
Design of Three-Dimensional Optical Circuit
Devices by Using Topology Optimization Method
with Function-Expansion-Based Refractive Index
Distribution

著者 YASUI Takashi, TSUJI Yasuhide, SUGISAKA
Jun-ichiro, HIRAYAMA Koichi

journal or
publication title

Journal of Lightwave Technology

volume 31
number 23
page range 3765-3770
year 2013-12-01
URL http://hdl.handle.net/10258/00009486

doi: 10.1109/JLT.2013.2288107

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Muroran-IT Academic Resource Archive

https://core.ac.uk/display/132528438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1

Design of Three-Dimensional Optical Circuit
Devices by Using Topology Optimization Method
with Function-Expansion-Based Refractive Index

Distribution
Takashi Yasui, Member, IEEE, OSA, Yasuhide Tsuji, Member, IEEE, OSA, Jun-ichiro Sugisaka,

and Koichi Hirayama, Senior Member, IEEE

Abstract—We extend topology optimization method with
function-expansion-based refractive index distribution to op-
timization for three-dimensional optical circuits, in which a
refractive index distribution in a design region is expressed by an
expansion with some analytical functions. Three-branch optical
waveguides have been optimized as numerical examples. Equally
branching three-branch waveguides are achieved using our
method. A limitation of topology optimization in two dimensions
and dependency of initial structure are also shown.

Index Terms—Finite-element method, three-dimensional anal-
ysis, optical waveguide, topology optimization.

I. INTRODUCTION

IN the recent progress of optical communication systems,
many kinds of high-performance and compact optical

waveguide devices have been developed. Especially, silicon
nanopohotnic waveguides have great possibility to realize such
devices, and extensive researches on these waveguides are
being carried out.

Recently, topology optimization methods have begun to
be used to realize high-performance microwave and photonic
waveguide devices [1]-[12]. These methods can simultane-
ously deal not only with geometric form but also with topo-
logical configuration, so we can find out optimum structures
that realize desired transmission characteristics.

In topology optimization, the density method was widely
used to express refractive index distribution [1]-[3]. However,
the topology optimization using the density method had a
drawback: it creates gray areas, which had intermediate re-
fractive index between those of materials used in a waveguide.
This drawback results in optimized structures that are difficult
to fabricate.

To suppress the gray areas, two types of approaches have
been investigated; one is a density filtering technique [13],
which has also been applied to optimization for optical devices
such as photonic crystals [4]-[7], periodic grating surfaces [8],
and plasmonic and dielectric structures [9], and the other is
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a technique based on a projection scheme using Heaviside
function [14]. The latter can be classified into two schemes;
one is the geometry projection method [10] and the is the
topology optimization method with function-expansion-based
refractive index distribution [11], [12], and both have been
applied to optimization for optical waveguide devices. How-
ever, these previous works were carried out in two dimensions.
The limitations of optimization for optical circuits in two
dimensions have not been unveiled.

In this paper, the topology optimization method with
function-expansion-based refractive index distribution is ex-
tended to optimization for three-dimensional optical circuits.
As numerical examples, the proposed method is applied
to three-branch waveguides. We will see that an equally
branching three-branch waveguide is successfully achieved
using the proposed method, but that topology optimization in
two dimensions fails to design three-dimensional three-branch
waveguides.

In Section II, we review formulations of the proposed
method. A few numerical results are shown in Section III.
Section IV is the conclusion.

II. TOPOLOGY OPTIMIZATION

A. Representation of Refractive Index Distribution in Design
Region

As an example, we consider a three-dimensional three-
branch optical waveguide consisting of two materials with
refractive indices of n1 and n2, as shown in Fig. 1. The
computational region is surrounded by the perfectly matched
layer (PML) [15]-[17]. A refractive index distribution in the
design region of size Wx by Wz is topology optimized so that
optical power input from port 1 equally branches into ports 2
to 4.

In this paper, the refractive index distribution in the design
region is expressed as follows [11]:

n2(x, y, z) = n2
1 + (n2
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Fig. 1. Three-branch optical waveguide to be topology optimized: (a) top and
(b) side views.

where w(x, y, z) is some function to determine the refractive
index distribution. The function H(w) is used to convert a con-
tinuous value of w(x, y, z) into either n1 or n2. Since H(w)
must be differentiable in the sensitivity analysis described
bellow, H(w) has a transition region of width 2h. The value
of h can be either fixed or variable through the optimization
process. After the optimization process is converged, h is
reduced to zero to obtain an index distribution without gray
area.

For w(x, y, z), we employ the following sinusoidal-
function-based expression:

w(x, y, z) =
Nx−1∑
i=0

Nz−1∑
j=−Nz

(aij cos θij + bij sin θij) (3)

θij =
2πi

Lx
(x − x0) +

2πj

Lz
(z − z0) (4)

where Nx and 2Nz are the numbers of the expansion functions
along the x- and z-directions, respectively, aij and bij , which
are normalized as max(|w(x, y, z)|) = 1, are the expansion
coefficients, and x0 and z0 are the x- and z-coordinates of
a given point in the computational region, respectively. Here,
Lx and Ly are set to be greater than Wx and Wy , respectively.
To ensure the feasibility of optimized structures, w(x, y, z) is
assumed to be constant with respect to y so that the refractive-
index-distribution in the design region will be invariant in
depth.

B. Finite Element Method

Since evaluation of characteristics of a given optical device
is necessary in topology optimization, the three-dimensional
finite element method (FEM) using tetrahedral edge elements
for a waveguide discontinuity problem [18] is employed to
estimate the transmission characteristics. Applying the FEM,
we obtain a final matrix equation as follows:

[P ]{Φ} = {Ψ}Γ (5)

where [P ] is a finite element matrix, {Φ} is an edge value
vector of unknown electric/magnetic field, and {Ψ}Γ is a

vector related to quantities on the incident plane. These matrix
and vectors are described in detail in [18], [19].

For this example, a quarter of the solution domain is
analyzed due to symmetry in the x- and y-directions.

C. Sensitivity Analysis

In the topology optimization, we need to know the depen-
dence of transmission characteristics on the expansion coef-
ficients aij and bij in (3).　 The transmission characteristics
are represented by scattering parameters Sn1 (n = 1, . . . , N )
given as follows:

Sn1 = −δn1 + {gn}T {Φ} (6)

where δn1 represents the Kronecker delta, {gn} is a known
vector related to a propagating mode in port n, N is the
number of ports, and superscript T denotes a transpose.

To calculate the dependence of Sn1 on aij or bij , the adjoint
variable method (AVM) [3]-[12], [20]-[25] is used. Let C be
an objective function to be minimized subject to the constraint
(5). Here we define C as

C = F (|S11|, |S21|, . . . , |SN1|) (7)

where F stands for a function with respect to |S11|, |S21|, . . .,
|SN1|. We rewrite the objective function by adding the zero
function:

C̃ =F (|S11|, |S21|, . . . , |SN1|)
− Re

[
{γ}T ([P ]{Φ} − {Ψ}Γ)

]
(8)

where {γ} is any arbitrary complex vector．From (8), we
obtain that

∂C̃

∂cij
=Re

[(
N∑

n=1

∂F

∂|Sn1|
S∗

n1

|Sn1|
{gn}T − {γ}T [P ]

)
∂{Φ}
∂cij

−{γ}T ∂[P ]
∂cij

{Φ}
]

(9)

where cij is aij or bij , and ∗ denotes complex conjugate. In
turn, this can be written as

∂C̃

∂cij
= −Re

[
{γ}T ∂[P ]

∂cij
{Φ}

]
(10)

when {γ} satisfies the adjoint equation:

[P ]T {γ} =
N∑

n=1

∂F

∂|Sn1|
S∗

n1

|Sn1|
{gn}. (11)

After the sensitivity analysis, aij and bij are updated using
the hill climbing method.

III. NUMERICAL RESULTS

As numerical examples of the proposed design method, we
consider the three-branch optical waveguide, as shown in Fig.
1. The refractive indices of core and cladding are n1 = 3.4 and
n2 = 1.45, respectively. The waveguide width is w = 0.4 µm,
the design-region width in x- and z-directions are, respectively,
Wx = Wz = 2 µm. Both the waveguide and design-region
thicknesses are t = 0.2 µm. For (3) and (4), Nx = Nz = 16,
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and Lx = Lz = 2.4 µm, where the dependence of Nx(=
Nz) on the optimization is demonstrated in Fig. 7 of [12].
Although the increasing numbers of Nx and Nz may improve
the circuit performance, the degree of freedom in optimization
also increases. This will cause fragment patterns in the design
region, which decrease the feasibility of the circuits, and slow
convergence on optimization. As we will see below in this
section, the optimized circuits show acceptable performances
with Nx = Nz = 16. The operation wavelength is λ =
1.55 µm. The fundamental Ex mode is launched into port 1.
The objective function to be minimized is given as follows:

C = 1 −
4∑

n=2

|Sn1|2 +
∣∣∣∣ |S21|2 + |S41|2

2
− |S31|2

∣∣∣∣ . (12)

We demonstrate optimum design of the three-branch waveg-
uide in three ways. Each is described below.

A. Two-dimensional optimization with fixed h and its three-
dimensional analysis

First, we consider three-dimensional analysis for a three-
branch waveguide obtained by the two-dimensional topology
optimization [3]. To construct the three-dimensional model,
the optimized structure in two dimensions is thickened to t.
In this optimization, the value of h in (2) is fixed to 0.005.
We will see that topology optimization in three dimensions is
necessary.

The results for two-dimensional topology optimization are
shown in Figs. 2 and 3. The effective index method is applied
to obtain the two-dimensional model, thus refractive indices
of the core and cladding are 2.70332 and 1.45, respectively.
Fig. 2 shows the initial and optimized structures together with
propagating field distributions. The normalized power as a
function of iteration count is shown in Fig. 3. The optimum
structure is obtained at the 193rd iteration. The normalized
output powers are |S21|2 = 0.322, |S31|2 = 0.332, and
|S41|2 = 0.322. We can see that optical power is almost
equally branched, and that the transmission characteristics are
drastically improved through the optimization. Note that, in
this section, the resulting normalized output power is the one
for the optimized structures before the elimination of gray
area. We will see in Subsection III-C that the effect caused by
the elimination of gray area can be negligible.

However, the propagating field distribution in the three-
dimensional model built from Fig. 2 (b) is shown in Fig. 4.
The normalized output power are |S21|2 = |S41|2 = 0.019
and |S31|2 = 0.441. In the three-dimensional analysis, the
computational region 　 was reduced to quarter because of
the symmetry, as a result |S21|2 = |S41|2. The transmission
characteristics of the three-dimensional model is obviously
deteriorated. Thus topology optimization for three-dimensional
optical circuits is necessary.

B. Optimization for three-dimensional optical circuits with
fixed h

In this subsection, the three-dimensional three-branch
waveguide is optimized. The two-dimensionally optimized

(a) (b)

(c) (d)

Fig. 2. Two-dimensional topology optimization for the three-branch waveg-
uide: (a) the initial, and (b) the optimized structures, propagating field in (c)
the initial and (d) the optimized structures.
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Fig. 3. Normalized power as a function of iteration count for topology
optimization in two dimensions. The optimum structure is obtained at the
193rd iteration. It is noted that the curves for |S21|2 and |S41|2 are
overlapped.

Fig. 4. Propagating field in the three-dimensional three-branch waveguide,
where the optimum structure obtained by the two-dimensional optimization
is thickened to t = 0.2 µm.

waveguide shown in Fig. 2 (b) is taken as the initial structure
to reduce the computational time. The computational region
is reduced because of the symmetry. Here, the value of h is
fixed to 0.005.
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(a) (b)

(c) (d) (e)
Fig. 5. Numerical results for the topology optimization with a fixed value of
h. (a) The optimized structure. (b) Top view of propagating field distribution.
Cross-sectional views of propagating field distributions at (c) port 1, (d) port
2 and 4 [because of the symmetry], and (e) port 3.
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Fig. 6. Normalized power as a function of iteration count for topology
optimization with a fixed value of h. The optimum structure is obtained at
the 1198th iteration. We note that |S21|2 = |S41|2 because of the symmetry.

The optimized structure and propagating field distributions
in it are shown in Fig. 5, and normalized power as a function
of iteration count is shown in Fig. 6. The optimum structure
was obtained at the 1198th iteration, and its normalized output
powers are |S21|2 = |S41|2 = 0.322 and |S31|2 = 0.332.
We can see that the transmission characteristics are much im-
proved by using the three-dimensional topology optimization.

C. Optimization for three-dimensional optical circuits vari-
able h

Next, we consider topology optimization of the three-
dimensional three-branch waveguide in the same way as the
previous subsection, but the value of h is renewed as a
monotonically decreasing function of iteration count n like
a decreasing radius of density filter [9], as follows:

h = 2 exp(−n/200). (13)

The optimized structure and propagating field distributions in
it are shown in Fig. 7, and normalized power as a function

(a) (b)

(c) (d) (e)
Fig. 7. Numerical results for the topology optimization with variable value of
h. (a) The optimum structure. (b) Top view of propagating field distribution.
Cross-sectional views of propagating field distributions at (c) port 1, (d) port
2 and 4 [because of the symmetry], and (e) port 3.
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Fig. 8. Normalized power as a function of iteration count for topology
optimization with variable value of h given as (13). The optimum structure
is obtained at the 1161st iteration. We note that |S21|2 = |S41|2 because of
the symmetry.

of iteration count is shown in Fig. 8. The optimum structure
was obtained at the 1161st iteration, and its normalized output
powers are |S21|2 = |S31|2 = |S41|2 = 0.325. An equally
branching three-blanch waveguide is obtained. We think that
the better solution than the one in the previous subsection
has been obtained because of higher degree of freedom for
modification of the structure in early step of the optimization
due to larger gray area.

The optimized structures before the elimination of gray area
for Fig. 7 (a) is shown in Fig. 9. The gray area, which occupies
only 0.63% of area of the design region, is painted in red. The
normalized output power shown above is for a structure with
gray area. After the elimination of gray area [Fig. 7 (a)], the
normalized output powers become |S21|2 = |S41|2 = 0.3248
and |S31|2 = 0.3251. The difference by the elimination of
gray area can be negligible.
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Fig. 9. The optimized structure before the elimination of gray area for Fig.
7 (a). The gray area, which occupies 0.63% of area of the design region, is
painted in red. Insets are magnified refractive index distributions.

D. Initial-structure dependency

Finally, we consider initial-structure dependency on the
topology optimization.

The three-branch optical waveguide is optimized with a
simpler initial structure as shown in Fig. 10 (a), where the
design region has a constant refractive index of 2.921. Here,
optimization with a fixed value of h of 0.005 for a three-
dimensional optical circuit is carried out from the start. The
optimum structure is obtained at the 196th iteration as shown
in Fig. 10 (b), and propagating field in it is shown in Fig. 10
(c). Here, its normalized output powers are |S21|2 = |S41|2 =
0.241 and |S31|2 = 0.338.

In comparison with the previous results, we can see that
the optimized results strongly depend on initial structures.
We think that there are a lot of local optima due to a high-
index-contrast waveguide structure, and that the result was
trapped in one of them. Thus an initial structure with a starting
guess is needed for successful convergence to optimize high-
index-contrast waveguide structures for the suggested topology
optimization approach.

IV. CONCLUSION

We extended the topology optimization method with
function-expansion-based refractive index distribution to opti-
mization for three-dimensional optical circuits. The proposed
method was applied to design equally branching three-branch
waveguides, and it has been achieved. We have also found out
that the optimization for a three-dimensional optical circuit
is necessary for optimum design of three-dimensional waveg-
uides.

The authors would like to thank Mr. Ryosuke Kijima for
his valuable work.
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