
Coordination of Distributed Systems
Distributed Systems / Paradigms

Sistemi Distribuiti / Paradigmi

Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2017/2018

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 1 / 79



Outline

1 Interaction

2 Coordination

3 Tuple-based Coordination

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 2 / 79



Interaction

Next in Line. . .

1 Interaction

2 Coordination

3 Tuple-based Coordination

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 3 / 79



Interaction

Scenarios for Distributed Systems

Issues

concurrency / parallelism multiple independent activities / loci of
control
active simultaneously
processes, threads, actors, active objects, agents. . .

distribution activities running on different and heterogeneous
execution contexts (machines, devices, . . . )

social interaction dependencies among activities
collective goals involving activities coordination /
cooperation

environmental interaction interaction with external resources
interaction within the time-space fabric
interaction in context

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 4 / 79



Interaction

Complexity & Interaction I

An essential source of complexity for computational systems is

interaction
[Goldin et al., 2006a]

The power of interaction [Wegner, 1997]

Interaction is a more powerful paradigm than rule-based algorithms
for computer-based solving, overtiring the prevailing view that all
computing is expressible as algorithms.

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 5 / 79



Interaction

Complexity & Interaction II

Intelligence & interaction [Brooks, 1991]

Real computational systems are not rational agents that take in-
puts, compute logically, and produce outputs. . . It is hard to draw
the line at what is intelligence and what is environmental interac-
tion. In a sense, it does not really matter which is which, as all
intelligent systems must be situated in some world or other if they
are to be useful entities.

A conceptual framework for interaction [Milner, 1993]

. . . a theory of concurrency and interaction requires a new con-
ceptual framework, not just a refinement of what we find natural
for sequential [algorithmic] computing.

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 6 / 79



Interaction

Complexity & Interaction III

Interactive computing [Wegner and Goldin, 1999]

finite computing agents that interact with an environment are shown
to be more expressive than Turing machines according to a notion of
expressiveness that measures problem-solving ability and is specified
by observation equivalence

sequential interactive models of objects, agents, and embedded
systems are shown to be more expressive than algorithms

multi-agent (distributed) models of coordination, collaboration, and
true concurrency are shown to be more expressive than sequential
models

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 7 / 79



Interaction

Complexity & Interaction IV

Basically, where does complexity come from?

events in a sequential component are totally ordered

as soon as we combine components in a concurrent system
(distribution in time), they are no longer totally ordered

as soon as we combine components in a distributed system
(distribution in space), interaction occurs in different contexts

interaction make the overall system essentially unpredictable

? why is this not a problem?

! the range of behaviours that an interactive system can exhibit is
typically larger than non-interactive systems

→ more behaviours means more expressiveness

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 8 / 79



Interaction

Components of an Interacting System I

Computational process with input and output

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 9 / 79



Interaction

Components of an Interacting System II

What is a component of an interacting system?

a computational abstraction characterised by

an independent computational activity
I/O capabilities

two independent dimensions

elaboration / computation
interaction

nothing else

openness no hypothesis on the component’s life & behaviour
distribution no hypothesis on the component’s location & motion

heterogeneity no hypothesis on the component’s nature & structure

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 10 / 79



Interaction

Basics of Interaction

Component model

A simple component exhibits

computation inner behaviour of a component

interaction observable behaviour of a component as input and output

Coupling across component’s boundaries

control?

information

time & space—internal / computational vs. external / physical

Information-driven interaction

output shows part of its state outside

input bounds a portion of its own state to the outside

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 11 / 79



Interaction

(Interacting) Computational System [Goldin et al., 2006b] I

Computational system

In a computational system, two or more computational processes

behave (by computing), and

work together (by interacting)

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 12 / 79



Interaction

(Interacting) Computational System [Goldin et al., 2006b] II

Basic interacting computational system

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 13 / 79



Coordination

Next in Line. . .

1 Interaction

2 Coordination

3 Tuple-based Coordination

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 14 / 79



Coordination Interaction & Coordination

Focus on. . .

1 Interaction

2 Coordination
Interaction & Coordination
Enabling vs. Governing Interaction
Classes of Coordination Models

3 Tuple-based Coordination

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 15 / 79



Coordination Interaction & Coordination

Interacting System

interaction 
space 

software 
component 

!"

!"

!"

!"

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 16 / 79



Coordination Interaction & Coordination

Coordination in Distributed Programming I

Coordination model as a glue

A coordination model is the glue that binds separate activities into
an ensemble
[Gelernter and Carriero, 1992]

Coordination model as an agent interaction framework

A coordination model provides a framework in which the inter-
action of active and independent entities called agents can be
expressed
[Ciancarini, 1996]

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 17 / 79



Coordination Interaction & Coordination

Coordination in Distributed Programming II

Issues for a coordination model

A coordination model should cover the issues of creation and de-
struction of agents, communication among agents, and spatial
distribution of agents, as well as synchronization and distribu-
tion of their actions over time
[Ciancarini, 1996]

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 18 / 79



Coordination Interaction & Coordination

What is Coordination?

coordination 

elaboration /  
computation 

!"

!"

!"

!"

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 19 / 79



Coordination Interaction & Coordination

A New Perspective over Computational Systems

Programming languages

interaction as an orthogonal dimension

languages for interaction / coordination

Software engineering

interaction as an independent design dimension

coordination patterns

Artificial intelligence

interaction as a new source for intelligence

social intelligence

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 20 / 79



Coordination Interaction & Coordination

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination

coordinables

coordination 

medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 21 / 79



Coordination Interaction & Coordination

Coordination: A Meta-model [Ciancarini, 1996]

A constructive approach

Which are the components of a coordination system?

coordination entities entities whose mutual interaction is ruled by the
model, also called the coordinables

coordination media abstractions enabling and ruling interaction among
coordinables

coordination laws laws ruling the observable behaviour of coordination
media and coordinables, and their interaction as well

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 22 / 79



Coordination Interaction & Coordination

Coordinables

Original definition [Ciancarini, 1996]

These are the entity types that are coordinated. These could be
Unix-like processes, threads, concurrent objects and the like, and
even users.

examples processes, threads, objects, human users, agents, . . .

focus observable behaviour of the coordinables

question are we anyhow concerned here with the internal machinery /
functioning of the coordinable, in principle?

→ this issue will be clear when comparing Linda & TuCSoN agents

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 23 / 79



Coordination Interaction & Coordination

Coordination Media

Original definition [Ciancarini, 1996]

These are the media making communication among the agents
possible. Moreover, a coordination medium can serve to aggregate
agents that should be manipulated as a whole. Examples are
classic media such as semaphores, monitors, or channels, or more
complex media such as tuple spaces, blackboards, pipelines, and
the like.

examples semaphors, monitors, channels, tuple spaces, blackboards,
pipes, . . .

focus the core around which the components of the system are
organised

question which are the possible computational models for coordination
media?

→ this issue will be clear when comparing Linda tuple spaces & ReSpecT tuple

centres

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 24 / 79



Coordination Interaction & Coordination

Coordination Laws I

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to describe
how agents coordinate themselves through the given coordination
media and using a number of coordination primitives. Examples
are laws that enact either synchronous or asynchronous behav-
iors or exploit explicit or implicit naming schemes for coordination
entities.

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 25 / 79



Coordination Interaction & Coordination

Coordination Laws II

coordination laws rule the observable behaviour of coordination media
and coordinables, as well as their interaction

a notion of (admissible interaction) event is required to define
coordination laws

the interaction events are (also) expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the admissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 26 / 79



Coordination Enabling vs. Governing Interaction

Focus on. . .

1 Interaction

2 Coordination
Interaction & Coordination
Enabling vs. Governing Interaction
Classes of Coordination Models

3 Tuple-based Coordination

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 27 / 79



Coordination Enabling vs. Governing Interaction

Basic Engineering Principles

Principles

abstraction problems should be faced / represented at the most
suitable level of abstraction
resulting abstractions should be expressive enough to
capture the most relevant problems
conceptual integrity

locality & encapsulation design abstractions should embody the
solutions corresponding to the domain entities they
represent

run-time vs. design-time abstractions incremental change / evolution
on-line engineering [Fredriksson and Gustavsson, 2004]

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 28 / 79



Coordination Enabling vs. Governing Interaction

Toward a Notion of Coordination Model

What do we ask to a coordination model?

to provide high-level abstractions and powerful mechanisms for
distributed system engineering

coordination abstractions should deal with interaction

to enable and promote the construction of open, distributed,
heterogeneous systems

to intrinsically add properties to systems independently of
components

e.g. robustness, adaptiveness, intelligence, . . .

by suitably shaping the interaction space

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 29 / 79



Coordination Enabling vs. Governing Interaction

Examples of Coordination Mechanisms I

Message passing

communication among peers

no abstractions apart from message

no limitations

the notion of protocol could be added as a coordination abstraction

no intrinsic model of coordination

any pattern of coordination can be superimposed [Deugo et al., 2001]

e.g., protocols as coordination patterns without dedicated software
abstraction

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 30 / 79



Coordination Enabling vs. Governing Interaction

Examples of Coordination Mechanisms II

Agent communication languages (ACL)

goal: promote information exchange

examples: Arcol, KQML

standard: FIPA ACL [FIPA ACL, 2002]

semantics: ontologies

enabling communication

ACL create the space of inter-agent communication
they do not allow it to be constrained

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 31 / 79



Coordination Enabling vs. Governing Interaction

Examples of Coordination Mechanisms III

Communication protocols

goal: setting communication patterns outside agents

examples / standard: FIPA / Jade protocols [FIPA ACL, 2002]

governing communication

protocols rule the space of inter-agent communication
they do allow it to be constrained

Service-Oriented Architectures (SOA) [Erl, 2005]

basic abstraction: service

basic pattern: service request / response

several standards

very simple pattern of coordination

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 32 / 79



Coordination Enabling vs. Governing Interaction

Examples of Coordination Mechanisms IV

Web Server

basic abstraction: resource (REST/ROA)

basic pattern: resource request / representation / response

several standards

again, a very simple pattern of coordination

generally speaking, objects, HTTP, applets, JavaScript with AJAX,
user interface

a multi-coordinated systems
“spaghetti-coordination”, no value added from composition

how can we fill the space of interaction to add value to systems?

so, how do we get value from coordination?

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 33 / 79



Coordination Enabling vs. Governing Interaction

Examples of Coordination Mechanisms V

Middleware

goal to provide global properties across distributed systems

idea fill the space of interaction with abstractions and shared features

interoperability, security, transactionality, . . .

middleware can contain abstractions of any sort, including
coordination ones

e.g., Jade white & yellow pages services, which inform the space of
agent interaction

? are they coordination abstractions?
?!? do we really care?

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 34 / 79



Coordination Enabling vs. Governing Interaction

Enabling vs. Governing Interaction I

Enabling interaction

e.g., ACL, SOA, . . .

enabling communication

enabling components interoperation

no models for coordination of components

no rules on what components should (not) say and do at any given
moment, depending on what other components say and do, and on
what happens inside and outside the system

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 35 / 79



Coordination Enabling vs. Governing Interaction

Enabling vs. Governing Interaction II

Governing interaction
e.g.

Jade AMS no interaction before agents are registered
FIPA protocols inter-agent communication should follow some

pre-defined patterns

in general, a model that does

rule what components should (not) say and do at any given moment
depending on what other components say and do, and on what
happens inside and outside the system

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 36 / 79



Coordination Enabling vs. Governing Interaction

Basic Question

Do we have a general model for coordination?

do we have a general model for governing communication in
distributed systems?

do we have a general model for governing interaction in distributed
systems?

if we do

what technologies?
what methodologies?
what systems out of those?

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 37 / 79



Coordination Classes of Coordination Models

Focus on. . .

1 Interaction

2 Coordination
Interaction & Coordination
Enabling vs. Governing Interaction
Classes of Coordination Models

3 Tuple-based Coordination

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 38 / 79



Coordination Classes of Coordination Models

Two Classes for Coordination Models

Control-oriented vs. data-oriented models

– control-driven vs. data-driven models
[Papadopoulos and Arbab, 1998]

control-oriented focus on the acts of communication

data-oriented focus on the information exchanged during communication

– several surveys, some books [Omicini et al., 2001], no time
enough here

– are these really classes?

! actually, better to take this as a criterion to observe
coordination models, rather than to separate them

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 39 / 79



Coordination Classes of Coordination Models

Control-oriented Models I

Processes as black boxes

I/O ports

events & signals on state

Coordinators. . .

. . . create coordinated processes as well as communication channels

. . . determine and change the topology of communication

hierarchies of coordinables / coordinators are possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 40 / 79



Coordination Classes of Coordination Models

Control-oriented Models II

Coordinators as meta-level communication components

coordinator 

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 41 / 79



Coordination Classes of Coordination Models

Control-oriented Models III

General features

high flexibility, high control

separation between communication / coordination and computation /
elaboration

examples

RAPIDE [Luckham et al., 1995]

Manifold [Arbab et al., 1993]

ConCoord [Holzbacher, 1996]

Reo [Arbab, 2004, Dastani et al., 2005]

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 42 / 79



Coordination Classes of Coordination Models

A Classical Example: Manifold [Arbab et al., 1993]

Main features

coordinators

control-driven evolution

events without parameters

stateful communication

coordination via topology

fine-grained coordination

typical example: sort-merge

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 43 / 79



Coordination Classes of Coordination Models

Control-oriented Models: Impact on Design

Which abstractions?

producer-consumer pattern

point-to-point communication

coordinator

coordination as configuration of topology

Which systems?

fine-grained abstractions

fine-tuned control

good for small-scale, closed systems

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 44 / 79



Coordination Classes of Coordination Models

An Evolutionary Pattern?

Paradigms of sequential programming

imperative programming with “goto”

structured programming (procedure-oriented)

object-oriented programming (data-oriented)

agent-oriented programming (autonomy-oriented)

Paradigms of coordination programming

message-passing coordination

control-oriented coordination

data-oriented coordination

? . . .

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 45 / 79



Coordination Classes of Coordination Models

Data-oriented Models I

Communication channel

shared memory abstraction

stateful channel

Processes

emitting / receiving data / information

Coordination

access / change / synchronise on shared data

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 46 / 79



Coordination Classes of Coordination Models

Data-oriented Models II

Shared dataspace: constraint on communication

shared 
dataspace 

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 47 / 79



Coordination Classes of Coordination Models

Data-oriented Models III

General features

expressive communication abstraction

→ information-based design

possible spatio-temporal uncoupling

does no control mean no flexibility?

examples

Gamma / chemical coordination [Banătre et al., 2001]

Linda & friends / tuple-based coordination [Rossi et al., 2001]

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 48 / 79



Tuple-based Coordination

Next in Line. . .

1 Interaction

2 Coordination

3 Tuple-based Coordination

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 49 / 79



Tuple-based Coordination

The Tuple-space Meta-model

The basics

coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 50 / 79



Tuple-based Coordination

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 51 / 79



Tuple-based Coordination

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left( ),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism that matches tuples and
templates

examples: pattern matching, unification, . . .

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 52 / 79



Tuple-based Coordination

Linda: The Coordination Language [Gelernter, 1985] I

out(T)

out(T) puts tuple T into the tuple space

examples out(p(1)), out(0,0.5), out(course(’Antonio
Natali’,’Poetry’,hours(150)) . . .

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 53 / 79



Tuple-based Coordination

Linda: The Coordination Language [Gelernter, 1985] II

in(TT)

in(TT) retrieves a tuple matching template TT from to the tuple
space

destructive reading the tuple retrieved is removed from the tuple
centre

non-determinism if more than one tuple matches the template, one is
chosen non-deterministically

suspensive semantics if no matching tuples are found in the tuple
space, operation execution is suspended, and woken
when a matching tuple is finally found

examples in(p(X)), in(0,0.5), in(course(’Antonio
Natali’,Title,hours(X)) . . .

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 54 / 79



Tuple-based Coordination

Linda: The Coordination Language [Gelernter, 1985] III

rd(TT)

rd(TT) retrieves a tuple matching template TT from to the tuple
space

non-destructive reading the tuple retrieved is left untouched in the
tuple centre

non-determinism if more than one tuple matches the template, one is
chosen non-deterministically

suspensive semantics if no matching tuples are found in the tuple
space, operation execution is suspended, and awakened
when a matching tuple is finally found

examples rd(p(X)), rd(0,0.5), rd(course(’Alessandro
Ricci’,’Operating Systems’,hours(X)) . . .

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 55 / 79



Tuple-based Coordination

Linda Extensions: Predicative Primitives

inp(TT), rdp(TT)

both inp(TT) and rdp(TT) retrieve tuple T matching template TT

from the tuple space

= in(TT), rd(TT) (non-)destructive reading, non-determinism, and
syntax structure is maintained

6= in(TT), rd(TT) suspensive semantics is lost: this predicative
versions primitives just fail when no tuple matching TT

is found in the tuple space
success / failure predicative primitives introduce success / failure

semantics: when a matching tuple is found, it is
returned with a success result; when it is not, a failure is
reported

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 56 / 79



Tuple-based Coordination

Linda Extensions: Bulk Primitives I

in all(TT), rd all(TT)

Linda primitives deal with one tuple at a time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT

(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 57 / 79



Tuple-based Coordination

Linda Extensions: Bulk Primitives II

Other bulk primitives

many other bulk primitives have been proposed and implemented to
address particular classes of problems

most of them too specific to be considered as a general extension to
Linda, and for inclusion in tuple-based models in general

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 58 / 79



Tuple-based Coordination

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination

many extensions have focussed on making a multiplicity of tuple
spaces available to processes

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

for instance, ts @ node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 59 / 79



Tuple-based Coordination

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples a tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access tuples in the tuple space are accessed through their
content & structure, rather than by name, address, or
location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 60 / 79



Tuple-based Coordination

Features of Linda: Tuples

tuple an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all
information concerning an given item

tuple structure based on

arity
type
position
information content

tuple templates / anti-tuples

to describe / define sets of tuples

matching mechanism

to define belongingness to a set

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 61 / 79



Tuple-based Coordination

Features of Linda: Generative Communication

Communication orthogonality

both senders and the receivers can interact even without having prior
knowledge about each others

space uncoupling no need to coexist in space for two processes to
interact

time uncoupling no need for simultaneity for two processes to interact
name uncoupling no need for names for processes to interact

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 62 / 79



Tuple-based Coordination

Features of Linda: Associative Access

Content-based coordination

synchronisation based on tuple content & structure

absence / presence of tuples with some content /
structure determines the overall behaviour of the
coordinables, and of the coordinated system in the
overall
based on tuple templates & matching mechanism

information-driven coordination patterns of coordination based on
data / information availability
based on tuple templates & matching mechanism

reification making events become tuples
grouping classes of events with tuple syntax, and
accessing them via tuple templates

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 63 / 79



Tuple-based Coordination

Features of Linda: Suspensive Semantics

Blocking primitives

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 64 / 79



Tuple-based Coordination

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

in the classical Dining Philosopher problem, N philosophers share N
chopsticks and a spaghetti bowl

each philosopher either eats or thinks

each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

each chopstick is shared by two adjacent philosophers

when a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 65 / 79



Tuple-based Coordination

Concurrency issues in the Dining Philosophers Problem

shared resources two adjacent philosophers cannot eat simultaneously

starvation if one philosopher eats all the time, the two adjacent
philosophers will starve

deadlock if every philosopher picks up the same (say, the left)
chopstick at the same time, all of them may wait indefinitely
for the other (say, the right) chopstick so as to eat

fairness if a philosopher releases one chopstick before the other one,
it favours one of his adjacent philosophers over the other one

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 66 / 79



Tuple-based Coordination

Dining Philosophers in Linda

the spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

chopsticks are represented as tuples chop(i ), that represents the left
chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i ) chop(i+1 mod N )

philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i ) chop(i+1 mod N )

! in the following, we will use Prolog for philosopher agents

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 67 / 79



Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 68 / 79



Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 68 / 79



Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 68 / 79



Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 68 / 79



Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 68 / 79



Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 68 / 79



Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 68 / 79



Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 68 / 79



Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 68 / 79



Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 68 / 79



Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 68 / 79



Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 68 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues
+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues
+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues
+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues
+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables

rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

( inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues
+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 69 / 79



Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 70 / 79



Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 70 / 79



Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 70 / 79



Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 70 / 79



Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 70 / 79



Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 70 / 79



Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 70 / 79



Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 70 / 79



Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 70 / 79



Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 70 / 79



Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 70 / 79



Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 70 / 79



Tuple-based Coordination

Dining Philosophers in Linda: Where is the Problem?

coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

as a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 71 / 79



Tuple-based Coordination

Dining Philosophers in Tuple-based Models: Solution?

making the behaviour of the coordination medium adjustable
according to the coordination problem

if the behaviour of the coordination medium is not be fixed once and
for all, and can be defined in accordance to the coordination needs
then, in principle all coordination problems may fit some admissible
behaviour of the coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

in this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

what is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 72 / 79



Conclusions

Summing Up

Coordination for distributed system engineering

engineering the space of interaction among components

Coordination as governing interaction

enabling vs. governing

Classes and features of coordination models

control-oriented vs. data-oriented models

tuple-based models

features
issues

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 73 / 79



References

References I

Arbab, F. (2004).
Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science, 14:329–366.

Arbab, F., Herman, I., and Spilling, P. (1993).
An overview of Manifold and its implementation.
Concurrency: Practice and Experience, 5(1):23–70.

Banătre, J.-P., Fradet, P., and Le Métayer, D. (2001).
Gamma and the chemical reaction model: Fifteen years after.
In Calude, C. S., Păun, G., Rozenberg, G., and Salomaa, A., editors, Multiset Processing.
Mathematical, Computer Science, and Molecular Computing Points of View, volume 2235
of LNCS, pages 17–44. Springer.

Brooks, R. A. (1991).
Intelligence without reason.
In Mylopoulos, J. and Reiter, R., editors, 12th International Joint Conference on Artificial
Intelligence (IJCAI 1991), volume 1, pages 569–595, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 74 / 79



References

References II

Ciancarini, P. (1996).
Coordination models and languages as software integrators.
ACM Computing Surveys, 28(2):300–302.

Dastani, M., Arbab, F., and de Boer, F. S. (2005).
Coordination and composition in multi-agent systems.
In Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M. P., and Wooldridge, M. J.,
editors, 4rd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2005), pages 439–446, Utrecht, The Netherlands. ACM.

Deugo, D., Weiss, M., and Kendall, E. (2001).
Reusable patterns for agent coordination.
In [Omicini et al., 2001], chapter 14, pages 347–368.

Dijkstra, E. W. (2002).
Co-operating sequential processes.
In Hansen, P. B., editor, The Origin of Concurrent Programming: From Semaphores to
Remote Procedure Calls, chapter 2, pages 65–138. Springer.
Reprinted. 1st edition: 1965.

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 75 / 79



References

References III

Erl, T. (2005).
Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall / Pearson Education International, Upper Saddle River, NJ, USA.

FIPA ACL (2002).
Agent Communication Language Specifications.
Foundation for Intelligent Physical Agents (FIPA).

Fredriksson, M. and Gustavsson, R. (2004).
Online engineering and open computational systems.
In Bergenti, F., Gleizes, M.-P., and Zambonelli, F., editors, Methodologies and Software
Engineering for Agent Systems: The Agent-Oriented Software Engineering Handbook,
volume 11 of Multiagent Systems, Artificial Societies, and Simulated Organization, pages
377–388. Kluwer Academic Publishers.

Gelernter, D. (1985).
Generative communication in Linda.
ACM Transactions on Programming Languages and Systems, 7(1):80–112.

Gelernter, D. and Carriero, N. (1992).
Coordination languages and their significance.
Communications of the ACM, 35(2):97–107.

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 76 / 79



References

References IV

Goldin, D. Q., Smolka, S. A., and Wegner, P., editors (2006a).
Interactive Computation: The New Paradigm.
Springer.

Goldin, D. Q., Smolka, S. A., and Wegner, P., editors (2006b).
Interactive Computation: The New Paradigm.
Springer Berlin Heidelberg.

Holzbacher, A.-A. (1996).
A software environment for concurrent coordinated programming.
In Ciancarini, P. and Hankin, C., editors, Coordination Languages and Models, volume
1061 of LNCS, pages 249–266. Springer-Verlag.
1st International Conference (COORDINATION ’96) Cesena, Italy, April 15–17, 1996.

Luckham, D. C., Kenney, J. J., Augustin, L. M., Vera, J., Bryan, D., and Mann, W.
(1995).
Specification and analysis of system architecture using Rapide.
IEEE Transactions on Software Engineering, 21(4):336–354.

Milner, R. (1993).
Elements of interaction: Turing award lecture.
Communications of the ACM, 36(1):78–89.

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 77 / 79



References

References V

Omicini, A., Zambonelli, F., Klusch, M., and Tolksdorf, R., editors (2001).
Coordination of Internet Agents: Models, Technologies, and Applications.
Springer Berlin Heidelberg.

Papadopoulos, G. A. and Arbab, F. (1998).
Coordination models and languages.
In Zelkowitz, M. V., editor, The Engineering of Large Systems, volume 46 of Advances in
Computers, pages 329–400. Academic Press.

Rossi, D., Cabri, G., and Denti, E. (2001).
Tuple-based technologies for coordination.
In [Omicini et al., 2001], chapter 4, pages 83–109.

Wegner, P. (1997).
Why interaction is more powerful than algorithms.
Communications of the ACM, 40(5):80–91.

Wegner, P. and Goldin, D. (1999).
Mathematical models of interactive computing.
Technical report, Brown University, Providence, RI, USA.

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 78 / 79



Coordination of Distributed Systems
Distributed Systems / Paradigms

Sistemi Distribuiti / Paradigmi

Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2017/2018

Andrea Omicini (DISI, Univ. Bologna) P3 – Coordination of Distributed Systems A.Y. 2017/2018 79 / 79


	Interaction
	Coordination
	Interaction & Coordination
	Enabling vs. Governing Interaction
	Classes of Coordination Models

	Tuple-based Coordination

