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Abstract— Recent studies have shown that cache parti-
tioning is an efficient technique to improve throughput,
fairness and Quality of Service (QoS) in CMP processors.
The cache partitioning algorithms proposed so far assume
Least Recently Used (LRU) as the underlying replacement
policy. However, it has been shown that the true LRU
imposes extraordinary complexity and area overheads
when implemented on high associativity caches, such as
last level caches. As a consequence, current processors
available on the market use pseudo-LRU replacement
policies, which provide similar behavior as LRU, while
reducing the hardware complexity. Thus, the presented
so far LRU-based cache partitioning solutions cannot be
applied to real CMP architectures.

This paper proposes a complete partitioning system
for caches using the pseudo-LRU replacement policy. In
particular, the paper focuses on the pseudo-LRU im-
plementations proposed by Sun Microsystems and IBM,
called Not Recently Used (NRU) and Binary Tree (BT),
respectively. We propose a high accuracy profiling logic
and a cache partitioning hardware for both schemes.
We evaluate our proposals’ hardware costs in terms of
area and power, and compare them against the LRU
partitioning algorithm.

Overall, this paper presents two hardware techniques
to adapt the existing cache partitioning algorithms to real
replacement policies. The results show that our solutions
impose negligible performance degradation with respect
to the LRU.
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I. INTRODUCTION

The hardware cost of exploiting the remaining
instruction-level parallelism (ILP) in the applications
has motivated the use of thread-level parallelism (TLP)
as an effective strategy to improve processor perfor-
mance. One of the most common TLP paradigms is
chip multiprocessing. In Chip Multiprocessor (CMP)
architectures the last level cache (LLC) is commonly
shared among cores. For example, both cores share the
L3 cache in the IBM POWER6 [8], similarly the cores
share the L2 in the Sun UltraSPARC T2 [28] and the
L3 in the Intel i7 architecture [1].

The LLC, the L2 cache in our baseline processor
setup, has been identified as one of the major sources

of contention between threads in CMP architectures. If
the allocation of the LLC is not controlled properly,
some threads can severely affect the performance of
the other running threads, degrading the final through-
put and/or Quality of Service (QoS) [15], [17]. This
has motivated researchers to propose several Cache
Partitioning Algorithms (CPAs) in order to control the
interaction between threads in the LLC [4], [5], [11],
[14], [22]. Since CPAs deliver a flexible and easy-to-
manage infrastructure to control threads’ behavior in
shared caches, they have become the central element of
current QoS frameworks for CMPs [7], [10], [17], [18].

In this paper, we focus on dynamic CPAs that work
at way granularity. Dynamic CPAs divide the execution
of the workload into time intervals and at each interval
boundary, the CPA tries to optimize a given target metric
by assigning a new cache partition that specifies the
number of ways to assign to each running thread. In
order to implement a dynamic CPA, a profiling and a
partitioning logics are required.

Profiling logic: The profiling logic gathers the num-
ber of cache misses that each thread would have if
it had run in isolation, as we vary the number of
assigned ways. In particular, for the Least Recently
Used (LRU) replacement scheme, the profiling logic
observes positions in the LRU stack [22] for each
cache access. When using CPAs each thread owns a
separate copy of the tag directory, namely Auxiliary Tag
Directory (ATD). While all the threads access the L2
cache, each ATD is only accessed by its owner thread.

According to the stack property [13] of the LRU, by
observing the stack position in which each cache access
hits, we are able to predict the miss rate of the thread
when it is assigned any number of ways [22]. Therefore,
by collecting (from the ATD) the stack positions of all
the accesses in the past interval, which are stored in
the Stack Distance Histogram (SDH) registers, we can
derive the L2 miss rate as a function of the assigned
ways to that thread. Based on this information, the CPA
decides how many ways are assigned to each thread,
according to a given target metric, such as minimum
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number of misses, maximum IPC throughput, fairness
or QoS.

Partitioning logic: With CPAs, a thread is allowed to
hit in any cache way. However, this logic enforces that a
thread only replaces lines in its assigned ways. To do so,
the logic introduces changes into the cache replacement
scheme. It selects as a victim line the LRU line in the
assigned ways only, instead of the entire cache set.

The ATDs in the profiling logic and the partitioning
logic are the most hardware costly components in terms
of area and complexity of a CPA. For example, the
area cost of the ATD for a 64-bit 8-core architecture
with a shared 2MB, 16-way L2 cache requires 53,248
bytes, which is similar to the size of L1 caches in
current designs. Due to its high area cost, the ATD
has received researchers’ attention, leading to several
proposals that require only dozen of bytes [20]–[22]. As
a consequence, the ATD has been removed as a limiter
to implement CPAs in real processors.

The partitioning logic is the second limiting factor to
implement CPAs in real processors. One of the com-
mon characteristics of the already proposed partitioning
logics is that they are based on, and only work with,
the stack property of the true LRU replacement policy.
However, it has been shown that for highly associative
caches, such as the L2 caches, implementing true LRU
is complex and incurres a high hardware cost. The
complexity comes from both the high number of storage
bits to support LRU replacement scheme (A× log2(A)
LRU bits, where A is the cache associativity) and the
high number of operations to be conducted on each
access (in the worst case the position of each line
in the LRU stack needs to be updated). As a result,
current CMP processors implement simpler pseudo-
LRU policies in the last level caches, which hinders
the use of so-far proposed CPAs in real processors. In
our view, a key aspect of any CPA to be considered by
the industry is that it has to work with the replacement
policies already implemented in real processors.

In this work, we show the required changes in
the hardware components of a CPA that allow its
implementation in a cache using a pseudo-LRU re-
placement policy. We focus on two implementations
of the pseudo-LRU based replacement schemes: the
Not Recently Used (NRU) implemented in the the
UltraSPARC T2 [28] and the Binary Tree (BT) proposed
by IBM [4]. Our hardware proposals are based on the
fact that neither NRU nor BT have the stack property
of true LRU, requiring a new profiling logic. Hence, in
this paper we propose two new profiling logics: one
that works with the NRU and another with the BT.
Overall, this paper presents two hardware techniques to

adapt the existing cache partitioning algorithms to real
replacement policies.

We show that our CPAs for NRU and BT experience
a small performance degradation with respect to the per-
formance of the CPA on top of LRU. When running 49
two-, four- and eight-thread workloads from the SPEC
CPU 2000 benchmark suite [2] in a CMP architecture
with a 16-way 2MB L2 cache, the results show that
our CPA for NRU suffers only a 0.3%, 3.6% and 7.3%
performance degradation, respectively. In the case of
our CPA for BT, the degradation is 1.4%, 3.4% and
9.7%, respectively. We also conduct a detailed study
of the complexity of the LRU, NRU and BT policies.
We depict the area overhead of each replacement logic.
We further analyze the number of bits that need to be
updated on particular events related to the cache access.

The rest of this paper is organized as follows. Sec-
tion II introduces the components of a dynamic cache
partitioning system, whereas Section III analyzes the re-
quired architecture changes when migrating from LRU
to NRU and BT replacement schemes. The methodology
description in Section IV is followed by our simulation
results in Section V. Section VI discusses the related
work. We conclude in Section VII.

II. BACKGROUND

Figure 1 shows the architectural changes required
to support dynamic CPA in a CMP with a shared L2
cache. In our baseline CMP processor setup, each core
has a private L1 instruction and data caches, while the
unified L2 cache is shared between the cores. The L2
cache partitioning includes profiling and partitioning
logics, together with the corresponding modification of
the replacement logic.

A. Profiling Logic

The profiling logic gathers the number of cache
misses each thread would have if it had run in isolation,
as we vary the number of ways it is assigned. The logic
consists of an Auxiliary Tag Directory (ATD) and a
Stack Distance Histogram (SDH) per thread.

The ATD is a separate copy of the tag directory,
used to profile threads’ accesses to the cache. Both the
L2 cache and the ATD of each thread have the same
associativity (A) and are accessed in parallel on every
cache access. Since each thread accesses its own ATD,
we can observe how the thread behaves in the ATD as
if it runs alone with an A-associativity cache. A miss
in the ATD indicates that a given thread would miss
in a cache even if it is allowed to use the entire A-
associativity L2 cache.

Each ATD is associated with one SDH. On every
cache access, the ATD reports the LRU stack position,
in which the access hits, to the SDH [5], [11], [13], [22],



Figure 1. Baseline architecture supporting cache partitioning algorithms. I$ stands for L1 Instruction Cache, D$ stands for L1 Data Cache.
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(a) ATD content (1 set).
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(b) SDH content.
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(c) Building miss curve.

Figure 2. 4-way ATD and SDH state after CDD accesses.

[27]. In the case of a miss, it reports the position A+1,
where A is the cache associativity. Hence, the SDH
consists of A+1 registers, each containing the number of
accesses in the past interval to the corresponding LRU
stack positions. The values stored by the registers allow
us to derive the miss curve of the thread as a function
of the ways assigned to a thread.

Let’s assume a 4-way associative cache with one
thread executing. Figure 2(a) illustrates the content of
the LRU stack for a sample set in the ATD. Further
assume that initially the set stores lines {A, B, C, D},
in which A is the Most Recently Used (MRU) line and
D is the LRU line, as Figure 2(a) depicts. After {C, D}
accesses, the line D is promoted to the MRU position,

whereas line B is degraded to the LRU position. For
the next access, the stack position of the line D equals
1. Figure 2(b) shows the corresponding SDH structure.
For a 4-way ATD, the SDH is built of 5 registers: r1, r2,
r3 and r4 store number of accesses for stack distances
equal 1, 2, 3 and 4, respectively. Register r5 stores the
number of accesses that miss in the ATD. Since the
stack distance equals 1 for the second access of the line
D, we increase register r1.

We can derive the number of misses for a given thread
by reading the values stored in the corresponding SDH
registers. For example, if a thread owns 2 ways, it will
suffer r3 + r4 + r5 misses, as Figure 2(c) shows. Thus,
by profiling a thread with the ATD and SDH, we are
able to predict the number of misses it would have when
assigned any number of ways.

Periodically, at every interval boundary, the SDH
register values are scaled down to prevent their satu-
ration. In our approach, we divide all register contents
by 2. This operation requires only right bit shift in
each counter and ensures a fair ratio between the stack
positions corresponding to the past and future intervals.

B. Partitioning Logic

We consider CPAs that work at a way granularity
and are dynamic, meaning that on every time interval
boundary, the CPA selects a new partition. The partitio-
ning logic has two main roles: 1) to determine which
ways are given to each thread to optimize a given target
metric 2) and to enforce that threads only evict data
from their assigned ways.

Partition selection: In our setup we use the Min-
Misses [22] algorithm with an interval of 1 million
cycles. The MinMisses policy assigns ways to the run-
ning threads so that it minimizes the overall number
of misses, giving at least one way per thread. This
mechanism increases the overall performance. Further
goals can be reached, when the policy is modified to
favor fairness or QoS [14].

Enforcement logic: So far, the proposed CPAs are
based on the true LRU replacement. However, this
scheme has been shown to have a high implementation



cost in highly associative caches. To specify a position
in the LRU stack, each line needs to be augmented with
log2(A) LRU bits, where A is the cache associativity.
For example, in a 4-way associativity L2 cache the
MRU position may be represented with bits 00, and the
LRU position with 11. When looking for a victim, the
logic searches for the 11 value in all the lines, sets to 00
the bits of the incoming line and increases the LRU bits
of the remaining lines. On a hit, each line that is between
the MRU line and the hit line increments its LRU bits,
and the hit line is promoted to the MRU position. Not
only does it increase design complexity, but it also leads
to a high area overheads of the replacement logic.

So far, two enforcement mechanisms have been pro-
posed to work on top of LRU.

1) Per-set counters [22]: In a CMP with N cores,
log2(N) bits are added to each line to specify the core
that wrote the data in that line. We refer to those bits
as owner core bits. Moreover, each set has N counters,
each of log2(A) bits, specifying the number of lines in
the set that belong to a given core. Whenever a thread
replaces a line of a different thread, the corresponding
counter of the first thread increases, while the counter
of the second thread (whose data is evicted) decreases.

The changes introduced in the replacement logic are
the following: on a cache miss, the augmented LRU
policy compares the number of lines belonging to the
missing thread with the number of ways allocated to that
thread. If the thread owns less ways than assigned, the
replacement engine selects the LRU line among the lines
that do not belong to the thread. Otherwise, it selects the
LRU line among the owned ways. This significantly in-
creases replacement logic complexity. This partitioning
scheme requires additional A× log2(N) + N × log2(A)
bits per each set1.

2) Global replacement masks [5]: In this scheme,
there is a global replacement mask for each core, which
specifies the ways that a given core is allowed to search
for a victim line. Each mask consists of A bits, each bit
specifying whether a given core may access a way in
the case of a miss. On a miss, a thread evicts data from
its assigned lines.

III. CACHE PARTITIONING ALGORITHMS WITH

PSEUDO-LRU REPLACEMENT

Two major obstacles prevent the implementation of
CPAs in real architectures: the ATD and the replacement
logic complexity.

The ATD has been recently removed as a limiting
factor, since several solutions have been proposed to
reduce its size [21], [22]. In this paper we use approach
proposed in [22], where the authors decrease the size of

1A× log2(N) for the owner core bits and N× log2(A) counters’ bits

(a) ATD for CDD accesses (b) ATD for ABC accesses

Figure 3. Used bits in a 4-way ATD using NRU for three consecutive
accesses. The arrows point to the line of the last access with the
estimated stack distance next to it.

the ATD without significantly affecting the final perfor-
mance. They apply set sampling, so that the number of
sets represented in the ATDs is smaller than in the L2
cache. In this scenario, an access to the L2 cache does
not necessarily cause an access to the ATD structure,
depending whether a given set has been sampled in the
ATD. In our environment we sample 1 every 32 sets,
so in total the ATD size per core is 3.25KB (for 64-
bit architecture with 47 tag bits and 2MB, 16-way L2
cache). Other solutions [20] can further decrease the size
of the entire monitoring logic, to only tens of bytes.

The second limiting factor is assuming that LRU
is the underlying replacement policy. However, the
industry has identified the implementation cost of the
true LRU replacement scheme as excessive for high as-
sociativity caches. The complexity comes both from the
high number of storage bits to support that replacement
scheme (A× log2(A) LRU bits) and the high number of
operations to be conducted on each access (in the worst
case the position of each line in the LRU stack needs
to be updated). As an alternative solution, high asso-
ciative caches use pseudo-LRU schemes with similar
performance and significantly reduced implementation
costs. There are two major types of pseudo-LRU based
replacement policies, NRU used in the the UltraSPARC
T2 [28] and the BT proposed by IBM [4].

To the best of our knowledge, so far a complete
cache partitioning solution for pseudo-LRU schemes
does not exist. In our view, the industry can benefit
from dynamic cache partitioning only if it is adapted
to the current replacement policies. Below we discuss
both pseudo-LRU replacement schemes introduced in
previous sections, as well as proposals of new profiling
logics for dynamic cache partitioning designs that work
on top of both pseudo-LRU implementations.



A. NRU-based Cache Partitioning Algorithm

The NRU replacement applies a used bit scheme [28],
where every line is augmented with a used bit. When-
ever a line is accessed, either on a hit or miss, its used
bit is set to 1. If on an access, all the other used bits
of the lines in a set are 1, they are reset to 0 except
the bit of the line that is accessed. In addition, the
L2 cache is extended with a replacement pointer, one
for all running threads. The pointer is used only on a
miss. When looking for a victim line, it shows the first
way to be considered for a replacement. A line can be
replaced if its used bit is reset to 0. If it is not the case,
we search for the next position, until we find a line
with a reset used bit. Finally, the replacement pointer is
rotated forward one way. The usage of the replacement
pointer, one for all the sets, guarantees a random-like
replacement [28].

Profiling logic under NRU. Figure 3 depicts a
snapshot of a sample set in a 4-way ATD employing
the NRU replacement. Let’s assume that the given set
stores lines {A, B, C, D}. There are two situations when
computing the stack distance of an access.

- Access to a line whose used bit is 1: Figure 3(a)
depicts the used bits of the lines when accessing with the
CDD pattern. After {C, D} accesses, the used bits of the
lines C and D are set to 1. On the next access to D, we
find a used bit already set to 1. We observe that D is the
MRU line (accessed just before). This corresponds to a
stack distance equal to 1 in LRU replacement. With our
new profiling method, when accessing a cache set, we
compute the total number of used bits set to 1, denoted
U . If a line that is accessed has its used bit set to 1,
we estimate its stack distance to be within 1 and U .
For the case depicted in Figure 3(a), U = 2 and the
stack distance may be either 1 or 2. With our profiling
method we increase both SDH registers r1 and r2,
assuming the stack distance to be 2. Therefore, we tend
to overestimate the stack distances. We further discuss
this point in the next subsection, where we propose a
correction to the SDH overestimation problem.

- Access to a line whose used bit is 0: Let’s now
focus on a different access pattern {A, B, C}, depicted
in Figure 3(b). The first two accesses establish the
corresponding used bits to 1, and the last access finds
its used bit reset to 0. We observe that A and B lines
are the most recently used, which implies that the line
C has a stack distance equal to at least 3. If a line has
its used bit reset to 0, we estimate the stack distance to
be within U +1 and A. In Figure 3(b) the stack distance
may be either 3 or 4. With our methodology, we assume
the stack distance to be 4. In this particular case we do
not update SDH registers, given that increasing all of
them does not change the shape of the miss curve they
store. This simplifies the profiling logic design and has

a neglible performance cost.
By gathering the stack distances for the NRU scheme,

we construct an estimated SDH (eSDH). In Section V
we prove that the eSDH achieves negligible perfor-
mance degradation when compared to the SDH, while
it enables CPAs to be implemented in real market
processors that use the NRU replacement policy.

Increasing the accuracy of the eSDH: As stated
above, if the accessed line has its used bit set to 1, the
stack distance is within 1 and U . For the eSDH update,
however, so far we assume it to be U , which tends to
overestimate the profile information. To mitigate this
problem, we propose scaled eSDH: we assume the stack
distance to be S×U , where S is a scaling factor. For
example, if S = 0.5 and there are U = 8 lines in a given
set with used bits set to 1 (including the line that is
accessed), we assume the stack distance to be S×U = 4.
If S×U value does not result in an integer number, we
select the closest upper integer. For example, if U = 7,
we compute S×U = 3.5 � 4.

In this paper we analyze three scaling factors: 1.0,
0.75 and 0.5. The former value, 1.0, corresponds to
the default case where scaling does not modify eSDH
distribution.

Enforcement logic: In the case of a cache miss, the
access of each core to the L2 cache is ANDed with
the corresponding global replacement masks, to select
the ways in which we search for a victim line. If the
replacement pointer selects a way that is not within the
set of accessible ways for a given core, we rotate it
forward one way. This operation is repeated until we
find a candidate for the replacement. In the case of a
hit, we allow the core to access any line in a set. On an
access, if all the used bits of the owned ways are set to
1, we reset all used bits except the one that belongs to
the line currently accessed.

B. BT-based Cache Partitioning Algorithm

The Binary Tree (BT) replacement applies a tree
structure comprised of A−1 bits, as Figure 4(a) shows2.
Each node of the tree contains a bit that specifies
whether upper sub-tree or lower sub-tree contains the
most recently used (MRU) line: the value 0 means that
the MRU line is in the lower sub-tree, while the value 1
means that the MRU line is in the upper sub-tree. On a
miss, when looking for the line to evict (i.e., the pseudo-
LRU line), the replacement logic reads the value of the
most significant bit (MSB) in the tree structure. In this
case the bit value 0 says that the pseudo-LRU position
is in the upper sub-tree, whereas value 1 indicates it is
in the lower sub-tree. For example, in Figure 4(a), the

2In this section we focus on 4-way implementation only. However,
similar discussion can be conducted for any cache associativity.



(a) BT scheme. (b) Estimated SDH profiling. (c) Decoder. (d) Limitation.

Figure 4. BT scheme ilustration (a) and profiling logic for the BT replacement policy (b). BPS stands for bits per set. On (c) we show decoder
for ID bits extraction from the way number. On (d) we show two stacks with the same BT bits.

Figure 5. Partitioning logic for the BT replacement policy.

MSB bit specifies that line A or B holds the pseudo-
LRU position. Next, the replacement logic reads the
value of the corresponding less significant bit (LSB),
which in our example points to A as the pseudo-LRU
line. The scheme requires to traverse the entire path,
from MSB to LSB bits to find the evicted line. There
are log2(A) bits that need to be read to find this line. We
observe that all the bits, except the MSB one, specify
that a more recently used line is in the upper or the lower
sub-tree. However, it does not imply that the line holds
the absolute MRU position. For example, the value of
the bit in the node connecting lines A and B (hatched
node in Figure 4(a)) says that line B is more recently
used than line A, though line B is not the MRU line.

In the case of miss, the replacement logic searches
for the LRU line, it replaces the line and advances it to
the MRU position. For example, in the bottom part of
Figure 4(a), line A is replaced with line E and advanced
to the MRU position. Shaded nodes represent the bits
that are updated to promote the line to the MRU position
- we set both bits to 1, as line E is in the most upper
sub-tree position. In the case of a hit, the replacement
logics accesses the line and similarly promotes the line

to the MRU position.
Profiling logic under BT. Figure 4(b) proposes a

novel, scalable profiling technique for the BT replace-
ment. For each position in the stack we determine what
would be the BT bits values if a given line held the
LRU position. We call these bits the identifier bits (ID).
For example, if line D stays at the LRU position, it is
determined with 11 BT bits (MSB = 1 and LSB = 1).
Therefore, for the 4th way storing line, D the identifier
bits are 11 (ID0 = 1 and ID1 = 1), as Figure 4(b) shows.

Next, we perform a bit-wise XOR operation on the
ID (11 in the example) and the actual BT bits (10),
as Figure 4(b) shows (11 ⊕ 10 operation). There are
log2(A) bits to be XOR-ed. Finally, we substract the
fixed associativity number (A = 4 in Figure 4(b)) with
the results of the XOR operation. Substraction is a
log2(A)-bit operation, and gives the estimated position
in the stack (3 in the example). Therefore, we build an
estimated SDH (eSDH) for each thread.

Figure 4(c) shows a simple decoder extracting ID bits
from the current way number for a 4-way L2 cache. We
represent a way number with the W0 and W 1 bits. For
example, in a 4-way L2 cache the decoder finds the ID
bits using formula ID0 =W1 and ID1 =W0. Therefore,
for the 2nd way (W0 = 1 and W1 = 0) the decoder finds
the ID bits ID0 = 0 and ID1 = 1. There is one decoder
for the entire L2 cache. This solution imposes negligible
hardware costs even for high associativity caches.

Limitations of the profiling logic in BT. The BT
replacement logic does not store sufficient information
to determine the actual order of the lines in the pseudo-
LRU stack - BT bits only specify in which sub-tree
(upper or lower) is the pseudo-LRU/MRU position.
For example, Figure 4(d) depicts two different stack
contents with identical BT bits. The stacks differ in the
position of the B and D lines (marked with grey). Since
our profiling logic uses BT bits and cache associativity
as the inputs to estimate the stack position, and for both



Table I
COMPLEXITY OF THE LRU, NRU AND BT REPLACEMENT SCHEMES. THE CALCULATIONS IN BRACKETS CORRESPOND TO A 16-WAY 2MB
L2 CACHE WITH 128B LINES, ACCESSED BY 2 CORES, 64-BIT ARCHITECTURE (WITH 47 TAG BITS) AND DO NOT INCLUDE THE COST OF

THE PROFILING LOGIC. BPS, A, AND N STAND FOR BITS PER SET, CACHE ASSOCIATIVITY AND NUMBER OF CORES, RESPECTIVELY.

(a) Number of the bits that serve in the replacement logic for the LRU, NRU and BT schemes.

LRU NRU BT

No partitioning
A× log2(A) BPS A BPS + replacement pointer A−1 BPS

(8 KB) (� 2 KB) (1.875 KB)

Global
A× log2(A) BPS +

A BPS + A−1 BPS +

replacement
A×N owner masks bits

log2(A) replacement pointer bits + log2(A) −→up bits per core +

masks A×N owner mask bits log2(A)
−−−→
down bits per core

(� 8 KB) (� 2 KB) (� 1.875 KB)

(b) Number of bits that need to be read/updated.

Replacement/partitioning logic
Event LRU NRU BT

TAG comparison A×TAG bits (752 bits) A×TAG bits (752 bits) A×TAG bits (752 bits)
Update position without

A× log2(A) (64 bits)
A−1 NRU bits (15 bits) +

log2(A) BT bits (4 bits)partitioning (worst case) log2(A) replacement pointer bits (4 bits)

Update position for

Find owned lines:

partitioning (worst case)

N ×A (32 bits) N ×A (32 bits) already solved by −→up and
−−−→
down

Find LRU in owned lines:

A−1× log2(A) (52 bits)
A−1 NRU bits (15 bits) + log2(A) BT bits (4 bits) +

log2(A) replacement pointer bits (4 bits) log2(A) −→up bits (4 bits) +
log2(A)

−−−→
down bits (4 bits)

Get data (hit) line size (1024 bits) line size (1024 bits) line size (1024 bits)

Profiling logic
Event LRU NRU BT

Read/estimate the read log2(A) LRU bits (4 bits) count number of used bits (16 bits) XOR 2× log2(A)+
stack distance SUB 2× log2(A) (16 bits)

cases the inputs remain unchanged, we estimate instead
of determine the real stack position.

To sum up, the profiling proposal consist of a low-
overhead decoder and two operations, to estimate the
stack position of each line in a set. In Section V-B
we evaluate the proposal including both leakage and
dynamic power of the additional structures.

Enforcement logic under BT. Figure 5 shows the
partitioning scheme that we apply in our setup, similar
to [4]. Let’s assume that the partitioning logic assigned
lines A and B to core 0, and lines C and D to core 1.
We extend the BT replacement with two global vectors
(of bits) for the entire L2 cache per each core, −→up and
−−−→
down. The size of the vectors equals the number of
BT bits, log2(A). The vectors can force the replacement
scheme for a given core to search the LRU position
in the upper or lower sub-tree. In the case −→up signal
equals 1, the replacement logic overwrites current BT
bit with 0, forcing a given thread to search LRU line in
the upper sub-tree. Similarly, if

−−−→
down signal equals 1,

the replacement logic overwrites BT bit with 1, forcing
a given thread to search LRU line in the lower sub-
tree. If both signals equal 0, the value stored in BT bit
determines the sub-tree to be searched. Figure 5 shows
the truth table for the −→up,

−−−→
down signals and BT bit. The

partitioning logic ensures that both −→up and
−−−→
down signals

cannot be equal to 1 at the same time.

C. Complexity Evaluation

In this section we analyze the overheads of adapting
the NRU and BT pseudo-LRU replacement schemes to
support dynamic CPAs.

LRU. This scheme employs A× log2(A) bits per set
to store the LRU bits, which translates into 8KB cost
for a 16-way 2MB L2 cache with lines of 128 bytes.
In the worst case for a hit in the LRU position, the
logic updates the positions of all the lines in the set, as
Table I(b) shows. This corresponds to advancing the line
from the LRU to the MRU position and moving all the
other lines one step towards the LRU position, which
affects A× log2(A) bits. If we use global replacement
masks to partition the cache, we need N ×A additional
bits to specify the lines available for the replacement.
To find the stack position in all the partitioning scenar-
ios, the profiling logic reads log2(A) replacement bits
associated with a given line.

NRU. The NRU scheme significantly reduces the area
overhead of the replacement-supporting bits associated
with each line, as depicted in Table I(a). If we do not
apply any cache partitioning, the area cost for the same
cache configuration as above is 2KB plus 4 bits for



Table II
BASELINE PROCESSOR CONFIGURATION (LEFT) AND WORKLOAD SUMMARY (RIGHT).

Processor setup

CORE:
8 wide, out-of-order,

98 entry reserv. station
Branch predictor:

select best from
bimodal & gshare

BTB: 1KB, 4-way;
min penalty - 3 cycles

L1 CACHES:
Icache: 64KB, 2-way,

128B line, LRU,
11 cycles miss penalty

Dcache: 32KB, 2-way,
128B line, LRU,
11 cycles miss penalty

L2 CACHE:
Unified: 2MB, 16-way,

128B line size,
250 cycles miss penalty,
MinMisses policy

Workload Benchmarks Workload Benchmarks

2T_01 apsi, bzip2 4T_01 apsi, bzip2, mcf, parser
2T_02 mcf, parser 4T_02 parser, twolf, vortex, vpr
2T_03 twolf, vortex 4T_03 apsi, crafty, bzip2, eon
2T_04 vpr, art 4T_04 mcf, gcc, parser, gzip
2T_05 apsi, crafty 4T_05 applu, gap, lucas, sixtrack
2T_06 bzip2, eon 4T_06 lucas, galgel, facerec, wupwise
2T_07 mcf, gcc 4T_07 applu, apsi, gap, bzip2
2T_08 parser, gzip 4T_08 lucas, mcf, sixtrack, parser
2T_09 applu, gap 4T_09 vpr, wupwise, gzip, crafty
2T_10 lucas, sixtrack 4T_10 fma3d, swim, mcf, applu
2T_11 facerec, wupwise 4T_11 applu, crafty, gap, eon
2T_12 galgel, facerec 4T_12 lucas, gcc, sixtrack, gzip
2T_13 applu, apsi 4T_13 crafty, eon, gcc, gzip
2T_14 gap, bzip2 4T_14 mesa, perl, equake, mgrid
2T_15 lucas, mcf 8T_01 apsi, bzip2, mcf, parser, twolf, swim, vpr, art
2T_16 sixtrack, parser 8T_02 apsi, crafty, bzip2, eon, mcf, gcc, parser, gzip
2T_17 applu, crafty 8T_03 twolf, mesa, vortex, perl, vpr, equake, art, mgrid
2T_18 gap, eon 8T_04 applu, gap, lucas, sixtrack, facerec, wupwise, galgel, facerec
2T_19 lucas, gcc 8T_05 applu, apsi, gap, bzip2, lucas, mcf, sixtrack, parser
2T_20 sixtrack, gzip 8T_06 lucas, mcf, sixtrack, parser, facerec, twolf, wupwise, art
2T_21 crafty, eon 8T_07 galgel, vpr, twolf, apsi, art, swim, parser, wupwise
2T_22 gcc, gzip 8T_08 gzip, crafty, fma3d, mcf, applu, gap, mesa, perlbmk
2T_23 mesa, perlbmk 8T_09 applu, crafty, gap, eon, lucas, gcc, sixtrack, gzip
2T_24 equake, mgrid 8T_10 wupwise, mesa, facerec, perl, galgel, equake, facerec, mgrid

8T_11 crafty, eon, gcc, gzip, mesa, perl, equake, mgrid

the shared replacement pointer. In the worst case only
A−1 bits have to be updated (all used bits were 1 and
are reset, except the replacement pointer position). Sim-
ilarly, when cache partitioning is applied, additionally
N ×A bits for the masks specify the line available for
the replacement. The profiling logic requires reading A
used bits on each access to the ATD.

BT. For the scenarios without cache partitioning, BT
scheme requires A−1 replacement bits per each set, to
maintain the BT structure. This translates into 1.875KB
in our L2 cache baseline setup. On every cache access
log2(A) bits have to be updated. The replacement bits
area slightly increases (by 8 bits) when applying cache
partitioning using global replacement masks. There is no
need for the owner mask bits, since −→up and

−−−→
down vectors

already specify the set of available lines for a given core,
as Figure 5 shows. On a cache access log2(A) bits of
the −→up and

−−−→
down vectors need to be read additionally.

The profiling logic requires two simple operations on
each access to the ATD: bit-wise XOR and substract,
as Section III-B shows.

Since the global replacement masks, or −→up and
−−−→
down

vectors, already specify the set of ways that can be
searched for a victim, we do not need the information
on how many lines each core has put in a given set.
Thus, we do not require each line to be marked with
the core that has put the line in the cache, as it is in the
case of the per-set counters [22]. Table I summarizes
the complexity analysis of the LRU, NRU and BT
replacement schemes.

IV. METHODOLOGY

We use an enhanced version of a detailed cycle-
accurate IBM’s Turandot simulator [9], [16], the Par-
allel Turandot CMP (PTCMP) [6]. Table II shows
the baseline processor configuration. We model 2-,
4- and 8-core CMP processors with 1 thread exe-
cuting in each core. Both instruction and data first
level caches are private to each core, while the L2
cache is shared between all the cores. The processor
configuration remains constant for all the experiments.
We use three performance metrics: IPC throughput
defined as the sum of the threads IPCs, ∑

N
i=1 IPCi;

the weighted speedup [25], defined as the sum
of relative IPCs, ∑

N
i=1 IPCCMP

i /IPCisolation
i ; and the

harmonic mean of relative IPCs [12], defined as
N/(∑N

i=1 IPCisolation
i /IPCCMP

i ). We also evaluate power
and relative energy (CPI x Power) of the entire pro-
cessor and memory. We model leakage and dynamic
power of all the processor’s components. We also take
into account the power overhead of accessing off-chip
memory. We assume that the energy cost of a memory
access is 150 times higher than an access to L2 [3].

We use the SPEC CPU 2000 suite [2] to evaluate our
proposal. We combine benchmarks into 24 two-thread
workloads, 14 four-thread workloads and 11 eight-
thread workloads, in which the benchmarks have been
selected randomly. We generate traces using SimPoint
methodology [19]. We stop the simulation when each of
the threads commits 100 million instructions. Table II
depicts the summary of the evaluated workloads.
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Figure 6. Performance of LRU, NRU and BT. Analysis for 1, 2, 4 and 8 core CMPs using a 16-way 2MB L2 cache with 128 bytes lines.

V. RESULTS AND ANALYSIS

A. Pseudo-LRU Schemes on Non-Partitioned Caches

Figure 6 compares the performance results of the
NRU and BT schemes of a non-partitioned L2 cache
with respect to the LRU replacement policy. In general,
pseudo-LRU schemes obtain lower performance than
LRU. The behavior of the NRU is similar to the
performance of a random replacement policy. If there
are several lines in the set that have their used bits reset
to 0, the candidate for the replacement is determined by
the current position of the replacement pointer. Since
there is only one replacement pointer for the entire
cache and it is used by all the sets, as introduced in
Section III-A, we can assume that the candidate is
selected randomly. As a result, this random-like policy
achieves lower performance than the LRU scheme. The
maximum throughput degradation does not exceed 2.1%
across 1, 2, 4 and 8-core architectures with respect to
the LRU scheme. The BT replacement tends to spread
the lines of each thread across entire set, since each
node selects alternally upper and lower sub-tree as the
best candidate for the replacement. In this scenarion we
observe higher performance degradation: 2.2%, 1.6%,
1.9% and 5.3% throughput reduction for 1-, 2-, 4- and
8-core CMP, respectively. We obtain similar results with
harmonic mean and weighted speedup metrics.

B. Pseudo-LRU and Cache Partitioning Algorithms

Figure 7 analyzes the performance of the LRU, NRU
and BT schemes when applying dynamic CPAs with
our hardware proposals. We evaluate 2, 4 and 8-core
CMP architectures, when all the cores share a 16-way
2MB L2 cache. We characterize a given configuration
with three parameters. First, we compare configurations
with the owner counters per set per each running thread
(denoted C), and the global replacement masks (denoted
M) in the L2 cache. Second, we compare the LRU
(L), the NRU (N) and the binary tree (BT) replacement
scheme in the profiling logic and the L2 cache. Third,
for the NRU scheme, we evaluate three eSDH scaling
factors: 1.0, 0.75, 0.5.

The acronym describing a given architecture consists
of these three parameters. For example, we describe a
configuration using 1) global replacement masks in the

L2 cache, 2) the NRU scheme in the profiling logic
and L2 cache, and 3) 0.75 as eSDH scaling factor,
by M-0.75N. All the results in Figure 7 are relative
to the baseline architecture with the dynamic CPA,
using the owner counters per set, and with the LRU
replacement in both the L2 cache and the profiling logic
(configuration C-L).

Owner counters vs. global replacement masks. We
compare two architectures using LRU replacement: one
using per-set counters (C-L) and the second using global
replacement masks (M-L). Figure 7 shows a negligible
throughput, fairness and weighted speedup variation,
less than 0.5% for any core count. We conclude that the
global replacement masks do not impose considerable
performance costs, while reducing the cost and the
complexity of the replacement logic, as introduced in
Section II-B. For this reason we use global masks for
all the pseudo-LRU mechanisms evaluated in this paper.

Profiling accuracy with the NRU scheme. We
evaluate the new profiling method proposed in Sec-
tion III-A for the NRU replacement. We apply the
NRU scheme to both the L2 cache and ATDs. We
evaluate the following values for the eSDH scaling
factor: 1.0 (denoted as M-1.0N), 0.75 (denoted as M-
0.75N) and 0.5 (denoted as M-0.5N). The eSDH with
the 1.0 scaling factor tends to overestimate the number
of misses when profiling threads, which causes some
performance degradation. The value 0.5, underestimates
threads’ miss rate, incurring performance penalties. The
value 0.75 for the scaling factor presents the best results.
With M-0.75N the throughput degrades by 0.3%, 3.6%
and 7.3% with respect to the baseline C-L configuration
for 2-, 4- and 8-core architectures, respectively. There
are two reasons for this performance degradation. First,
NRU replacement itself achieves lower performance
than LRU scheme, as Figure 6 shows. Second, instead of
true stack distances, eSDH gathers estimated positions
in the stack. Due to estimation error, our proposal adds
additional performance cost.

Profiling accuracy with the BT scheme. Next, we
compare the configuration with BT replacement, M-BT,
with the baseline C-L architecture, where the latter uses
LRU scheme. If the replacement logic uses BT algo-
rithm, it suffers the highest performance degradation
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Figure 7. Performance results for the dynamic cache partitio-
ning algorithms in the 2-, 4- and 8-core CMP. All the results
are relative to the baseline, C-L configuration. Analysis done
for a 16-way 2MB L2 cache with 128 bytes lines.

with respect to LRU case, due to reasons discussed in
Section V-A. However, we observe that adding cache
partitioning on top of the BT scheme does not impose
significant performance costs when comparing to simi-
lar partitioned LRU-based cache. When the L2 cache
is not partitioned, BT introduces a 1.6%, 1.9% and
5.3% lower throughput for 2-, 4- and 8-core CMPs with
respect to LRU, as Figure 6(a) shows. When the L2 is
partitioned, BT replacement introduces a 1.4%, 3.4%
and 9.7% throughput degradation for 2-, 4- and 8-core
architectures with respect to LRU. The BT achieves
lower throughput than the NRU in partitioned caches
due to the replacement policy itself and lower BT
performance with respect to NRU, as Figure 6 depicts.

Effect of partitioning the L2 cache. Figure 8 depicts
throughput results of the dynamic CPA for LRU, NRU
and BT schemes with respect to the non-partitioned L2
cache of the same replacement algorithms. In each case
we vary the cache size from 512KB to 2MB. We ob-
serve limited performance improvements for big caches,
as running threads fit into the L2 cache and do not
trash each other data to a high extent. Since the threads’
interference increases for smaller caches, dynamic CPAs
can recognize the best partitioning scenarios and adapt
to current benchmarks’ phases. For example, for 512KB
L2 cache size MinMisses improves throughput by 8%
(for LRU) and 8.1% (BT), for 1MB by 2.4% (LRU)
and 4.7% (BT), and for 2MB by 0.2% (LRU) and 0.5%
(BT). Due to the SDH estimation limited accuracy, we
do not observe average improvements higher than 2%
for the NRU policy accross all evaluated cache sizes.
However, estimation error does not limit improvements
for BT scheme, since BT achieves much lower perfor-
mance for non-partitioned L2 cache (see Figure 6), and
thus creates much relaxed baseline in our studies. We
observe similar trends for 4- and 8-core CMPs. We leave
further estimation accuracy research for our future work.

In all the evaluated configurations we assume the
same L2 cache access latency, namely 11 clock cycles

(a) M-L architecture vs. non-partitioned LRU-based L2 cache.
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Figure 8. Throughput for the LRU, NRU and BT schemes when
applying dynamic cache partitioning in a 2-core CMP. The results are
relative to the cases without cache partitioning. Analysis done for L2
cache size varied from 512KB to 2MB, with 16 ways and 128 bytes
line size in all the cases.

as Table II depicts. However, in Section III-C we show,
that both pseudo-LRU schemes require less complex
replacement logic, which translates into less delays on
each access to the L2. For example, for our baseline
setup with non-partitioned L2 cache, LRU updates 64
replacement bits (for a hit in the LRU position), NRU
updates 23 bits (all the used bits reset except the
replacement pointer position) and BT updates 4 bits
(for all the accesses). Hence, an efficient cache design
may decrease the access latency for the pseudo-LRU
schemes. However, in this paper we focus on the worst-
case scenario, in which the pseudo-LRU logic latency
does not decrease with the design simplification.



C. Power and Energy Consumption

In this section we evaluate both power and en-
ergy consumption for LRU, NRU and BT replacement
schemes. The total power include the cores’ and L2
cache’s dynamic and static power, together with the
dynamic main memory power, as Figure 9(a) shows.
We include all the leakage cost according to equa-
tions in Table 1(a), and all the dynamic power costs
according to equations in Table 1(b). We observe that
power and energy consumption numbers have the same
tendency than the performance numbers. Since the only
difference between the evaluated architectures refers
to the L2 cache replacement and partitioning logic,
different performance translates into different miss rates.
High miss rates cause low performance and a high
number of energy-consuming off-chip accesses to the
main memory. This can be observed when evaluating
the power of each processor components as a fraction
of the whole power consumption in Figure 9(b). The
power of the cores and the L2 cache remains unchanged,
whereas main memory dynamic power increases for the
configurations with lower performance, due to off-chip
accesses. We conclude that the power consumed by the
proposed new profiling logic is a negligible component
of the whole power - it always remains below 0.3%
of the total power. Therefore, to reduce power con-
sumption one needs to improve the performance and
reduce off-chip accesses. We believe that efficient cache
designs, transforming lower complexity of the pseudo-
LRU caches into lower latency caches, can increase
the power efficiency of the NRU and BT replacement
schemes.

VI. RELATED WORK

The true LRU replacement policy has the stack
property [13]. This allows to build the Stack Distance
Histograms (SDH), obtained during the execution by
running the thread alone in the system [5] or by adding
some hardware profile counters [22], [26]. Qureshi et
al. [22] presented a low-overhead circuit to measure
SDHs using an Auxiliary Tag Directory (ATD).

Previous work proposed to partition shared caches,
assigning more cache space to the applications that
improve a given metric. In these approaches, static and
dynamic Cache Partitioning Algorithms (CPA) monitor
the L2 cache accesses and decide a partition, in order
to maximize throughput [5], [15], [22], [24], [26] or
fairness [11], [14]. Zhou et al. used SDHs to improve
the management of the main memory and reduce the
number of page faults [29].

Other authors propose to use CPAs to ensure Qual-
ity of Service (QoS) in CMP architectures. Rafique
et al. [23] suggest to manage shared caches with a
hardware cache quota enforcement mechanism. They
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Figure 9. Power and energy consumption for the evaluated
configurations. All the results are relative to the C-L configu-
ration for 2, 4, and 8 cores, respectively. For all the cases we
use a 16-way 2MB L2 cache with 128 bytes lines.

also explore an interface between the architecture and
the OS, to let the latter decide the quotas. Nesbit et
al. [17] introduce Virtual Private Caches (VPC), which
consist of an arbiter that controls cache bandwidth,
and a capacity manager that controls cache storage.
However, the authors do not discuss how to decide on
resource assignments. A similar framework is presented
by Iyer et al. [10], where resource management policies
are guided by thread priorities. Guo et al. [7] present an
extension of this work with an admission mechanism to
accept jobs. Similarly, Moreto et al. [14] attain QoS ob-
jectives converting IPC into resource assignments with
a specialized hardware. They can also optimize other
IPC-related metrics, such as throughput, fairness, and
weighted speed up, which gives an enhanced flexibility
missing in previous proposals.

However, these proposals are based on the true LRU
replacement policy. In this paper we have shown how to
adapt dynamic CPAs to NRU and BT schemes already
used in the current processors.

VII. CONCLUSIONS

Dynamic CPAs have shown to be an effective tech-
nique to improve performance in the CMP architectures.
However, the solutions proposed so far target LRU
replacement scheme. Unfortunately, the LRU imposes



high complexity and implementation costs for high
associativity caches, which motivates processor vendors
to use the pseudo-LRU policy. Hence, the so-far used
CPAs have to be adapted to the replacement schemes
available in the current processors.

In this paper, we propose a complete partitioning
design that targets two pseudo-LRU replacement poli-
cies. In particular, we focus on the Not Recently Used
(NRU) replacement, implemented in the L2 cache in the
market UltraSPARC T2 processor and the Binary Tree
(BT) proposed by IBM. Our proposal covers novel, high
accuracy profiling logic. The results show a negligible
performance degradation. Namely, our design for NRU
loses as much as 0.3%, 3.6% and 7.3% throughput for
2, 4 and 8-core CMP architectures, respectively. For BT
the proposal degrades throughput by 1.4%, 3.4% and
9.7%, respectively.

We conclude that the proposals depicted in this paper
allow current pseudo-LRU schemes in high associativity
shared caches to be easily extended with dynamic
cache partitioning algorithms with a small performance
degradation.
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