
Middleware
Distributed Systems

Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2017/2018

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 1 / 143

Outline

1 Overview

2 Communication

3 Naming

4 Object-Oriented Middleware

5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 2 / 143

Disclaimer

Acknowledgement

part of these slides derive from a presentation by Giovanni Rimassa,
which we warmly thank

other slides contain material from [Tanenbaum and van Steen, 2007]

slides were made kindly available by the authord

every problem or mistake contained in these slides, however, should
be attributed to the sole responsibility of the professor of this course

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 3 / 143

Overview

Next in Line. . .

1 Overview

2 Communication

3 Naming

4 Object-Oriented Middleware

5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 4 / 143

Overview

What is Middleware?

Traditional definition

what is middleware?

the word suggests something belonging to the middle
but middle between what?

the traditional middleware definition

the middleware lies in the middle between the Operating System and
the applications

the traditional definition stresses vertical layers

applications on top of middleware on top of the OS
middleware-to-application interfaces (top interfaces)
middleware-to-OS interfaces (bottom interfaces)

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 5 / 143

Overview

Why Middleware?

Behind middleware

problems of today

software development is hard
experienced designers are rare (and costly)
applications become more and more complex

what can middleware help with?

middleware is developed once for many applications
higher-quality designers can be afforded
middleware can provide services to applications
middleware abstracts away from the specific OS

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 6 / 143

Overview

Middleware and Models I

Interoperatibility

a key feature of middleware is interoperability

applications using the same middleware can interoperate
this is true of any common platform (e.g. OS file system)

however, many incompatible middleware systems exist

applications on middleware A can work together
applications on middleware B can work together, too
but, A-applications and B-applications most often cannot

the Enterprise Application Integration (EAI) task

emphasis on horizontal communication
application-to-application and middleware-to-middleware

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 7 / 143

Overview

Middleware and Models II

Conceptual integrity

software development does not happen in vacuum

almost any software project must cope with past systems
there is never time nor resources to start from scratch
legacy systems were built with their own approaches

system integration is the only way out

take what is already there and add features to it
try to add without modifying existing subsystem

first casualty: conceptual integrity

the property of a system of being understandable and explainable
through a coherent, limited set of concepts

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 8 / 143

Overview

Middleware and Models III

Models from middleware to applications

real systems are heterogeneous

piecemeal growth is a very troublesome path for software evolution
still, it is very popular – being asymptotically the most cost effective
when development time goes to zero

middleware technology is an integration technology

adopting a given middleware should ease both new application
development and legacy integration
to achieve integration while limiting conceptual drift, middleware tries
to cast a model on heterogeneous applications.

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 9 / 143

Overview

Middleware and Models IV

Integration middleware

before: you have a total mess

a lot of systems, using different technologies
ad-hoc interactions, irregular structure
each piece must be described in its own reference frame

then: the integration middleware (IM) comes

a new, shiny model is supported by the IM
existing systems are re-cast under the Model
new model-compliant software is developed

after: you have the same total mess

but, no, now they are CORBA objects, or Jade agents

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 10 / 143

Overview

Middleware Technologies

Abstract vs. concrete middleware

abstract middleware: a common model

concrete middleware: a common infrastructure

example: distributed objects
abstractly, any middleware modelling distributed systems as a collection
of network reachable objects has the same model: OMG CORBA, Java
RMI, MS DCOM, OSGI Architecture. . .

actually, even at the abstract level there are differences. . .

concrete implementations, instead, aim at actual interoperability, so
they must handle much finer details

until CORBA 2.0, two CORBA implementations from different vendors
were not interoperable
OSGI easily provides you with specifications—technology not so easy to
find

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 11 / 143

Overview

Middleware Standards

The role of standards

dealing with infrastructure, a key-issue is the so-called network effect

the value of a technology grows with the number of its adopters

standardisation efforts become critical to build momentum around an
infrastructure technology

large standard consortia are built, which gather several industries
together

OMG CORBA http://www.omg.org/spec/#MW

FIPA http://www.fipa.org/specifications/

OSGi http://www.osgi.org/developer/specifications/

W3C http://www.w3.org/standards/

big industry players try to push their technology as de facto standards,
or set up more open processes for them

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 12 / 143

http://www.omg.org/spec/#MW
http://www.fipa.org/specifications/
http://www.osgi.org/developer/specifications/
http://www.w3.org/standards/

Overview

Middleware Discussion Template

How to (re)present a middleware

presentation and analysis of the model underlying the middleware

what do they want your software to look like?

presentation and analysis of the infrastructure created by widespread
use of the middleware

if they conquer the world, what kind of world will it be?

discussion of implementation issues at the platform and application
level

what kind of code should one write to use this platform?
what kind of code should one write to build his/her own platform?

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 13 / 143

Communication

Next in Line. . .

1 Overview

2 Communication

3 Naming

4 Object-Oriented Middleware

5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 14 / 143

Communication

Communication in a Distributed Setting

communication does not belong to distributed systems only

communication mechanisms like procedure call and message-passing
just require a plurality of interacting entities, not necessarily distributed
ones

however, communication in distributed systems presents more difficult
challenges, like unreliability of communication and large scale

of course, communication in distributed systems first of all deals with
distribution / location transparency

! communication in distributed systems is mostly a middleware issue

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 15 / 143

Communication Layers & Protocols

Focus on. . .

1 Overview
2 Communication

Layers & Protocols
Types of Communication
Remote Procedure Call
Message-oriented Communication
Stream-oriented Communication

3 Naming
Names, Identifiers, Addresses
Flat & Structured Naming
Attribute-based Naming

4 Object-Oriented Middleware
5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 16 / 143

Communication Layers & Protocols

Layered Communication I

Communication involves many problems at many different levels

from the physical network level up to the application level

communication can be organised on layers

a reference model is useful to understand protocols, behaviours, and
interactions

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 17 / 143

Communication Layers & Protocols

Layered Communication II

OSI model [Day, 1995]

standardised by the International Standards Organization (ISO)

ISO/IEC 7498-1:1994

designed to allow open systems to communicate

rules for communication govern the format, content, and meaning of
messages sent and received

rules are formalised in protocols

the collection of protocols for a particular system is its protocol stack,
or protocol suite

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 18 / 143

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=20269

Communication Layers & Protocols

Types of Protocols

Connection-oriented protocols

first of all, a connection is established between the sender and the
receiver

possibly, an agreement over the protocol to be used is reached

then, communication occurs through the connection

finally, the connection is terminated

Connectionless protocols

no setup is required

the sender just send a message when it is ready

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 19 / 143

Communication Layers & Protocols

The OSI Reference Model

Layers, interfaces, and protocols in the OSI Model
[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 20 / 143

Communication Layers & Protocols

A Message in the OSI Reference Model

A typical message as it appears on the network
[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 21 / 143

Communication Layers & Protocols

OSI Model 6= OSI Protocols

OSI protocols

never successful

TCP/IP is not an OSI protocol, and still dominates its layers

OSI model

perfect to understand and describe communication systems through
layers

however, some problems exist when middleware comes to play

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 22 / 143

Communication Layers & Protocols

Middleware Protocols I

The problem

middleware mostly lives at the application level

protocols for middleware services are different from high-level
application protocols

← middleware protocols are application-independent, application
protocols are obviously application-dependent

how can we distinguish between the two sorts of protocols at the
same layer?

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 23 / 143

Communication Layers & Protocols

Middleware Protocols II

Extending the reference model for middleware

session and presentation layers are replaced by a middleware layer,
which includes all application-independent protocols

potentially, also the transport layer could be offered in the middleware
one

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 24 / 143

Communication Layers & Protocols

Middleware as an Additional Service in C/S Computing

Adapted reference model for network communication
[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 25 / 143

Communication Types of Communication

Focus on. . .

1 Overview
2 Communication

Layers & Protocols
Types of Communication
Remote Procedure Call
Message-oriented Communication
Stream-oriented Communication

3 Naming
Names, Identifiers, Addresses
Flat & Structured Naming
Attribute-based Naming

4 Object-Oriented Middleware
5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 26 / 143

Communication Types of Communication

Types of Communication I

Persistent vs. transient communication

persistent communication — a message sent is stored by the
communication middleware until it is delivered to the receiver

→ no need for time coupling between the sender and the
receiver

transient communication — a message sent is stored by the
communication middleware only as long as both the receiver
and the sender are executing

→ time coupling between the sender and the receiver

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 27 / 143

Communication Types of Communication

Types of Communication II

Asynchronous vs. synchronous communication

asynchronous communication — the sender keeps on executing after
sending a message

→ the message should be stored by the middleware

synchronous communication — the sender blocks execution after sending
a message and waits for response—until the middleware
acknowledges trasmission, or, until the receiver acknowledges
the reception, or, until the receiver has completed processing
the request

→ some form of coupling in control between the sender and the
receiver

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 28 / 143

Communication Types of Communication

Communications with a Middleware Layer

Viewing middleware as an intermediate (distributed) service in
application-level communication

[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 29 / 143

Communication Types of Communication

Actual Communication in Distributed Systems I

Persistency & synchronisation in communication

in the practice of distributed systems, many combinations of
persistency and synchronisation are typically adopted

persistency and synchronisation should then be taken as two
dimensions along which communication and protocols could be
analysed and classified

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 30 / 143

Communication Types of Communication

Actual Communication in Distributed Systems II

Discrete vs. streaming communication

communication is not always discrete, that is, it does not always
happen through complete units of information – e.g., messages

discrete communication is then quite common, but not the only way
available – and does not respond to all the needs

sometimes, communication needs to be continuous—through
sequences of messages constituting a possibly unlimited amount of
information

streaming communication — the sender delivers a (either limited or
unlimited) sequence of messages representing the stream of
information to be sent to the receiver

→ communication may be continuous

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 31 / 143

Communication Remote Procedure Call

Focus on. . .

1 Overview
2 Communication

Layers & Protocols
Types of Communication
Remote Procedure Call
Message-oriented Communication
Stream-oriented Communication

3 Naming
Names, Identifiers, Addresses
Flat & Structured Naming
Attribute-based Naming

4 Object-Oriented Middleware
5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 32 / 143

Communication Remote Procedure Call

Remote Procedure Call (RPC)

Basic idea

programs can call procedures on other machines

when a process A calls a procedure on a machine B, A is suspended,
and execution of procedure takes place on B

once the procedure execution has been completed, its completion is
sent back to A, which resumes execution

Information in RPC

information is not sent directly from sender to receiver

parameters are just packed and transmitted along with the request

procedure results are sent back with the completion

no message passing

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 33 / 143

Communication Remote Procedure Call

Issues of RPC

Main problems

the address space of the caller and the callee are separate and different

→ need for a common reference space

parameters and results have to be passed and handled correctly

→ need for a common data format

either / both machines could unexpectedly crash

→ need for suitable fault-tolerance policies

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 34 / 143

Communication Remote Procedure Call

Conventional Procedure Call

Parameter passing in a local procedure call
[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 35 / 143

Communication Remote Procedure Call

Client & Server Stubs I

Main goal: transparency

RPC should be like local procedure call from the viewpoint of both
the caller and the callee

→ procedure calls are sent to the client stub and transmitted to the
server stub through the network to the called procedure

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 36 / 143

Communication Remote Procedure Call

Client & Server Stubs II

Principle of RPC between a client and server program
[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 37 / 143

Communication Remote Procedure Call

Steps for a RPC

the client procedure calls the client stub in the normal way

the client stub builds a message and calls the local operating system

the client’s OS sends the message to the remote OS

the remote OS gives the message to the server stub

the server stub unpacks the parameters and calls the server

the server does the work and returns the result to the stub

the server stub packs it in a message and calls its local OS

the server’s OS sends the message to the client’s OS

the client’s OS gives the message to the client stub

the stub unpacks the result and returns to the client

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 38 / 143

Communication Remote Procedure Call

Parameter Passing I

Passing value parameters

parameters are marshalled to pass across the network

→ procedure calls are sent to the client stub and transmitted to the
server stub through the network to the called procedure

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 39 / 143

Communication Remote Procedure Call

Parameter Passing II

Steps of a remote computation through a RPC
[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 40 / 143

Communication Remote Procedure Call

Issues in Parameter Passing I

Passing value parameters

problems of representation and meaning

e.g., little endian vs. big endian

in order to ensure transparency, stubs should be in charge of the
mapping & translation

a possible approach: interfaces described through an IDL (Interface
Definition Language), and consequent handling compiled into the
stubs

e.g., CORBA IDL

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 41 / 143

Communication Remote Procedure Call

Issues in Parameter Passing II

Passing reference parameters

main problem: reference space is local

first solution: forbidding reference parameters

second solution: copying parameters (suitably updating the reference),
then copying them back (according to the original reference)

→ call-by-reference becomes copy&restore

third solution: creating a global/accessible reference to the caller
space from the callee

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 42 / 143

Communication Remote Procedure Call

Asynchronous RPC

Synchronicity might be a problem in distributed systems

synchronicity is often unnecessary, and may create problems

→ asynchronous RPC is an available alternative in many situations

Traditional RPC Asynchronous RPC

[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 43 / 143

Communication Remote Procedure Call

Deferred Synchronous RPC I

Combining asynchronous RPCs

sometimes some synchronicity is required, but too much is too much

→ deferred synchronous RPC combines two asynchronous RPC to
provide an ad hoc form of synchronicity

the first asynchronous call selects the procedure to be executed and
provides for the parameters

the second asynchronous call goes for the results

in between, the caller may keep on computing

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 44 / 143

Communication Remote Procedure Call

Deferred Synchronous RPC II

Deferred synchronous RPC
[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 45 / 143

Communication Remote Procedure Call

Limits of RPC

Coupling in time

co-existence in time is a requirement for any RPC mechanism

sometimes, a too-hard requirement for effective communication in
distributed systems

an alternative is required that does not require the receiver to be
executing when the message is sent

The alternative: messaging

please notice: message-oriented communication is not synonym of
uncoupling

however, we can take this road toward uncoupled communication

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 46 / 143

Communication Message-oriented Communication

Focus on. . .

1 Overview
2 Communication

Layers & Protocols
Types of Communication
Remote Procedure Call
Message-oriented Communication
Stream-oriented Communication

3 Naming
Names, Identifiers, Addresses
Flat & Structured Naming
Attribute-based Naming

4 Object-Oriented Middleware
5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 47 / 143

Communication Message-oriented Communication

Message-oriented Transient Communication

Basic idea

messages are sent through a channel abstraction

the channel connects two running processes

time coupling between sender and receiver

transmission time is measured in terms of milliseconds, typically

Examples

Berkeley Sockets [Vessey and Skinner, 1990] — typical in TCP/IP-based
networks

MPI (Message-Passing Interface) [Gropp, 2011] — typical in high-speed
interconnection networks among parallel processes

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 48 / 143

Communication Message-oriented Communication

Message-Oriented Persistent Communication I

Message-queuing systems / Message-Oriented Middleware (MOM)

basic idea: MOM provides message storage service

a message is put in a queue by the sender, and delivered to a
destination queue

the target(s) can retrieve their messages from the queue

time uncoupling between sender and receiver

example: IBM’s WebSphere Message-Queuing System

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 49 / 143

Communication Message-oriented Communication

Message-Oriented Persistent Communication II

General architecture of a message-queuing system
[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 50 / 143

Communication Stream-oriented Communication

Focus on. . .

1 Overview
2 Communication

Layers & Protocols
Types of Communication
Remote Procedure Call
Message-oriented Communication
Stream-oriented Communication

3 Naming
Names, Identifiers, Addresses
Flat & Structured Naming
Attribute-based Naming

4 Object-Oriented Middleware
5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 51 / 143

Communication Stream-oriented Communication

Streams

Sequences of data

a stream is transmitted by sending sequences of related messages

single vs. complex streams: a single sequence vs. several related
simple streams

data streams: typically, streams are used to represent and transmit
huge amounts of data

examples: JPEG images, MPEG movies

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 52 / 143

Communication Stream-oriented Communication

Streams & Time I

Continuous vs. discrete media

in the case of continuous (representation) media, time is relevant to
understand the data – e.g., audio streams

in the case of discrete (representation) media, time is not relevant to
understand the data – e.g., still images

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 53 / 143

Communication Stream-oriented Communication

Streams & Time II

Transmission of time-dependent information

asynchronous transmission mode — data items of a stream are
transmitted in sequence without further constraints—e.g., a
file representing a still image

synchronous transmission mode — data items of a stream are transmitted
in sequence with a maximum end-to-end delay—e.g., data
generation by a pro-active sensor

isochronous transmission mode — data items of a stream are transmitted
in sequence with both a maximum and a minimum
end-to-end delay—e.g., audio & video

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 54 / 143

Communication Stream-oriented Communication

Streams & Quality of Service I

Quality of service

timing and other non-functional properties are typically expressed as
Quality of Service (QoS) requirements

in the case of streams, QoS typically concerns timing, volume, and
reliability

in the case of middleware, the issue is how can a given middleware
ensure QoS to distributed applications

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 55 / 143

Communication Stream-oriented Communication

Streams & Quality of Service II

A practical problem

whatever the theory, many distributed systems providing streaming
services rely on top of the IP stack

IP specification allow for a protocol implementation dropping packets
when needed

QoS should be enforced at the higher levels

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 56 / 143

Naming

Next in Line. . .

1 Overview

2 Communication

3 Naming

4 Object-Oriented Middleware

5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 57 / 143

Naming

What is Naming? I

The issue of naming

naming is mapping names onto computational entities

e.g., resources in REST

finding the entity a name refers to is said resolving a name—name
resolution

The issue of naming in distributed systems

naming is an issue in computational systems in general

features of distributed system makes naming even more difficult

openness
location
mobility

! naming in distributed systems is mostly a middleware issue

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 58 / 143

Naming

What is Naming? II

Naming systems

the naming system is the portion of the system devoted to name
resolution

! the naming system is an essential part of any middleware

e.g., see AMS and DF in Jade

issues of naming systems

distribution
scalability
efficiency

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 59 / 143

Naming Names, Identifiers, Addresses

Focus on. . .

1 Overview
2 Communication

Layers & Protocols
Types of Communication
Remote Procedure Call
Message-oriented Communication
Stream-oriented Communication

3 Naming
Names, Identifiers, Addresses
Flat & Structured Naming
Attribute-based Naming

4 Object-Oriented Middleware
5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 60 / 143

Naming Names, Identifiers, Addresses

Names

Defining a (distributed) naming system amounts at. . .

defining a set of the admissible names

defining the set of the named entities

defining the association between names and entities

What is a name?

a name is something that refers to an entity

. . . a string, a sequence of symbols, . . .

! defining the set of the admissible names for its components
determines how we can speak about the system

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 61 / 143

Naming Names, Identifiers, Addresses

Entities

Entities are to be used

an entity is something one can operate on

by accessing to it

through an access point

Access point

a special sort of entity in distributed systems

used to access an entity

like, e.g., the cell phone to access yourselves

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 62 / 143

Naming Names, Identifiers, Addresses

Addresses

Accessing an entity through an access point. . .

requires an address

like, e.g., your cell phone number

for the sake of brevity, whenever there is no danger of confusion, the
address of an access point to an entity can be called the address of
the entity

What about using addresses as names?

addresses are names of some sort

however, they are quite unfriendly for humans

. . . and, location independence might be desirable

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 63 / 143

Naming Names, Identifiers, Addresses

Identifiers

An identifier is another type of name

1 an identifier refers to at most one entity

2 each entity is referred to by at most one identifier

3 an identifier always refers to the same entity—it is never reused

Addresses vs. identifiers

identifiers are sorts of names

however, with different purposes

e.g., while my user name andrea.omicini is not to be reused for
another person of the Alma Mater (identifier), my cell number could
instead be reused by someone else (address)

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 64 / 143

Naming Names, Identifiers, Addresses

Human-friendly Names

Identifiers and addresses are often in machine-readable form

humans cannot handle them easily

observability is spoiled

possibly creating problems in the use, monitoring, and control of
distributed systems

human-friendly names

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 65 / 143

Naming Names, Identifiers, Addresses

Resolving Names to Addresses

Main issue in naming

how do we associate names and identifiers to addresses?

in large, distributed, mobile, open systems, in particular?

Examples

the simplest case: name-to-address binding, with a table of
〈name, address〉 pairs

← problem: a centralised table does not work in large networks

the DNS case: hierarchical composition

→ www.apice.unibo.it hierarchically resolved through a recursive
lookup

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 66 / 143

Naming Flat & Structured Naming

Focus on. . .

1 Overview
2 Communication

Layers & Protocols
Types of Communication
Remote Procedure Call
Message-oriented Communication
Stream-oriented Communication

3 Naming
Names, Identifiers, Addresses
Flat & Structured Naming
Attribute-based Naming

4 Object-Oriented Middleware
5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 67 / 143

Naming Flat & Structured Naming

Flat Naming

Basic idea

a name is just a flat sequence of chars / symbols

works in LANs

Examples

broadcasting messages containing the identifier of the target entity is sent
to everyone, only the machine containing the entity responds

e.g., ARP (Address Resolution Protocol)
problem: inefficient when the network grows

multicasting only a restricted group of hosts receives the request

e.g., data-link level in Ethernet networks

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 68 / 143

Naming Flat & Structured Naming

Structured Naming

Basic idea

flat names are good for machines, not for humans

structured names are composed by simple human-readable names –
thus matching the natural limitations of human cognition

Example

Internet name space

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 69 / 143

Naming Flat & Structured Naming

Name Spaces

Basic idea

names are organised hierarchically, according to a labelled, directed
graph—a naming graph

leaf nodes represent named entities

directory nodes have a number of outgoing edges, each labelled with
an identifier

Symbolic link in a naming graph [Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 70 / 143

Naming Flat & Structured Naming

The Internet Domain Name Space (DNS)

The DNS Name Space

hierarchically organised as a rooted tree

each node (except root) has exactly one incoming edge, labelled with
the name of the node

a subtree is a domain

a path name to its root node is a path name

a node contains a collection of resource records

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 71 / 143

Naming Flat & Structured Naming

Resource Records

Most relevant types of resource records in a DNS node
[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 72 / 143

Naming Attribute-based Naming

Focus on. . .

1 Overview
2 Communication

Layers & Protocols
Types of Communication
Remote Procedure Call
Message-oriented Communication
Stream-oriented Communication

3 Naming
Names, Identifiers, Addresses
Flat & Structured Naming
Attribute-based Naming

4 Object-Oriented Middleware
5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 73 / 143

Naming Attribute-based Naming

Limits of Flat & Structured Naming

Beyond location independence

flat naming allow for unique and location-independent way to refer to
distributed entities

structured naming also provides for human-friendliness

however, distributed systems are more and more information-based –
information could also be the basis for looking for an entity

exploiting information associated to entities to locate them

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 74 / 143

Naming Attribute-based Naming

Attribute-based Naming I

Description as pairs

many way to describe an entity could be used

most popular: a collection of 〈attribute, value〉 pairs associated to an
entity to describe it

attribute-based naming

A.k.a. directory services

attribute-based naming systems are also known as directory services

the essential point: choosing the right set of attributes to describe
resources

yet, things are more complex than that: from X.500 to LDAP

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 75 / 143

Naming Attribute-based Naming

Attribute-based Naming II

X.500 standard

directory services are mostly ruled by the X.500 standards
http://www.x500standard.com

ruling access protocols like DAP (Directory Access Protocol)

including

DIT (Directory Information Tree) a hierarchical organisation of distributed
entries distributed over servers

DSA (Directory System Agents) the servers hosting the DIT
entry each entry consists of a set of attributes, each one with possibly

multiple values
DN each entry has a unique Distinguished Name, formed by combining its

Relative Distinguished Name (RDN), some entry attributes, and the
RDNs of each entry up to the DIT root

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 76 / 143

http://www.x500standard.com

Naming Attribute-based Naming

Hierarchical Implementations I

Combining structured & attribute-based naming

distributed directory services

Lightweight Directory Access Protocol (LDAP)
allowing for DAP upon TCP/IP

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 77 / 143

Naming Attribute-based Naming

Hierarchical Implementations II

Hierarchy through LDAP attribute-based names

an LDAP directory service contains a number of directory entries – a
collection of 〈attribute, value〉 pairs, similar to DNS resource records

the directory entries in an LDAP directory service constitute the
directory information base (DIB)—there, each record is uniquely
named

naming attributes are called Relative Distinguished Names
(RDN)—they are combined to form a globally-unique name, which is
a structured name

as a result, the Directory Information Tree (DIT) is a collection of
directory entries forming the naming graph of an LDAP directory

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 78 / 143

Naming Attribute-based Naming

Hierarchical Implementations III

Two LDAP directory entries with hierarchical naming. . .
[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 79 / 143

Naming Attribute-based Naming

Hierarchical Implementations IV

. . . along with the corresponding (partial) DIT
[Tanenbaum and van Steen, 2007]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 80 / 143

Object-Oriented Middleware

Next in Line. . .

1 Overview

2 Communication

3 Naming

4 Object-Oriented Middleware

5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 81 / 143

Object-Oriented Middleware

Distributed Objects

From OO to distributed OO

distributed systems need quality software, and they are a difficult
system domain

OOP is a current software best practice

questions are

can we apply OOP to distributed systems programming?
what changes and what stays the same?

distributed objects apply the OO paradigm to distributed systems

examples: CORBA, DCOM, Java RMI, JINI, EJB, OSGi

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 82 / 143

Object-Oriented Middleware

Core of OOP I

What is the fundamental concept of OOP?

? from the very name of object-oriented programming, could it be

the object
?

definitely not—and you should know this!

! the fundamental concept of object-oriented programming is

the class
!

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 83 / 143

Object-Oriented Middleware

Core of OOP II

Class: a definition

a class is an abstract data type, with an associated module that
implements it

writing this as a conceptual equation à la Wirth,

type + module = class

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 84 / 143

Object-Oriented Middleware

Modules vs. Types

Modules & types

modules and types look very different

modules give structure to the implementation
types specifies how each part can be used

but they share the interface concept

in modules, the interface selects the public part
in types, the interface describes the allowed operations as well as their
properties

as a result, the interface is at the very core of the notion of class

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 85 / 143

Object-Oriented Middleware

OOP Mechanism

Method call

The fundamental OOP computation mechanism

res = obj.meth(par)

Parameter List

Method Name

Target Object

Result

Access Operator

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 86 / 143

Object-Oriented Middleware

OOP Extensibility

Subclassing

subclassing is the main OOP extension mechanism, and it is affected by
the dual nature of classes

type + module = class
subtyping + Inheritance = subclassing

subtyping — a partial order on types

a valid operation on a type is also valid on a subtype
LSP Liskov substitution principle [Liskov, 1987]: if S is a

subtype of T , then replacing objects of type T with
objects of type S does not alter the properties of a
program

inheritance — a partial order on modules

a module grants special access to its sub-modules
open/closed principle: an OO language must allow the
creation of modules closed for use but open for
extension

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 87 / 143

Object-Oriented Middleware

Distributing the Objects

How to?

Q how can we extend OOP to a distributed system, preserving all its
desirable properties?

A just pretend the system is not distributed, and then do business as
usual!

this is called transparency

as crazy as it may seem, it works
well, up to a point at least, but generally enough for a lot of
applications

problems arise from failure management

in reliable and fast networks, things run smooth. . .
whenever a failure comes from what we abstracted away – e.g., a
network failure –, we are just plain dead

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 88 / 143

Object-Oriented Middleware

Core of Distributed OOP

What is the fundamental concept of Distributed OOP?

could it be

the object

or, again,

the class

?

clearly not

the fundamental concept of distributed OOP is

the remote interface
!

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 89 / 143

Object-Oriented Middleware

Distributed OOP Mechanism

Remote Method Call

The fundamental Distributed OOP computation mechanism

res = obj.meth(par)
Parameter List

Sent on the network
Target Object
Encapsulates address and protocol

Result
Sent back

Access Operator
Grants location transparency

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 90 / 143

Object-Oriented Middleware

Distributed OOP: Communication Model

The communication model of distributed objects. . .

is implicit

transmission is implicit, everything happens through stubs
the stub turns an ordinary call into an Inter-Process Communication
(IPC) mechanism
as a result, both local and remote calls are handled
homogeneously—location transparency

is object-oriented

only objects exist, invoking operations on each other
interaction is client/server with respect to the individual call—micro
C/S, not necessarily macro C/S
each call is attached to a specific target object: the result can depend
on the target object state
callers refer to objects through an object reference

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 91 / 143

Object-Oriented Middleware

Broker Architecture

Broker architectural pattern [Buschmann et al., 1996]

Broker Architecture

• Broker is an architectural pattern in [BMRSS96].
– Stock market metaphor.
– Publish/subscribe scheme.
– Extensibility, portability, interoperability.
– A broker reduces logic links from Nc•Ns to Nc + Ns .

Broker

Client 1

Client 2

Client 3

Server 1

Server 2

Server 3

Client 1

Client 2

Client 3

Server 1

Server 2

Server 3

stock market metaphor

publish/subscribe scheme

extensibility, portability, interoperability

a broker reduces communication channels from NcxNs to Nc + Ns

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 92 / 143

Object-Oriented Middleware

Proxy and Impl, Stub and Skeleton
Proxy and Impl, Stub and Skeleton

ResType operation(ParType par) { // 1. Marshal parameter // 2. Send marshalled data to impl transport address // 3. Receive result from impl transport address // 4. Return Result}

Client RemoteInterface
operation(par : ParType) : ResType

invokes

RemoteImplRemoteProxy
skel : Address RemoteSkel

ResType operation(ParType par) { // Execute the operation normally}

connects to

void dispatch() { while(active) { // 1. receive from the RemoteProxy // 2. Unmarshal received data // 3. Call operation on RemoteImpl // 4. Send back result }}

Network

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 93 / 143

CORBA

Next in Line. . .

1 Overview

2 Communication

3 Naming

4 Object-Oriented Middleware

5 CORBA

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 94 / 143

CORBA

What is CORBA I

A standard

acronym for Common ORB Architecture

ORB is an acronym again, standing for Object Request Broker

CORBA is a standard, not a product

a standard proposed by OMG

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 95 / 143

CORBA

What is CORBA II

Object Management Group (OMG)

a consortium of more than 800 companies, founded in 1989

including all major tech companies
http://www.omg.org

CORBA is a standard, not a product

the same institution that took up the Unified Modeling Language
(UML) specification from its original creator, Rational Software
Corporation

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 96 / 143

http://www.omg.org

CORBA

Behind CORBA I

Object Management Architecture (OMA)

represents the OMG vision for distributed computing

the architecture standardises component interfaces to create a
plug-and-play component software environment based on OO
technology

! nowadays, the OMA vision has been superseded by the Model Driven
Architecture (MDA), almost a meta-standard in itself
http://www.omg.org/mda/

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 97 / 143

http://www.omg.org/mda/

CORBA

Behind CORBA II

http://www.omg.org/oma/

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 98 / 143

http://www.omg.org/oma/

CORBA

Behind CORBA III

ORB the Object Request Broker is OMA backbone

IOOP the IIOP protocol is the standard application transport that grants
interoperability

Services The Common Object Services serve as CORBA system libraries, bundled
with the ORB infrastructure

Naming and Trader Service
Event Service
Transaction Service
. . .

Facilities The Common Facilities are frameworks to develop distributed
applications in various domains

Horizontal Common Facilities handle issues common to most
application domains—e.g., GUI, Persistent Storage, Compound
Documents
Vertical Common Facilities deal with traits specific of a particular
domain—e.g., Financial, Telco, Health Care

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 99 / 143

CORBA

RMI in OMA I

Communication in OMA

part of the OMA deals with communication mechanisms

it allows remote method invocation regardless of

location and network protocols
programming language
operating system

the transport layer is hidden from applications using stub code

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 100 / 143

CORBA

RMI in OMA II

Participants in RMI

a Request is the closure of an invocation, complete with target object,
actual parameters, etc.

the Client is the object making the request

the Object Implementation is the logical object serving the request

the Servant is the physical component that incarnates the Object
Implementation

the ORB connects Client and Servant

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 101 / 143

CORBA

ORB Core Interfaces I

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 102 / 143

CORBA

ORB Core Interfaces II

Interfaces

client-side interfaces

Client Stub
Dynamic Invocation Interface (DII)

server-side interfaces

Static Skeleton
Dynamic Skeleton Interface (DSI)
Object Adapter (OA)

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 103 / 143

CORBA

ORB Core Interfaces III

Client (IDL) Stub

specific of each remote interface and operation, with static typing and
dynamic binding

automatically generated by compilation tools

conversion of request parameter in network format (marshalling)

synchronous, blocking invocation

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 104 / 143

CORBA

ORB Core Interfaces IV

Dynamic Invocation Interface (DII)

generic, with dynamic typing and dynamic binding

directly provided by the Object Request Broker

both synchronous and deferred synchronous invocations are possible

provides a reflective interface

request
parameter
. . .

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 105 / 143

CORBA

ORB Core Interfaces V

Static Skeleton (IDL)

corresponds to the Client Stub on Object Implementation side

automatically generated by compilation tools

builds parameters from network format (unmarshalling), calls the
operation body, and sends back the result

Dynamic Skeleton Interface (DSI)

conceptually analogous to Dynamic Invocation Interface

allows the ORB to forward requests it does not manage to Object
Implementations

can be used to make bridges between different ORBs

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 106 / 143

CORBA

ORB Core Interfaces VI

Object Adapter (OA)

connects the Servant – the component containing an Object
Implementation – to the ORB

since in CORBA the Object Implementation is reactive, the OA has
the task of activating and deactivating it

there can be many Object Adapters

the CORBA 2.0 standard specifies the Basic Object Adapter (BOA)
the CORBA 2.3 standard specifies the Portable Object Adapter (POA)

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 107 / 143

CORBA

ORB Core Interfaces VII

ORB Interface

common interface for maintenance operations

initialization functions

bi-directional translation between Object Reference and strings

operations of this interface are represented as belonging to
pseudo-objects

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 108 / 143

CORBA

CORBA Interoperability I

Evolution of the standard

CORBA is heterogeneous for operating system, network transport,
and programming language

with the 1.2 version of the standard, interoperation was limited to
ORBs from the same vendor.

in CORBA 1.2 two objects managed by ORBs from different vendors
could not interact

→ very limited notion of interoperability

CORBA 2.x grants interoperability among ORBs from different
vendors

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 109 / 143

CORBA

CORBA Interoperability II

Recipe for interoperability

communication protocols shared among ORBs

data representation common among ORBs

object reference format common among ORBs

Common communication protocols

the standard defines the General Inter-ORB Protocol (GIOP),
requiring a reliable and connection-oriented transport protocol

upon TCP/IP CORBA the standard defines Internet Inter-ORB
Protocol (IIOP)

object reference format common among ORBs

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 110 / 143

CORBA

CORBA Interoperability III

Common data representation

Common Data Representation (CDR) format is specified as a part of
GIOP

CDR acts at the presentation layer in the ISO/OSI stack

Common object reference format

Interoperable Object Reference (IOR) format

contains all information to contact a remote object (or more)

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 111 / 143

CORBA

OMA Common Object Services I

Design guidelines for CORBAservices

essential and flexible services

widespread use of multiple inheritance (mix-in)

service discovery is orthogonal to service use

both local and remote implementations are allowed

! CORBAservices are ordinary Object Implementations

Naming Service

it handles name ↔ object reference associations

White Pages service for name resolution

it allows tree-like naming structures (naming contexts)

fundamental as a bootstrap mechanism

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 112 / 143

CORBA

OMA Common Object Services II

Object Trader Service

Yellow Page service for CORBA objects

it enables highly dynamic collaborations among objects

Life Cycle Service

object creation has different needs with respect to object use

→ the Factory concept is introduced

Factory Finders are defined, to have location transparency even at
creation time

this service does not standardise Factories (which are class-specific),
but copy, move, and remove operations.

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 113 / 143

CORBA

OMA Common Object Services III

Event Service

(most) objects are reactive

the Event Service enables notification delivery, decoupling the
producer and the consumer with an event channel

it supports both the push model (observer) and the pull model for
event distribution

suitable administrative interfaces allow event supplier and event
consumer of push or pull kind to be connected

Notification Service

it improves over the Event Service, with more expressiveness and
flexibility

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 114 / 143

CORBA

OMA Common Object Services IV

Transaction Service

transactions are a cornerstone of business application

a two-phase commit protocol grants ACID properties

it supports flat and nested transactions

Concurrency Control Service

it manages lock objects, singly or as part of groups

integration with the Transaction Service

transactional lock objects

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 115 / 143

CORBA

OMG IDL Language I

Motivation

CORBA is neutral with respect to programming languages

different parts of an application can be written in different languages

a language to specify interactions across language boundaries is
required

→ Interface Definition Language (IDL)

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 116 / 143

CORBA

OMG IDL Language II

Overall features

syntax and lexicon similar to C/C++/Java

it expresses the declarative part of a language only

services are exported through interfaces

it provides support for OOP concepts such as inheritance or
polymorphism

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 117 / 143

CORBA

Programming with CORBA I

Overall picture

the Broker architecture makes it possible to build distributed
applications, heterogeneous with respect to

operating system
network protocol

the OMG IDL language allows to build distributed applications,
heterogeneous with respect to

programming language

in the end, the distributed system should be implemented in some real
programming languages

→ the IDL specification have to be cast into those languages

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 118 / 143

CORBA

Programming with CORBA II

From IDL to real languages

CORBA programming environments feature a tool called IDL
compiler

it accepts OMG IDL as input, and generates code in a concrete
implementation language

with respect to a given IDL interface, a component may be a client
and/or a server

the client requests the service, the server exports it
the IDL compiler generates code for both

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 119 / 143

CORBA

Programming with CORBA III

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 120 / 143

CORBA

Programming with CORBA IV

Language mappings

for each supported programming language, the CORBA standard
specifies a language mapping, specifying

how every OMG IDL construct is to be translated
programming techniques that are to be used

the number of supported languages is large, and includes

C++
Java
SmallTalk
Perl
Ada
Ruby
Python

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 121 / 143

CORBA

Objects and Metadata I

Meta-level

seeking flexibility typically means looking for the ability to change
dynamically with awareness

this requires a new level allowing for

explicit description of system features
ability to enforce system change at run-time

since this further level uses the first level as the object of its activity,
it is called meta-level

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 122 / 143

CORBA

Objects and Metadata II

Metadata

since data belonging to the meta-level are data about other data,
they are metadata—e.g., the schema of a DB

! systems have a (usually small) number of meta-levels—e.g. objects,
classes and metaclasses in Smalltalk, or, the four-layer meta-model of
UML

OO software system were soon given metadata

Smalltalk has metaclasses
CLOS (Common Lisp Object System) introduced the concept of
Meta-Object Protocol
Java has a Reflection API since version 1.1

! reflection is an architectural pattern [Buschmann et al., 1996]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 123 / 143

CORBA

Objects and Metadata III

Reflection & reification

metadata are essential in open systems, to address heterogeneity,
since they allow talking about system & component features

reification is a pre-condition for reflection, making the representation
of system properties explicitly available

reflection is a basic mechanism for systems for
self-observation—awareness

reflective computation works over reified system properties
reflective update dynamically affects system properties

! in a distributed system, metadata have to be persistent, consistent,
and available

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 124 / 143

CORBA

Objects and Metadata IV

Metadata in CORBA

Accordingly, metadata are used in several parts in the OMA architecture

the Dynamic Invocation Interface allows to act on the remote
operation invocation mechanism itself

the Interface Repository allows runtime discovery of new IDL
interfaces and their structure

the Trader Service gathers services exported by objects into a
yellow-page structure

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 125 / 143

CORBA

The Dynamic Invocation Interface I

Goals of the DII

the DII provides a complete and flexible interface to the remote
invocation mechanism, around which CORBA is built

the central abstraction supporting the DII is the Request
pseudo-object, which reifies an instance of a remote call (Command
design pattern, [Buschmann et al., 1996]

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 126 / 143

CORBA

The Dynamic Invocation Interface II

IDL interfaces for the DII

first, a request attached to a CORBA object needs be created

the create request() operation, belonging to the Object
pseudo-interface (minimum of the inheritance graph), is to be used

when a request is created, it is associated to its original Object
Reference for its whole lifetime

IDL is exploited to create a request

after creation, a request object can be used via IDL

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 127 / 143

CORBA

The Dynamic Invocation Interface III

// IDL create_request

module CORBA { // PIDL

pseudo interface Object {

typedef unsigned long ORBStatus;

ORBStatus create_request(in Context ctx,

in Identifier operation, // Operation name

in NVList arg_list, // Operation arguments

inout NamedValue result, // Operation result

out Request request, // Newly created request

in Flags req_flags; // Request flags);

}; // End of Object pseudo interface

}; // End of CORBA module

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 128 / 143

CORBA

The Dynamic Invocation Interface IV

// IDL use object

module CORBA {

typedef unsigned long Status;

pseudo interface Request {

Status add_arg(in Identifier name,

in TypeCode arg_type,

in any value, in long len,

in Flags arg_flags);

Status invoke(in Flags invoke_flags);

Status delete(); // Destroy request object

Status send(in Flags invoke_flags);

Status get_response(in Flags response_flags);

}; // End of Request interface

}; // End of CORBA module

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 129 / 143

CORBA

The Dynamic Invocation Interface V

Communication via DII

through request objects the DII allows selecting the rendezvous policy

synchronous call with invoke()

deferred synchronous call with send()

with deferred synchronous invocations, a group of requests can be
sent all at once

thhe new Asynchronous Method Invocation (AMI) specification of
CORBA 2.4 also introduces asynchronous calls

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 130 / 143

CORBA

The Dynamic Invocation Interface VI
Synchronous Call with the DII

:Client

add_arg()

serve request and do operation

wake up client
clientblocks

:Object Implementation

:Request {new}

createRequest()
create()

add_arg()
invoke()

Synchronous Call with the DII

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 131 / 143

CORBA

The Dynamic Invocation Interface VII
Deferred Synchronous Call

:Client

get_response()

add_arg()

serve request and do operationclientcomputes

:Object Implementation

:Request {new}

createRequest()
create()

add_arg()
send()

Deferred synchronous Call with the DII

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 132 / 143

CORBA

The Interface Repository

Goals & features

the Interface Repository keeps the descriptions of all the IDL
interfaces available in a CORBA domain

using the Interface Repository, programs can discover the structure of
types they do not have the stubs for

a complete OO representation of the IDL language is stored within
the Interface Repository

with Repository IDs, more interface repositories can be federated

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 133 / 143

CORBA

Dynamic Collaboration I

CORBA objects are more adaptable than ordinary programming
language objects such as Java or C++ objects

two CORBA objects A and B, initially knowing nothing about each
other, can set up a collaboration

object A uses get interface() to get an InterfaceDef describing B
by browsing the Interface Repository, A discovers the syntax of the
operations supported by B
using the DII, A creates a request and sends it to B

with CORBA, the syntax of the operations can be discovered at
runtime

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 134 / 143

CORBA

Dynamic Collaboration II

The issue of semantics

the specification of the semantics of operations is missing in CORBA

OMG IDL cannot specify preconditions, postconditions, and invariants
the domain of discourse cannot be semantically represented in CORBA

! more complex systems (like multi-agent systems) require languages to
describe the domain of the discourse (ontologies)

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 135 / 143

Conclusions

Summing Up I

Middleware. . .

mediates between different OS and distributed applications

aims at interoperability

provides integration technologies

targets conceptual integrity

represented as abstract vs. concrete middleware

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 136 / 143

Conclusions

Summing Up II

Communication

Remote Procedure Call

message-oriented models

streaming

other forms like multicasting and epidemic protocols are important,
but are not a subject for this course

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 137 / 143

Conclusions

Summing Up III

Naming

naming is a general issue, particularly relevant in the distributed
setting

naming system is typically provided by middleware

different approaches to naming are possible: flat, structured,
attribute-based

typically, naming systems take a hybrid stance to the naming problem

DNS and LDAP are paradigmatic examples of naming systems

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 138 / 143

Conclusions

Summing Up IV

Object-oriented middleware

it provides a coherent framework for distributed OOP, both
conceptually and technologically

it extends OOP to distributed systems

it hides the complexity of programming DS

it is supported by open standards—such as OMG CORBA and OSGi

it promotes integration across OSs, networks and languages

it counts on a lot of free implementations available

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 139 / 143

Conclusions

Summing Up V

CORBA

the historical reference for OO middleware

OMA: ORB, Services, Facilities

core interfaces: IDL stub & skeleton, DII & DSI, OA

interoperability: IDL & Interface Repository

programming with CORBA

metadata

dynamic object collaboration

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 140 / 143

Bibliography

References I

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996).
Pattern-Oriented Software Architecture: A System of Patterns, volume 1.
John Wiley & Sons, New York, NY.

Day, J. (1995).
The (un)revised OSI reference model.
ACM SIGCOMM Computer Communication Review, 25(5):39–55.

Gropp, W. (2011).
MPI (Message Passing Interface).
In Padua, D., editor, Encyclopedia of Parallel Computing, pages 1184–1190. Springer US,
Boston, MA, USA.

Liskov, B. (1987).
Data abstraction and hierarchy.
In Proceedings on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA ’87) – Addendum, pages 17–34, New York, New York, USA. ACM Press.

Tanenbaum, A. S. and van Steen, M. (2007).
Distributed Systems. Principles and Paradigms.
Pearson Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition.

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 141 / 143

Bibliography

References II

Vessey, I. and Skinner, G. (1990).
Implementing Berkeley Sockets in System V release 4.
In Proceedings of the Winter 1990 USENIX Conference, pages 177–193, Washington, DC,
USA.

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 142 / 143

Middleware
Distributed Systems

Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2017/2018

Andrea Omicini (DISI, Univ. Bologna) C6 – Middleware A.Y. 2017/2018 143 / 143

	Overview
	Communication
	Layers & Protocols
	Types of Communication
	Remote Procedure Call
	Message-oriented Communication
	Stream-oriented Communication

	Naming
	Names, Identifiers, Addresses
	Flat & Structured Naming
	Attribute-based Naming

	Object-Oriented Middleware
	CORBA

