
Out-of- Order Vector Architectures

Roger Espasa, Mateo Valero* James E. Smith+

Abstract

Computer Architecture Dept.
U. Politkcnica de Catalunya-Barcelona

Dept. of Electrical & Computer Engr.
University of Wisconsin-Madison

{ roger,mateo}@ac.upc.es Madison, WI 53706
http://www.ac.upc.es/hpc jes@ece.wisc.edu

Register r enaming and out-of-order in s t ruc t ion is-
sue are n o w commonly used in superscalar processors.
T h e s e technzques can also be used t o significant advan-
tage in vector processors, as th i s paper shows. Perfor-
mance i s improved and available m e m o r y bandwidth
i s used more eflectzvely. Uszng a trace driven s i m u -
lat ion 'we compare a convent ional vector imp lemen ta -
t i o n , based o n the C o n v e x C3400, with a n out-of-order,
regzster renamzng, uector imp lemen ta t ion . W h e n the
n u m b e r of physzcal regzsters is above 12, out-of-order
execut ion coupled with register r enaming provides a
speedup of 1.24-1.7'2 f o r realistic m e m o r y latencies.
Out-of-order techniques also tolerate m a i n m e m o r y la-
t enc ie s of 100 cycles w i th a performauce degradation
less t h a n 6%. T h e m e c h a n i s m s used f o r ,register
r enaming and out-of-order issue can be used t o sup-
port precise in t e r rup t s - generally a di@cult problem
in vecior mach ines . W h e n precise in t e r rup t s are i m -
p l emen ted , there zs typically less t h a n a 10% degrada-
t i o n i n performance. A n e w technique based o n reg-
aster r enaming i s targeted at dynamical ly e l iminat ing
spil l code; thas techn?que i s shown t o provide a n extra
speed,up ranging between 1.10 and 1.20 while reducing
total m e m o r y t r a f i c b y a n average of 1 5 2 0 % .

1 Introduction

Vector architectures have been used for many years
for high performance numerical applications - an area
where they still excel. The first vector machines were
supercomputers using memory-to-memory operation,
but vector machines only became commercially suc-
cessful with the addition of vector registers in the
Cray-l [la]. Following the Cray-1, a number of vec-
tor machines have been designed and sold, from su-
percomputers with very high vector bandwidths [8]
to more modest mini-supercomputers. More recently,

*This work was supported by the Ministry of Education of
Spain under contract 0429/95, by CIRIT grant BEAI96/11/124
and by the CEPBA.

+This work was supported in part by NSF Grant MIP-
9505853.

the value of vector architectures for desktop applica-
tions is being recognized. In particular, many DSP
and multimedia applications - graphics, compression,
encryption - are very well suited for vector implemen-
tation [l]. Also, research focusing on new processor-
memory organizations, such as IRAM [lo], would also
benefit from vector technology.

Studies in recent years [13, 5, 111, however, have
shown performance achieved by vector architectures
on real programs falls short of what should be achieved
by considering available hardware resources. Func-
tional unit hazards and conflicts in the vector register
file can make vector processors stall for long periods of
time and result in latency problems similar to those in
scalar processors. Each time a vector process,or stalls
and the memory port becomes idle, memory band-
width goes unused. Furthermore, latency tolerance
properties of vectors are lost: the first load instruc-
tion at the idle memory port exposes the full memory
latency.

These results suggest a need to improve the memory
performance in vector architectures. Unfortunately,
typical hardware techniques used in scalar processors
to improve memory usage and reduce memory latency
have not always been useful in vector architectures.
For example, da ta caches have been studied [9, 61;
however, the results are mixed, with performance gain
or loss depending on working set sizes and the fraction
of non-unit stride memory access. Data caches have
not been put into widespread use in vector processors
(except to cache scalar data).

Dynamic instruction issue is the preferred solution
in scalar processors to attack the memory latency
problem by allowing memory reference instructions to
proceed when other instructions are waiting for mem-
ory data. Tha t is, memory reference instructions are
allowed to slip ahead of execution instructions. Vec-
tor processors have not generally used dynamic in-
struction issue (except in one recent design, the NEC
SX-4 [14]). The reasons are unclear. Perhaps it has
been thought tha t the inherent latency hiding advan-
tages of vectors are sufficient. Or, it is possibly be-
cause the first successful vector machine, the Cray-
1, issued instructions in order, and additional innova-
tions in vector instruction issue were simply not pur-
sued.

Besides in-order vector instruction issue, traditional

1072-4451/97 $10.00 0 1997 IEEE
160

http://www.ac.upc.es/hpc
mailto:jes@ece.wisc.edu

vector machines have had a relatively small number of
vector registers (8 is typical). The limited number of
vector registers was initially the result of hardware
costs when vector register instruction sets were origi-
nally being developed; today the small number of reg-
isters is generally recognized as a shortcoming. Reg-
ister renaming, useful for out-of-order issue, can come
to the rescue here as well. With register renaming
more physical registers are made available, and vector
register conflicts are reduced.

Another feature of traditional vector machines is
that they have not supported virtual memory - a t
least not in the fully flexible manner of most modern
scalar processors. The primary reason is the difficulty
of implementing precise interrupts for page faults - a
difficulty that arises from the very high level of con-
currency in vector machines. Once again, features for
implementing dynamic instruction issue for scalars can
be easily adapted to vectors. Register renaming and
reorder buffers allow relatively easy recovery of state
information after a fault condition has occurred.

In this paper, we show that using out-of-order is-
sue and register renaming techniques in a vector pro-
cessor, performance can be greatly improved. Dy-
namic instruction scheduling allows memory latencies
to be overlapped more completely ~ and uses the valu-
able memory resource more efficiently in the process.
Moreover, once renaming has been introduced into the
architecture, it enables straightforward implementa-
tions of precise exceptions, which in turn provide an
easy way of introducing virtual memory, without much
extra hardware and without incurring a great per-
formance penalty. We also present a new techniqiie
aimed at dynamically eliminating redundant loads.
Using this technique, memory traffic can be signifi-
cantly reduced and performance is further increased.

2 Vector Architectures and Implemen-
tations

This study is based on a traditional vector processor
and numerical applications, primarily because of the
maturity of compilers and the availability of bench-
marks and simulation tools. We feel that the general
conclusions will extend to other vector applications,
hcwever. The renaming, out-of-order vector architec-
ture we propose is modeled after a Convex C3400. In
this section we describe the base C3400 architecture
and implementation (henceforth, the reference archz-
tec ture) , and the dynamic out-of-order vector archi-
tecture (referred to as OOOK4).

2.1 The C3400 Reference Architecture

The Convex C3400 consists of a scalar unit and an
independent vector unit. The scalar unit executes all
instructions that involve scalar registers (A and S reg-
isters), and issues a maximum of one instruction per
cycle. The vector unit consists of two computation
units (FUl and FU2) and one memory accessing unit

I 1 1

Figure 1: The Out-of-order and renaming version of
the reference vector architecture.

(MEM). The FU2 unit is a general purpose arithmetic
unit capable of executing all vector instructions. The
FU1 unit is a rest,ricted functional unit that executes all
vector instructions ezcepd multiplication, division and
square root. Both functional units are fully pipelined.
The vector unit has 8 vector registers which hold up
to 128 elements of 64 bits each. The eight vector regis-
ters are connected to the functional units through a re-
stricted crossbar. Pairs of vector registers are grouped
in a register bank and share two read ports and one
write port that links them t o the functional units. The
compiler is responsible for scheduling vector instruc-
tions and allocating vector registers so that no port
conflicts arise. The reference machine implements vec-
tor chaining from functional units to other functional
units and to the store unit. It does not chain memory
loads to functional units, however.

2.2 The Dynamic Out-of-Order Vector
Architecture (OOOVA)

The out-of-order and renaming version of the refer-
ence architecture, OOOVA, is shown in figure 1. It is
derived from the reference architecture by applying a
renaming technique very similar to that, found in the
RlOOOO [16]. Instructions flow in-order through the
Fetch and Decode/Rename stages and then go to one
of the four queues present in the archit,ecture based
on instruction type. At the rename stage, a mapping
table translates each virtual register into a physical
register. There are 4 independent mapping tables, one
for each type of register: A, S, V and mask registers.
Each mapping table has its own associated list of free
registers. When instructions are accepted into the de-
code stage, a slot in the reorder buffer is also allocated.
Instructions enter and exit the reorder buffer in strict.
program order. When an instruct,ion defines a new
logical register, a physical register is taken from the

161

Parameters

L y,rse~ I ~ N C RF I RXBAR , RXBAR E X 0 I EX I E X ? I .
I 1 I I I I ...

Latency
Scal I Vect

Figure 2 : The Out-of-order and renaming main in-
struction pipelines.

free list, the mapping table entry for the logical regis-
ter is updated with the new physical register number
and the old mapping is stored in the reorder buffer
slot allocated to the instruction. When the instruc-
tion commits, the old physical register is returned to
its free list. Note that the reorder buffer only holds a
few bits to identify instructions and register names; it
never holds register values.

Main Pipelines
There are four main pipelines in the OOOVA architec-
ture (see fig. a), one for each type of instruction. After
decoding and renaming, instructions wait in the four
queues shown in fig. 1. The A , S a.nd V queues monit,or
the ready status of all instructions held in the queue
slots and as soon as an instruction is ready, i t is sent
t.o the appropriate functional unit for execution. Pro-
cessing of instructions in the M queue proceeds in two
phases. First, instructions proceed in-order through
a 3 stage pipeline comprising the Issue/Rf stage, t,he
range stage and the dependence stage. After they have
completed these three steps, memory instructions can
proceed out of order based on dependence information
computed and operarid availability (for shres) .

At the Range stage, the range of all addresses po-
tentially modified by a memory instruction is com-
puted. This range is used in the following stage
for run-time memory disambiguation. The range
is defined as all bytes falling between the base ad-
dress (called Range Start) and the address defined as
baseaddress+(V1-1)+VS (called Range End), where
V L is the vector length register and V S is the vec-
tor stride register. Note tha t the multiplier can be
simplified because V L - 1 is short (never more than
7 bits), and the product (V L - 1) * VS can be kept
in a non-architected register and implicitly updated
when either VL or VS is modified. In the Dependence
stage, using the Range Start/Range End addresses,
the memory instruction is compared against all previ-
ous instructions found in the queue. Once a memory
instruction is free of any dependences, it can proceed
to issue memory requests.

Machine Parameters
Table 1 presents the latencies of the various functional
units present in the architecture. Memory latency is
not shown in the table because it will be varied. The
memory system is modeled as follows. There is a sin-
gle address bus shared by all types of memory trans-

I write x-bar 1 1 2 1
vector s t a r tup

mu1
logic/shift (1 3 4 / 9 1 3 4 / 9 1

3419 3419

Table 1: Functional unit latencies (in cycles) for the
two architectures.((*) 0 in OOOVA, 1 in REF)

actions (scalar/vector and load/store), and physically
separate da,ta husses for sending and receiving da ta
to/from main memory. Vector load instructions (sild
gather instructions) pay an initial latency and then re-
ceive one datum from memory per cycle. Vector store
instructions do not result in observed latency We use a
value of 50 cycles as the default memory latency. Sec-
tion 4.3 will present results 011 t>he effects of varying
this value.

The V register read/write ports have been- modified
from the original C34 scheme. In the OOOVA, each
vector register has 1 dedicated read port and 1 dedi-
cated write port. The original banking schcmc of the
register file can not be kept because renaming shuf-
fles all the compiler scheduled read/writ,e ports and,
ther.efore, would induce a lot of port conflicts.

The
reorder buffer can hold 64 instructions. The ma-
chine has a 64 entry BTB, where each entry has a
2-bit saturating coiint,rr for predicting the out,conie of
branches. Also, an 8-deep return stack is used to pre-
dict call/return sequences. Both scalar register files
(A and S) have 64 physical registers each. The mask
register file has 8 physical registers. The fetch stage,
the decode stage and all four queues only process a
maximum of 1 instruction per cycle. Committing in-
structions proceeds at a faster rate, and up to 4 in-
structions may commit per cycle.

Commit Strategy
For V registers we start with an aggressive impleinen-
tation where physical registers are released at the time
the vector instruction begins execution. Consider the
vector instruction: add vO,vl-->v3. At the rename
stage, v3 will be re-mapped to , say, physical register
9 (ph9), and the old mapping of v3, which was, say,
physical register 12 (ph12), will be stored in the re-
order buffer slot associated with the add instruction.
When the add instruction begins execution, we mark
the associated reorder buffer slot as ready to be com-
mitted. When the slot reaches the head of the buffer,
ph12 is released. Due to the semantics of a vector
register, when ph12 is released, i t is guaranteed that
all instructions needing ph12 have begun execution at
least one cycle before. Thus, the first element of ph12
is already flowing through the register file read cross-
bar. Even if ph12 is immediately reassigned to a new
logical register and some other instruction starts writ-

All instruction queues are set at 16 slots.

162

Program

swm256
hydroad
arc2d
flo52
nasa7
su2cor
tomcatv
bdna
t rfd
dyfesm

Tq-2q-F
9534.3 I 99.9 I 127

#insns
Suite S V
Spec 6.2 74.5
Spec 41.5 39.2
Perf. 63.3 42.9
Perf. 37.7 22.8
Spec 152.4 67.3
Spec 152.6 26.8
Spec 125.8 7.2
Perf. 239.0 19.6
Perf. 352.2 49.5
Perf. 236.1 33.0

Table 2: Basic operation counts for the Perfect Club
and Specfp92 programs (Columns 3-5 are in millions).

ing into ph12, the instructions reading ph12 are a t the
very least one cycle ahead and will always read the cor-
rect values. This type of releasing does not allow for
precise exceptions, though. Section 5 will change the
release algorithm to allow for precise exceptions.

3000
n

t z
g 2000

6
g
B
8

x v

I
U

1000

0
1 20
hydro2d

1500

500

0
1 20
dyfesm

. < , , >
o < , ,MEM>
E < ,FIJI, >

< ,FUI,MEM>
CFU2, , >

m<FU2, ,MEM>
0 <Fu2,FuI, >
E <FU2,FUl ,MEM>

Figure 3: Functional unit usagc for the reference ar-
chitecture. Each bar represents the total execution
time of a program for a given latency. Values on the
x-axis represent memory latencies in cycles.

4 Performance Results
3 Methodology

4.1 Bottlenecks in the Reference Archi-
tecture

To assess the performance benefits of out-of-order
issue and renaming in vector architectures we have
taken a trace driven approach. A subset of the Perfect
Club and Specfp92 programs is used as the benchmark
set. These programs are compiled on a Convex C3480
machine and the tool Dixie [3] is used to modify the ex-
ecutable for tracing. Once the executables have been
processed by Dixie, the modified executables are run
on the Convex machine. This runs produce the desired
set of traces that accurately represent the execution of
the programs. This trace is then fed to two simulators
for the reference and OOOVA architectures.

3.1 The benchmark programs

Because we are interested in the benefits of out-of-
order issue for vector instructions, we selected bench-
mark programs that are highly vectorizable. From all
programs in the Perfect and Specfp92 benchmarks we
chose the 10 programs that achieve at least 70% vec-
torization. Table 2 presents some statistics for the
selected Perfect Club and Specfp92 programs. Col-
umn number 2 indicates to what suite each program
belongs. Next two columns present the total num-
ber of instructions issued by the decode unit, broken
down into scalar and vector instructions. Column five
presents the number of operations performed by vec-
tor instructions. The sixth column is the percentage
of vectorization of each program (i.e., column five di-
vided by the sum of columns three and five). Finally,
column seven presents the average vector length used
by vector instructions (the ratio of columns five and
four, respectively).

First we present an analysis of the execution of the
ten benchmark programs when run through the refer-
ence architecture simulator.

Consider the three vector functional units of the
reference architecture (FU2, FUI and MEM). The ma-
chine state can be represented with a 3-tuple that
captures the individual state of each of the three units
a t a given point in t8ime. For example, the 3-tuple
(FU2, F U 1 , MEM) represents a state where all units
are working, while (, ,) represents a state where all
vector units are idle.

Figure 3 presents the execution time for two of the
ten benchmark programs (see [4] for the other 8 pro-
gramq) Space limitations prevents us from providing
them all, but these two, hydroad and dyfesm, are rep-
resentative. During an execution the programs are
in eight possible states. We have plotted the time
spent in each state for memory latencies of 1, 20, 70,
and 100 cycles. From this figure we can see that the
number of cycles where the programs proceed at peak
floating point speed (states (F U 2 , F U 1 , M E M) and
(F U 2 , F U 1 ,)) is quite low. The number of cycles
in these states changes relatively little as the memory
latency increascs, so the fraction of fully uscd cycles
decreases. Memory latency has a high impact on total
execution time for programs dyfesm (shown in Fig-
ure 3), and trfd and A052 (not shown), which have
relatively small vector lengths. The effect of memory
latency can be seen by noting the increase in cycles
spent in state (, ,).

The sum of cycles corresponding to states where
the MEM unit is idle is quite high in all programs.
These four states ((, ,) , (, F U 1 ,) , (F U 2 , ,)and
(F U 2 , F U 1 ,)) correspond to cycles where the Inem-

169

$? 60 c

Figure 4: Percentage of cycles where the memory port
was idle, for 4 different memory latencies.

ory port could potentially be used to fetch data from
memory for future vector computations. Figure 4
presents the percentage of these cycles over total exe-
cution time. At latency 70, the port idle time ranges
between 30% and 65% of total execution time. All
10 benchmark programs are memory bound when run
on a single port vector machine with two functional
units. Therefore, these unused memory cycles are not
the result of a lack of load/store work to be done.

4.2 Performance of the OOOVA

In this section we present the performance of the
OOOVA and compare it with the reference archi-
tecture. We consider both overall performance in
speedup and memory port occupation.

Speedup
The effects of adding out-of-order execution and re-
naming to the reference architecture can be seen in
figure 5. For each program we plot the speedup over
the reference architecture when the number of physi-
cal vector registers is varied from 9 to 64 (memory la-
tency is set a t 50 cycles). In each graph, we show the
speedup for two OOOVA implementations: “OOOVA-
16” has length 16 instruction queues, and “OOOVA-
128” has length 128 queues. We also show the maxi-
mum ideal speedup that can theoretically be achieved
(“IDEAL”, along the top of each graph). To compute
the IDEAL speedup for a program we use the total
number of cycles consumed by the most heavily used
vector unit (FU1, FU2 , or MEM). Thus, in IDEAL we
essentially eliminate all data and memory dependences
from the program, and consider performance limited
only by the most saturated resource across the entire
execution.

As can be seen from figure 5, the OOOVA signif-
icantly increases performance over the reference ma-
chine. With 16 physical registers, the lowest speedup
is 1.24 (for tomcatv). The highest speedups are for
trfd and dyfesm (1.72 and 1.70 ‘esp.); the remaining
programs give speedups of 1.3-1.45. For numbers of
physical registers greater than 16, additional speedups

are generally small. The largest speedup from going to
64 physical registers is for bdna where the additional
improvement is 8.3%. The improvement in bdna is
due to an extremely large main loop, which generates
a sequence of basic blocks with more than 800 vector
instructions. More physical registers allow it to better
match the large available ILP in these basic blocks.
On the other hand, if the number of physical vector
registers is a major concern, we observe that 12 phys-
ical registers still give speedups of 1.63 and 1.70 for
trfd and dyfesm and that the other programs are in
the range of 1.23 to 1.38. These results suggest that
a physical vector register with as few as 12 registers
is sufficient in most cases. A file with 16 registers is
enough to sustain high performance in every case.

When we increase the depth of the instruction
queues to 128, the performance improvement is quite
small (curve “OOOVA-128”). Analysis of the pro-
grams shows that two factors combine to prevent fur-
ther improvements when increasing the number of is-
sue queue slots. First, the spill code present in large
basic blocks induces a lot of memory conflicts in the
memory queue. Second, the lack of scalar registers
sometimes prevents the dynamic unrolling of enough
iterations of a vector loop to make full usage of the
memory port.
Memory Port Usage
The out-of-order issue feature allows memory access
instructions to slip ahead of computation instructions,
resulting in a compaction of memory access opera-
tions. The presence of fewer wasted memory cycles
is shown in figure 6. This figure contains the number
of cycles where the address port is idle divided by the
total number of execution cycles. Bars for the refer-
ence machine, REF, and for the out-of-order machine,
OOOVA are shown. The OOOVA machines has 16
physical vector registers and a memory latency of 50
cycles. With OOOVA, the fraction of idle memory cy-
cles is more than cut in half in most cases. For all but
two of the benchmarks, the memory port is idle less
than 20% of the time.

Resource Usage
We now consider resource usage for the OOOVA ma-
chine and compare it with the reference machine. This
is illustrated in figure 7 . The same notation as in fig-
ure 3 is used for representing the execution state. As
in the previous subsections, the OOOVA machine has
16 physical vector registers and memory latency is set
at 50 cycles. Figure 7 shows that the major improve-
ment is in state (, ,), which has almost disappeared.
Also, the fully-utilized state, (FU2 , FU1 , M E M) , is
relatively more frequent due to the benefits of out-of-
order execution. As we have already seen, the avail-
ability of more than one memory instruction ready to
be launched in the memory queues allows for much
higher usage of the memory port.

.

4.3 Tolerance of Memory Latencies

One way of looking at the advantage of out-of-order
execution and register renaming is that it allows long

164

1.4 4 1.6 I

1 .0
9 16 32 64

swm256

9 16 32 64
nasa7

2.0 4-

1 . 0 I I I I
9 16 32 64

trfd

9 16 32 64
hydro2d

1 . 4 1 r I .2

1 .0
9 16 32 64

su2cor

1 .o
9 16 32 64

dyfesm

1 .o
9 16 32 64

arc2d
1

1 .o
9 16 32 64

tomcatv

- IDEAL - 0 0 0 V A - I 2 8
- -X- - 0 0 0 V A - 1 6

1.2

1.0 I I I I
9 16 32 64

flo52

1.0 -,
9 16 32 64

bdna

Figure 5: Speedup of the OOOVA over the REF architecture for different numbers of vector physical registers.

W REF
0 OOOVA

Figure 6: Percentage of idle cycles in the memory port
for the Reference architecture and the OOOVA archi-
tecture. Memory latency is 50 cycles and the vector
register file holds 16 physical vector registers.

memory latencies to be hidden. In previous subsec-
tions we showed the benefits of the OOOVA with a
fixed memory latency of 50 cycles. In this subsection
we consider the ability of the OOOVA machine to tol-
erate main memory lat!encies.

Figure 8 shows the total execution time for the ten
programs when executed on the reference machine and
on the OOOVA machine for memory latencies of 1,
50, and 100 cycles. All results are for 16 physical vec-
tor registers. As shown in the figure, the reference
machine is very sensitive to memory latency. Even
though it is a vector machine, memory latency influ-
ences execution time considerably. On the other hand,
the OOOVA machine is much more tolerant of the in-

=<,,>
0 < , ,MEM>
I < ,"', >

I eFU2, ,MEM>
o <FU2,FU1, >
I <FU2,FUl ,MEM>

Figure 7: Breakdown of the execution cycles for the
REF (left bar) and OOOVA (right bar) machines. The
OOOVA machine has 16 physical vector registers. For
both architectures, memory latency was set a t 50 cy-
cles.

crease in memory latency. For most benchmarks the
performance is flat for the entire range of memory la-
tencies, from 1 to 100 cycles.

Another important point is that even at a mem-
ory latency of 1 cycle the OOOVA machine typically
obtains speedups over the reference machine in the
range of 1.15-1.25 (and goes as high as 1.5 in the case
of dyfesm). This speedup indicates that the effects of
looking ahead in the instruction stream are good even
in the absence of long latency memory operations.

At the other end of the scale, we see that long
memory latencies can be easily tolerated using out-
of-order techniques. This indicates that the individ-

165

nasa7

1 50 100
trfd

.. *-- - .- - -. - x

1 50 100 1 50 100

hydro2d arc2d

5-
50 1 0 0 50 100

su2cor tomcatv

-+- REF

- IDEAL
--.--x --X-- 0 0 0 V A - 1 6

5

1 50 100
dyfesm

I I i 50 I 0 0
flo.52

-.-------
--a-

* --* %--- 1 0

6.
50 100

bdna

Figure 8: Effects of varying main memory latency for three memory models and for the 16 physical vector registers
machines.

ual memory modules in the memory system can be
slowed down (changing very expensive SRAM parts
for much cheaper DRAM parts) without significantly
degrading total throughput. This type of technology
change could have a major impact on the total cost of
the machine, which is typically dominated by the cost
of the memory subsystem.

5 Implementing Precise Traps

An important side effect of introducing register re-
naming into a vector architecture is that it enables a
straightforward implementation of precise exceptions.
In turn, the availability of precise exceptions allows
the introduction of virtual memory. Virtual memory
has been implemented in vector machines [15], but
is not used in many current high performance par-
allel vector processors [7]. Or, it is used in a very
restricted form, for example by locking pages contain-
ing vector data in memory while a vector program
executes [7, 141.

The primary problem with implementing precise
page faults in a high performance vector machine is
the high number of overlapped “in-flight” operations
- in some machines there may be several hundred.
Vector register renaming provides a convenient means
for saving the large amount of machine state required
for rollback to a precise state following a page fault or
other exception. If the contents of old logical vector
registers are kept until an instruction overwriting the
logical register is known t o be free of exceptions, then
the architected state can be restored if needed.

In order to implement precise traps, we introduce
two changes to the OOOVA design: first, an instruc-
tion is allowed to commit only after i t has fully com-

pleted (as opposed to the “early” commit scheme we
have been using). Second, stores are only allowed to
execute and update memory when they are a t the head
of the reorder buffer; that is, when they are the oldest
uncommitted instructions.

Figure 9 presents a comparison of the speedups over
the reference architecture achieved by the OOOVA
with early commit (labeled “early”), and by the
OOOVA with late commit and execution of stores
only a t the head of the reorder buffer (labeled “late”).
Again, all simulations are performed with a memory
latency of 50 cycles.

We can make two important observations about the
graphs in Figure 9. First, the performance degrada-
tion due t o the introduction of the late commit model
is small for eight out of the ten programs. Programs
hydro2d, arc2d, su2cor, tomcatv and bdna all degrade
less than 5% with 16 physical registers; programs flo52
and nasa7 degrade by 7% and 10.3%, respectively.
Nevertheless, performance of the other two programs,
trfd and dyfesm, is hurt rather severely when going to
the late commit model (a 41% and 47% degradation,
respectively). This behavior is explained by load-store
dependences. The main loop in trfd has a memory de-
pendence between the last vector store of iteration i
and the first vector load of iteration i + 1 (both are
to the same address) In the early commit model, the
store is done as soon as its input data is ready (with
chaining between the producer and the store). In the
late commit model, the store must wait until 2 in-
tervening instructions between the producer and the
store have committed. This delays the dispatching of
the following load from the first iteration and explains
the high slowdown. A similar situation explains the
degradation in dyfesm.

Second, in the late commit model, 12 registers are

166

1.0
9 16 32 64

swm256

Program
swm256

3 :::e:
E
M 1.2

1 .o
9 16 32 64

Vector load
load I spill
2839 I 315

nasa7

2.0 -j--

hydroad
arc2d
flo52
nasa7
su2cor
tomcatv
bdna

- h

I I
9 16 32 64

trfd

1297
1244
428

1048
78 6
234
142

9 I6 32 64
hydro2d

I .4 1 --* ----)(

1 .o
9 16 32 64

su2cor
2.5 -jp~

2.0 4

dyfesm

x----* - . - - x

1.2

1 .o
9 16 32 64

arc2d

1.2

1 .o
9 16 32 64

tomcatv

- IDEAL - -x- - early
----t late

9 16 32 64
fl052

1.4 - ---g
1.2

1.0 -
64 9 16 32

bdna

Figure 9: Speedups of the OOOVA over the reference architecture for different numbers of vector physical registers
under the early and late commit, schemes.

clearly not enough. The performance difference be-
tween 12 and 16 registers is much larger than in the
early commit model. Thus, from a cost/complexity
point of view, the introduction of lat~e commit has a
clear impact on the implementation of the vector reg-
isters.

6 Dynamic Load Elimination

Register renaming with many physical registers
solves instruction issue bottlcnecks causcd by a limitcd
number of logical registers. However, there is another
problem caused by limited logical registers: register
spilling. The original compiled code still contains reg-
ister spills caused by the limited number of architected
registers, and to be functionally correct thcse spills
must be executed. Furthermore, besides the obvious
store-load spills, limited registers also cause repeated
loads from the same memory location.

Limited registers are common in vector architec-
tures, and the spill problem is aggravated because stor-
ing and re-loading a single vector register involves the
movement of many words of data to and from memory.
To illustrate the importance of spill code for vector ar-
chitectures, table 3 shows the number of memory spill
operations (number of words moved) in the ten bench-
mark programs. In some of the benchmarks relatively
few of the loads and stores are due t,o spills, but in
several there is a large amount of spill traffic. For ex-
ample, over 69% of the memory traffic in bdna is due
to spills.

In this section we propose and study a rrietliod that
uses register renaming to eliminate much of the mem-
ory load traffic due to spills. The method we propose
also has significant performance advantages because a

21
1 2 2
41
21

201
104
266

2 0
31
65

0
0 2 __

Table 3: Vector memory spill operations. Columns 2 ,
3, 5 and 6 are in millions of operations

load for spilled data is executed in nearly zero time.
We do not eliminate spill stores. however, because of
the nced to maintain strict binary compatibility. That
is, the mpmory image should reflect functionally cor-
rect state. Relaxing compatibility could lead to re-
moving some spill stores, but we have not yet pursued
this approach.

6.1 Renaming under Dynamic Load Elim-
ination

To eliminate redundant load instructions we pro-
pose t8he following t,echnique. A t>a.g is associa.ted with
each physical register (A, S and V . This tag indi-

the register. For vector registers, the tag is a 6-tuple:
(@ , @2, vl, vs, sz, v). Virtual addresses @I and @2
deftne a consecutive region of bytes in memory and
VI, vs, and sz are the vector length, vector stride and
access granularity used when the tag was created; v is

cates the memory locations current 1' y being held by

167

i

a validity bit. For scalar registers, the tag is a 4-tuple
- vl and vs are not needed. Although the problem of
spilling scalar (A and S) registers is somewhat tangen-
tial to our study, they are important in the Convex ar-
chitecture because of its limited number of registers.

Each time a memory operation is performed, its
range of addresses is computed (this is done in the sec-
ond stage of the memory pipeline). If the operation is
a load, the tag associated with the destination physical
register is filled with the appropriate address informa-
tion. If the operation is a store, then the physical reg-
ister being stored to memory has its tag updated with
the corresponding address information. Thus, each
time a memory operation is performed, we "alias" the
register contents with the memory addresses used for
loading or storing the physical register: the tag in-
dicates an area in memory that matches the register
data.

To keep tag contents consistent with memory, when
a store instruction is executed its tag has to be com-
pared against all tags already present in the register
files. If any conflict is found, that is, if the memory
range defined by the store tag overlaps any of the ex-
isting tags, these existing tags must be invalidated (to
simplify the conflict checking hardware, this invalida-
tion may be done conservatively).

By using the register tags, some vector load op-
erations can be eliminated in the following manner.
When, a vector load enters the third stage of the mem-
ory pipeline, its tag is checked against all tags found
in the vector register file. If an exact match is found
(an exact match requires all tag fields to be identical),
the destination register of the vector load is renamed
to the physical register it matches. At this point the
load has effectively been completed - in the time it
takes to do the rename. Furthermore, matching is not
restricted to live registers, it can also occur with a
physical register that is on the free list. As long as
the validity bit is set, any regist,er (in the free list or
in use) is eligible for matching. If a load matches a
register in the free list, the register is taken from the
free list and added to the register map table.

For scalar registers, eliminating loads is simpler.
When a match involving two scalar registers is de-
tected, the register value is copied from one register
to the other. The scalar rename table is not affected.
Note, however, that scalar store addresses still need
to be compared against vector register tags and vec-
tor stores need to be compared against scalar tags to
ensure full consistency.

A similar memory tagging technique for scalar reg-
isters is described in [a]. There, tagging is used to
store memory variables in registers in the face of po-
tential aliasing problems. That approach, though, is
complicated because data is automatically copied from
register to register when a tag match is found. There-
fore, compiler techniques are required to adapt to this
implied data movement. In our application, a tag op-
eration either (a) alters only the rename table or (b)
invalidates a tag without changing any register value.

Figure 10: The modified instruction pipelines for the
Dynamic Load Elimination OOOVA.

6.2 Pipeline modifications

With the scheme just described, when a vector load
is eliminated at the disambiguation stage of the mem-
ory pipeline, the vector register renaming table is up-
dated. Renaming is considerably complicated if vector
registers are renamed in two different pipeline stages
(at the decode and disambiguation stages). Therefore,
the pipeline structure is modified to rename all vector
registers in one and only one stage.

Figure 10 shows the modified pipeline. At the de-
code stage, all scalar registers are renamed but all
vector registers are left untouched. Then, all instruc-
tions using a vector register pass zn-order through the
3 stages of the memory pipeline. When they arrive
at the disambiguation stage, renaming of vector reg-
isters is done. This ensures that all vector instruction
see the same renaming table and that modifications
introduced by the load elimination scheme are avail-
able to all following vector instructions. Moreover,
this ensures that store tags are compared against all
previous tags in order.

6.3 Performance of dynamic load elimina-
tion

In this section we present the performance of the
OOOVA machine enhanced with dynamic load elimi-
nation. As a baseline we use the late commit OOOVA
described above, without dynamic load elimination.
We also study the OOOVA with load elimination for
scalar data only (SLE) and OOOVA with load elimi-
nation for both scalars and vectors (SLESVLE).

Figures 11 and 12 present the speedup of SLE
and SLE+VLE over the baseline OOOVA for differ-
ent numbers of physical vector registers (16, 32, 64).

For SLESVLE with 16 vector registers (figure 121,
speedups over the base OOOVA are from 1.04 to 1.16
for most programs and are as high as 1.78 and 2.13 for
dyfesm and trfd. At 32 vector registers registers, the
available storage space for keeping vector data dou-
bles and allows more tag matchings. The speedups in-
crease significantly and their range for most programs
is between 1.10 and 1.20. For dyfesm and trfd, the
speedups remain very high, but do not appreciably
improve when going from 16 to 32 registers.

Doubling the number of vector registers again, to
64, does not yield much additional speedup. For most

168

I .o 4

0
0

.I !3
3 0.8

G
E

Y

1.3

U

8 SLE
16

FA 32
0 64

1.2

2 0 SLE+VLE

U

9 1.1 a
d 0.6

1.0

Figure 11: Speedup of SLE over the OOOVA machine
for 3 different physical vector register file sizes.

Figure 12: Speedup of SLE+VLE over the OOOVA
machine for 3 different physical vector register file
sizes.

programs, the improvement is below 5%, and only
tomcatv and trfd seem to be able to take advantage
of the extra registers (tomcatv goes from 1.19 up to
1.40). The results show that most of the data move-
ment to be eliminated is captured with 32 physical
vector registers.

The remarkably different performance behavior of
dyfesm and trfd requires explanation. This can be
dolie by looking a t SLE (figure 11). Under SLE, all
other programs have very low speedups (less than
i.C5) and. yet,, trfd and dyfesm achieve speedups of
1.30 and 1.36, respectively (for the configuration with
32 vector registers). Our analysis of these two pro-
grams shows that the ability to bypass scalar data al-
lows t,hese programs to "see" inore iterations of a cer-
tain loop at once. In particular, the ability to bypass
data between loads and stores allows thein t o unroll
the two most critical loops, whereas without SLE, the
unrolling was not possible.

6.4 Traffic Reduction

A very important effect of dynamic load elimination
is that it reduces the total amount of traffic seen by
the nieniory system. This is a very important feature

Figure 13: Traffic reduction under dynamic load elim-
ination with 32 physical vector registers.

in multiprocessing environments, where less load on
the memory modules usually translates into an overall
system performance improvement.

We have computed the traffic reduction of each of
the programs for the two dynamic load elimination
configurations considered. We define the traffic reduc-
tion as the ratio between the total number of requests
(load and stores) sent over the address bus by the base-
line OOOVA divided by the total number of requests
done by either the SLE or the SLE+VLE configura-
tions. Figure 13 present this ratio for 32 physical vec-
tor registers. As an'example, figure 13 shows us that
the SLE configuration for dyfesm performs 11% fewer
memory requests than the OOOVA configuration.

As can be seen, for SLESVLE, the typical traffic
reduction is between 15 and 20%. Programs dyfesm
and trfd, due to their special behavior already men-
tioned, have much larger reductions, as much as 40%.

7 Summary

In this paper we have considered the usefulness of
out-of-order execution and register renaming for vec-
tor architectures. We have seen through simulation
that the traditional in-order vector execution model
is not enough to fully use the bandwidth of a single
memory port and to cover up for main memory la-
tency (even considering that the programs were mem-
ory bound). We have shown that when out-of-order
issue and register renaming are introduced, vector per-
formance is increased. This performance advantage
can be realized even when adding only a few extra
physical registers to be used for renaming. Out-of-
order execution is as useful in a vector processor as i t
is widely recognized to be in current superscalar mi-
croprocessors.

Using only 12 physical vector registers and an ag-
gressive commit model, we have shown significant
speedups over the reference machine. At a modest
cost of 16 vector registers, the range of speedups was
1.24-1.72. Increasing the number of vector registers

169

up to 64 does not lead to significant extra improve-
ments, however.

Moreover, we have shown that large memory laten-
cies of up t o 100 cycles can be easily tolerated. The
dynamic reordering of vector instructions and the dis-
ambiguation mechanisms introduced allow the mem-
ory unit to send a continuous flow of requests to the
memory system. This flow is overlapped with the ar-
rival of data and covers up main memory latency.

The introduction of register renaming gives a pow-
erful tool for implementing precise exceptions. By
changing the aggressive commit model into a conser-
vative model where an instruction only commits when
it (and all its predecessors) are known to be free of
exceptions, we can recover all the architectural state
a t any point, in time. This allows the easy introduc-
tion of virtual memory. Our simulations have shown
that the implementation of precise exceptions costs
around 10% in application performance, though some
programs may be much more sensitive than others.

One problem not solved by register renaming is reg-
ister spilling. The addition of extra physical registers,
per se, does not reduce t'he amount of spilled data.
We have introduced a new technique, dynamic load
elimination, that uses the renaming mechanism t o re-
duce the amount of load spill traffic. By tagging all
our registers with memory information we can detect
when a certain load is redundant and its required data
is already in some other physical register. Under such
conditions, the load can be performed through a sim-
ple rename table change. Our simulations have shown
that this technique can further improve performance
typically by factors of 1.07-1.16 (and as high as 1.78).
The dynamic load elimination technique can benefit
from more physical registers, since it can cache more
data inside the vector register file. Simulations with
32 physical vector registers show that load elimination
yields improvements typically in the range 1.10-1.20.
Moreover, a t 32 registers, load elimination can reduce
the total traffic to the memory system by factors rang-
ing between 15-20% and, in some cases, up to 40%,

Finally, we feel that our results should be of use to
the growing community of processor architectures im-
plementing some kind of multimedia extensions. As
graphics coprocessors and DSP functions are incorpo-
rated into general purpose microprocessors, the ad-
vantages of vector instruction sets will become more
evident. In order to sustain high throughput to and
from special purpose devices such as frame buffers,
long memory latencies will have to be tolerated. These
types of applications generally require high band-
widths between the chip and the memory system
not available in current microprocessors. For both
bandwidth and latency problems, out-of-order vec-
tor implementations can help achieve improved per-
formance.

H. Dietz and C.-H Chi. CRegs: A new kind of memory for
referencing arrays and pointers. In Proceedings of Supercom-
putzng '88, pages 360-367, Orlando, Florida, November 1988
IEEE Computer Society Press

R . Espasa and X. Martorell. Dixie: a trace generation system
for the C3480 Technical Report CEPBA-RR-94-08, Universi-
t a t Politecnica de Catalunya, 1994.

R . Espasa and M. Valero Decoupled vector architectures. In
HPCA-2, pages 281-290. IEEE Computer Society Press, Feb
1996.

R . Espasa. M. Valero, D. Padua , M. Jimknea, and E. Ayguadk.
Quantitative analysis of vector code. In Euromzcro Workshop
o n Parallel and Dzsti-zbuted Processzng IEEE Computer So-
ciety Press, January 1995.

J . Gee and A . J . Smith. T h e performance impact of vector pro-
cessor caches. In Proceedzngs o.f the Twen ty -F i f th Hawaiz In -
ternatzonal Conference o n S y s t e m Sczences, volume 1, pages
437-449, January 1993.

A . Iwaya and T. Watanabe. T h e parallel processing fea.ture of
the NEC SX-3 supercomputer system. In t l . Journal c f HLgh
Speed Computzng , 3[3&4).187-197, 1991

K . Kitai, T. Isobe, T. Sakakibara, S Yazawa, Y Tamaki,
Teruo, and K . Ishii. Distributed storage control unit for the Hi-
tachi 5-3800 multivector supercomputer. In ICs, pages 1-10,
July 1994.

L. Kontothanassis, R A. Sugumar, G . J . Faanes, J . E . Smith,
and M. L. Scot t . Cache performance in vector supercomput-
ers. In Proceedzngs o f Supercomputzng'94, Washington D . C ,
November 1994. IEEE Computer Society Press.

D Pat terson, T. Anderson, and K . Yelick. A Case for Intelli-
gent DRAM: IRAM In Hot ChzpS V I I I , August 1996.

[i l l K Robbins and S . Robbins. Relationship between average
and real memory behavior. T h e Journal of Supercomputzng,
S(3)-309-232, November 1994

[12] R. M. Russell. T h e CRAY-1 computer system. Commvnzca-
tzons of t he A C M , 21(1):63-73, January 1978

[13] W . Schonauer and H. Hafner. Explaining the gap between
theoretical peak performance and real performance for super-
computer architectures Sczentzfic Programmzng, 3:157-168,
1!194.

[14] P. Tannenbaunl HNSX Supercomputers Inc.; Marketing
Group Director, 1996. Private Communication.

[15] T . Utsumi, M. Ikeda, and M . Takamura Architecture of the
VPP500 Parallel Supercomputer. In Proceedzngs of Supercom-
putzng'94, pages 478-487, Washington D.C. , November 1994.
IEEE Computer Society Press

[16] K. C . Yager. T h e Mips RlOOOO Superscalar Microprocessor.
IEEE Mzcro, pages 28-40, April 1996.

References

[l] K. Asanovic, J . Beck, B. Irissou, B. Kingsbury, N. Morgan,
and J . Wawrzynek. T h e TO Vector Microprocessor. In Hot
Chzps VI I , pages 187-196, August 1995.

170

