
Final Master Thesis
MASTER IN INNOVATION AND RESEARCH IN INFORMATICS

High Performance Computing

Asynchronous Runtime for Task-Based
Dataflow Programming Models

Course 2016/17 - Spring fall - July 2017

Author
Jaume Bosch Pons

Advisor
Dr. Carlos Alvarez Mart́ınez
(Computer Architecture Department - DAC)

Co-Advisor
Dr. Daniel Jiménez González
(Computer Architecture Department - DAC)

ii

Abstract

The importance of parallel programming is increasing year after year since the power wall pop-
ularized multi-core processors, and with them, shared memory parallel programming models. In
particular, task-based programming models, like the standard OpenMP 4.0, have become more
and more important. They allow describing a set of data dependences per task that the runtime
uses to order the execution of tasks. This order is calculated using shared graphs, which are up-
dated by all threads but in exclusive access using synchronization mechanisms (locks) to ensure
the dependences correctness. Although exclusive accesses are necessary to avoid data race con-
ditions, those may imply contention that limits the application parallelism. This becomes critical
in many-core systems because several threads may be wasting computation resources waiting to
access the runtime structures.

This master thesis introduces the concept of an asynchronous runtime management suitable
for task-based programming model runtimes. The runtime proposal is based on the asynchronous
management of the runtime structures like task dependence graphs. Therefore, the application
threads request actions to the runtime instead of directly executing the needed modifications.
The requests are then handled by a runtime manager which can be implemented in different ways.

This master thesis presents an extension to a previously implemented centralized runtime
manager and presents a novel implementation of a distributed runtime manager. On one hand,
the runtime design based on a centralized manager [1] is extended to dynamically adapt the
runtime behavior according to the manager load with the objective of being as fast as possible.
On the other hand, a novel runtime design based on a distributed manager implementation is
proposed to overcome the limitations observed in the centralized design. The distributed runtime
implementation allows any thread to become a runtime manager thread if it helps to exploit the
application parallelism. That is achieved using a new runtime feature, also implemented in this
master thesis, for runtime functionality dispatching through a callback system.

The proposals are evaluated in different many-core architectures and their performance is
compared against the baseline runtimes used to implement the asynchronous versions. Results
show that the centralized manager extension can overcome the hard limitations of the initial
basic implementation, that the distributed manager fixes the observed problems in previous im-
plementation, and the proposed asynchronous organization significantly outperforms the speedup
obtained by the original runtime for real benchmarks.

iii

iv

Acknowledgments

I would like to thank Dr. Carlos Álvarez and Dr. Daniel Jiménez-Gonazález for bringing me the
possibility of working in this master thesis at Barcelona Supercomputing Center. This work is
partially supported by the European Union H2020 Research and Innovation Action through the
Mont-Blanc 3 project (GA 671697), AXIOM project (GA 645496) and HiPEAC (GA 687698), by
the Spanish Government (projects SEV-2015-0493 and TIN2015-65316-P), and by the Generalitat
de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272).

I consider and important part of this master thesis the people that I meet meanwhile working
at Barcelona Computer Science, specially all people working at the Programming Models Group
that gave me support during my work. I also want to thank my family and my parents for its
support last years from Menorca, without you this master thesis would not been possible. Finally,
I special thanks to Susanna Coma who always helps me to get focused and makes me happy every
day.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Published Articles . 3
1.4 Document structure . 4

2 Related Work 5

3 OmpSs: A Task-Based Parallel Programming Model 7
3.1 The Programming Model . 7
3.2 Mercurium . 9
3.3 Nanos++ . 10

4 Centralized Runtime Manager (DAST) 15
4.1 Forced Manager . 15
4.2 Hybrid Manager . 17

5 DAST Evaluation 19
5.1 Environment . 19
5.2 Benchmarks . 20
5.3 Runtime Characterization . 26
5.4 Performance Results . 28

5.4.1 Synthetic benchmark . 29
5.4.2 Real benchmarks . 31

5.5 Limitations . 32

6 Distributed Runtime Manager (DDAST) 33
6.1 Messages and Queues . 33

vii

6.2 Functionality Dispatcher . 35
6.3 DDAST Callback . 36

7 DDAST Evaluation 39
7.1 Environment . 39
7.2 Benchmarks . 41
7.3 DDAST Tunning . 43

7.3.1 Maximum number of DDAST threads 43
7.3.2 Maximum number of spins . 45
7.3.3 Maximum operations per thread . 46
7.3.4 Minimum number of ready tasks . 48

7.4 Performance Comparison . 49
7.4.1 Matrix Multiply . 50
7.4.2 N-Body . 53
7.4.3 Sparse LU . 56

8 Conclusion 61

Bibliography 63

viii

List of Figures

3.1 OmpSs task graph for listing 3.1 (N=3) . 9
3.2 Mercurium compiler structure . 10
3.3 Nanos++ runtime structure . 11
3.4 Nanos++ task life cycle diagram . 12
3.5 Nanos++ task flow over runtime structures . 13

4.1 DAST runtime task flow over runtime structures 16

5.1 Synthetic Benchmark task graph showing the data dependences between tasks . 21
5.2 Cholesky task graph showing the data dependences between tasks 23
5.3 Matmul task graph showing the data dependences between tasks 24
5.4 Sparse LU task graph showing the data dependences between tasks 25
5.5 Execution cost of runtime functions for each DAST request type 27
5.6 Acquisition cost of dependences graph lock . 28
5.7 Speedup running Synthetic Benchmark (fine grain tasks) 29
5.8 Speedup running Synthetic Benchmark (coarse grain tasks) 30
5.9 Speedup running real benchmarks with fine grain (FG) and coarse grain (CG) tasks 31

6.1 Functionality Dispatcher Sequence Diagram Example 35

7.1 N-Body task graph showing the data dependences between tasks 42
7.2 Matmul execution time changing the MAX DDAST THREADS 44
7.3 N-Body execution time changing the MAX DDAST THREADS 44
7.4 Sparse LU execution time changing the MAX DDAST THREADS 45
7.5 Matmul execution time changing the MAX SPINS 45
7.6 N-Body execution time changing the MAX SPINS 46
7.7 Sparse LU execution time changing the MAX SPINS 46
7.8 Matmul execution time changing the MAX OPS THREAD 47

ix

7.9 N-Body execution time changing the MAX OPS THREAD 47
7.10 Sparse LU execution time changing the MAX OPS THREAD 48
7.11 Matmul execution time changing the MIN READY TASKS 48
7.12 N-Body execution time changing the MIN READY TASKS 49
7.13 Sparse LU execution time changing the MIN READY TASKS 49
7.14 Matmul scalability in KNL . 50
7.15 Matmul scalability in ThunderX . 51
7.16 Fine grain Matmul execution trace on KNL with 64 threads and Nanos++ . . . 51
7.17 Fine grain Matmul execution trace on KNL with 64 threads and DDAST 52
7.18 Evolution of the number of tasks in-graph on KNL with 64 threads for fine grain

Matmul . 52
7.19 Evolution of the number of ready tasks on KNL with 64 threads for fine grain

Matmul . 53
7.20 N-Body scalability in KNL . 54
7.21 N-Body scalability in ThunderX . 54
7.22 Coarse grain N-Body execution trace on ThunderX with 48 threads and Nanos++ 55
7.23 Coarse grain N-Body execution trace on ThunderX with 48 threads and DDAST 55
7.24 Evolution of the number of ready tasks on ThunderX with 48 threads for coarse

grain N-Body . 56
7.25 Evolution of the number of tasks in-graph on ThunderX with 48 threads for coarse

grain N-Body . 56
7.26 Sparse LU scalability in KNL . 57
7.27 Sparse LU scalability in ThunderX . 57
7.28 Coarse grain Sparse LU execution trace on ThunderX with 48 threads and Nanos++ 58
7.29 Coarse grain Sparse LU execution trace on ThunderX with 48 threads and DDAST 58
7.30 Coarse grain Sparse LU partial execution traces on ThunderX with 48 threads and

DDAST . 59
7.31 Evolution of the number of tasks in-graph on ThunderX with 48 threads for coarse

grain N-Body . 59
7.32 Evolution of the number of ready tasks on ThunderX with 48 threads for coarse

grain Sparse LU . 59

x

List of Tables

5.1 Synthetic Benchmark execution arguments . 22
5.2 Cholesky execution arguments . 22
5.3 Matmul execution arguments . 24
5.4 Sparse LU execution arguments . 24

7.1 Matmul execution arguments . 41
7.2 N-Body execution arguments . 42
7.3 Sparse LU execution arguments . 43
7.4 DDAST parameters values . 43

xi

xii

List of Listings

3.1 OmpSs code annotation example . 8

4.1 Pseudo-code of new task request push policy 17
4.2 Pseudo-code of done task request push policy 18

5.1 Pseudo-Code of Synthetic benchmark . 21

6.1 DDAST callback pseudo-code . 37

xiii

Introduction

Chapter 1

Parallel programming has become a common topic in computer science. Nowadays, almost any
electronic device has a multicore processor and therefore, the importance of parallel program-
ming models and runtime libraries to support the application’s parallelism is growing, and its
optimization is becoming crucial.

In this chapter, section 1.1 introduces the problem of current runtime systems for task-
based parallel programming models that motivates this master thesis. Following, section 1.2
introduces the objectives of the master thesis and how they can help to improve the current
runtime implementations. Section 1.3 summarizes the published articles that are related to the
thesis. Finally, section 1.4 introduces the structure of the document.

1.1 | Motivation

The multicore processors popularization started due to the end of Dennard scaling law which
states that the power density of an integrated circuit can stay constant meanwhile the transistors
get smaller. Until 2006, Dennard’s law and Moore’s law have been the reference for Processor
manufacturers to periodically reduce the transistors length and increase the clock frequency
which also increases the processors’ performance. However, the leakage current grows much
faster at small transistor sizes; therefore the clock frequency cannot increase without impacting
the overall power consumption. Since the transistor still reduces its size periodically as Moore’s
law states, processor manufacturers started to introduce multiple cores in their processors to keep
the processors’ performance increase.

As multicore processors have become popular, parallel programming has become a need to take
advantage of these processors. Instead of dealing with complex applications programmed for one
specific processor architecture, parallel programming models decouple applications from hardware.
Their goal is to allow programmers to indicate the potential parallelism in the applications’ source
code without directly managing it. There are several examples like MapReduce [2], OpenMP [3],

1

OpenCL [4], StarSs [5], etc. The exposed parallelism is then managed by a runtime library that
coordinates the application execution transparently to the application programmer.

The task oriented paradigm is one powerful way to define potential parallelism in one appli-
cation. Programmers only have to annotate code regions called tasks that can run in parallel.
Additionally, developers can provide additional task information like data requirements. This in-
formation defines the task execution order enforced by the runtime libraries at execution time.
The OpenMP standard introduced task dependences in the 4.0 version greatly influenced by the
OmpSs programming model which extends the standard syntax with additional features.

The runtimes of these models are responsible for guaranteeing the task execution order cor-
rectness defined by the task data requirements. One or more task graphs are maintained in
execution time, so the runtime checks the required data of each created task against on-the-fly
tasks and delays its execution until the data is available. After each task execution, the runtime
checks the successor tasks based on the data that the current task generates and data that other
tasks require. If a successor task was only waiting for the data of the finished task, the succes-
sor becomes ready and its execution can start immediately. Usually, these events (task creation
and task finalization) require to read and write the information in the corresponding task graph
atomically to ensure the order correctness.

In a processor with a lot of cores, the probability of collisions between threads trying to
access the task dependence graph increases. Each collision implies that a thread is wasting its
computation time waiting for another one modifications. This problem that has currently started
arising is expected to be an important bottleneck as the number of cores in the future processors
is expected to keep growing. Thereby the access contention on some runtime structures will kill
the application performance if runtimes do not redesign its internals to tackle the problem.

1.2 | Objectives

The objective of this project is to improve the current task-based parallel programming runtimes
to avoid the runtime’s structures contention expected in the many-core processors. Therefore,
the project tries to maximize the utilization of the processor cores to run application’s code and
avoid active waiting on the locks. To this end, an asynchronous runtime structure is proposed
where the runtime threads do not update the runtime structures directly. Instead, the threads
request the needed actions to the runtime and someone will handle them in the future. This
asynchronous approach avoids the problem of actively waiting for the exclusive access and allows
the thread to return immediately to the application’s code.

The new runtime workflow must be transparent for application developers and must be general
enough to be used in a wide range of task-based parallel programming models. The project aims
to modify the runtime internals but not the runtime API. Thereby any working application must
be able to switch between the original and the asynchronous runtimes out of the box. Moreover,
the proposed modifications in the project should not be runtime dependent, and any task-based
parallel programming runtime may introduce them.

2

The threads’ requests to the runtime are handled by a runtime manager who updates the
runtime structures. Two runtime manager implementations are proposed in this master thesis: a
centralized and a distributed implementations. On one hand, the centralized runtime manager
implementation is based on an extra thread (DAS Thread, DAST) together with a mechanism
to avoid the manager saturation. The runtime uses the DAST manager to update the runtime
structures but allows the other threads to update the runtime structures, which is the original
approach, if it is considered better for the overall application performance. On the other hand,
the distributed runtime manager implementation (Distributed DAST, DDAST) is based on a
distributed mechanism were any thread may become a runtime manager thread. Therefore, the
runtime tries to use all the available threads in a smart way to restrict the runtime structures
accesses.

Finally, the project’s objective is also to evaluate the performance of the newly proposed
runtimes. The new asynchronous runtimes should provide similar performance to the original
runtime for a reduced amount of threads or when the application has a small number of tasks.
Obviously, when the number of tasks and/or the number of threads is large, the new runtimes
should be able to achieve better performance due to the better thread utilization, data locality
and contention reduction.

1.3 | Published Articles

The project development is done in the Computer Science (CS) department of the Barcelona
Supercomputing Center (BSC) by the Programming Models (PM) group, and it is an ongoing
work that does not finish with this Final Master Thesis. For instance, some of the works presented
in this master thesis are already published. Moreover, the work and knowledge of this project
have been used in other projects. The following list presents the published articles related to this
master thesis and briefly describes its contribution:

• Reorganització del runtime Nanos++ [1].
Final bachelor thesis that analyzes the runtime entry points that modify the task dependence
graph. It also proposes an initial implementation of a centralized runtime manager that
executes such runtime functions, and analyses the application’s performance when using
the centralized runtime manager. In this contribution, the implementation is based on using
a unique extra thread (DAST) to perform the runtime functions.

• Characterizing and Improving the Performance of Many-Core Task-Based Parallel Program-
ming Runtimes [6].
Paper presented in Emerging Parallel and Distributed Runtime Systems and Middleware
(IPDRM), 2017 Annual Workshop, that introduces a full implementation of a centralized
runtime manager with automatic load balancing between the manager and the workers.
The implementation allows the application threads to keep the original runtime structure
if the pressure over the runtime manager is too high. The paper characterizes the run-
time overheads of different implementations and analyzes the runtime performance running
different benchmarks.

3

• Performance analysis of a hardware accelerator of dependence management for task-based
dataflow programming models [7].
Paper presented at Performance Analysis of Systems and Software (ISPASS), 2016 IEEE
International Symposium, that presents the very first functional hardware prototype inspired
by Picos (hardware accelerator for dependence management of fine grained tasks). The
paper presents simulation results where the use of the hardware accelerator reduces the
runtime overheads, the results are built considering the project’s knowledge to characterize
the runtime overheads.

• General Purpose Task-Dependence Management Hardware for Task-based Dataflow Pro-
gramming Models [8].
Paper presented at International Parallel & Distributed Processing Symposium (IPDPS),
2017 IEEE International Symposium, that presents Picos++ a general purpose hardware
accelerator to manage the inter-task dependences efficiently in both time and energy. The
paper presents a hardware/software co-design that integrates the hardware manager into a
task-based programming model runtime. This integration is build considering the project’s
knowledge, substituting the centralized manager (DAST) by the hardware manager.

Also, we plan another article summarizing the unpublished work presented in this master
thesis. The publication will contain the new distributed implementation of the runtime manager
(DDAST) and the performance evaluation on different many-core processors.

1.4 | Document structure

The remainder of the document is structured as follows:

• Chapter 2 reviews the most relevant related work.

• Chapter 3 introduces the OmpSs parallel programming model and its runtime (Nanos++),
that is used as a baseline to implement the asynchronous runtime.

• Chapter 4 explains the centralized manager implementation (DAST).

• Chapter 5 presents the runtime characterization and performance results of the runtime
with the DAST manager.

• Chapter 6 explains the distributed manager implementation (DDAST) for the asynchronous
runtime.

• Chapter 7 presents the manager tunning analysis and the performance results of the runtime
with the DDAST manager.

• Finally, chapter 8 summarizes the work done, provides some concluding remarks and ana-
lyzes the possible future work in the project context.

4

Related Work
Chapter 2

Several works exist about parallel programming models characterization and improving. They
are over different models working at different levels and with different approaches. OmpSs
tools (Mercurium and Nanos++), which are open source and are the ones used to test our
model, can execute inter-node and intra-node applications [9] and are under constant development
introducing new features. Moreover, several people use this programming model as a base to
develop different prototypes or extend its functionality.

Previous works discussed the task scheduling and dependences resolution overheads in data-
driven task-based models like OpenMP and OmpSs. TurboBLYSK [10] is a framework which
implements the OpenMP 4.0 with a custom compiler and a highly efficient runtime schedule
of tasks with explicit data-dependence annotations. Its objective is also to reduce the depen-
dence management overheads of the runtime. However, TurboBLYSK approach requires extra
information in the task dependences definition to allow the runtime to re-use previously resolved
dependency patterns and to reduce the overall overhead. In contrast, our proposal only uses the
information provided by default to reduce the overall task management overhead, so our optimiza-
tion is transparent to the programmers. However, in some sense, our works are complementary.

Other task-based programming models like Intel Threading Building Blocks [11] and Charm++
[12] use a execution model that is more pure dataflow than the OmpSs/OpenMP model which
has a hybrid (control/dataflow) model [13]. This execution model usually allows to exploit better
the parallelism of the applications but requires a specific structure and an application redesign.
In the context of the Intel Threading Building Blocks, there is a previous work discussing the
cost of the synchronization inside its runtime, but they focus the problem in the work distribu-
tion [14] instead of the task graph management that is implicitly done in their execution model.
The Charm++ programming model is intended to provide some valuable features for executions
in large computation systems like migratability, checkpoint application restarting, process failure
tolerance, malleability, etc. They have previous work about optimizing the communications inside
their runtime [14], but the dataflow model that they have moves the complexity of task-graph
management into the application development process like in TBB.

Other works, which also try to accelerate current runtimes, propose moving part of the
runtime into a specific hardware of FPGAs. Some examples are Nexus# [15] and Picos [7]. They

5

present different hardware designs that can manage tasks dependences of task-based programming
models. Besides these, there is active research in new computer architectures able to manage
efficiently tasks in StarSs family. For example, some research aims to look for a new Runtime-
Aware Architecture to overcome current multi-core restrictions like power, programmability and
resilience [16]. The main difference between those works and the one proposed in this project
is the way to improve the existing system. They proposed new hardware to work in harmony
with the software in order to improve the performance. In contrast, this project improves the
existing parallel programming model runtimes with software ideas that do not require additional
hardware.

6

OmpSs: A Task-Based Parallel Program-
ming Model

Chapter 3

The task-based parallel programming model used as a baseline in this project to develop the
asynchronous version of the runtime is OmpSs. Currently, this programming model is supported
by the Mercurium compiler and the Nanos++ runtime library. For this reason, the following
sections explain:

• Section 3.1 explains the key features of the OmpSs Programming Model.

• Section 3.2 explains Mercurium: the source-to-source compiler that supports the OmpSs
syntax.

• Section 3.3 explains Nanos++: the runtime library that handles the executions.

3.1 | The Programming Model

The OmpSs programming model is a task-based parallel programming model developed at BSC
and composed by a set of directives and library routine. The name OmpSs comes from two others
programming model names, OpenMP [3] and StarS [5]. The goal of the programming model
was extend the OpenMP syntax with some of the StarSs to provide a productive environment
for HPC applications development. Productive means that the applications developed in OmpSs
achieve a reasonable performance compared to similar solutions for the same architectures and
means that the development cost is small and does not require huge changes in the applications
[17] [18].

On one hand, OmpSs takes from OpenMP the philosophy of providing a way to produce
a parallel version of the application adding annotations that do not require modifications in the
source code. These annotations allow the compiler to generate a parallel version of the application
replacing the annotations by runtime API calls. This philosophy is intended to simplify the

7

development process leading to a better productivity. On the other hand, OmpSs takes from
StarSs the thread-pool model. In contrast to the fork-join model used by OpenMP, StarSs model
has an implicit parallelism during all the execution so, programmers do not have to annotate the
parallel regions [17] [18].

Task annotation

The main annotation in OmpSs is the task clause which defines a code region that will be
asynchronously executed. The tasks created can be concurrently executed by any thread when
they are ready. The task execution order can be defined by the programmers using the in(...),
out(...) and inout(...) clauses that extend the task annotation. These clauses define the
data dependences for each task and implicitly define the dependences between tasks. The runtime
is responsible for synchronizing task executions to guarantee the dependences.

The data dependence syntax in the OmpSs clauses supports variables and array regions.
Moreover, the syntax for the array regions is rich and the same region can be annotated in
different ways:

• Discrete elements in the array:
in(v[0], v[i], v[i*2+j])

• Region of N elements in the array:
out([N]v, [8]v)

• Region of elements in the array with initial and end positions (both included):
inout(v[first: last], v[0: 7], v[0: N-1])

• Region of elements in the array with initial position and number of elements:
inout(v[first; num elems], v[0; 8], v[0; N])

In addition to the implicit synchronization created by the data dependences, the programmer
can introduce explicit synchronization points using the taskwait annotation. This ensures that
after the annotation all tasks created before it are executed and all data generated by tasks is
available with the latest values.

1 void foo (int *a, int *b) {
2 for (int i = 1; i < N; i++) {
3 #pragma omp task in(a[i-1]) inout(a[i]) out(b[i])
4 propagate(&a[i-1], &a[i], &b[i]);
5 #pragma omp task in(b[i-1]) inout(b[i])
6 correct(&b[i-1], &b[i]);
7 } }

Listing 3.1: OmpSs code annotation example

8

User functions:

P1a[0]

C1

b[1]

P2a[1]

b[0] C2b[1]

b[2]

P3a[2]

C3
b[2]

b[3]

Taskwait

propagate

correct

Figure 3.1: OmpSs task graph for listing 3.1 (N=3)

An example code [19] of a C function parallelized with OmpSs is shown on listing 3.1. The
function contain two function calls that are annotated with the task directive: propagate and cor-
rect. Thus, the calls to those functions are asynchronously executed when the data dependences
defined in the task annotation are satisfied. The resulting task dependence graph (for N = 3)
is shown in figure 3.1 where the nodes are tasks and the edges true dependences among them.
There is a true dependence between the ith propagate and the ith correct tasks due to the ith

element of b. There is a true dependence between the ith propagate and the ith + 1 propagate
tasks due to the ith element of a. Finally, there is a true dependence between the ith correct and
the ith + 1 correct tasks due to the ith element of b.

3.2 | Mercurium

Mercurium is a C/C++/Fortran source-to-source compilation infrastructure aimed at fast pro-
totyping developed by the Programming Models group at the Barcelona Supercomputing Center
[20].

Mercurium is mainly used together with the Nanos++ Runtime Library to implement the
OmpSs programming model. Also, it implements the OpenMP 3.1 standard. Apart from that,
since Mercurium is quite extensible it has been used to implement other programming models
or compiler transformations, examples include Cell Superscalar, Software Transactional Memory,
Distributed Shared Memory or the ACOTES project, just to name a few [20].

Figure 3.2 show a simplified view of an application compilation and linkage using Mercurium.
The files are provided to the Mercurium profile which applies the source-to-source transformations
needed (like annotation replacement by API calls to the Nanos++ runtime library). After that,
the native compiler is used to generate the object files, which are linked against the Nanos++
library to generate the executable.

In the context of this project, there are not planned modifications in the compiler. This
is because the changes are transparent to the users and this means that the runtime API is
untouched. Otherwise, the runtime library API changes may require a recompilation of the

9

Nanos++

Native
compiler

Native
compiler

Native
compiler

Mercurium
(mcc, mcxx, mnvcc, mfc, imcc)

Linker

Figure 3.2: Mercurium compiler structure

applications or a new Mercurium instance conscious of new semantics.

3.3 | Nanos++

Nanos++ is a runtime library designed to serve as runtime support in parallel environments.
The runtime is developed at the Barcelona Supercomputing Center within the Programming
Models group, and its main use is support the OmpSs programming model. Appart from OmpSs
Nanos++ also supports most of the OpenMP 3.1 features and includes some additional extensions
(some of them also introduced in following OpenMP releases) [21].

The runtime provides the required services to support task parallelism based on data de-
pendences. Data parallelism is also supported by means of services mapped on top of its task
support. Task are implemented as user-level threads when possible (currently x86, x86-64, ia64,
arm, ppc32 and ppc64 are supported). It also provides support for maintaining coherence across
different address spaces (such as with GPUs or cluster nodes) by means of a directory/cache
mechanism [21].

The main purpose of Nanos++ RTL is to be used in research of parallel programming envi-
ronments. The runtime tries to enable easy development of different parts, so researchers have
a platform that allows them to try different mechanisms. As such it is designed to be extensible
by means of plugins. The scheduling policy, the throttling policy, the dependence approach, the
barrier implementations, slicers and worksharing mechanisms, the instrumentation layer and the
architectural dependant level are examples of plugins that developers may easily implement using
Nanos++ [21]. Figure 3.3 shows a simplified vision of such runtime structure.

10

Nanos++ API

Architecture interface

In
st

ru
m

en
ta

ti
o

n Thread
Management

Task
Management

Task
Scheduling

Dependence
Management

Data
Coherence

and
Movement

Scheduling
Policies
- BF, DBF
- Affinity

- Versioning

SMP GPU Cluster FPGA

Extrae

Dot

Trace

Application

Figure 3.3: Nanos++ runtime structure

Task life cycle

Task representation inside Nanos++ is made by one Work Descriptor (WD) for each task. Each
WD contain all needed information to manage the task during its life cycle. For instance, the
WDs store the data dependences of each task. The parent task, which is the task being run when
the child task is created, contains the task-graph with the relations of its children. This limits
the tasks to depend on only sibling tasks, but the global order is guaranteed because father’s
dependences must be a super-set of its child tasks. Despite this distributed model, actions in
each graph are protected by spin-locks because different sibling tasks can finalize at the same
time and/or collision with another sibling task creation.

The different steps in the task life cycle are summarized following and shown in figure 3.4
with the transitions between states.

1. Task creation.
At this step, the WD structure is allocated and initialized with the information provided in
the annotations related to the task. Moreover, the values of function arguments or local
variables are stored in order to execute the code asynchronously.

2. Task submission.
At this step, the data dependences of the task are stored in the WD and introduced in
the task-graph to compute the predecessor WDs. If no predecessors are found, the task
can immediately become ready. How the predecessors are computed depends on the used
dependences plugin which can be changed in each execution.

3. Task becomes ready.
At this step, task’s data dependences have been satisfied or task’s blocking condition had

11

NO CREATED

CREATED

Task creation

SUBMITTED

Task submission

Predecessor finished && More predecessors

READY

No predecessors Predecessor finished && !More predecessors

BLOCKED

Wait on Condition

FINISHED

Task finalization Condition satisfied

Child finished && More children

DELETED

No children Child finished && !More children

Figure 3.4: Nanos++ task life cycle diagram

12

become true. Consequently, the task execution can start. How the task will be executed
depends on the used scheduling policy that can be changed in each execution.

4. Task becomes blocked.
At this step, the task cannot proceed its execution until some condition becomes true. For
example, when a task contains a taskwait annotation it becomes blocked until its children
tasks finish.

5. Task finalization.
At this step, the task has finished its execution and the successor WDs may become ready
if they only depend on the finalized task. Therefore, the WD can be deleted if it does not
have children tasks. Otherwise, the children tasks might reference the parent WD in its
finalization to access the task-graph.

6. Task deletion.
At this step, the WD can be safely deleted because no more references to it will be done.

W
o

rk
e

r
T

h
re

a
d

s Task Dependence Graph

Ready Tasks Pool

�

G
ra

ph
 L

oc
k

Figure 3.5: Nanos++ task flow over runtime structures

Each task state is mainly related with one runtime component, therefore the WDs flow over
the different runtime structures during its life cycle. Figure 3.5 shows a simple representation of
the tasks flow where each circle represents a task. Each circle color is associated with a task state
like shown in figure 3.4: yellow for a task being created or a submitted task, green for a ready task
and blue for a finished task. First, a thread pushes the created tasks into the task dependence
graph to compute the task order. Moreover, the thread must acquire the graph lock before
submitting the task and making it become submitted. Then, other threads “push” the finalized
tasks into the task dependence graph through the same graph lock to notify the successor tasks.
In addition, this action removes the finished task from the graph and adds the tasks that become
ready into the ready tasks pool. Finally, the worker threads try to acquire ready tasks from the
ready tasks pool to execute them. Also, the management (insertion, deletion, etc.) or tasks into
the ready tasks pool may require acquiring some lock, but it is not shown on the figure 3.5 as
the pool implementation depends on the scheduling policy.

13

14

Centralized Runtime Manager (DAST)
Chapter 4

The first design and implementation of an asynchronous runtime for task-based parallel program-
ming models were proposed in the Final Bachelor Thesis: Reorganització del Runtime Nanos++
[1], and extended in the paper: Characterizing and improving the performance of many-core
task-based parallel programming runtimes [6]. The runtime implementation is based on a cen-
tralized manager thread (DAST) which manages the runtime structures according to the received
requests. The requests are created by the worker threads during the application execution instead
of directly modifying the runtime structures. This operational flow is further explained in:

• Section 4.1 which describes the initial basic implementation of the centralized runtime
manager.

• Section 4.2 which presents the extension developed over the initial implementation to over-
come the observed limitations.

4.1 | Forced Manager

The asynchronous runtime execution model decouples the runtime functionality and the task
execution by introducing a decoupled manager that does the main runtime functions. At each
runtime API call, the worker threads request an action to the manager instead of performing
it directly. Therefore, the manager modifies the runtime structures according to the received
requests. The aim is to optimize the productivity of all the threads, removing the contention
created at some structures (like dependence graphs) when the threads are wasting time waiting
for exclusive access.

The communication between the workers and the manager is done pushing requests, which
contain the information to allow the later execution of the runtime function, inside a queue. This
queue can be different for each worker thread because the messages/requests generated from
different workers are independent and can be satisfied out of order. The order that the manager
must guarantee is the FIFO order for the same thread messages to ensure the correctness when

15

computing the dependences. Such organization only requires a worker-manager synchronization
(when messages are inserted/removed). Meanwhile, the original runtime organization requires a
global synchronization (when a runtime structure is modified).

The requests of runtime functions can be of three types:

• New task.
Runtime code executed to compute the predecessor tasks for a new task. If no predecessors
are found, this request also executes the runtime code to schedule the ready task.

• Done task.
Runtime code executed to notify the finalization of a task to its successors. If the notified
task does not have more predecessors, this request also executes the runtime code to
schedule the ready task.

• Delete task.
Runtime code executed to clean up and delete the WD associated to a task. It has to be
a separate message to ensure that neither DAST nor the worker threads try to access a
deleted work descriptor.

The asynchronous runtime with the centralized manager uses the Nanos++ runtime source
code as a baseline, and the centralized manager implementation is based on an extra thread
(DAST). The manager thread does not execute application code, only runtime code to handle
the incoming requests from the other threads. Therefore, the DAST executes the runtime code
regions described in the design.

W
o

rk
e

r
T

h
re

a
d

s Task Dependence Graph

Ready Tasks Pool

�

G
ra

ph
 L

oc
k

�

�

�

� R
un

tim
e

M
an

ag
er

Figure 4.1: DAST runtime task flow over runtime structures

The manager integration and new task flow can be seen in figure 4.1 which extends the
Nanos++ task flow figure (3.5). In the asynchronous runtime, the worker threads push the
task events (task submission, task finalization and task deletion) into queues instead of directly

16

going to the runtime structures. After that, the runtime manager updates the runtime structures
according to the requests in the queues.

Limitations

After the implementation was presented as a Final Bachelor Thesis, several problems in the
initial design arose. The most common problem observed was that, under some conditions, the
worker threads might create requests faster than the manager satisfies them; and the worker
threads become idle waiting for ready tasks. Summarizing, the centralized manager creates a
bottleneck that may limit the application parallelism and the achieved performance. To overcome
this bottleneck, the centralized manager might be implemented using more than one thread to
overcome the saturation. However, this approach would lead to devote more threads to managing
the runtime structures and fewer threads to executing the application tasks, so the performance
may drop. To tackle the problem without increasing the number of manager threads an extension
using a hybrid manager was proposed.

4.2 | Hybrid Manager

The proposed implementation is an improvement over the previous design and is based on a mech-
anism to keep some requests directly executed by the worker threads. The idea is to keep the
original runtime organization when it is considered better than the asynchronous version. Conse-
quently, the runtime decides before creating each request if it will be created and asynchronously
executed or if it has to be immediately executed.

The decision of pushing a message in the manager queue, and execute it asynchronously, or
execute it directly inside the API call, like in the original Nanos++, is made following different
criteria depending on the message type.

1 if (queueContainNewTaskRequest()) {
2 prev = getLastNewTaskRequest()
3 if (not tasksAreSiblings(request, prev)) {
4 return FALSE
5 } }
6 return TRUE

Listing 4.1: Pseudo-code of new task request push policy

The New task messages are only sent from one WD at the same time to avoid the serialization
of the dependence calculation for independent task graphs. In other words, this ensures that
independent actions (dependence calculation of non-sibling tasks) are not serialized and can be
executed in parallel. When one worker pushes one New Task message into the queue only itself
will be able to push more New task messages until the DAST thread processes all requests of the
type. Figure 4.1 shows a pseudo-code to decide whether making the request or not using that

17

behavior. When the manager queue does not contain any New task message, the request can be
pushed (line 6). Otherwise, the runtime checks if the tasks of current and existing requests are
siblings.

1 nreq = numberRequestsWorker()
2 wlow = waitingForLowerBound()
3 nrdy = numberReadyTasks()
4 if (wlow && nreq <= LOWER_BOUND) {
5 unsetWaitingForLowerBound()
6 }
7 if (nreq > UPPER_BOUND) {
8 setWaitingForLowerBound()
9 return FALSE

10 } else if (wlow && nreq > LOWER_BOUND) {
11 return FALSE
12 }
13 return nrdy > MIN_TASKS

Listing 4.2: Pseudo-code of done task request push policy

Figure 4.2 shows the pseudocode of the Done task push policy that rejects push the message
in three cases:

1. The number of pending requests from the worker (nreq) is bigger than an upper boundary
(line 9). This case activates an hysteresis loop (line 8)

2. The policy has activated the hysteresis loop, and the number of pending requests from the
worker (nreq) is bigger than the lower boundary (line 11).

3. The number of ready tasks to be executed by the worker (nrdy) is smaller than a threshold
(line 13).

Otherwise, the request can be submitted (line 14). The hysteresis loop limits are dynamically
tuned to optimize the load balancing and try to advance as much as possible the release of task
dependences. For instance, the limits are doubled when the hysteresis loop is activated and is
deactivated in the next call to the Done task push policy. Otherwise, the limits are halved after
the hysteresis loop activation. After an empirical testing, the best initial values seem to be 1 for
MIN TASKS and 3-5 for LOWER BOUND-UPPER BOUND.

The Delete task requests are pushed only if the Done task message of the same WD is still
inside the queue. In any other case, either the runtime decided to do not push the Done task
message or the DAST thread already processed it, the worker will directly free the memory used
to store the task information.

18

DAST Evaluation

Chapter 5

The evaluation of the asynchronous runtime based on the DAST manager implementation is
explained in this chapter. The objective of the evaluation is to compare the behavior and perfor-
mance of the DAST-based runtime against the original one. To this end, different benchmarks,
well known in the High Performance Computing world, and different machines that have different
architectures are used. The structure of the chapter is:

• Section 5.1 explains the software/hardware environment used to run the different bench-
marks.

• Section 5.2 briefly describes the benchmarks used to characterize and test the performance
of the new design.

• Section 5.3 characterizes the time cost of relevant runtime parts.

• Section 5.4 presents the scalability and performance results for each benchmark.

• Finally, section 5.5 explains the limitations that the centralized implementation has.

5.1 | Environment

The tests have been run on an Intel Xeon Phy [22] co-processor of Knights Corner (KNC)
architecture, which is the first commercial generation of such processors. The used model is
Intel R© Xeon R© Phi(TM) CPU 7120, and it has 61 x86 cores that can run up to 4 simultaneous
threads with 16GB of shared RAM memory. The results gathered from this many-core architecture
behave similarly to the ones obtained from other multi-core platforms like Intel Xeon, so the later
ones are not presented.

In all executions, the first two cores are reserved for the OS thread (the co-processor runs
a small Linux, and the thread provides some services) and master Nanos++ thread. Similarly,
the third core is reserved for the manager thread (DAST) when needed. These reserved cores do

19

not run more than one thread per core because the core-resource sharing will make the whole
execution become slower. Also, the Nanos++ scheduling policy used is the Distributed Breadth
First (DBF) but adapted to allow the manager dynamically distribute the work among all workers
according to the loads.

The version of the Intel R© Math Kernel Library (Intel(R) MKL) used by the applications is
2011.2.2. The compiler used to cross-compile the applications and the runtimes is the GNU C
Compiler Collection (GCC) version 5.3.0.

Another conditions that have been considered to enhance the evaluation quality, avoid external
inferences and facilitate the reproducibility of the results are:

1. All the machine’s nodes used during all executions are exclusively reserved for the tests,
despite the number of used cores is smaller than the available.

2. The applications are compiled with the -O3 code optimization level.

3. The time measurements are repeated at least five times and the best execution time is
kept for each configuration to do the comparisons. In addition, the executions have been
repeated if the best timing only appears once.

The different runtime versions evaluated are the following:

• Nanos++.
Baseline OmpSs runtime (version 0.7.2).

• DAST Runtime.
Runtime with the centralized runtime manager implementation (DAST). This version is
implemented on top of Nanos++ runtime (version 0.7.2).

• DAST (forced).
DAST Runtime with the request push policies disabled (mandatory submission of requests).
It is useful to validate the behavior of the push policies.

• DAST (no locks).
DAST (forced) without the dependence graphs locks that are not needed in the forced
version. This version is useful to check the lock overheads.

5.2 | Benchmarks

The used benchmarks are explained in this section. For each one, its execution arguments are
explained and provided with the number of created tasks in each configuration and any other
remarks that may be valuable for reproducibility. In all of them, some timing instructions are
added after the sequential initialization and after the final global taskwait. The wall-clock time
elapsed between these two points is defined as execution time in the rest of the section.

20

For each benchmark, two different sets of execution parameters are used to create two tasks
granularities: coarse grain tasks and fine grain tasks. In addition, the benchmark execution
parameters are selected considering the following points:

1. Have a big enough problem size to gather significant results.

2. Have a reasonable performance in the coarse grain Nanos++ executions.

3. The fine grain is half of coarse grain (increasing the runtime load).

Synthetic Benchmark

The synthetic benchmark creates two waves of NUM TASKS tasks with a duration defined by the
ITERS parameter. Any pair of tasks created from the same wave are independent between them
and the ith−task of the second wave depends on the ith−task of the first wave. This benchmark
is useful to evaluate the adaptability and performance of DAST Runtime when the runtime has a
huge load. The pseudo-code that implements the described pattern can be seen in listing 5.1 and
the resulting task dependence graph in figure 5.1. Each node of figure 5.1 represent a task and the
edges between them the data dependences detected. Finally, the used values for the arguments
are summarized in the table 5.1 with the number of tasks created in each configuration.

1 for (int i = 0; i < NUM_TASKS; i++) {
2 #pragma omp task inout(a[i])
3 foo1(a[i]);
4 }
5 for (int i = 0; i < NUM_TASKS; i++) {
6 #pragma omp task in(a[i]) out(b[i])
7 foo2(a[i], b[i]);
8 }
9 #pragma omp taskwait

Listing 5.1: Pseudo-Code of Synthetic benchmark

User functions:

Edge types:

3

13

Taskwait

4

14

5

15

6

16

7

17

8

18

9

19

10

20

11

21

12

22

foo1(...)

foo2(...)

➝ True dependence | Taskwait | Barrier

Figure 5.1: Synthetic Benchmark task graph showing the data dependences between tasks

21

NUM TASKS
Coarse Grain Fine Grain

ITERS Num. Tasks ITERS Num. tasks
10000 50000 20000 25000 20000

Table 5.1: Synthetic Benchmark execution arguments

Cholesky

The Cholesky benchmark [23] computes the cholesky decomposition of a matrix in parallel. The
application takes two arguments: the matrix dimension (MATRIX SIZE) and the block dimension
(BLOCK SIZE). Therefore, the matrix with MATRIX SIZE∗MATRIX SIZE elements is divided into
sub-matrices with BLOCK SIZE∗BLOCK SIZE elements. After that, each task deals with some
of these sub-blocks. The used values for the MATRIX SIZE and BLOCK SIZE arguments are
summarized in the table 5.2.

Matrix Size Coarse Grain Fine Grain
Block Size Num. Tasks Block Size Num. tasks

8192 256 5984 128 45760

Table 5.2: Cholesky execution arguments

Figure 5.2 shows the data dependences between the tasks created in a small execution of
the benchmark (MATRIX SIZE is 1024 and BLOCK SIZE is 128). The nodes represent the task
instances (each color represents one task type) and the edges between them the data dependences
detected. As can be seen, the benchmark has an irregular pattern with a variable parallelism
among the execution.

Matrix Multiply

The Matrix Multiply (Matmul) benchmark [23] computes the product of two matrices in par-
allel. The application takes three main arguments: the matrix dimension (MATRIX SIZE), the
block dimension (BLOCK SIZE) and the number of repetitions. Therefore, the matrices with
MATRIX SIZE∗MATRIX SIZE elements are divided into sub-matrices with BLOCK SIZE∗BLOCK SIZE

elements. Consequently, each task uses three of these sub-matrices to compute the corresponding
multiplication.

The values for the MATRIX SIZE and BLOCK SIZE arguments used are summarized in the
table 5.3. In all executions, the number of repetitions is set to 1.

Figure 5.3 shows the data dependences between the tasks created in a small execution of the
benchmark (MATRIX SIZE is 256 and BLOCK SIZE is 64). The nodes represent the task instances
and the edges between them the data dependences detected. As can be seen, the benchmark
has a regular pattern with several independent chains that group all tasks working with the same

22

User functions:

Edge types:

3

4

56 7

810 91112 13

1415

161718

19

20

21

22

Taskwait

potrf(...)

trsm(...)

syrk(...)

gemm(...)

➝ True dependence | Taskwait | Barrier

Figure 5.2: Cholesky task graph showing the data dependences between tasks

23

Matrix Size Coarse Grain Fine Grain
Block Size Num. Tasks Block Size Num. tasks

4096 256 4096 128 32768

Table 5.3: Matmul execution arguments

User functions: Edge types:

3

4

5

7

8

9

11

12

13

15

16

17

19

20

21

23

24

25

27

28

29

31

32

33

35

36

37

39

40

41

43

44

45

47

48

49

51

52

53

55

56

57

59

60

61

63

64

65

6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66

Taskwait

task_dgemm(...) ➝ True dependence | Taskwait | Barrier

Figure 5.3: Matmul task graph showing the data dependences between tasks

output block.

Sparse LU

The Sparse LU benchmark [23] computes the Lower Upper (LU) decomposition of a matrix
in parallel. The application takes two arguments: the matrix dimension (MATRIX SIZE) and the
block dimension (BLOCK SIZE). Therefore, the matrix with MATRIX SIZE∗MATRIX SIZE elements
is divided into sub-matrices with BLOCK SIZE∗BLOCK SIZE elements. Moreover, each task deals
with some of these sub-blocks. The used values for the MATRIX SIZE and BLOCK SIZE arguments
are summarized in the table 5.4.

Matrix Size Coarse Grain Fine Grain
Block Size Num. Tasks Block Size Num. tasks

2048 64 1512 32 11472

Table 5.4: Sparse LU execution arguments

Figure 5.4 shows the data dependences between the tasks created in a small execution of
the benchmark (MATRIX SIZE is 1024 and BLOCK SIZE is 256). The nodes represent the task
instances and the edges between them the data dependences detected. As can be seen, the
benchmark has a much more complex and irregular pattern than the Matmul benchmark.

24

User functions:

Edge types:

3

4

5 6

7

8

12 16

9 13 1710 14 18

11

19

Taskwait

29 34 36

20

23 24 25

26

27 28

21 22

15

30

31

32 33

35

lu0(...)

fwd(...)

bdiv(...)

bmod(...)

➝ True dependence | Taskwait | Barrier

⇢ Anti-dependence

Figure 5.4: Sparse LU task graph showing the data dependences between tasks

25

5.3 | Runtime Characterization

This section analyzes the cost of the three runtime functionalities executed by the runtime man-
ager (new, done and delete task) to show how it behaves when the number of worker threads
increases. Also, the same analysis is showed for the cost of lock acquiring in the different runtime
versions.

Requests execution cost

Figure 5.5 shows the average elapsed time in microseconds (y-axis) needed to execute the func-
tions related to each message. These times include the period when the workers are trying to
acquire the lock and maybe waiting for its release. And besides, the results consider different
amounts of workers (x-axis) for each runtime version (Nanos++ baseline, DAST (forced) and
DAST (no locks)). Figure 5.5a shows the elapsed time for the synthetic benchmark implemented
with coarse grain tasks and figure 5.5b for the Matmul with fine grain tasks. Both benchmarks
have a different task dependence pattern and task creation order that influence the cost of the
studied functions. Each value in both plots is the harmonic mean of all times that each function
is executed in one benchmark run for an amount of worker threads. This metric is used instead
an arithmetic mean to discard outliers and show the trends more clearly in each case.

The New task request code takes similar time between the three runtime versions for small
amounts of threads. This is because all of them behave similarly and one thread creates all the
tasks at the beginning. However, as can be seen in figure 5.5, the Nanos++ version increases the
time more than the DAST-based versions with larger numbers of workers because the contention
at shared lock starts to be huge.

The Done task functionality costs clearly show the contention problem. Nanos++ done task
functionality takes between 2 and 4 times the DAST-based runtimes time. Figure 5.5a shows
how with more than one worker Nanos++ runtime version doubles the cost of this functionality
in comparison to the execution time using just one thread. The reason is that several workers try
to access the task dependency graph, using the shared lock, to release the tasks (see figure 3.5)
and this increases the waiting time to get access, preventing the performance. The times in
figure 5.5b show an analog increasing scenario but with smaller relative increments. In any case,
Nanos++ functionalities costs are still twice the execution time of DAST-based runtimes.

For Delete task functions, two different behaviors can be observed depending on the number
of workers. On one hand, with Nanos++ runtime, Delete task functions costs is very small when
running in one worker as can be seen in figure 5.5. The reason is that it exploits much better the
cache hierarchy than DAST scheme because the worker that executes the deletion of the task
is the same that runs and manages it, so, it should have all the information in its cache. On
the other hand, DAST runtime versions present better performance results for larger numbers of
workers since there is not data locality to be exploited.

26

1 12 24
 New

48 59 1 12 24
Done

48 59 1 12 24
Delete

48 59

Request type and Number of Workers

0

4

8

12

16

20

24

28

32

36

40

Ti
m

e
(m

icr
os

ec
on

ds
)

Nanos++
DAST (forced)
DAST (no locks)

(a) Synthetic Benchmark

1 12 24
 New

48 59 1 12 24
Done

48 59 1 12 24
Delete

48 59

Request type and Number of Workers

0

4

8

12

16

20

24

28

32

36

40

Ti
m

e
(m

icr
os

ec
on

ds
)

Nanos++
DAST (forced)
DAST (no locks)

(b) Matmul

Figure 5.5: Execution cost of runtime functions for each DAST request type

27

Lock acquisition cost

To better understand the differences between runtimes, figure 5.6 shows the average elapsed
time in nanoseconds (y-axis) needed to acquire the shared lock and get access to one dependence
graph with different amount of workers (x-axis). The figure shows the results for Nanos++
baseline, DAST (forced) and DAST Runtime. As in figure 5.5, figure 5.6 shows the harmonic
mean of times for the synthetic benchmark (figure 5.6a) and the Matmul (figure 5.6a) with the
same previous granularities.

1 12 24 48 59
Number of Workers

0

150

300

450

600

750

900

1050

1200

Ti
m

e
(n

an
os

ec
on

ds
)

Nanos++
DAST (forced)
DAST Runtime

(a) Synthetic Benchmark

1 12 24 48 59
Number of Workers

0

150

300

450

600

750

900

1050

1200

Ti
m

e
(n

an
os

ec
on

ds
)

Nanos++
DAST (forced)
DAST Runtime

(b) Matmul

Figure 5.6: Acquisition cost of dependences graph lock

One one hand, the elapsed time for the DAST (forced) runtime is always the same, without
matter the number of workers, because the lock is only accessed by DAST thread and there is
not a possible waiting time to acquire the shared lock. On the other hand, the elapsed time
for the Nanos++ runtime increases significantly with the number of workers, due to the major
number of collisions between the threads. In the DAST Runtime results, the elapsed time is equal
to the forced version until the number of workers is large enough and makes the push policies
reject some messages. For that reason, some stalls between the workers and the manager appear
increasing the elapsed time.

The dependence graph lock is acquired several times in each application execution and the
differences shown in the figure 5.6 may become crucial. Moreover, the difference in time between
the both runtime approaches is larger in the figure 5.5 than in figure 5.6 meaning that part of
the improvements on the runtime functionalities execution cost must come from the dependence
graph data locality that is better in the DAST Runtime.

5.4 | Performance Results

In this section, the overall application performance is analyzed when using DAST Runtime. The
speedup results are shown compared to the sequential execution of the same application with the
same parameters. In all figures, the y-axis represents speedup values and the x-axis shows the

28

number of workers for each execution including the master worker thread but not the extra DAST
thread. This comparison is intended to see if the manager can speedup the runtime with the same
amount of resources to execute tasks, it is like the manager is an external element. Moreover, the
results show that running with a larger number of workers does not mean increasing the speedup.
Therefore, the comparison is still fair although DAST Runtime uses one more thread.

Due to the core reservations explained in section 5.1, experiments can be run up to 58 cores
and 1, 2, 3 or 4 worker threads per core. Considering it and depending on the number of threads
per core, x-axis values go from 2 (1 master worker + 1 core with one worker) to 59 (1 master
worker + 58 cores with one worker), 3 (1 master worker + 1 core with two workers) to 117 (1
master worker + 58 cores with two workers), 4 to 175 or 5 to 233 workers.

5.4.1 | Synthetic benchmark

Figure 5.7 and figure 5.8 show a comparison of the speedups obtained for the synthetic bench-
mark with fine grain and coarse grain granularities, respectively, and using the Nanos++, DAST
(forced) and DAST runtimes.

2 4 8 16 32 59
Number of Workers

0

3

6

9

12

15

18

21

24

27

30

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(a) 1 thread per Core

3 7 15 31 63 117
Number of Workers

0

3

6

9

12

15

18

21

24

27

30

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(b) 2 Threads per Core

4 10 22 46 94 175
Number of Workers

0

3

6

9

12

15

18

21

24

27

30

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(c) 3 threads per Core

5 13 29 61 125 233
Number of Workers

0

3

6

9

12

15

18

21

24

27

30

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(d) 4 threads per Core

Figure 5.7: Speedup running Synthetic Benchmark (fine grain tasks)

On one hand, the fine grain results in figure 5.7 show that using more than 16 cores (and not
workers, since using 2, 3, or 4 threads per core does not guarantee the parallel execution of the

29

2 4 8 16 32 59
Number of Workers

0

3

6

9

12

15

18

21

24

27

30

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(a) 1 thread per Core

3 7 15 31 63 117
Number of Workers

0

3

6

9

12

15

18

21

24

27

30

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(b) 2 Threads per Core

4 10 22 46 94 175
Number of Workers

0

3

6

9

12

15

18

21

24

27

30

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(c) 3 threads per Core

5 13 29 61 125 233
Number of Workers

0

3

6

9

12

15

18

21

24

27

30

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(d) 4 threads per Core

Figure 5.8: Speedup running Synthetic Benchmark (coarse grain tasks)

workers) does not improve the speedup. Indeed, it reduces the overall performance. The reason is
that fine granularity makes runtime overheads critical, limiting the speedup. On the other hand,
moving to coarse grain tasks (see figure 5.8) allows improving the speedup when increasing the
number of cores up to 32, independently of the number of threads per core. In this case, the
task size doubles the fine grain task sizes. Bigger task sizes allow overlapping the task execution
with the runtime overheads, hiding them, and improving the overall application speedup.

Both figures 5.7 and 5.8 show the benefits that the application execution takes using the
DAST Runtime from the execution time point of view. Comparing the best speedups of each
version for the same problem size, the same synthetic OmpSs application running over DAST
Runtime has a 26% higher speedup than running over Nanos++ runtime for fine grain tasks, and
a 12% for coarse grain tasks.

Independently of the runtime version, there is a common trend in figure 5.7 and figure 5.8
which is that the best speedups are obtained using only one thread per core. The increment in
the number of threads per core is not reflected in a performance increase. Instead, the more
threads per core used, the less speedup is obtained. The same standstill has been found in most
of the application executions for this architecture because the available resources in each core are
shared between threads cutting the maximum performance. Independently of that, the runtime
management overhead increases with each extra worker and reduces the global performance. For

30

this reason, the real benchmark results that present the same behavior are shown only with one
thread per core. On the other hand, the figure 5.7 and figure 5.8 show that DAST runtime
overcomes DAST (forced) for almost all the cases, so the real benchmarks comparison is focused
on DAST Runtime and the baseline runtime implementation (Nanos++ runtime).

5.4.2 | Real benchmarks

Figure 5.9 shows the speedups in three real benchmarks executions of OmpSs applications running
over Nanos++ and DAST Runtime with fine grained (figure 5.9a, figure 5.9b and figure 5.9c)
and coarse grained (figure 5.9d, figure 5.9e and figure 5.9f) tasks.

2 4 8 16 32 59
Number of Workers

0

5

10

15

20

25

30

35

40

45

50

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(a) Cholesky (FG)

2 4 8 16 32 59
Number of Workers

0

5

10

15

20

25

30

35

40

45

50

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(b) Matmul (FG)

2 4 8 16 32 59
Number of Workers

0

5

10

15

20

25

30

35

40

45

50

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(c) Sparse LU (FG)

2 4 8 16 32 59
Number of Workers

0

5

10

15

20

25

30

35

40

45

50

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(d) Cholesky (CG)

2 4 8 16 32 59
Number of Workers

0

5

10

15

20

25

30

35

40

45

50

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runime

(e) Matmul (CG)

2 4 8 16 32 59
Number of Workers

0

5

10

15

20

25

30

35

40

45

50

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime

(f) Sparse LU (CG)

Figure 5.9: Speedup running real benchmarks with fine grain (FG) and coarse grain (CG) tasks

Fine grain results show that the Nanos++ runtime and the DAST Runtime implementation
achieves similar speedups with a few workers and that our structure increases the peak-speedups
of the three applications. These maximum speedup values are obtained with 59 workers and the
increases are: 19% for the Cholesky, 2% for the Matrix Multiply and 23% for the Sparse LU. That
shows how the gains increase with the complexity of the dependence graph. Indeed, figure 5.9
shows that DAST Runtime overcomes DAST (forced) for almost all the cases. DAST Runtime
balances the task workload and the task dependency contention as expected.

31

Finally, with the only purpose of showing that DAST Runtime is able to achieve the same
performance or better for coarse grain applications, figure 5.9 also shows results for the same real
benchmarks with coarse grain tasks. In particular, for those applications, the chosen coarse grain
tasks help to achieve better performance than for fine grain tasks and the Nanos++ runtime
does not have problems to hide the management of the dependences. Therefore, the DAST
Runtime helps to achieve the same or better performance than Nanos++ runtime for any task
granularity.

5.5 | Limitations

Although the mechanism to avoid some requests increases the performance over the forced run-
time, the performance may still be degraded due to the runtime manager thread underutilization.
As one core of the processor is used to execute the DAST thread instead of a worker thread, the
computational power capacity devoted to the application is reduced. Moreover, the best speedups
over the sequential are achieved with configurations where the centralized manager behaves sim-
ilarly to the baseline implementation. So, the DAST Runtime specially behaves better when fine
grain tasks are used but such tasks granularity has a worst speedup over the sequential.

To tackle the problems that the centralized runtime manager has, the design of a new dis-
tributed implementation became the best option. In such design, the need to avoid some requests
to the runtime should disappear as the manager capacity can increase to process any peak of
requests. Moreover, all threads can proceed as usual and execute applications tasks when there
is a marginal amount of requests to the manager, thus better adapting to the load of the appli-
cation.

32

Distributed Runtime Manager (DDAST)

Chapter 6

A new asynchronous runtime implementation is proposed based on a distributed manager (Dis-
tributed DAST, DDAST) to overcome the problems of the centralized runtime manager (DAST),
which are explained in section 5.5. The idea is that any worker thread can become a DAST
thread and start executing only runtime code. With this approach, all threads can cooperate to
satisfy the pending requests when there are several, and all of them can execute application tasks
when the number of pending requests is small.

The design and the implementation of the asynchronous runtime with the distributed man-
ager are completely developed from scratch in a newer runtime version. However, the knowledge
acquired in the previous design and implementation has been used to isolate the runtime regions
that must become runtime messages and be asynchronously executed. In addition, the implemen-
tation is based on general modules that can be extended to support other runtime functionalities
than the DDAST runtime manager.

The main components of the new asynchronous runtime design are explained as follows:

• Section 6.1 explains the messages (requests) that the worker threads send to the DDAST
and the queues used to transmit/store them.

• Section 6.2 explains the Functionality Dispatcher module introduced in the runtime to
mediate between different components and used by the DDAST.

• Section 6.3 explains the module that implements the DDAST and is registered in the
Functionality Dispatcher.

6.1 | Messages and Queues

In the distributed implementation, the messages sent by the worker threads to the runtime man-
ager can be of two types: the Submit Task Message and the Done Task Message. The first one,

33

the Submit Task Message is sent when a worker thread wants to submit a new task into the
runtime structures to compute its predecessor tasks. The second one, the Done Task Message
is sent when a worker thread finishes the execution of a task and wants to notify the successor
tasks, scheduling them if they become ready.

In contrast with the centralized manager implementation, the Task Deletion request is avoided
now because a new step in the task life cycle is added. This new step is a ”Zombie State” that
is used to coordinate the runtime manager and the worker thread. It works as follows: The first
one, either worker or manager that reaches an execution point where it will not reference the task
anymore marks the task as a zombie. Thus, the next worker or manager, which reaches the same
execution point, will also try to mark the task as a zombie but, as it already is a zombie, instead
will delete the task. So, this optimization synchronizes the worker and the manager reducing the
amount of requests compared to DAST Runtime implementation. In fact, the addition of this
new state has a similar effect to the push policy implemented for the Delete Task request with
the additional benefit that the new state avoids the creation of a message to the manager.

Regarding the messages used in this distributed implementation, they are stored in a queue
meanwhile the runtime manager does not satisfy them. As in the baseline implementation, each
worker thread has its queue where only itself can insert messages, and only the DDAST can pop
messages. It is important to stress that the queue respects the insertion order for the Submit Task
Messages. The order must be satisfied to create the right task dependence graph. The practical
implication is that only one DDAST thread can pop and process Submit Task Messages for each
queue at the same time, otherwise, a newer message could enter in the task dependence graph
before an older one and the task dependences will be wrongly computed. In contrast, the Done
Task Messages can be processed by any DDAST thread concurrently without any restriction.
Therefore, two independent queues are created for each worker thread, one for each message
type.

The Submit Task Message queue requires DDAST threads to acquire the queue before getting
messages from it. If the queue is already acquired by one thread, the acquisition will fail, and the
thread cannot start satisfying the Submit Task Messages in the queue. When a DDAST thread
ends processing the messages, it releases the queue to allow other threads to acquire the queue
and start satisfying messages.

The queue with the Done messages allows any DDAST thread to get a message from it.
In fact, to further increase the parallelism, several threads can try to get messages from the
queue concurrently because the implementation supports it, the pop call will fail only if the queue
becomes empty. Finally, to ensure correctness, DDAST threads check if they had successfully
obtained a message from the queue or if the operation failed because the queue is empty and
then process the message.

34

6.2 | Functionality Dispatcher

The Functionality Dispatcher is a new module introduced in the runtime core by this project that
mediates between different runtime parts. This module easily allows both using the idle resources
to execute any runtime operation and implementing some runtime functionalities without having
dedicated computational resources to them.

Any runtime module can register a callback function in the Functionality Dispatcher during
the runtime initialization or the application execution. Those callbacks are listed into the new
module, which is also notified by the worker threads when they become idle. In current Nanos++
implementation, the worker threads make a busy waiting loop until they obtain tasks to execute.
Therefore, the Functionality Dispatcher tries to take advantage of those idle resources and uses
them to execute the different registered callbacks.

Figure 6.1: Functionality Dispatcher Sequence Diagram Example

Figure 6.1 shows the sequence diagram for the implemented Functionality Dispatcher with
the DDAST runtime manager. During the runtime initialization, the DDAST module registers a
callback function into the Functionality Dispatcher. Therefore, during the application execution, a

35

worker thread that becomes idle notifies the Functionality Dispatcher, which instructs the worker
to execute the DDAST callback function that starts handling the pending messages.

6.3 | DDAST Callback

The distributed runtime manager is implemented in a callback function registered in the Func-
tionality Dispatcher. Therefore, the callback is executed when a SMP worker thread becomes
idle and the Functionality Dispatcher calls the registered function. That a worker thread becomes
idle usually means that the pending messages in the queues must be processed to submit more
tasks into the task graph or trigger the scheduling of some new ready tasks.

The behavior of the callback is parametrized by different constants defined at the beginning
of the application execution. The performance impact and the default values for these variables
are analyzed in section 7.3. Here follows a brief list and explanation of these variables::

• MAX DDAST THREADS.
Maximum number of threads allowed to execute the callback concurrently.

• MAX SPINS.
Number of times that the thread will try to get messages without success before leaving
the callback.

• MAX OPS THREAD.
Maximum number of messages satisfied from the same queue before changing to another
worker thread queue.

• MIN READY TASKS.
Minimum number of ready tasks available to exit the callback.

Listing 6.1 shows the pseudo-code of the callback function. First, the number of threads inside
the DDAST is checked and the function returns if the maximum number is reached (listing 6.1
line 1). After that, the idle thread tries to retrieve messages and satisfy them. This is done until
the minimum number of ready tasks is reached or the thread iterates MAX SPINS times without
finding any message (listing 6.1 line 24). The way to retrieve messages is to iterate through all
worker queues and try to satisfy up to MAX OPS THREAD requests combining requests from the
two possible queues. Note that not all worker thread queues are iterated if the number of ready
tasks becomes higher than MIN READY TASKS (listing 6.1 line 7).

36

1 if (numThreads >= MAX_DDAST_THREADS) return
2 ++numThreads
3
4 do {
5 totalCnt = 0
6 forEach(worker: workers) {
7 if (readyTasks >= MIN_READY_TASKS) break
8
9 cnt = 0

10 if (worker.queueSubmit.acquire()) {
11 while (cnt < MAX_OPS_THREAD && (msg = worker.queueSubmit.pop())) {
12 msg.satisfy()
13 ++cnt
14 }
15 worker.queueSubmit.release()
16 }
17 while (cnt < MAX_OPS_THREAD && (msg = worker.queueOthers.pop())) {
18 msg.satisfy()
19 ++cnt
20 }
21 totalCnt += cnt
22 }
23 spins = totalCnt == 0 ? (spins - 1) : MAX_SPINS
24 } while (spins != 0 && readyTasks < MIN_READY_TASKS)
25 --numThreads

Listing 6.1: DDAST callback pseudo-code

37

38

DDAST Evaluation
Chapter 7

The evaluation of the asynchronous runtime implementation is explained in this chapter. The
objective of the evaluation is to compare the behavior and performance of the new runtime
structure with the original one. To this end, different benchmarks, well known in the High
Performance Computing world, and different machines that have different architectures are used.
The structure of the following sections is:

• Section 7.1 explains the software and hardware environments used to run the different
benchmarks.

• Section 7.2 explains the benchmarks used to test the behavior and performance of the new
design.

• Section 7.3 explains the results of the exploration to tune the DDAST callback parameters.

• Section 7.4 explains the scalability and performance results for each benchmark comparing
the different runtime versions.

7.1 | Environment

The tests have been run in different processor architectures explained in the following sections.
Each section includes the specific software environment used for the architecture. However, a
common criteria for all the architectures has been followed to enhance the evaluation quality,
avoid external inferences and facilitate the reproducibility of the results.

1. The machine’s nodes used during all executions are exclusively reserved for the tests, despite
the number of used cores is smaller than the available.

2. The applications are compiled with the code optimizations enabled. At least, the -O3 flag
is used. If some architecture flags have been used, they are listed in the corresponding
machine section.

39

3. The time measurements are repeated at least 5 times and the best execution time is kept
for each configuration to do the comparisons. Also, the executions have been repeated if
the best timing appears only once.

4. The scheduling policy used in the OmpSs executions is the Distributed Breadth First (DBF).
The DBF policy uses a queue of ready tasks for each thread with an stealing mechanism
[19]. The change is intended to avoid having a huge contention in the global ready tasks
queue.

Intel Xeon Phi (KNL)

The Intel Xeon Phi is a series of processors manufactured by Intel and characterized by its high
parallelism and vectorization capacity. The Knights Landing (KNL) is the second generation
of such processors. Moreover, they are designed to provide a high energy efficiency and binary
compatibility with the legacy x86 compiled applications [24].

The KNL model used in our evaluation is the Intel R© Xeon R© Phi(TM) CPU 7230 which has
64 cores working at 1.30GHz. In addition, the machine has 96GB of main memory distributed in
6 DIMMs. The 16GB of high bandwidth memory integrated in the package are used as a cache.
Therefore, the total amount of available memory is 96GB and is the OS which manages the 16GB
memory as another cache level. Finally, the machine is a self-boot socket version configured in
Quadrant mode [24].

The executions use up to 64 worker threads, which is the number of cores. Although the
processor has hyper-threading and each core can run up to 4 threads per core, the used machine
has the hyper-threading disabled. In the executions with less than 64 cores, the use of the
processor’s resources is maximized. For instance, the cores 0 and 2 are used in a 2-cores execution
because cores 0 and 1 share part of the cache.

The version of the Intel R© Math Kernel Library (Intel(R) MKL) used by the applications is
2017.0.2. The compiler used to compile the applications and the runtimes is the GNU C Compiler
Collection (GCC) version 6.3.0. Moreover, the following set of compiler flags has been used to
optimize the binaries for the KNL architecture:

-march=knl -O3 -mavx512f -mavx512pf -mavx512er -mavx512cd -mfma -malign-data=cacheline

ThunderX (ARM)

The ThunderX is a family of processors developed by Cavium based on the 64-bit ARMv8 archi-
tecture. They directly integrate the support for several interfaces, like 10x10Gbps Ethernet ports
and SATA connections, in the SoC. Therefore, the energy efficiency delivered by the processor is
very promising without limiting the computational capacity [25].

The ThunderX model used in our evaluation is the 48-core variant with 1 thread per core. The
machine has 64GB of main memory. Although the ThunderX processor is intended for the server

40

market, the high number of available cores with a limited power consumption makes it attractive
to the HPC market. The compiler used to natively compile the applications and the runtimes
is the GNU C Compiler Collection (GCC) version 5.3.0. The version of the ARM Performance
Libraries (ARM PL) used by the applications is 2.0.0.

7.2 | Benchmarks

The used benchmarks are explained in the following sections. For each one, its execution argu-
ments are explained and provided with the number of created tasks in each configuration and any
other remarks that may be valuable for reproducibility. In all of them, some timing instructions
are added after the sequential initialization and after the final global taskwait. The wall-clock
time elapsed between these two points is defined as execution time in the rest of the section.

For each benchmark, two different sets of execution parameters are used to create two tasks
granularities: coarse grain tasks and fine grain tasks. In addition, the benchmark execution
parameters are selected considering the following points:

1. Have a big enough problem size to gather significant results. The fastest executions take
around 1.5 seconds.

2. Have a reasonable performance in the coarse grain Nanos++ executions, that means, have
large enough tasks to hide the runtime overheads.

3. The fine grain executions solve the same problem using tasks half the size of the tasks of
the coarse grain executions.

Matrix Multiply

The Matrix Multiply (Matmul) benchmark [23] follows the same implementation described in
section 5.2, and only the argument values have changed. The used values for the MATRIX SIZE

and BLOCK SIZE arguments in each machine are summarized in the table 7.1. In all executions,
the number of repetitions is set to 1.

Machine Matrix Size Coarse Grain Fine Grain
Block Size Num. Tasks Block Size Num. tasks

KNL 8192 512 4096 256 32768
ThunderX 4096 128 32768 64 262144

Table 7.1: Matmul execution arguments

41

N-Body

The N-Body benchmark [26] simulates particles’ movements under some physic forces, such as
gravity. The application takes three arguments: the number of particles (NUM PARTICLES), the
number of time steps (NUM TIMESTEPS) to be simulated and the number of particles per block
(BLOCK SIZE). Therefore, the particles are spread into blocks with BLOCK SIZE particles, which
are used as task input/output. The values for the arguments used in each machine are summarized
in the table 7.2 with the number of tasks created in each configuration.

Machine Num. Num. Coarse Grain Fine Grain
Particles Timesteps Block Size Num. Tasks Block Size Num. tasks

KNL 16384 16 128 262176 64 1048608
ThunderX 16384 16 128 262176 64 1048608

Table 7.2: N-Body execution arguments

Child tasks of Task 3 Child tasks of Task 5
User functions:

Edge types:

3

4

5

6

Taskwait

7

8

9

11

12

13

15

16

17

19

20

21

10141822

Taskwait

23

24

25

31

32

33

27

28

29

35

36

37

26343038

Taskwait

solve_nbody_0(...)

solve_nbody_1(...)

calculate_forces(...)

➝ True dependence | Taskwait | Barrier

⇢ Anti-dependence | Output dependence

Figure 7.1: N-Body task graph showing the data dependences between tasks

Figure 7.1 shows the data dependences between the tasks created in a small execution of the
benchmark (NUM PARTICLES is 4096, NUM TIMESTEPS is 2 and BLOCK SIZE is 512). The nodes
represent the task instances (each color represents one task type) and the edges between them
the data dependences detected. In addition, the dotted squares cluster all tasks created inside
other tasks. The dependence graph is quite similar to the Matmul, with independent chains
of dependent tasks. However, the nested tasks make more critical some of the requests to the
DDAST manager because they may block the application parallelism until they are processed.

42

Sparse LU

The Sparse LU benchmark [23] uses the same implementation described in section 5.2, and only
the argument values have changed. The used values for the MATRIX SIZE and BLOCK SIZE

arguments in each machine are summarized in the table 7.3.

Machine Matrix Size Coarse Grain Fine Grain
Block Size Num. Tasks Block Size Num. tasks

KNL 8192 128 11472 64 89504
ThunderX 8192 128 11472 64 89504

Table 7.3: Sparse LU execution arguments

7.3 | DDAST Tunning

The initial executions with the new runtime structure were intended to find good default values
for the callback parameters explained in section 6.3. To this end, some initial values are prede-
fined, based on a reasonable approximation, and the same execution is repeated changing only
one parameter value. The executions for each parameter are done with all benchmarks and ar-
chitectures, doubling the parameter’s value from 1 up to 128. Also, different amounts of threads
are considered: doubling from 2 up to the machine limit. However, the results are only shown for
the two larger amounts of threads because they are the most interesting as with the maximum
number of threads is when modifications to the parameters most influence the execution time.

Parameter Initial Value Tunned Value
MAX DDAST THREADS ∞ ∞
MAX SPINS 20 4
MAX OPS THREAD 6 8
MIN READY TASKS 4 4

Table 7.4: DDAST parameters values

The predefined values for each parameter before (Initial value) and after (Tunned Value) the
tuning are shown in table 7.4. Using the initial values as default, the following sections present
the results obtained when one of the parameters is modified.

7.3.1 | Maximum number of DDAST threads

The execution time for each benchmark when changing the value of MAX DDAST THREADS pa-
rameter is shown in the plots of figure 7.2, figure 7.3 and figure 7.4. Figure 7.2a, figure 7.3a

43

and figure 7.4a show the execution time in the KNL machine for Matmul, N-Body and Sparse
LU applications respectively. Figure 7.2b, figure 7.3b and figure 7.4b show the time consumed
by the same applications (Matmul, N-Body and Sparse LU respectively) when executed on the
ThunderX machine.

1 2 4 8 16 32 64 Inf. (Def)
MAX_DDAST_THREADS

0

1

2

3

4

5

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (64 threads)
Coarse Grain (32 threads)
Coarse Grain (64 threads)

(a) KNL

1 2 4 8 16 32 64 Inf. (Def)
MAX_DDAST_THREADS

0

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (48 threads)
Coarse Grain (32 threads)
Coarse Grain (48 threads)

(b) ThunderX

Figure 7.2: Matmul execution time changing the MAX DDAST THREADS

1 2 4 8 16 32 64 Inf. (Def)
MAX_DDAST_THREADS

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (64 threads)
Coarse Grain (32 threads)
Coarse Grain (64 threads)

(a) KNL

1 2 4 8 16 32 64 Inf. (Def)
MAX_DDAST_THREADS

0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (48 threads)
Coarse Grain (32 threads)
Coarse Grain (48 threads)

(b) ThunderX

Figure 7.3: N-Body execution time changing the MAX DDAST THREADS

The results show that the smaller execution times are obtained when the value is at least 4.
Moreover, increasing the number of allowed threads in the DDAST callback does not increment
the execution time, thereby limiting the number of threads that can execute runtime functions
makes no sense. As can be seen in the time results with less than four allowed threads, limiting
the number of threads in the DDAST callback can lead to increase the application execution time
for nearly all the benchmarked applications. As a result, the predefined value, which is infinite, is
assumed as the correct default value of the MAX DDAST THREADS parameter.

44

1 2 4 8 16 32 64 Inf. (Def)
MAX_DDAST_THREADS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Ex

ec
ut

io
n

Ti
m

e
(s

)

Fine Grain (32 threads)
Fine Grain (64 threads)
Coarse Grain (32 threads)
Coarse Grain (64 threads)

(a) KNL

1 2 4 8 16 32 64 Inf. (Def)
MAX_DDAST_THREADS

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (48 threads)
Coarse Grain (32 threads)
Coarse Grain (48 threads)

(b) ThunderX

Figure 7.4: Sparse LU execution time changing the MAX DDAST THREADS

7.3.2 | Maximum number of spins

The execution time for each benchmark when changing the value of MAX SPINS parameter is
shown in the plots of figure 7.5, figure 7.6 and figure 7.7. Figure 7.5a, figure 7.6a and figure 7.7a
show the execution time in the KNL machine for Matmul, N-Body and Sparse LU applications
respectively. Figure 7.5b, figure 7.6b and figure 7.7b show the execution times obtained in the
ThunderX machine for Matmul, N-Body and Sparse LU applications respectively.

1 2 4 8 16 20 (Def) 32 64 128
MAX_SPINS

0

1

2

3

4

5

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (64 threads)
Coarse Grain (32 threads)
Coarse Grain (64 threads)

(a) KNL

1 2 4 8 16 20 (Def) 32 64 128
MAX_SPINS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (48 threads)
Coarse Grain (32 threads)
Coarse Grain (48 threads)

(b) ThunderX

Figure 7.5: Matmul execution time changing the MAX SPINS

The results show that the execution time is not affected by the value of MAX SPINS. Regard-
less the values, the execution time is almost constant for each benchmark and task granularity.
However, the parameter can increase the runtime overheads because a large value will retain
the worker threads in the DDAST callback until any other break condition is satisfied. Thus,
the threads are prevented from doing other useful runtime work meanwhile they are idle. But,
if no other callback functions are registered, the best approach may be retain the threads in

45

1 2 4 8 16 20 (Def) 32 64 128
MAX_SPINS

0

2

4

6

8

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (64 threads)
Coarse Grain (32 threads)
Coarse Grain (64 threads)

(a) KNL

1 2 4 8 16 20 (Def) 32 64 128
MAX_SPINS

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (48 threads)
Coarse Grain (32 threads)
Coarse Grain (48 threads)

(b) ThunderX

Figure 7.6: N-Body execution time changing the MAX SPINS

1 2 4 8 16 20 (Def) 32 64 128
MAX_SPINS

0.0

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (64 threads)
Coarse Grain (32 threads)
Coarse Grain (64 threads)

(a) KNL

1 2 4 8 16 20 (Def.) 32 64 128
MAX_SPINS

0

1

2

3

4

5

6
Ex

ec
ut

io
n

Ti
m

e
(s

)

Fine Grain (32 threads)
Fine Grain (48 threads)
Coarse Grain (32 threads)
Coarse Grain (48 threads)

(b) ThunderX

Figure 7.7: Sparse LU execution time changing the MAX SPINS

the DDAST callback until there are some ready tasks. Considering a future scenario where the
Functionality Dispatcher is used to manage more runtime functionalities, the predefined default
value for the MAX SPINS parameter is set to 4.

7.3.3 | Maximum operations per thread

The execution time for each benchmark when changing the value of MAX OPS THREAD parameter is
shown in the plots of figure 7.8, figure 7.9 and figure 7.10. Figure 7.8a, figure 7.9a and figure 7.10a
show the execution time measured in the KNL machine for Matmul, N-Body and Sparse LU
applications respectively. Figure 7.8b, figure 7.9b and figure 7.10b show the execution times
measured in the ThunderX machine for Matmul, N-Body and Sparse LU applications respectively.

The results show that this parameter is application and machine dependent. One one

46

1 2 4 6 (Def) 8 16 32 64 128
MAX_OPS_THREAD

0

1

2

3

4

5

6
Ex

ec
ut

io
n

Ti
m

e
(s

)
Fine Grain (32 threads)
Fine Grain (64 threads)
Coarse Grain (32 threads)
Coarse Grain (64 threads)

(a) KNL

1 2 4 6 (Def) 8 16 32 64 128
MAX_OPS_THREAD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (48 threads)
Coarse Grain (32 threads)
Coarse Grain (48 threads)

(b) ThunderX

Figure 7.8: Matmul execution time changing the MAX OPS THREAD

1 2 4 6 (Def) 8 16 32 64 128
MAX_OPS_THREAD

0

2

4

6

8

10

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (64 threads)
Coarse Grain (32 threads)
Coarse Grain (64 threads)

(a) KNL

1 2 4 6 (Def) 8 16 32 64 128
MAX_OPS_THREAD

0

2

4

6

8
Ex

ec
ut

io
n

Ti
m

e
(s

)

Fine Grain (32 threads)
Fine Grain (48 threads)
Coarse Grain (32 threads)
Coarse Grain (48 threads)

(b) ThunderX

Figure 7.9: N-Body execution time changing the MAX OPS THREAD

hand, the ThunderX results show times much more stables than the KNL results for different
MAX OPS THREAD values. On the other hand, the global execution time decreases in figure 7.8a
with larger values and it increases in figure 7.10a with the same values.

The opposed behaviors shown in KNL are due to the different dependence patterns that each
application has. The execution time may increase with a large value of MAX OPS THREAD if the
ready tasks depend on a Done Request. In this case, a critical request processing may be delayed
because the DDAST threads will process before a large number of requests from different worker
threads. However, the execution time may decrease with large values of MAX OPS THREAD if most
of the requests schedule a new ready task. In this case, the DDAST threads may benefit from
the data locality when processing several requests from the same queue.

Considering the results, a reasonable value for the default value of the MAX OPS THREAD

parameter is 8. In all benchmarks, machines and task granularities, a value of 8 obtains the same

47

1 2 4 6 (Def) 8 16 32 64 128
MAX_OPS_THREAD

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ex

ec
ut

io
n

Ti
m

e
(s

)

Fine Grain (32 threads)
Fine Grain (64 threads)
Coarse Grain (32 threads)
Coarse Grain (64 threads)

(a) KNL

1 2 4 6 (Def.) 8 16 32 64 128
MAX_OPS_THREAD

0

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (48 threads)
Coarse Grain (32 threads)
Coarse Grain (48 threads)

(b) ThunderX

Figure 7.10: Sparse LU execution time changing the MAX OPS THREAD

or a smaller execution time than the predefined value (6). Even there are better parameter values
for some specific cases, the new default value is the best considering all configurations.

7.3.4 | Minimum number of ready tasks

The execution time for each benchmark when changing the value of MIN READY TASKS parameter
is shown in the plots of figure 7.11, figure 7.12 and figure 7.13. Figure 7.11a, figure 7.12a and
figure 7.13a show the execution time obtained in the KNL machine for Matmul, N-Body and
Sparse LU applications respectively. Figure 7.11b, figure 7.12b and figure 7.13b show the times
measured in the ThunderX machine for Matmul, N-Body and Sparse LU applications respectively.

1 2 4 (Def) 8 16 32 64 128
MIN_READY_TASKS

0

1

2

3

4

5

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (64 threads)
Coarse Grain (32 threads)
Coarse Grain (64 threads)

(a) KNL

1 2 4 (Def) 8 16 32 64 128
MIN_READY_TASKS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (48 threads)
Coarse Grain (32 threads)
Coarse Grain (48 threads)

(b) ThunderX

Figure 7.11: Matmul execution time changing the MIN READY TASKS

The results show that this parameter behaves differently in each benchmark and machine. As
for the MAX OPS THREAD parameter, the different task dependence patterns result in a different

48

1 2 4 (Def) 8 16 32 64 128
MIN_READY_TASKS

0

2

4

6

8

10
Ex

ec
ut

io
n

Ti
m

e
(s

)

Fine Grain (32 threads)
Fine Grain (64 threads)
Coarse Grain (32 threads)
Coarse Grain (64 threads)

(a) KNL

1 2 4 (Def) 8 16 32 64 128
MIN_READY_TASKS

0

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (48 threads)
Coarse Grain (32 threads)
Coarse Grain (48 threads)

(b) ThunderX

Figure 7.12: N-Body execution time changing the MIN READY TASKS

1 2 4 (Def) 8 16 32 64 128
MIN_READY_TASKS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fine Grain (32 threads)
Fine Grain (64 threads)
Coarse Grain (32 threads)
Coarse Grain (64 threads)

(a) KNL

1 2 4 (Def.) 8 16 32 64 128
MIN_READY_TASKS

0

1

2

3

4

5

6
Ex

ec
ut

io
n

Ti
m

e
(s

)

Fine Grain (32 threads)
Fine Grain (48 threads)
Coarse Grain (32 threads)
Coarse Grain (48 threads)

(b) ThunderX

Figure 7.13: Sparse LU execution time changing the MIN READY TASKS

behavior depending on the benchmark. Moreover, the times are similar regardless the parameter
value in the ThunderX machine, and they change in the KNL machine. The results show that
the predefined default value for the MIN READY TASKS parameter, which is 4, delivers a good
execution time overall configurations.

7.4 | Performance Comparison

The obtained scalability/performance results, for each benchmark, are explained in the following
sections. The DDAST parameters values used in all executions are the Tunned Values summarized
in table 7.4. The results are shown for 4 different runtime versions/configurations:

• Nanos++.

49

Baseline OmpSs runtime (version 0.11a).

• DAST (forced).
DAST Runtime with the request push policies disabled (mandatory submission of requests).

• DAST Runtime.
Runtime with the centralized runtime manager implementation (DAST). This version is
implemented on top of Nanos++ runtime (version 0.7.2).

• DDAST Runtime.
Runtime with the distributed runtime manager implementation (DDAST). This version is
implemented on top of Nanos++ runtime (version 0.11a).

All execution traces shown in the following sections contain the initial and end time in the
x-axes (time) labels. Despite the initial and end timestamps may not match between executions
with different runtimes, any pair of traces from different runtimes intended to be compared have
the same time duration. That different initial/final times are due to the variable startup overheads
that may change between executions, thereby the initial time is adjusted to match the point where
the execution of the first task starts. Also, the end time is defined by the initial time plus the
required time to show all task executions in all traces of the different runtimes.

7.4.1 | Matrix Multiply

The speedup over the sequential version for the Matmul benchmark is shown in figure 7.14 and
figure 7.15. One one hand, figure 7.14a and figure 7.15a show the fine grain results for KNL and
ThunderX respectively. On the other hand, figure 7.14b and figure 7.15b show the coarse grain
results for KNL and ThunderX respectively. In any case, all of them show the scalability when
increasing the number of threads with the same benchmark input (strong scaling).

2 4 8 16 32 64
Number of Threads

0

4

8

12

16

20

24

28

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime
DDAST Runtime

(a) Fine grain

2 4 8 16 32 64
Number of Threads

0

4

8

12

16

20

24

28

32

36

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime
DDAST Runtime

(b) Coarse Grain

Figure 7.14: Matmul scalability in KNL

50

2 4 8 16 32 48
Number of Threads

0

4

8

12

16

20

24

28

32

36
Sp

ee
du

p
ov

er
 S

eq
.

Nanos++
DAST (forced)
DAST Runtime
DDAST Runtime

(a) Fine grain

2 4 8 16 32 48
Number of Threads

0

4

8

12

16

20

24

28

32

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime
DDAST Runtime

(b) Coarse Grain

Figure 7.15: Matmul scalability in ThunderX

Figure 7.14 shows a significant performance improvement (∼40% for fine grain and ∼30% for
coarse grain) when using the DDAST Runtime in comparison to the Nanos++ baseline. Moreover,
the DDAST Runtime outperforms the DAST variants for both benchmark configurations. The
huge difference between the Nanos++ and DDAST Runtime is not only due to the reduction of
runtime structures contention. This can be understood analyzing the execution trace of those
runs. Figure 7.16 and figure 7.17 show an execution trace of 50ms duration for the fine grain
Matmul benchmark in KNL. In these figures, each row presents the state of one thread where
pink means running a task, red means running the main task and sky-blue means other actions.
Comparing both figures, the execution of the tasks takes less time in the DDAST Runtime than
in the Nanos++ runtime (∼9 ms vs. ∼6 ms, in average). The difference is due to better
data locality that can be explained by the way each approximation accesses the data: Nanos++
runtime is accessing the runtime data structures between two task executions and therefore the
runtime is ”polluting” the thread caches with its data. In contrast, the DAST runtimes avoid
those accesses by their asynchronous approach.

Figure 7.16: Fine grain Matmul execution trace on KNL with 64 threads and Nanos++

51

Figure 7.17: Fine grain Matmul execution trace on KNL with 64 threads and DDAST

Figure 7.15a shows even a larger performance increase between Nanos++ and DDAST Run-
time for the fine grain executions (∼70%). Nanos++ reduces the performance when the number
of used threads is increased from 32 to 48. In contrast, the DDAST is able to take benefit of the
extra resources and increase the application performance. On the other side, the DAST (forced)
runtime cannot handle all requests limiting the application parallelism and the DAST Runtime is
only able to achieve a Nanos++ similar performance.

Nanos++ and DAST runtimes have a similar performance in figure 7.15b where the coarse
grain tasks are used. The DAST versions have the worst performance in all thread amounts
because the implementation uses only one thread as runtime manager. Therefore, the reduction
of available computational resources may become a problem if the manager is not occupied. This
behavior can be seen in the two thread results of figure 7.14 and figure 7.15 where the DAST
runtime versions only have half of the Nanos++ runtime performance.

(a) Nanos++ (b) DDAST

Figure 7.18: Evolution of the number of tasks in-graph on KNL with 64 threads for fine grain
Matmul

Despite the explicit differences between Nanos++ and DDAST Runtime in performance terms,
they have other implicit (or internal) behavior differences. Figure 7.18 shows the evolution during
the execution (x-axis) of the number of tasks in the dependence task graph (y-axis) and the
figure 7.19 shows the number of ready tasks at each moment for the same period. All of them
have the same duration for the x-axes (5 seconds) but different scales in the y-axes due to the
huge value differences. Therefore, figure 7.18a and figure 7.18b use the range [0, 12000] for
the number of tasks. Figure 7.19a uses the range [0, 350] and figure 7.19b [0, 50], both axes

52

(a) Nanos++ (b) DDAST

Figure 7.19: Evolution of the number of ready tasks on KNL with 64 threads for fine grain
Matmul

are number of tasks. One one hand, Nanos++ runtime has almost a pyramid shaped evolution
where a huge amount of tasks are concurrently managed in the task graph (figure 7.18a) and
ready queues (figure 7.19a). In fact, the evolution is not a perfect pyramid due to a trace flush
to disk as figure 7.18 and figure 7.19 are extracted from execution traces. The flush caused that
the main thread temporally interrupted the task creation. On the other hand, DDAST Runtime
has a roof shaped evolution (figure 7.18b and figure 7.19b) where only the minimum amount
of tasks needed to discover some parallelism are used; the rest are kept in the manager queues.
This difference may greatly influence the runtime overheads which are related to the number of
elements that should be managed in the runtime structures.

7.4.2 | N-Body

The speedup of the different runtimes over the sequential version for the N-Body benchmark is
shown in figure 7.20 and figure 7.21. Figure 7.20a and figure 7.21a show the fine grain results for
KNL and ThunderX respectively. Figure 7.20b and figure 7.21b show the coarse grain results for
KNL and ThunderX respectively. All of them show the scalability when increasing the number of
threads while keeping the size of the input (strong scaling).

The fine grain results show a behavior similar to the Matmul results explained in section 7.4.1.
In both figures (7.20a and 7.21a), Nanos++ runtime results show a performance slowdown when
more than 32 worker threads are used. In contrast, the DDAST Runtime increases the overall
performance or, at least, keeps the same one.

The coarse grain results show a different scenario with similar performances between the
runtimes. Up to 16 threads, Nanos++ and DDAST behave similar and DAST versions fail due
to the manager underutilization. With 32 threads, the manager thread in DAST runtimes is
fully utilized, thereby the low processing latency of a dedicated manager thread provides the best
performance. Finally, with all cores is use (64), the throughput of requests exceeds the DAST
(forced) capacity but the DAST Runtime and DDAST Runtime can cope with the requests
increasing the overall performance.

Figure 7.22 and figure 7.23 show the execution trace of N-Body with coarse grain tasks in
ThunderX for Nanos++ and DDAST respectively. However, only two timesteps are simulated
instead of the value provided in table 7.2. The traces show executions with 48 threads and the

53

2 4 8 16 32 64
Number of Threads

0

3

6

9

12

15

18

21
Sp

ee
du

p
ov

er
 S

eq
.

Nanos++
DAST (forced)
DAST Runtime
DDAST Runtime

(a) Fine grain

2 4 8 16 32 64
Number of Threads

0

5

10

15

20

25

30

35

40

45

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime
DDAST Runtime

(b) Coarse Grain

Figure 7.20: N-Body scalability in KNL

2 4 8 16 32 48
Number of Threads

0

3

6

9

12

15

18

21

24

27

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime
DDAST Runtime

(a) Fine grain

2 4 8 16 32 48
Number of Threads

0

5

10

15

20

25

30

35

40
Sp

ee
du

p
ov

er
 S

eq
.

Nanos++
DAST (forced)
DAST Runtime
DDAST Runtime

(b) Coarse Grain

Figure 7.21: N-Body scalability in ThunderX

duration (time, x-axes) is adjusted to be the same in both figures. Each line represents a worker
thread and the different colors represent the thread state: sky-blue for IDLE state and other colors
for the different task types execution. For instance, the brown regions represent the execution
of solve nbody 0 top level tasks which execution create the calculate forces children tasks
(both shown in figure 7.1) that are executed in the pink regions.

The execution traces show that the threads execute the tasks at the same throughput that
are created. During each timestep, the execution of the brown task ends almost at the same time
than pink tasks, which are created by the first one. In this case, the number of ready tasks is near
to zero all the time and the maximum peaks go up to 5 ready tasks as can be seen in figure 7.24,
which shows the number of ready tasks (y-axes) for an small execution region of 30 miliseconds
(x-axes) for both runtimes. This is a different behavior than the shown in the Matmul traces,
and in this scenario the DDAST is able to reduce the timestep execution time as traces show.

54

Figure 7.22: Coarse grain N-Body execution trace on ThunderX with 48 threads and Nanos++

Figure 7.23: Coarse grain N-Body execution trace on ThunderX with 48 threads and DDAST

However, the smaller benchmark execution time is not due to a fast task execution, it is due to
the faster execution of the brown tasks than before.

Finally, figure 7.25 shows the number of tasks in graph (y-axes) evolution during the entire two
timesteps executions for Nanos++ and DDAST Runtime. These traces use the same time scale as
figure 7.22 and figure 7.23. The requests to the runtime manager are quickly processed because
the worker threads become idle very frequently. This, allows the DDAST Runtime increase the
throughput of task submission and the number of tasks in the dependence graph increases respect
to the Nanos++ baseline. Moreover, the two brown execution regions in figure 7.23 are shorter
than the ones in figure 7.22, thereby the creation and submission of children tasks is faster in
the DDAST Runtime than in the Nanos++ runtime. In addition, the same behavior has been
observed in the fine grain executions of the same benchmark explaining the better performance
results of DDAST.

55

(a) Nanos++ (b) DDAST

Figure 7.24: Evolution of the number of ready tasks on ThunderX with 48 threads for coarse
grain N-Body

(a) Nanos++ (b) DDAST

Figure 7.25: Evolution of the number of tasks in-graph on ThunderX with 48 threads for coarse
grain N-Body

7.4.3 | Sparse LU

The speedup over the sequential version for the Sparse LU benchmark is shown in figure 7.26 and
figure 7.27. Figure 7.26a and figure 7.27a show speedup obtained by the different runtimes against
the sequential version of the fine grain configuration of SparseLU in the KNL and ThunderX
machines respectively. Figure 7.26b and figure 7.27b show speedup obtained by the different
runtimes against the sequential version of the coarse grain configuration of SparseLU for KNL
and ThunderX respectively. All of them show the scalability obtained when increasing the number
of threads while keeping the benchmark input size (strong scaling).

Regardless the task granularity, all runtimes provide a reasonable scalability in this benchmark.
The worst one is the DAST (forced) runtime due to its saturation problem, specifically in the fine
grain configuration. The data dependences in this benchmark create an irregular task graph that
enables the runtime to hide its overhead much better than the other benchmarks. Therefore, the
improvement margin for our asynchronous runtime mechanism is smaller. However, the results
show that even in this situation the DDAST Runtime is able to achieve a performance similar to
Nanos++ because the request handling overheads are also hidden.

Figure 7.28 and figure 7.29 show the execution trace of Sparse LU with coarse grain tasks in
ThunderX for Nanos++ and DDAST respectively. Each line represents a worker thread (thread
1 to thread 48) and the different colors represent the thread state: sky-blue for IDLE state and
other colors for the different task types execution. For instance, the yellow regions represent the
execution of main task whose execution creates the other children tasks that are executed in the
brown, pink and green regions.

56

2 4 8 16 32 64
Number of Threads

0

6

12

18

24

30

36

42

48

54
Sp

ee
du

p
ov

er
 S

eq
.

Nanos++
DAST (forced)
DAST Runtime
DDAST Runtime

(a) Fine grain

2 4 8 16 32 64
Number of Threads

0

8

16

24

32

40

48

56

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime
DDAST Runtime

(b) Coarse Grain

Figure 7.26: Sparse LU scalability in KNL

2 4 8 16 32 48
Number of Threads

0

5

10

15

20

25

30

35

40

45

Sp
ee

du
p

ov
er

 S
eq

.

Nanos++
DAST (forced)
DAST Runtime
DDAST Runtime

(a) Fine grain

2 4 8 16 32 48
Number of Threads

0

5

10

15

20

25

30

35

40

45
Sp

ee
du

p
ov

er
 S

eq
.

Nanos++
DAST (forced)
DAST Runtime
DDAST Runtime

(b) Coarse Grain

Figure 7.27: Sparse LU scalability in ThunderX

The execution traces show that both runtimes follow similar patterns. The major differences
are: First, the execution of the main task (yellow regions) is shorter in the DDAST trace, it goes
from ∼760ms in Nanos++ to ∼510ms in DDAST Runtime. Secondly, in the Nanos++ trace,
the execution of green and pink tasks are joined in big chunks. However, in the DDAST Runtime
they are disperse along all the execution and threads. Finally, in the DDAST execution, there is
a point when almost all threads become idle.

The latter behavior can be explained by the fastest task managing of DDAST. Figure 7.30
shows three execution traces for the small portion of the DDAST execution when almost all
threads become idle. Figure 7.30a shows the tasks that are executed in each threads, figure 7.30b
shows the number of in-graph tasks and 7.30c shows the number of ready tasks. At this point,
the explained problem that involves tasks openning parallelism and processing requests at the
same time can be seen. Figure 7.30c shows that the number of ready tasks becomes nearly

57

Figure 7.28: Coarse grain Sparse LU execution trace on ThunderX with 48 threads and
Nanos++

Figure 7.29: Coarse grain Sparse LU execution trace on ThunderX with 48 threads and DDAST

zero for a relative long portion of time. Therefore, almost all threads are idle as can be seen in
figure 7.30a, so they start to process the pending requests to the runtime manager. In addition,
several tasks are added to the task dependence graph as can be seen in figure 7.30b but their
data dependences are not satisfied so the tasks do not become ready. They do so when the Task
Finalization requests of the critical tasks are processed, at this point the number of ready tasks
suddenly increases from zero to more than 100 as can be seen in the ready tasks trace.

The evolution along all the execution time for the number of tasks in-graph and ready tasks is
shown in figure 7.31 and figure 7.32 respectively. Each figure contains a trace for the Nanos++
and the DDAST Runtime using the same elapsed time of figure 7.28 and figure 7.29. The
evolution of those parameters is equivalent to the observed in the Matmul benchmark. The
number of in-graph tasks has a pyramid shaped evolution in the Nanos++ runtime and a plain
shape with small peaks in the DDAST Runtime.

58

(a) Tasks execution

(b) Number of in-graph tasks (c) Number of ready tasks

Figure 7.30: Coarse grain Sparse LU partial execution traces on ThunderX with 48 threads and
DDAST

(a) Nanos++ (b) DDAST

Figure 7.31: Evolution of the number of tasks in-graph on ThunderX with 48 threads for coarse
grain N-Body

(a) Nanos++ (b) DDAST

Figure 7.32: Evolution of the number of ready tasks on ThunderX with 48 threads for coarse
grain Sparse LU

59

60

Conclusion

Chapter 8

This master thesis results form the fact that multicore processors have become popular and are
present in almost any electronic device nowadays. Task-based parallel programming models, like
OmpSs, are one easy way to use such processor architectures by simply annotating the sequential
applications’ source code. However, the runtime libraries that support such models present a
contention problem when the number of threads grows to some tens. As current many-core
processors, the future processors are expected to have several cores; thereby the runtimes may
become a bottleneck to exploit the applications’ performance.

This master thesis uses the OmpSs runtime (Nanos++) as a baseline to implement the master
thesis proposals. The first contribution is the extension and implementation of an asynchronous
runtime structure based on a centralized runtime manager. In particular, this centralized runtime
manager has a new organization to avoid the contention problem in the runtime structure ac-
cesses. In this organization, the threads request the runtime structures modification instead of
directly doing the changes. The requests are satisfied by a centralized runtime manager that is
implemented using an extra thread which only executes runtime code. This thesis contribution
allows the runtime to keep its original structure (where the worker threads directly modify the run-
time structures) when it is considered better than the asynchronous version. This idea arose from
the limitations seen in the initial implementation in [1] where the centralized runtime manager
cannot satisfy the requests fast enough and becomes a bottleneck that limits the application’s
performance. However, the characterization and performance evaluation of this first contribution
showed performance issues depending on the target architecture and the application.

The analysis of the first contribution and its performance issues leads to the second contribu-
tion of the master thesis, which is a new design and implementation of the asynchronous runtime
structure based on a distributed runtime manager. The philosophy is the same as in the previous
implementation. It is based on requests from the worker threads to the runtime manager, which
modifies the runtime structures handling the requests. In contrast to the previous implementation
based on a reserved thread for the manager, this new design in based on the idea that any thread
should be allowed to become a manager thread if needed. To implement the distributed runtime
manager, the runtime core is extended with new generic modules that provide the possibility of

61

using the idle worker threads to implement runtime services. Moreover, the new runtime man-
ager can be parametrized and outperforms the previous contribution thanks to its parallel and
distributed characteristics.

Future Work

This master thesis is part of an ongoing project, so the work does not end with this thesis. As
it can be seen in the performance evaluation, the distributed runtime manager implementation
outperforms the centralized runtime manager one. Therefore, the future development of the
asynchronous runtime model will be focused on the novel distributed design. The two main
future work lines are: extend and improve the current manager implementation and reuse the
new modules added to the runtime core in other runtime functionalities.

The manager implementation can be extended by allowing only a subset of the worker threads
to become manager threads. This approach may be interesting in a heterogeneous many-core
architecture, similar to current big.LITTLE ARM processors [27]. Besides, the execution of the
runtime manager may be interesting in some other points rather than when a worker thread
becomes idle. This extension will require new points where the threads notify the Functionality
Dispatcher about their state or execution point. For example, the Functionality Dispatcher may
be called when a worker thread reaches a taskwait to execute a reduced subset of callbacks with
a high priority.

The new modules introduced in the runtime core are only used to implement the DDAST run-
time manager for now. However, its usage to implement other runtime services will be evaluated.
For example, the new callback could be utilized to offload tasks to external accelerators by the
corresponding architecture plugin. The current Nanos++ implementation is based on a particular
helper thread for each accelerator that handles the needed data copies into the accelerator address
space and launches the kernel execution. An implementation based on a callback registration into
the Functionality Dispatcher would allow any thread to take care of the tasks associated with the
accelerators and also to execute tasks providing a better load balance between all the threads.
This behavior would be specially beneficient for small systems with specific accelerators (like the
ones used in low-power embedded systems) where it would allow them to use all its resources
while keeping their power consumption at bay.

62

Bibliography

[1] Jaume Bosch Pons. Reorganització del runtime Nanos++. B.S. thesis, Universitat
Politècnica de Catalunya, 2015. URL http://hdl.handle.net/2117/77250.

[2] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-0782. doi: 10.1145/
1327452.1327492.

[3] L. Dagum and R. Menon. OpenMP: an Industry Standard API for Shared-Memory Program-
ming. Computational Science Engineering, IEEE, 5(1):46–55, Jan 1998. ISSN 1070-9924.
doi: 10.1109/99.660313.

[4] John E. Stone, David Gohara, and Guochun Shi. OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems. Computing in Science & Engineering, 12(3):66–73,
2010.

[5] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesus Labarta. Hierarchical Task-Based
Programming With StarSs. Int. J. High Perform. Comput. Appl., 23(3):284–299, August
2009. ISSN 1094-3420. doi: 10.1177/1094342009106195.

[6] Jaume Bosch, Xubin Tan, Carlos Álvarez, Daniel Jiḿınez-Gonźılez, Xavier Martorell, and
Eduard Ayguadé. Characterizing and Improving the Performance of Many-Core Task-Based
Parallel Programming Runtimes. In Emerging Parallel and Distributed Runtime Systems and
Middleware (IPDRM) Annual Workshop, page to appear. IEEE, 2017.

[7] Xubin Tan, Jaume Bosch, Daniel Jiḿınez-Gonźılez, Carlos Álvarez, Eduard Ayguadé, and
Mateo Valero. Performance analysis of a hardware accelerator of dependence management
for task-based dataflow programming models. In Performance Analysis of Systems and
Software (ISPASS), 2016 IEEE International Symposium on, pages 225–234. IEEE, 2016.

[8] Xubin Tan, Jaume Bosch, Miquel Vidal, Carlos Álvarez, Daniel Jiḿınez-Gonźılez, Eduard
Ayguadé, and Mateo Valero. General Purpose Task-Dependence Management Hardware
for Task-based Dataflow Programming Models. In International Parallel and Distributed
Processing Symposium (IPDPS), page to appear. IEEE, 2017.

63

http://hdl.handle.net/2117/77250

[9] Javier Bueno, Luis Martinell, Alejandro Duran, Montse Farreras, Xavier Martorell, Rosa M
Badia, Eduard Ayguade, and Jesús Labarta. Productive cluster programming with ompss.
In Euro-Par 2011 Parallel Processing, pages 555–566. Springer, 2011.

[10] Artur Podobas, Mats Brorsson, and Vladimir Vlassov. TurboB LYSK: scheduling for improved
data-driven task performance with fast dependency resolution. In Using and Improving
OpenMP for Devices, Tasks, and More, pages 45–57. Springer, 2014.

[11] Chuck Pheatt. Intel R© Threading Building Blocks. J. Comput. Sci. Coll., 23(4):298–298,
April 2008. ISSN 1937-4771. URL http://dl.acm.org/citation.cfm?id=1352079.

1352134.

[12] Laxmikant V. Kale and Sanjeev Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In Proceedings of the Eighth Annual Conference on Object-
oriented Programming Systems, Languages, and Applications, OOPSLA ’93, pages 91–108,
New York, NY, USA, 1993. ACM. ISBN 0-89791-587-9. doi: 10.1145/165854.165874. URL
http://doi.acm.org/10.1145/165854.165874.

[13] Fahimeh Yazdanpanah, Carlos Álvarez, Daniel Jiménez-González, and Yoav Etsion. Hybrid
dataflow/von-Neumann architectures. Parallel and Distributed Systems, IEEE Transactions
on, 25(6):1489–1509, 2014.

[14] Gilberto Contreras and Margaret Martonosi. Characterizing and improving the performance
of intel threading building blocks. In Workload Characterization, 2008. IISWC 2008. IEEE
International Symposium on, pages 57–66. IEEE, 2008.

[15] T. Dallou, A. Elhossini, B. Juurlink, and N. Engelhardt. Nexus#: A Distributed Hardware
Task Manager for Task-Based Programming Models. In International Parallel and Distributed
Processing Symposium (IPDPS), 2015 IEEE International, pages 1129–1138, May 2015. doi:
10.1109/IPDPS.2015.79.

[16] Mateo Valero, Miquel Moreto, Marc Casas, Eduard Ayguadé, and Jesus Labarta. Runtime-
Aware Architectures: A First Approach. Supercomputing frontiers and innovations, 1(1),
2014. ISSN 2313-8734.

[17] Alejandro Duran, Edurad Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell, Xavier
Martorell, and Judit Planas. OmpSs: A PROPOSAL FOR PROGRAMMING HETEROGE-
NEOUS MULTI-CORE ARCHITECTURES. Parallel Processing Letters, 21(02):173–193,
2011. doi: 10.1142/S0129626411000151.

[18] Javier Bueno Hedo. Run-time support for multi-level disjoint memory address spaces. 2015.

[19] Programming Models Group BSC. OmpSs User Guide. https://pm.bsc.es/ompss-docs/
user-guide/, May 2017.

[20] Programming Models Group BSC. Mercurium C/C++/Fortran source-to-source compiler.
https://github.com/bsc-pm/mcxx, May 2017.

64

http://dl.acm.org/citation.cfm?id=1352079.1352134
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://doi.acm.org/10.1145/165854.165874
https://pm.bsc.es/ompss-docs/user-guide/
https://pm.bsc.es/ompss-docs/user-guide/
https://github.com/bsc-pm/mcxx

[21] Programming Models Group BSC. Nanos++ Runtime Library. https://github.com/

bsc-pm/nanox, May 2017.

[22] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan
Wang. MIC Hardware and Software Architecture. In High-Performance Computing on the
Intel R© Xeon Phi, pages 13–56. Springer, 2014.

[23] Computer Science Department BSC. BSC Application Repository. https://pm.bsc.es/

projects/bar/wiki/Applications, April 2017.

[24] A. Sodani. Knights landing (KNL): 2nd Generation Intel R© Xeon Phi processor. In 2015
IEEE Hot Chips 27 Symposium (HCS), pages 1–24, Aug 2015. doi: 10.1109/HOTCHIPS.
2015.7477467.

[25] Linley Gwennap. Thunderx Rattles Server Market. Microprocessor Report, 29(6):1–4, 2014.

[26] Programming Models Group BSC. BAR-Benchmarks [at] INTERTWinE. https://pm.bsc.
es/gitlab/ompss/bar-benchmarks/, April 2017.

[27] Peter Greenhalgh. big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7. ARM White
paper, 17, 2011.

65

https://github.com/bsc-pm/nanox
https://github.com/bsc-pm/nanox
https://pm.bsc.es/projects/bar/wiki/Applications
https://pm.bsc.es/projects/bar/wiki/Applications
https://pm.bsc.es/gitlab/ompss/bar-benchmarks/
https://pm.bsc.es/gitlab/ompss/bar-benchmarks/

	Introduction
	Motivation
	Objectives
	Published Articles
	Document structure

	Related Work
	OmpSs: A Task-Based Parallel Programming Model
	The Programming Model
	Mercurium
	Nanos++

	Centralized Runtime Manager (DAST)
	Forced Manager
	Hybrid Manager

	DAST Evaluation
	Environment
	Benchmarks
	Runtime Characterization
	Performance Results
	Synthetic benchmark
	Real benchmarks

	Limitations

	Distributed Runtime Manager (DDAST)
	Messages and Queues
	Functionality Dispatcher
	DDAST Callback

	DDAST Evaluation
	Environment
	Benchmarks
	DDAST Tunning
	Maximum number of DDAST threads
	Maximum number of spins
	Maximum operations per thread
	Minimum number of ready tasks

	Performance Comparison
	Matrix Multiply
	N-Body
	Sparse LU

	Conclusion
	Bibliography

