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ABSTRACT

An interesting design alternative to replication-based chip multiprocessors is to create heteroge-
neous chip multiprocessors composed of several different cores, with one or more of them running
the operating system and orchestrating execution, and the others serving as accelerators where
parts of the application are off-loaded.

We are developing a simulator for this kind of heterogenous architectures, using the Cell
Broadband Engine as a first model and the UNISIM modular infrastructure. Thanks to UNISIM,
the modules composing the simulator can be easily changed and replaced by others, allowing us
to customize the processor and explore the design space for these emerging architectures.
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1 Introduction

Multi-core processors are a design solution adopted by the majority of manufacturers to
exploit the amount of resources (transistors) that current technology provides for a single
chip. Nowadays, the common designs replicate the same processor to try to benefit the par-
allelism existent in the applications. An alternative approach consists on building hetero-
geneous chip multiprocessor, where the different types of cores in the chip are specialized
to accelerate some kind of tasks. An example of this trend is the Cell processor [KDH+05],
which is one of the first commercial available heterogeneous chip multiprocessors.

We are building a Cell processor simulator with the purpose of having a heterogeneous
chip multiprocessor research infrastructure. This approach has the advantage of having a
real processor and a complete infrastructure built around it that provides a stable platform
from which develop new ideas in research projects.
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Figure 1: Simplified block diagram of the Cell processor.

The simulator is being written using the UNISIM environment [uni], which allows defin-
ing the architecture as independent modules that are easily connected through signals. Thus,
modifying the simulator to test new ideas will be as easy as adding, exchanging or redis-
tributing modules and/or connections.

2 The Cell Processor

The Cell processor is a joint initiative of Sony, Toshiba and IBM. The first version of the Cell
is the Cell Broadband Engine, which can be seen as a processor specialized in gaming, since
it is the main processor of the Sony PlayStation3.

As shown in Figure 1, this processor is composed by a Power-Architecture-compliant
Power Processor Element (PPE) and eight Synergistic Processor Elements (SPE). These cores are
connected through an Element Interconnection Bus (EIB), which also connects them with the
memory and I/O controllers. The main component of the PPE is a dual-threaded, dual-issue,
64-bit PowerPc Processor Unit (PPU). Each SPE is composed by three elements: a Synergistic
Processor Unit (SPU) [FAD+06], a Local Store (LS) and a Memory Flow Controller (MFC).

The PPU is an in-order processor, fully Power compliant instruction set architecture (ISA)
and single-instruction-multiple-data (SIMD) instructions. This core is the responsible to run
the operating system, and acts as the master of the system.

The SPU is also in-order, and has a newly architected ISA, completely SIMD. The data-
flow path is 128-bit wide while the register file contains 128 general-purpose registers of
128-bits each one (that can be accessed as 16 bytes, 8 half-words, 4 words, 2 double-words
or 1 quad-word).

The memory-mapped LS provides 256 Kbytes for both instructions and data. Each SPU
has only direct access to its own LS, if it wants to communicate to another element outside
the SPE, it has to perform a direct memory access (DMA) transaction through its MFC.

The MFC is fundamentally a DMA controller. Each MFC contains memory mapped con-
trol registers that allow the PPE, and other SPEs, to control the state of the SPU. Through
these registers it is also possible to send word-long messages (mailbox), configure DMA
operations, etc. [cbe].



Figure 2: Communication interface between the SPU and LS modules.

3 UNISIM

UNISIM is a hardware simulator environment. It provides a common set of rules for mod-
ule development. UNISIM allows defining a hardware architecture through a set of modules
and their conections using signals. This way it is posible to encapsulate a hardware compo-
nent into a reusable module.

The reusability of the modules is based on a well defined communication protocol. The
module connection signals are composed of: data, accept, and enable. A communication trans-
action begins by sending the data, the receiving module can accept it or not, and the sender
can enable or disable the transaction. Thus, a centralized control is, in this infraestructure,
distributed among all connection signals.

4 The simulator

We are developing a functional execution-driven Cell processor simulator. We decided the
simulator to be functional because its short term goal is to perform research at architectural
level. If micro-architectural level detail is needed, it would simply require a new detailed
module to be developed, and replacing our functional module with it. The rest of the simu-
lator would remain unchanged.

In a first stage of design, we defined the structure of the simulator as a set of UNISIM
modules corresponding directly to the modules that compose the Cell, Figure 1. Thanks to
the modularity that UNISIM provides, the work was divided among two teams: one work-
ing on the design and implementation of the PPE and the memory hierarchy, and the other
on the SPE. The teams meet regularly to show the progress, discuss the problems and agree
on the communication protocol.

The modules are being developed making them easily configurable and interchangeable.
Every module can be instantiated with concrete features and the interfaces between them are
well-defined to have a pattern of the behavior that a substitute module must have.

As an example, in Figure 2 we show the communication interface between the SPU and
the LS modules. The out_fetch port is connected to the first in_port of the LS to request the
next instructions to execute. The SPU receives the instructions through the in_fetch port. The
memory accesses resulting from a load or a store are computed through the out_ls and the
in_ls ports of the SPU. The LS is multiported and the number of ports can be defined when
the module is instantiated.



5 Current Status

As of June 2006, the PPE and the SPE work separately and they will be easily joined thanks
to the unique interface between modules that has been defined. The PPE and the SPE are
finished at 40%. The main memory is totally finished, and the bus and the rest of levels of
the memory hierarchy are under development.

The PPE module supports 59 instructions and 14 system calls. It is able to execute the
"Hello World!" program. The SPE has 27 instructions implemented of the 186 total, and exe-
cutes memory instructions and several arithmetic and control flow operations.

Some profiling results have shown that the simulator is executing UNISIM procedures
for synchronization tasks about the 90% of the time, and the 10% is performing the actual
emulation. The PPE and the SPE execute, separately, about 30.000 instructions per second.
This seems to be very slow but we hope that it will be scalable and will not slow down as
the simulator grows.
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