, plastic type dishwashing cleanser to 

clean the battery terminals, and baking soda for the cleaning of batterie 

A basic maintenance will require regular battery checking, which should include a revision of its 

cleanliness, electrolyte levels, terminal condition, container’s condition and battery voltage level. These 

tasks require a certain degree of technical expertise, and will be probably only performed by the 

maintenance engineer. 

 

 

 Figure 28. Hydrometer Usage 

Batteries performing under high temperatures will represent in a more frequent need of water addition. 

Only distilled water should be used, never tap water, as its minerals would reduce the battery’s capacity. 

Battery electrolyte levels should be just below the bottom of the ventilation well, and about half an inch 

above the tops of the separators. The electrolyte levels should never be allowed to drop below the top 

of the plates.  
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- Inverters:  

Maintenance of inverters is not usually an issue. Tasks to prevent risks include operation mode checks, 

such as checking the inverter starts operating almost immediately after an appliance is turned on.  The 

inverters will also need cleaning after a certain period. This task should only be performed with a dry 

cloth or brush. It is also common for spider-webs to appear in the ventilation grills, or for wasp nests  to 

appear in heat sinks, especially in tropical zones such as Mpaga. With the aid of the technical engineer, 

local villagers should be well prepared to undertake these kinds of tasks.  

- Switchboards and Wiring: 

Besides visually checking for corrosion or burning, this equipment should not require a scheduled 

maintenance plan. However, considering Mpaga has a heavy rainy season during some months of the 

year, it will be necessary to make sure everything is properly sealed, but these are typical procedures in 

every installation. 

 

2.3.2.7 Collection Mechanisms 

Once the tariff has been designed according to the previously mentioned criteria, the mechanisms used 

to collect these payments must be carefully thought and planned. In Mpaga, this may also not seem one 

of the most crucial factors at first sight, as one could think that given that most consumers will not pay 

an economic tariff, this section is rather pointless. However, ensuring the compromises consumers 

agreed to in order to be able to consume from the installation, whatever these may be, can be a complex 

task. Ideally, villagers should deliver and perform, for instance, the cleaning maintenance duties they 

agreed to do without major trouble, but it frequently does not work this way. Reaching an agreement with 

the police officers in Mpaga to help the institution make unwilling villagers cooperate will be the most 

important task when planning collection mechanisms. 
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2.3.3 Virtuous & Vicious Cycle 

Depending on if the previously mentioned factors are considered or not, the installation may enter two 

very different cycles. IRENA Institute provides the following diagrams portraying a favourable or virtuous 

cycle, as well as the negative or vicious cycle. These diagrams apply for all microgrid installations. 

Although some of the factors it considers are irrelevant for Mpaga’s situation, such as theft or cost 

recovery, it is a visual and clear way to understand how the previously explained key factors may interact 

between them.  

 

Figure 29. IRENA’s Virtuous Cycle 

 

Figure 30. IRENA’s Vicious Cycle 
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2.4  Iterative Optimisation and Analysis 

Once every component has been chosen, and each input parameter has been defined according to the 

exact circumstances of the installation in Mpaga, an iterative optimising process is undergone to be able 

to determine the exact combination and distribution of power generation and storage that minimises 

capital and operating costs.  

It is expected to obtain a model whose solar installed power is by far larger than its peak power demand. 

Typically, in significantly renewable installations this can be from four to six times the peak consumption. 

Diesel Generator should operate during a few hours during night hours, to help reduce the total initial 

cost in battery banks. Batteries charge periods will be during peak radiation hours, and will discharge 

during midnight, reaching their lowest charge level at dawn. As mentioned before, these batteries will 

never be discharged more than a 50% of their nominal capacity, to allow them to extend their life 

expectancy to around 1300 cycles.  In the following two chapters, the optimiser’s inputs will be explained 

or mentioned, and the best scenario results will be analysed.  

2.4.1 Input Parameters 

HOMER Energy Systems optimiser is used for this purpose. All the parametrisation values the optimiser 

needs have been calculated and explained above. However, these will be briefly stated once more as a 

reminder before analysing the most optimal solutions. 

- Diesel Generator 

 

Parameter Value 

Capacity 100kW 

Electrical BUS AC 

Initial Capital 0 $ 

Replacement 20.000 $ 

O&M (per hour) 0,6$ / hour 

Minimum Load Ratio (%) 10% 

Lifetime (Hours) 25.000 hours 

Diesel Fuel Price 1,15 $/litre 

Table 20. Diesel Gen Homer Inputs 
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- Load 

 

Parameter Value 

Day-to-day variation 15% 

Load Type AC 

Load Profile (see 2.2.2) 

Table 21. Load Homer Inputs 

 

- Leon 25 Inverter 

 

Parameter Value 

Model Name LEONICS MTP417 

Price 45.000$ 

Price per kW 600$/ kW 

Inverter Lifetime 25 years 

Inverter Efficiency 96% 

Rectifier Relative Capacity 80% 

Rectifier Efficiency 94% 

Parallel with AC generator Yes 

Table 22. Leon Inverter Homer Inputs 
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-  CS6K-295 Solar Panel 

 

Parameter Value 

Model Name CS6K 290MS 

Rated Capacity 0,290 kW 

Temperature Coefficient -0,39 

Operating Temperature 45 ºC 

Efficiency 17,72% 

Price 680$ / kW 

Lifetime 25 years 

MMPT Tracker Yes 

Derating Factor 88% 

Ground Reflectance 20 % 

Electrical BUS DC 

Table 23. CS Solar Panel Homer Input 

 

 

- Rolls 24-M Lead Acid Battery 

 

Parameter Value 

Model Name Rolls S105 

Nominal Voltage 12 V 

Nominal Capacity 1,02 kWh 

Nominal Capacity 85 Ah 

Capacity Ratio 0,403 

Maximum Charge Current 16,7 A 

Maximum Discharge Curr 24,3 A 

Price  140 $ USD 

Lifetime 10 years 

String Size 20 

Voltage 240V 

Initial State of Charge 100% 

Minimum State of Charge 50% 

Table 24. Rolls 24-M Battery Homer Inputs 
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2.4.2 Optimisation Results 

After analysing every combination proposed by the optimiser considering the previous inputs and 

restrictions, the following result table is obtained. The results will be firstly exposed as in the result table 

from the optimiser, and afterwards converted to values such as number of components or total cost for 

each component. The following figure shows the installation’s schematic, with the components that 

require the main input parameters. 

 

 

Installed PV (kW) Battery Storage (kWh) Inverter Capacity (kW) Renewable Fraction (%) 

299 840 63,1 92 

 

These are some of the main results provided by the optimiser. Although they can be used as a guide, a 

deeper insight is needed in order to obtain useful conclusion regarding the dimensioning of the whole 

installation. Each of the main components result will be now analysed, to provide an understandable 

outcome of the obtained results.  
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2.4.2.1 Diesel Generator 

The renewable distribution of the proposed site would be of a 92%, compared to the actual 0% operating 

in Mpaga. For this reason, it is obvious that the new installation’s fuel consumption will be much lower.  

The daily consumption of the site would be of 18,5 litres on average, which is a considerable decrease 

compared to the actual 189 litres per day.  The diesel generator will be working for 1059 hours per year, 

which is the equivalent to 2h 54 mins daily.  

When analysed from a financial point of view the improvement is, logically, considerable. The diesel 

generator’s fuel supply represents an annual cost of 78.000$ annually. With the site dimensioned in the 

proposed conditions, this would be reduced to 8.943 $USD. The following table compares the fuel 

consumption of the actual installation with the one being designed.  

 

 

Figure 31. Fuel Consumption Comparison Between Old and Proposed Systems 

The following table provides the necessary information to understand the generators operation in the 

proposed installation. The values on the table correspond to the annual average, and may suffer minor 

variations from day-to-day.  

 

Fuel Consumption (l) Operating Hours Fuel Annual Cost Energy production 

18,5 litres/day 2hours 54 mins /day 8.000 € 52.1 kWh/day 

Table 25. Diesel Generator Operating Values 
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2.4.2.2 Solar Panels  

Solar Panels will be the primary source of energy production for the installation in Mpaga. They must 

provide enough energy supply to overcome the load demand during most of the time and to charge the 

batteries during high irradiance hours. Therefore, the total amount of installed solar panels will be 

considerably higher than the peak power demand.  

The total amount of installed power that would be needed in order to operate the site in a clearly 

renewable and non-diesel dependant mode, and that ensures this is done at a minor cost is 299kW. In 

other words, 1032 Canadian Solar CS6K-290 Solar Panels should be installed to cover the demanded 

energy supply.  Each solar panel comes at 198$, so this would represent a total solar panel initial cost 

of 204. 366$ USD.  

As mentioned before, it is easy to point out that this is much more than the peak power demand. 

However, our selected panels only supply their nominal power value (290W) on optimal condition. This 

is, the hours in the day which receive most solar irradiance, in the days of the year that too receive most 

irradiance. The site must be able to operate without major issues during all days in a year. While it is 

true that if a given day had an extremely and unusual low value of solar irradiance, the diesel generator 

could keep the system working by increasing its energy supply. This could be a sensible solution for 

specific and very rare days, but could compromise the financial viability of the project if they became a 

frequent situation. For these reasons, the value of 299 kW of installed power seem a sensible value. The 

following table provides the annual average main operating values for the solar panels. 

 

Installed Power  Number of Panels Daily Production Capital Cost 

299 kW 1032 1078 kWh 203.428 $ USD 

Table 26. Average Solar Panel Operating Values 

As mentioned in previous sections, each solar array will consist of six panel strings, each string being 

composed of seven panels wired in series. Also, each of these arrays will go through a DC combiner 

Box to then be monitored by the MPPTs. Therefore, a DC Combiner and MPPT will be needed for every 

42 panels. This means that 25 MPPT trackers and DC Combiner boxes will be needed. This information 

will be considered in the economic study of the installation.  

 

The following tables show the irradiance received by the solar panels and the total power output of the 

PV installation on an hourly basis. The values shown in both graphs correspond to annual average 

values. Lastly,  a graph portraying the operating temperature evolution of the cells is shown. 
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Table 27. Solar Irradiance Incidence. 

 

Table 28. Power Output Produced by the PV installation. 

 

 

Table 29. Cell Temperature daily evolution. 
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The first graph shows the hourly evolution of the solar incidence per metre squared in an average day. 

If we measure solar irradiance in peak hours (1 kW/m2) , Mpaga is receiving 4.74 peak sun hours per 

day. Next graph, showing the power output, provides a clear view regarding the importance of oversizing 

the installed capacity of the site. Although having an installed capacity of 299kW, it can be observed that 

the most productive hours are delivering around 150kW. This is due to efficiency factors in solar panels, 

batteries, wiring, inverter, MMPTs and solar charge controllers. 

 Lastly, the cell temperature evolution is considered due to the already mentioned fact that operating 

under higher temperatures than the nominal cell temperature has negative effects on the panel’s 

efficiency.  The cells nominal operating temperature is 45ºC. From the graph it can be observed that on 

an average day, cells do not operate, at any hour of the day, at more than 45 ºC. Must be noted that 

being a tropical region, temperature variation is almost neglectable from an annual point of view. For this 

reason, it does seem sensible to consider a graph showing an annual average, where as in other regions 

of the planet this would mean a much wider error. 

 

2.4.2.3 Battery Bank  

 

Battery Storage Number of Batteries Initial Capital Autonomy Daily Storage 

840 kWh 824 115.294,12$ 18h 308,48 kWh 

 

The total number of batteries needed in the battery bank to ensure an acceptable performance of the 

site according to the previous input parameters is 824. To achieve the value of 240 V for the battery 

bank, 20 12V batteries will be wired in series. This means the battery would have 42 rows of several 

batteries wired in series. The exact number of batteries needed is not a multiple of 20 ,so to ensure that 

every battery string’s voltage is 240V, 840 batteries would be needed. This will also provide a safer 

margin in case a slightly increase in storage was needed.  
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3 MICROGRID ECONOMIC STUDY 

3.1  Cost Breakdown Overview 

The following chart shows the several types of costs that should be considered when studying the project 

from an economic point of view. The cost of most of the hardware components has already been 

discussed, as it represents a relevant factor when it comes to choosing commercial components.  Other 

direct costs will be treated in two subgroups. Firstly, electrical labour and construction will be dealt with 

in the Installation section, whereas Transportation will be treated separately in its own section. As regards 

Developer Costs, only a contingency percentage will be determined, as this thesis basically handles the 

engineering design and the administration will depend on ESPACE AFRIQUE FONDATION’s criteria. 

 

 

Figure 32. Cost Breakdown of Mpaga Microgrid 
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Additionally, in order to have a reference of what total initial costs can be expected, the following graph 

is provided. It shows the cost as in $ USD / Installed W depending on its total size for several projects, 

both on and off-grid, developed in Africa between 2011 and 2015. Given the size of the installed project 

is around 300kW, values in the range between 2$/W and 4$/W could be expected. 

 

 

Figure 33. Minigrid costs by System size (Africa 2011-2015) 
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3.2  Hardware Costs 

3.2.1 PV Modules 

The costs from the PV modules has already been discussed in previous chapters, and will be briefly 

reminded. In order to install 299 kW with the model CS6K-290 , 1032 panels are needed. This has a cost 

of 203.320 $.  

No Maintenance costs have been planned for the panels. Usual maintenance cost for PV panels consists 

in cleaning, which will be done by community members as a form of tariff collection. Other more complex 

occasional maintenance can be done by the electrical engineer in Mpaga.  

3.2.2 Mpaga Generators  

The generators do not affect the initial capital investment, as are already present in Mpaga. However, it 

is recommended to change the oil every 100 hours of operation. A recommended diesel generator 

lubricant, Shell Rotella T 15W-40 Heavy Duty, comes at 30 $ USD per gallon (3.785 litres). The 

operational diesel generator in Mpaga has an oil capacity of 2 gallons. Considering this, we obtain the 

following yearly oil cost: 

1233 
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠

𝑦𝑒𝑎𝑟
·

1 𝑜𝑖𝑙 𝑐ℎ𝑎𝑛𝑔𝑒

100 ℎ𝑜𝑢𝑟𝑠
·

2 𝑔𝑎𝑙𝑙𝑜𝑛𝑠

𝑜𝑖𝑙 𝑐ℎ𝑎𝑛𝑔𝑒
·

30$

𝑔𝑎𝑙𝑙𝑜𝑛
= 𝟕𝟑𝟗. 𝟖

$

𝒚𝒆𝒂𝒓
 𝒊𝒏 𝒐𝒊𝒍 

This is 0,6$/operating hour of O&M. 

Other maintenance tasks will be done by the engineer in Mpaga, and will mean no cost. 

Also, as stated before, fuel consumption will represent a cost of 8943 $USD / year.  

 

 

 

 

 

 

 



Design of a Solar Microgrid for the Community of Mpaga, Gabon based on its social and economic context.  Pag. 69 

 

 

 

 

3.2.3 Battery Bank 

The necessary size of the designed battery bank is of 824 batteries, and this coming at an initial capital 

cost of 115.294,12 $.  These batteries will have a total throughput of 1200kWh / battery. We now obtain 

the following calculation: 

840 𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 · 1250
𝑘𝑊ℎ 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑏𝑎𝑡𝑡𝑒𝑟𝑦
·

1 𝑑𝑎𝑦

308,48 𝑘𝑊ℎ 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
·

1 𝑦𝑒𝑎𝑟

365 𝑑𝑎𝑦𝑠
= 9,32 𝑦𝑒𝑎𝑟𝑠 

This means the battery banks should be replaced around every 9 years. If a strong payment every 9 

years is considered significantly inconvenient, the replacement could be done gradually. It should also 

be considered that replacing the batteries every 9 years also means transporting them to Mpaga. It is 

now considered that all the hardware equipment will be shipped from Europe. However, given how fast 

the renewable sector is growing around the world, but specially in Africa, it is difficult to determine if in 

10 years or more it is still necessary to import all the technical material from Europe, or if it will be widely 

commercialised throughout Africa or Gabon. For this reason, when analysing battery replacement costs, 

no transportation fee will be considered.  

3.2.4 DC Combiners and Charge Controllers 

Each solar array consists of six strings of seven solar panels wired in series, a DC Combiner and a 

Charge Controller. This means, a DC combiner and a Charge Controller for every 42 solar panels. In 

order to install 1032 solar panels, 25 solar arrays will be needed. As a preventive measure, and given 

that the failure of one of these components would compromise 42 solar panels, 30 Charge controllers 

and 40 DC Combiner boxes will be bought. These devices usually have similar devices as the PV panels 

(25 years or more), and since the project’s lifetime has been fixed in 25 years, no replacement costs 

shall be considered. As regards the initial capital cost for DC Combiners  and CC: 

30 𝑠𝑜𝑙𝑎𝑟 𝑎𝑟𝑟𝑎𝑦𝑠 · 1 
𝐶𝐶

𝑆𝑜𝑙𝑎𝑟 𝐴𝑟𝑟𝑎𝑦
· 700$

𝑈𝑆𝐷

𝐶𝐶
= 𝟐𝟏. 𝟎𝟎$ 𝑼𝑺𝑫 𝒊𝒏 𝑪𝒉𝒂𝒓𝒈𝒆 𝑪𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓𝒔 

40 𝑠𝑜𝑙𝑎𝑟 𝑎𝑟𝑟𝑎𝑦𝑠 · 1 
𝐷𝐶 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑟

𝑆𝑜𝑙𝑎𝑟 𝐴𝑟𝑟𝑎𝑦
· 110$

𝑈𝑆𝐷

𝐶𝐶
= 𝟒. 𝟒𝟎𝟎 $ 𝑼𝑺𝑫 𝒊𝒏 𝑫𝑪 𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒓𝒔 

3.2.5 Inverter  

Although the LEONICS APOLLO MTP417F’s cost is not of public domain, the optimiser’s  database does 

include the MTP400 series’ price per kW.  According to this database, this series comes at 600$/kW. 

The model chosen, MTP417F has a max. nominal output power of 75kW. This would represent an initial 

capital cost of 45.000$ USD 
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3.2.6 Mounting Racks 

To mount the almost 300kW of installed solar panels, 30 SFS-GM04 ( can mount  approximately 10kW 

of solar panels) mounting rack sets will be needed. This will represent an initial capital cost of 

18.000$USD. 

3.2.7 Wiring  

In the Wiring Dimensioning section (2.2.9) , it has already been mentioned that those are approximate 

calculations, as the exact values for distances and generator placement are not available at this moment. 

For this reason, it has been decided that undergoing precise budget calculations with the stated length 

approximate values may not be very useful, as those values will probably change. However, after 

studying several similar off grid projects, it has been noticed that wiring usually covers a range between 

2%-4% of the total hardware costs.  Despite this, these values are for projects that need wiring for the 

whole installation, whereas in Mpaga all the AC wiring is already installed and used by the power 

delivered through the generators. For this reason, a 2% of the total hardware cost has been determined 

as a reasonable estimate value. Considering this, the wiring would represent an initial capital cost of 

8340 $. 

3.2.8 Hardware Cost Distribution  

The following table and figure summarize the initial capital cost values obtained in the previous chapters.  

 

Table 30. Hardware Cost Summary 

 

Figure 34.Mpaga Hardware Cost Distribution 

PV Modules
49%

Battery Bank
28%

DC Combiners
1%

Charge Controllers
5%

Inverter
11%

Mounting 
Racks

4%

Wiring
2%



Design of a Solar Microgrid for the Community of Mpaga, Gabon based on its social and economic context.  Pag. 71 

 

 

 

 

3.3  Transportation and Installation 

3.3.1 Transportation 

One of the most troubling issues when designing the solar installation in Mpaga is the fact that the 

community is in a remote area. This problem becomes especially relevant when it comes to technical 

equipment, such as solar panels or batteries, as even if the site was near main Gabonese cities the 

supply of this kind of devices is quite uncompetitive. For this reason, it has been decided that the 

equipment will be shipped from Europe, where it can be purchased at lower prices, to the city of Port-

Gentile in a container carrying commercial ship. The two main ports that supply the African routes are 

Port of Barcelona and the Port of Valencia, both in Spain. It has been chosen that the equipment will be 

shipped from the Port of Barcelona.  Once the equipment is delivered to Port Gentile in the Commercial 

Containers, a smaller boat will deliver them to Mpaga by sailing the Ogooue River upstream. While the 

official price of shipping material in a container ship from one port to another can be precisely estimated 

if the weight and volume of the product is known, the price of getting this equipment from Port Gentil to 

Mpaga will be based on a probably less accurate estimation, as no official information is available.  

The first step to calculate the cost of transportation is knowing the total weight and volume occupied by 

our load. The components with a higher impact in this calculation will be the solar panels and the 

batteries, and to a much lesser extent, the Solar Racks. Component weight and volume properterties 

are obtained from the provided data sheets in the annex.  

Solar Panels: 

1050 𝑝𝑎𝑛𝑒𝑙𝑠 · 0,0654
𝑚3

𝑝𝑎𝑛𝑒𝑙
= 68,67 𝑚3  

1050 𝑝𝑎𝑛𝑒𝑙𝑠 · 18,2
𝑘𝑔

𝑝𝑎𝑛𝑒𝑙
= 19.110 𝑘𝑔  

 

Batteries: 

840 𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 · 21
𝑘𝑔

𝑐ℎ𝑎𝑟𝑔𝑒𝑑 𝑏𝑎𝑡𝑡𝑒𝑟𝑦
= 17.640 𝑘𝑔  

840 𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 · 0,011
𝑚3

 𝑏𝑎𝑡𝑡𝑒𝑟𝑦
= 9,5 𝑚3  
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This would mean that 36.750 kg and 78,17 𝑚3 would be needed to transport the battery bank and the 

solar panels. The solar racks come in very compact packages, and it is estimated that 40.000kg and    

85 𝑚3 should be enough to also fit these in. The rest of the components (inverter, wiring, charge 

controllers, etc.. ) do not represent strongly relevant amounts of weight and volume. For this reason , it 

has been determined that the needed capacity storage in the container ship would be of 45 t and 90 𝑚3. 

The company iContainers will charge 74.900 $ USD for these amounts, and will deliver the charge in 

25-30 days from Barcelona to Port Gentile.  

According to the information provided by EWB Gabon, the total cost of getting to Mpaga on a small boat 

is of 400 $ USD. These boats, however, would not be an appropriate way of delivering the load to Mpaga 

given their little available space. It has been estimated that 6000 $ USD should be enough to deliver the 

load to the community of Mpaga. This is only an estimation, and this value, as well as the economic 

balance, should be updated before undergoing the physical installation.  
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3.3.2 Installation Costs 

Once again, the cost of hiring workers and qualified installers in Gabon is not officially available, and 

both the Foundation as EWG Gabon have not been able to provide verified values regarding this matter. 

So, to obtain a reliable estimation, the average installation cost provided by the US National Renewable 

Energy Laboratory has been considered, and then modified according to the community’s situation. The 

following figure provides average costs for Projects developed in the US depending on the system size. 

 

Figure 35. NREL Costs for US Solar Projects. 

If the prices in the previous figure are considered, Mpaga’s Installation Labour costs would be of 

something around 0,19 $/W installed (for 200kW size systems) and 0,16 $/W installed ( for 500kW size 

systems). However, this considers US labour prices and full project installations. In Mpaga, besides 

adding a few fuses and circuit breakers, no modifications need to be done for the AC section.  

Considering this, an installation cost of 0,08 $/W has been determined. This would mean an initial 

installation cost of 24.000 $ USD.  
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3.4  Total Cost and Economic Indicators 

The following table represents the site’s cash flow throughout its 25 years of life-time. The years are set 

as rows, and the different costs and incomes are represented in the table’s columns. Red cells indicate 

a cost or a negative annual or accumulated cash flow, whereas green cells indicate income or positive 

cash flows. A 10% variation has been considered for the diesel consumption. As it may be observed 

from the table, the whole installation of Mpaga would have a pay-back time of approximately 7 years, 

which is a more than acceptable figure considering the project’s lifetime.  

 

 

Table 31. 25-year Cash-Flow Table 

 

 

 

 

Year Initial Capital Battery Replacement Used Diesel O&M Diesel Savings Flux T Flux ACum

0 520254 0 0 -$520.254,00 -$520.254,00

1 0 0 8825 740 78000 $68.435,00 -$451.819,00

2 0 0 8536 740 78000 $68.724,00 -$383.095,00

3 0 0 9051 740 78000 $68.209,00 -$314.886,00

4 0 0 8890 740 78000 $68.370,00 -$246.516,00

5 0 0 8943 740 78000 $68.317,00 -$178.199,00

6 0 0 9380 740 78000 $67.880,00 -$110.319,00

7 0 0 8750 740 78000 $68.510,00 -$41.809,00

8 0 0 8691 740 78000 $68.569,00 $26.760,00

9 0 0 9518 740 78000 $67.742,00 $94.502,00

10 0 115000 9001 740 78000 -$46.741,00 $47.761,00

11 0 0 9202 740 78000 $68.058,00 $115.819,00

12 0 0 9425 740 78000 $67.835,00 $183.654,00

13 0 0 8605 740 78000 $68.655,00 $252.309,00

14 0 0 8125 740 78000 $69.135,00 $321.444,00

15 0 0 8015 740 78000 $69.245,00 $390.689,00

16 0 0 9574 740 78000 $67.686,00 $458.375,00

17 0 0 8261 740 78000 $68.999,00 $527.374,00

18 0 0 9118 740 78000 $68.142,00 $595.516,00

19 0 0 8309 740 78000 $68.951,00 $664.467,00

20 0 115000 9054 740 78000 -$46.794,00 $617.673,00

21 0 0 9239 740 78000 $68.021,00 $685.694,00

22 0 0 8092 740 78000 $69.168,00 $754.862,00

23 0 0 8545 740 78000 $68.715,00 $823.577,00

24 0 0 8382 740 78000 $68.878,00 $892.455,00

25 0 0 8509 740 78000 $68.751,00 $961.206,00
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The following graph portrays the accumulated cash flow evolution. The slight decreases around years 9 

and 18 correspond to the battery bank replacement costs.  

 

Figure 36. 25-Year Accumulated Cash Flow Graph 
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To calculate some other economic indicators, Gabon’s Inflation Index must be considered. According to 

the following graph provided by the IMF, a 2% rate can be a sensible value to use as an estimation. 

 

Figure 37. Gabon’s Inflation Index Progression (FMI) 

 

The following table provides the Net Present Value and Internal Rate of Return of the site if the previous 

cash-flow prevision is used. If the only criteria used to determine a project’s economic viability is the 

NPV, the project should be carried out as long as this indicator’s value is positive. However, projects 

usually have initial investment and pay-back time restrictions. Given it has already been confirmed that 

the project’s pay-back time is acceptable, the fact that the NPV of the project considering its 25-year 

lifetime is positive could be enough to affirm that it is financially wise to execute the project. Additionally, 

the intern rate of return is also substantially higher than the expected inflation index, which is also a 

favourable economic indicator. For these reasons, the project can be considered as financially viable. 

 

NPV $642.637,73 

IRR 11% 

Table 32. NPV and IRR Economic Indicators 
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CONCLUSIONS 

The design of a solar off grid installation for the community of Mpaga considering its social and economic 

context is the main goal of this thesis, aiming to help such community become more independent and 

lower its carbon footprint. Considering all the social, technical, geographical, logistical and economical 

aspects involved in a project of this dimension has been considered essential for the project to remain 

realistically viable. The thesis’ main question is if after considering all the previously stated factors, the 

project is still economically convenient for the NGO managing the community: ESPACE AFRIQUE. 

First, research on Mpaga’s inhabitants’ habits and lifestyle, as well as the village’s facilities, allowed for 

a load electrical profile to be determined. The load profile for Mpaga follows the typical rural community 

double-peak pattern.  Once the community’s demands were clear, an accurate dimensioning of the 

energetical installation was undergone.  It has been determined that for an off-grid installation to remain 

majorly renewable, the installed power must substantially oversize the load demand profile. Firstly, the 

most suitable electrical circuit for the community’s energetic requirements has been determined. 

Afterwards, a cost-efficiency and performance analysis for every component in the circuit has been 

carried out to determine the commercial models that need to be bought, as well the distribution between 

components. The final dimensioning of the installation was done by firstly undergoing a thorough work 

of investigation and calculation to parametrise correctly all the components and the project’s constraints, 

and afterwards using energetic optimizers to obtain the most convenient dimension and distribution for 

some of the main devices.  

As stated before, the aim is to consider all phases involved in the realisation of the project. Therefore, 

besides the electrical hardware costs, several other key factors have been considered. These include 

ship transportation from Barcelona to Mpaga, installation costs, appropriate maintenance schedule of 

the site, as well as other social considerations such as over-load management or local institutionalisation.  

The study and dimensioning of the site does indeed have some limitations. For instance, the wiring 

analysis should be revised as no official data for specific distances has been provided neither EWB or 

Espace Afrique. Also, due to a lack of official pricing, the transportation costs from Port-Gentile to Mpaga 

have also been estimated based on the cost of traveling this route on a smaller boat.  However, the 

range of values at which these factors could stand will not, under any circumstance, have a relevant or 

decisive impact on the project’s viability. 
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After analysing the costs all the previously mentioned factors imply, and performing the economic viability 

study, it is determined that the installation of the designed solar energy system for Mpaga is strongly 

convenient for both the community and ESPACE AFRIQUE, regardless the point of view. Firstly, and 

most important, it is economically viable: It drastically reduces the annual fuel costs, allowing for the 

investment to be recovered in less than 8 years, and producing a substantial annual profit that can be 

reinvested in the community during the following 17 years, hence improving the villager’s lifestyle. 

Secondly, it brings energetic independency to the community, as the need for constant fuel supply is 

significantly decreased. Last, but not least, Mpaga’s carbon-footprint will be reduced to less than a tenth 

than its actual value, and further community growth will be based on renewable and sustainable sources 

of energy. 

For these reasons, the next recommended steps for ESPACE AFRIQUE are revising the proposed 

design and updating the few factors that have been left as estimations. Afterwards, looking for investors 

or submitting the appropriate paper-work for the Foundation to approve the initial investment is a 

necessary phase. Finally, local institutionalisation and training are the last steps before the installation’s 

hardware equipment can be ordered and shipped, allowing Mpaga’s Solar Microgrid to become a reality. 
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ANNEX 

Espace Afrique Mpaga Health-Centre Project 
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