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1 Introduction

� Networks, consisting of a set of nodes a set of pairs of such nodes, are
nowadays employed for modeling a wide variety of phenomena in differ-
ent fields including computer science, sociology, engineering, physics and
biology, to the extent that over the last few decades a “new science of net-
works” has emerged [24]. With respect to previous applications of graph
theory in electrical engineering or in sociology, where networks either need
to be designed satisfying certain requisites or else are used for essentially
descriptive purposes, the main distinctive feature of the new science of
networks is that it focuses on real-world ones, possibly evolving over time
due to the autonomous behaviour of individual nodes, and in any case
formalizing the available knowlodge about a complex system whose whole
functioning and structure are sought to be understood [20]. Typical com-
plex networks, consisting of really many nodes and many pairs of nodes,
are the Internet, the World Wide Web and PPI (protein-to-protein inter-
action) networks.

� The novel science is thus concerned both with theoretical questions and
findings as well as with empirical observations, and in particular also
aims at modeling real complex networks by reproducing/comparing them
via/with variations of the traditional Erdős-Rény random graph model
[3, 19, 26]. In fact, although formalizing so diverse phenomena, complex
networks still generally display some common features, like the notorious
“small-world”. However, social networks are different in two main respects
detailed in the sequel [25].

� The purpose of this course is to eventually explore the objectives and meth-
ods of community detection in complex networks, which not only means
searching for cohesive groups in social networks, but also refers, more
broadly and importantly, to uncovering the modular structure which is
found to characterize all types of complex networks [12]. Roughly speak-
ing, communities or modules are regions (i.e. spanned or induced sub-
graphs, see below) where the density of links between nodes is significantly
high, namely higher than expected [22].
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� Community detection is thus closely related to graph clustering [28], and
both topics will be looked at from the combinatorial optimization perspec-
tive. More precisely, the fundamental example given by graph clustering
via modularity maximization [5, 21] is going to be analyzed as a maximum-
weight set partitioning problem, with the instance in form of a quadratic
pseudo-Boolean (set) function [4] assigning scores to subsets of nodes.
Within such a general framework, alternative (i.e. non-modularity-based)
pseudo-Boolean functions assigning cluster scores to node subsets may be
constructed, possibly cubic rather than quadratic, with the general aim to
finely detect (in spanned or generated subgraphs) some specific sought fea-
tures. Provided enough time, the setting may be also interpreted in terms
of fuzzy and overlapping community detection [1, 17, 18, 27, 30, 31, 33, 34].
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2 Simple graphs

� The following definitions can be found in [2, 11]. As usual, “maximal”
and “minimal” refer either to real (and in particular integer) numbers, or
else (and more often) to inclusion ⊇. In this latter case, if a (sub)set or
a (sub)graph is a maximal one with a certain property, then any of its
proper subsets or subgraphs does not have that property (and the same
for minimality, mutatis mutandis).

� The elementary type of network is a simple graph G = (N,E), namely an
ordered pair where the first element is a set N = {1, . . . , n} of (indices or
labels of) nodes or vertices, while the second element consists of edges or
links or arcs and is a subset E ⊆ N2 = {{i, j} : 1 ≤ i < j ≤ n} of the(
n
2

)
-set of unordered pairs of nodes. Observe that (·, ·) and {·, ·} denote

respectively ordered and unordered pairs.

� In terms of power sets 2N = {A : A ⊆ N} and 2N2 = {E : E ⊆ N2},
clearly N2 = {A : A ∈ 2N , |A| = 2}, and there are |2N2 | = 2(n

2) different
simple graphs on n labeled vertices.

� A graph is not simple when it is directed and/or with loops and/or
weighted. Formally, G = (N,E) is directed when E ⊆ N ×N consists of
ordered pairs (i, j) 6= (j, i) of vertices i, j ∈ N (rather than unordered ones
{i, j} = {j, i}), and has loops if (i, i) ∈ E for some i ∈ N . In other terms,
in directed graphs the edge set is a binary relation on vertex set N . Also,
a graph is weighted when there are real-valued weights w : E → R on
edges. In addition to this basic setting, one may conceive more complex
non-simple (possibly weighted) graphs whose vertices are partitioned into
types and/or have attributes.

� In the sequel the concern is with simple graphs G = (N,E), E ∈ 2N2 ,
possibly endowed with a [0, 1]-valued weight function w : E → [0, 1] on
edges. The ensemble of all these possibly [0,1]-weighted simple graphs
may be regarded from the following geometric perspective. Recall that

2N2 bijectively corresponds to the 2(n
2)-set {0, 1}(

n
2) of extreme points (or

vertices) of the
(
n
2

)
-dimensional unit hypercube [0, 1](

n
2) through charac-

teristic functions χE : N2 → {0, 1}, E ∈ 2N2 defined by

χE({i, j}) =

{
1 if {i, j} ∈ E,

0 if {i, j} ∈ N2\E.

In this view, simple graphs G = (N,E) correspond to extreme points

χE ∈ {0, 1}(
n
2) of the

(
n
2

)
-cube, while [0, 1]-weighted graphs Gw = (N,Ew)

correspond to other points w =
(
w({i, j}1), . . . , w

(
{i, j}(n

2)

))
∈ [0, 1](

n
2)

of the cube or fuzzy edge (sub)sets, with w({i, j}) = 0 if {i, j} ∈ N2\E.
This means indexing the

(
n
2

)
axes (or elements of the canonical basis) of

R(n
2) ⊃ [0, 1](

n
2) by the

(
n
2

)
unordered pairs {i, j} ∈ N2.

� What follows applies to simple graphs G = (N,E), E ∈ 2N2 . A subgraph
G′ = (N ′, E′) ⊆ G satisfies N ′ ⊆ N,E′ ⊆ E. Special attention shall be
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devoted to those 2n − 2 subgraphs spanned or induced by vertex subsets
A, ∅ ⊂ A ⊂ N , denoted by G(A) = (A,E(A)), namely with vertex set
A and edge set E(A) = {{i, j} : E 3 {i, j} ⊆ A} consisting of the edges
whose ends are both in A.

� A fundamental subgraph is a i− j-path Pij = (NPij
, EPij

) ⊆ G (for any
{i, j} ∈ N2), whose vertices il ∈ NPij

= {i = i1, i2, . . . , ik+1 = j} are all
distinct and with edge set EPij = {{il, il+1} : 1 ≤ l ≤ k}. The length of
Pij is the number k of its edges. A i − j-path is geodesic or shortest if
its length is minimal. The distance distG(ij) between i and j in G equals
the length of a geodesic i − j-path if there is one, and ∞ otherwise. In
these terms, G is connected if distG(ij) < ∞ for all {i, j} ∈ N2, and
disconnected otherwise.

� A component is a maximal connected subgraph, where maximality en-
tails that if G′ ⊆ G is a component (of G), then G′ = G(A) is the sub-
graph spanned by some vertex subset A. Connected graphs evidently
have only one component. In fact, if G(A1), . . . , G(Ak) are the compo-
nents of G = (N,E), then {A1, . . . , Ak} is a partition of N as well as
{E(A1), . . . , E(Ak)} is a partition of E, as detailed hereafter.

2.1 Closure of graphs: partitions

� A partition P = {A1, . . . , A|P |} ofN is a family of subsets A1, . . . , A|P | 6= ∅
of N , or “blocks” of P , satisfying Al ∩ Ak = ∅, 1 ≤ l < k ≤ |P | and
A1 ∪ · · · ∪A|P | = N .

� In the complete graph KN = (N,N2) all
(
n
2

)
unordered pairs of vertices

are edges. Extending this notation, for ∅ ⊂ A ⊆ N , let KA = (A,A2) be
the complete graph on A, where A2 = {{i, j} : A ⊇ {i, j} ∈ N2}. A clique
in a graph G is a maximal complete subgraph (A,A2) ⊆ G. Clearly if
KA ⊆ G, then KA = G(A). Note that isolated nodes, namely those i ∈ N
(if any) such that {i, j} /∈ E for all j ∈ N\i, are complete subgraphs (but
of course non-maximal ones as long as E 6= ∅, hence any graph surely has
at least one clique).

� Partitions P of N bijectively correspond to those very special graphs G
on N whose components G(A1), . . . , G(Ak) are each a complete subgraph
(hence a clique), i.e. G(Al) = KAl

, 1 ≤ l ≤ k. The way to say this in
combinatorial theory is the following. For any graph G = (N,E), define
its closure Ḡ = (N, Ē) to be the graph obtained from G by adding all
edges within each component. Then, partitions may be regarded as those
graphs G = Ḡ that coincide with their closure, thereby giving rise to the
so-called “polygon matroid” defined on the edges of KN [2].

� Coming to the components G(A1), . . . , G(Ak) of any graph G, clearly ev-
ery vertex as well as every edge are included in exactly one component,
entailing that {A1, . . . , Ak} and {E(A1), . . . , E(Ak)} are partitions respec-
tively of N and E.

� As already observed, there are 2(n
2) graphs on n labeled vertices, while

the (Bell) number of partitions of a n-set [2, 16], denoted by Bn, obeys
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recursion B0 := 1 and Bn =
∑

0≤k<n
(
n−1
k

)
Bk. By considering how many

different non-closed graphs G are mapped via G → Ḡ into each closed

graph Ḡ, it may be seen that 2(n
2) − Bn > 0 (n > 2) is rapidly incerasing.

From the above geometric perspective, where graphs G = (N,E) are ex-

treme points χE ∈ {0, 1}(
n
2) of the

(
n
2

)
-cube [0, 1](

n
2) (through characteric

functions χE of edge sets E ∈ 2N2), this means that closed graphs G = Ḡ

identify only a proper subset {χE : E = Ē} ⊂ {0, 1}(
n
2) of such extreme

points (n > 2).

� In order to deal with graph clustering from the combinatorial optimization
perspective (see above), in the sequel both subsets and partitions of N
shall play a fundamental role. Accordingly, recall that (2N ,⊇) is a poset
(partially ordered set) and (2N ,∩,∪) is the Boolean lattice of subsets (of
a n-set). Denoting by PN the Bn-set of partitions of N , for P,Q ∈ PN
let P > Q if for every block B ∈ Q there is a block A ∈ P such that
A ⊇ B, in which case P is coarser than Q, or equivalently Q is finer than
P . (Coarsening > differs from greater-or-equal ≥ between real quantities.)
Then, (PN ,>) is another main poset, while (PN ,∧,∨) is the geometric
lattice of partitions (of a n-set), where ∧ and ∨ respectively are the meet
or “coarsest-finer-than” and the join or “finest-coarser-than” operators [2].

� Most objective function-based graph clustering methods rely on maximiz-
ing (or minimizing) partition functions f : PN → R sometimes called “ad-
ditive” or “additively separable” [12, 13, 14], in that f(P ) =

∑
A∈P v(A)

for all P ∈ PN , where v : 2N → R assigns weights to subsets and thus is
the instance of a maximum-weight set partitioning problem.

2.2 Connectivity

� Another fundamental subgraph is the cycle, which is a i − j-path where
i = j. A graph with no cycles is a forest, while a tree is a connected forest,
hence forests have trees for components.

� Removing a vertex subset A ∈ 2N from a graph G = (N,E) means re-
moving also all edges with one or both ends in A. Thus if G−A obtains
from G by removing all vertices i ∈ A and Ac = N\A is the complement
of A (in 2N ), then G−A = G(Ac) is the subgraph spanned by Ac.

� For k ≥ 0, a graph G on n vertices is k-connected if k < n is the minimum
number k = |A| of vertices whose removal makes G−A either disconnected
or else the complete graph K{i} on only one vertex i ∈ N (hence any graph
on n > 0 vertices is 0-connected). The greatest integer k such that G is
k-connected is the connectivity κ(G) of G. Hence κ(G) = 0 if and only if
either G is disconnected, or else n = 1, while if κ(G) = 1 then G simply
is connected. Trees obviously provide the typical case where connectivity
is 1. For all edges {i, j} ∈ E, spanned subgraphs G({i, j}) = K{i,j} are
the only minimal subgraphs with connectivity 1. In fact, if G 6= K{i,j}
and κ(G) = 1, then G has at least one cutvertex, namely a vertex whose
removal results in a graph G−{i} which is disconnected. On the other
hand, the simplest example of a 2-connected graph is the cycle, and in
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fact in any 2-connected graph every vertex belongs to at least one cycle.
Finally, the complete graph has connectivity κ(KN ) = n− 1.

� Similar definitions apply to the edge-connectivity, although it seems plain
that any subset of edges can be removed while leaving unaffected all ver-
tices. In particular, an edge is a bridge if its removal augments (by 1) the
number of components. Equivalently, the bridges are all (and only) those
edges (if any) that belong to no cycle. In trees every edge is a bridge.

� A block B ⊆ G (of G) is a maximal connected subgraph with no cutver-
tices, where again maximality entails B = G(A) for some A ∈ 2N . Hence
any subgraph G′ ⊆ G is a block (i.e. G′ = B) if and only if

– either G′ is a maximal 2-connected subgraph,

– or else G′ = G({i, j}) where {i, j} ∈ E is a bridge (i.e. G({i, j}) is
the subgraph spanned by pair {i, j} ∈ 2N , where {i, j} ∈ E is also
an edge and in paticular a bridge, thus i and j are cutvertices),

– or else G′ = K{i} where i is an isolated vertex: {i, j} ∈ N2\E = Ec

for all j ∈ N\i.

� Each edge being contained in exactly one block, if B1, . . . ,Bk are all the
blocks of G = (N,E), then their edge sets E′l , 1 ≤ l ≤ k collectively
constitute a partition {E′1, . . . , E′k} of E (where |E′| = 1 when E′ = {i, j}
is a bridge). In this view, a block is the 2-connected analog of a component.
In fact, for those Bn graphs G = Ḡ that coincide with their closure (see
above), blocks and components are the same.

� Menger (1927) (and max-flow min-cut) theorem may be summarized as
follows. For any {i, j} ∈ N2 such that distG(ij) < ∞, define i − j-paths
P1
ij , . . . ,P

k
ij ⊂ G to be independent if the intersection of the node sets of

any two of them contains only i and j. That is, NPl
ij
∩NPl′

ij
= {i, j} for

all 1 ≤ l < l′ ≤ k. Then, a graph is k-connected if any two of its vertices
can be joined by k independent paths.

2.3 Adjacency and Laplacian matrices

� The adjacency matrix A = AG ∈ {0, 1}n×n of a simple graph G = (N,E)
has entries

aij =

{
1 if {i, j} ∈ E,

0 if {i, j} ∈ Ec = N2\E,
for 1 ≤ i, j ≤ n.

Hence aij = aji and aii = 0 for all {i, j} ∈ N2. On the other hand, if there
may be loops and edges are directed, i.e. if E ⊆ N ×N (or equivalently
E ∈ 2N×N ), then the adjacency matrix is not symmetric and may have
1s on the main diagonal, in that

aij =

{
1 if (i, j) ∈ E,

0 if (i, j) ∈ Ec = (N ×N)\E,
for 1 ≤ i, j ≤ n.

In other terms, the adjacency matrix of simple graphs has only
(
n
2

)
valid

entries, namely those above the main diagonal, and therefore essentially
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coincides with the characteristic function χE of edge sets (see above).
From this view, the ensemble of all directed graphs admitting loops and
with [0,1]-valued weights on edges/loops is [0, 1]n

2

.

� The adjacency matrix is the simplest one that is usually associated with
graphs. In fact, algebraic graph theory [15] studies graphs by using alge-
braic properties of associated matrices, and in particular spectral graph
theory [6, 7] studies the relation between graph properties and the spec-
trum (i.e. the eigenvalues and eigenvectors) of the adjacency and Lapla-
cian matrices. The spectrum of the adjacency matrix of a graph is thus
commonly referred to as the spectrum of that graph, while the Lapalacian
spectrum clearly refers to the Laplacian matrix L = LG = (`ij)1≤i,j≤n,
whose integer entries are

Lij =

{
−aij if i 6= j,
dG(i) if i = j,

for 1 ≤ i, j ≤ n,

where dG(i) =
∑
j∈N aij is the degree of vertex i in G (vertices of directed

graphs have both in and out degrees, as detailed in the references).

� The general target of spectral graph theory thus is to obtain information
from the spectra of the adjacency and Laplacian (and related) matrices. In
objective function-based spectral graph clustering and community detec-
tion methods, where the goal is to find partitions P = {A1, . . . , Ak} ∈ PN
of vertices maximizing ratio |E(A1) ∪ · · · ∪ E(Ak)|/|E|, the information
contained in spectra is primarily used for selecting a range for the num-
ber of clusters [32]. Perhaps the most immediate example comes from
the simplest graph clustering problem, given by a closed graph G = Ḡ,
whose components G(A1), . . . , G(Ak) are each a complete subgraph (see
above). Its spectrum consists of eigenvalues (−1)|Al|−1 and (|Al| − 1)1;
similarly the eigenvalues of the Laplacian spectrum are 0k and |Al||Al|−1

(for 1 ≤ l ≤ k), where multiplicities are indicated as exponents. Note that
r(P ) =

∑
1≤l≤k(|Al| − 1) = n − k is the rank function for the geometric

lattice (PN ,∧,∨) (of partitions P = {A1, . . . , Ak} of N [2]). In general,
the multiplicity of 0 as an eigenvalue of L counts the number k of com-
ponents, and the associated eigenvectors are linear combinations of the
characteristic functions χA1

, . . . , χAk
of these components’ vertex sets.

� For simple graphs both A,L ∈ Rn×n are symmetric, the latter also being
positive semidefinite and singular. Denote their (real) eigenvalues respec-
tively by λA1 ≤ · · · ≤ λAn and 0 = λL1 ≤ · · · ≤ λLn . What follows is succintly
excerpted from [6, Sections 1.3,1.4,1.7].

– tr(A) =
∑

1≤k≤n λ
A
k = 0 as well as

tr(L) =
∑

1≤k≤n λ
L
k =

∑
i∈N dG(i) = 2|E|;

– A i− j-path where vertices need not be distinct is a i− j-walk, and
when i = j the walk is closed. The number of i − j-walks of length
k is the i, j entry (1 ≤ i, j ≤ n) of matrix Ak. Hence the i, i entry
of A2 equals dG(i) and tr(A2) = 2|E|, while tr(A3) is six times the
number of triangles (or complete subgraphs on three vertices).

7



– Necessary and sufficient condition

λA1 = · · · = λAn = 0⇔ E = ∅ ⇔ 0 = λL1 = · · · = λLn

applies.

– For a graph G on n > 1 vertices, the second smallest Laplacian eigen-
value λL2 is the algebraic connectivity of G. Since the multiplicity of
0 = λL1 equals the number of components, then λL2 ≥ 0, with equality
if and only if G is disconnected. The algebraic connectivity is mono-
tone, in that it does not decrease if edges are added, and also is a
lower bound for the (vertex) connectivity: κ(G) ≥ λL2 (see [10]).

2.4 Random graphs

� The random graph G(n, p) is the probability space whose elements are the

2(n
2) simple graphs G = (N,E) on a n-set of labeled vertices, and where

p ∈ [0, 1] is the probability that any two vertices {i, j} ∈ N2 are paired by
an edge {i, j} ∈ E, thereby providing

(
n
2

)
mutually independent events.

Every edge set E ∈ 2N2 thus realizes with probability

p|E|(1− p)(
n
2)−|E|,

and in particular p = 1
2 induces the uniform probability distribution over

2N2 , as each of the 2(n
2) edge sets realizes with probability 2−(n

2).

� To get familiar with random graphs, the following simple exercise may be
useful: determine the probability that in (any realization of) G(n, p)

1. there are exactly k edges (0 ≤ k ≤
(
n
2

)
);

2. there is some (i.e. at least one) isolated vertex;

3. there is some complete subgraph KA, 1 < |A| ≤ n.

� The traditional way to study random graphs is by setting p = p(n) and
then considering certain properties of graphs (like, say, being connected)
while searching for the corresponding threshold function p∗(n), namely
such that as n→∞
- if p(n) < p∗(n), then (any realization of) G(n, p(n)) almost surely does
not have the chosen property, while

- if p(n) > p∗(n), then G(n, p(n)) almost surely has the property.

In fact, G(n, p) = pχN2 + (1 − p)χ∅ can be thought of as evolving from

empty fo full along the main diagonal of the
(
n
2

)
-cube [0, 1](

n
2) (see above),

while p = p(n) evolves through ever increasing functions of n. Then,
examples of threshold functions (taken from [29, p. 14]) are:

– at p∗(n) = n−2 edges appear, meaning that p∗(n) = n−2 is the
threshold function for non-emptyness;

– at p∗(n) = n−
3
2 edges with a common end (which is thus a cutvertex)

appear;
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– at p∗(n) = n−1− 1
k (with arbitrary k but fixed) trees with k+1 vertices

appear;

– at p∗(n) = n−1 triangles appear, as do cycles of every fixed length k;

– p∗(n) = n−1 lnn is the threshold function for connectedness;

– at p∗(n) = n−
2
3 complete subgraphs on four vertices appear;

– at p∗(n) = n−
2

k−1 (with arbitrary k but fixed) complete subgraphs
KA on |A| = k vertices appear;

– p∗(n) = n−
1
2 (lnn)

1
2 is the threshold function for the property that

every pair of vertices {i, j} ∈ N2 has a common neighbor, namely
some h ∈ N\{i, j} such that {i, h}, {j, h} ∈ E.

� As for complex network analysis, firstly random graphs have been a term
of comparison, to see whether some empirical evidence found in the former
is or is not coherent with the corresponding expectation in the latter. The
probability pGk that a (i.e. any) vertex i ∈ N in the random graph G(n, p)
has degree dGi = k (0 ≤ k < n) is given (again) by the binomial distribution

pGk =

(
n− 1

k

)
pk(1− p)n−1−k.

Hence the expected or mean degree is

〈k〉 = z :=
∑

0≤k<n

kpGk = (n− 1)p ' np

while the variance is (n − 1)p(1 − p). For n � kz sufficiently large, the
degree distribution pGk becomes the Poisson one:

pGk =
zke−z

k!
.

� Both these (binomial and Poisson) distributions are strongly peaked about
their mean z, and have been compared with the degree distribution

pkG =
|{i : dG(i) = k}|

n
(0 ≤ k < n)

of real networks G, such as social ones and (portions of) the Internet and
World Wide Web. Real degree distributions have been found to obey
power-laws, which are basically those that do not fit (well enough) the
central limit theorem, hence where the number of outliers, although small,
still constitutes a non-negligible fraction of the whole. In real networks,
the essential fact is that some vertices, whose number is a small but non-
negligible fraction of n, have a very large degree. This is detailed hereafter

3 Power-laws and degree distributions

� Many quantities x ∈ [xmin,∞), including wealth (but not height) across
individuals, are distributed according to a power-law, with probability or
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density p(x) of values remaining non-negligible even when x is very large.
In fact, a common way to “recognize” power-law distributions is by ob-
serving that they display a lnx, ln p(x)-plot fitted by a straight (negatively
sloped) line. In turn, this entails “scale invariance”, namely that when
comparing the densities at p(x) and at some p(cx), where c is a constant,
they are always proportional (i.e. at all x). That is, p(cx) ∝ p(x) (or
p(cx) = f(c)p(x)). Hence the relative likelihood between small and large
events is the same, no matter what choice of “small” is made. In other
terms, the density “scales”, whence the name “scale-free” networks for
those where the degree distributution obeys a power-law.

� If x is a continuous random variable with power-law distribution, then

p(x) = Cx−α for x ≥ xmin and α > 1.

As for the normalization constant C, firstly note that a straight (negatively
sloped) lnx, ln p(x)-plot means ln p(x) = −α lnx + c (with α > 0), and
therefore taking the exponential of both sides

p(x) = Cx−α, where C = ec.

More precisely, C is determined via normalization

1 =

∫ ∞
xmin

p(x)dx = C

∫ ∞
xmin

x−αdx =
C

1− α
[
x−α+1

]∞
xmin

.

For α > 1 (as otherwise the right-hand side diverges),

C = (α− 1)xα−1
min ,

and thus the proper normalized expression for the power-law density is

p(x) =
α− 1

xmin

(
x

xmin

)−α
.

“Some distributions follow a power law for part of their range but are
cut off at high values of x. That is, above some value they deviate from
the power law and fall off quickly towards zero. If this happens, then the
distribution may be normalizable no matter what the value of the exponent
α. Even so, exponents less than unity are rarely, if ever, seen.” [23].

The mean value of x is

〈x〉 =

∫ ∞
xmin

xp(x)dx = C

∫ ∞
xmin

x−α+1dx =
(α− 1)xα−1

min

2− α
[
x−α+2

]∞
xmin

,

hence infinite for α ≤ 2. For α > 2,

〈x〉 =
(α− 1)xmin

α− 2
.

Similarly,

〈x2〉 =
C

3− α
[
x−α+3

]∞
xmin

is infinite for α ≤ 3, while for α > 3

〈x2〉 =
(α− 1)x2

min

α− 3
.
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� If x = k is a discrete random variable k ∈ {xmin, xmin + 1, . . .} ⊆ N (hence
like the degree of nodes in real complex networks), then its density pk may
be defined to obey a power-law in the following two ways.

(a) Firstly, by (simply) setting pk = Ck−α for some α > 1 as well as
xmin = kmin = 1, and next normalizing according to

1 =

∞∑
k=1

pk = C

∞∑
k=1

k−α = Cζ(α), or C =
1

ζ(α)
,

the density is

pk =
k−α

ζ(α)
, where ζ(α) =

∞∑
k=1

k−α

is the Riemann (zeta) ζ-function [2]. If, realistically, kmin > 1, then
pk = 0 if k < kmin, while

pk =
k−α

ζ(α, kmin)
if k ≥ kmin, where

ζ(α, kmin) =

∞∑
k=kmin

k−α

is the (normalizing) incomplete or generalized ζ-function.

(b) Secondly, the density may be set equal to

pk = C
Γ(k)Γ(α)

Γ(k + α)
, where

Γ(t) =

∫ ∞
0

tα−1e−tdt

is the gamma function, which for positive integers k is Γ(k) = (k−1)!.

In fact, Γ(k)Γ(α)
Γ(k+α) is the Legendre-beta function, which for large k

is similar to power-law k−α, thus providing a desired asymptotic
behaviour. Normalization yields a very simple form for constant C:

1 =

∞∑
k=1

pk = C

∞∑
k=1

Γ(k)Γ(α)

Γ(k + α)
=

C

α− 1
, or C = α− 1, hence

pk = (α− 1)
Γ(k)Γ(α)

Γ(k + α)
,

with expectation or mean

〈k〉 =

∞∑
k=1

kpk =
α− 1

α− 2
.

Also,

〈k2〉 =

∞∑
k=1

k2pk =
(α− 1)2

(α− 2)(α− 3)
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� Although it may be difficult to detect and/or simulate power-law distribu-
tions [9, 23, 8], still several studies now agree that complex, possibly social
networks undoubtedly display a degree distribution following a power-law
(see [19] and the references there provided). Accordingly, the random
graph model has been turned into the so-called “configuration model” [20],
namely a graph in all respects random apart from the degree distribution,
which is fixed by a power-law [26] (where this latter mimics those found
empirically). However, even when sharing a common (power-law) degree
distribution, still real networks deviate from the theoretical expectations
computable for the configuration model in two fundamental respects:

(a) the degree correlation between adjacent vertices, also called assor-
tative mixing if positive (like in social networks), and disassortative
mixing if negative (like in most non-social networks); the configura-
tion model displays much less degree correlation than that observed
empirically;

(b) the clustering coefficient, also referred to as “transitivity”, in that it
is the expectation that a (i.e. any) triple of connected vertices spans
a complete subgraph (or triangle); its empirical values are sensibly
greater then the theoretical ones for the configuration model.

4 Configuration model

� Like the random graph G(n, p) is the probability space where any of the

2(n
2) simple graphs on n labeled vertices may realize, similarly the con-

figuration model [20] is the probability space G(n, (pk)αkmin
) where only a

proper subset of such graphs may realize. Specifically, for any discrete
power-law distribution (pk)αkmin

(i.e. with parameters kmin, α) of type (a)
or (b) above, a fixed degee sequence d(1), . . . , d(n) is generated where
d(i), i ∈ N are realizations of independent random variables identically
distributed according to pk, i.e. Prob[d(i) = k] = pk for all i. Then, in
the configuration model the only graphs G′ = (N,E′) that may realize,
each with equal (uniform) probability, are those with such a fixed degree
sequence dG′(i) = d(i) for all i. The fixed degree sequence may well be
some dG(1), . . . , dG(n) observed in a real network G. In any case, the n
realizations/observations must be such that

∑
i∈N d(i) = 2|E′| is even.

� The probability space obtains by associating with each node i the number
d(i) of its “stubs”, i.e. edges ending in i, and then placing the uniform
distribution over all and only those orderings or permutations of the total∑
i∈N d(i) = dtot stubs satisfying the following admissibility condition.

For 1 ≤ k ≤ dtot/2, the 2k-th and 2k − 1-th stubs in the ordering cannot:

(i) be associated with the same node,

(ii) be associated with any two distinct nodes i, j ∈ N such that the 2k′-th
and 2k′−1-th stubs have already been associated with i, j at some k′ < k.

The resulting (random) graph thus has for edges all dtot/2 pairs of con-
secutive stubs (in the random order), hence (i) is the loop-free condition,
while (ii) assures that there are no multiple edges. In this way, each graph

12



with the fixed degree sequence realizes with equal (uniform) probability
given by the ratio of the number

∏
i∈N d(i)! of different stub orderings

yielding that graph, to the total number of admissible stub orderings.

� The configuration model primarily constitutes a benchmark for compari-
son with real networks. More precisely, like the theoretical values of the
traditional random graph enable to see that real networks have power-law
rather than Poisson/binomial degree distributions, similarly the theoret-
ical values of the configuration model enable to see that, apart from de-
gree distributions, real networks remain different from randomly generated
ones. In particular, as already outlined, the difference concerns both the
(expected) degree correlation between adjacent nodes, and the clustering
coefficient.

4.1 Neighbors at increasing distances

� For every node i ∈ N , denote by Nm
i = {j : j ∈ N, distG(ij) = m} the

set of m-neighbors of i, namely nodes j at distance m from i in a given
network G. Hence N0

i = {i} and |N1
i | = dG(i), while N∞i 6= ∅ if G is

disconnected (see above). Neighbors simply are 1-neighbors.

� The mean number |N1
i | of neighbours of a randomly chosen vertex i in

the configuration model with degree distribution (pk)αkmin
is simply the

average degree z1 = 〈k〉 =
∑
k≥kmin

kpk (= z in previous sections).

� As for the average number |N2
i | of 2-neighbors of i, firstly note that the

probability distribution of the degree of the vertex to which any edge leads
is proportional to kpk. In fact, a randomly chosen edge is more likely to
end in nodes with higher degree, in precise proportion to nodes’ degree.
This means that the probability that any neighbor j ∈ N1

i has degree k is

Prob[d(j) = k] =
kpk∑

l≥kmin
lpl

=: qk−1.

This is the probability that j is linked to k− 1 nodes i′ 6= i or 2-neighbors
of i. Accordingly, the average degree of j is∑
k≥kmin

kqk =
∑

k≥kkmin

k(k + 1)pk+1∑
l≥kmin

pll
=

∑
k≥kkmin

k(k − 1)pk∑
l≥kmin

pll
=
〈k2〉 − 〈k〉
〈k〉

.

The mean number z2 of i’s 2-neighbors thus obtains by multplying this
ratio by the average degree z1 itself:

z2 = 〈k2〉 − 〈k〉.

By substituting the Poisson degree distribution pk = zke−z

k! into this ex-
pression, the mean number of 2-neighbors in the random graph G(n, p) is
found to be z2 = 〈k〉2, i.e. the square of the mean of |N1

i |. On the other
hand, for power-law distributions (pk)αkmin

the first term 〈k2〉 dominates,
and thus z2 is much closer to the mean of the square degree (rather than
to the square of the mean).
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� Coming to |Nm
i |, at any distance from i the degree distribution for any

node j ∈ Nm
i remains given by qk above. Hence the mean number zm of

m-neighbors of i satisfies recursion

zm =
〈k2〉 − 〈k〉
〈k〉

zm−1 =
z2

z1
zm−1,

and thus reiterating

zm =

(
z2

z1

)m
z1.

� In the random graph G(n, p(n)), probability p∗(n) = n−1 is the threshold
function for the appeareance not only of cycles (see above), but also of
a giant component, namely one largest component containining a finite
fraction S of the total number n → ∞ vertices. That is, its size nS
scales linearly with the size of the whole graph. Since in the random
graph z1 = np, the threshold for the (Poisson distributed) mean degree
is z∗1 = 1. The analog threshold for the configuration model (or random
graph with given degree distribution) is in terms of ratio z2

z1
. In particular,

depending on whether z2 > z1 or not, the mean number of m-neighbors
either diverges or converges exponentially as m becomes large. Hence
the average total number

∑
k>0 |Nk

i | of neighbours of vertex i (i.e. at
all distances) is finite if z2 < z1 or infinite if z2 > z1 (as n → ∞). If
this number is finite, then clearly there can be no giant component, while
if it is infinite then there must be a giant component. In other terms,
the threshold for the appeareance of a giant component in the random
graph with given degree distribution is z∗2/z

∗
1 = 1. Rearranged in terms

of z1 = 〈k〉 and z2 = 〈k2〉 − 〈k〉, threshold z∗2 = z∗1 takes form

〈k2〉 − 〈k〉
〈k〉

= 1 or 〈k2〉 − 2〈k〉 = 0 =
∑

k≥kmin

pkk(k − 2).

4.2 Small-world effect

� The popular “small-world” effect, which historically refers mostly to social
networks, is basically the finding that even for relatively small values of m,
still union (of disjoint sets) ∪

0≤k≤m
Nk
i already contains a very large fraction

of the total number n of nodes. Both in the random graph G(n, p) and
in the configuration model G(n, (pk)αkmin

), the small-world effect clearly
may occur only well above the thresholds for the appeareance of a giant
component, hence respectively for z1 � 1 and z2 � z1, as otherwise most
pairs of vertices would be separated by an infinite distance. At these
values (well above the thresholds) the average vertex-vertex distance is

` =
log(n/z1)

log(z2/z1)
+ 1.

This increases logarithmically, ence rather slowly, with n, entailing that
even for very large networks the typical distance between any two nodes
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is expected to be quite small. In particular, since z2 = z2
1 in the random

graph G(n, p), then

` =
log(n/z1)

log(z1)
+ 1 =

log n

log z1
− log z1

log z1
+ 1 =

log n

log z1
.

� For social networks, a small value of the average vertex-vertex distance is
known as the small-world effect since the 60s. More recently, most types of
real or synthetic networks have been observed to display the same effect.
This is not surprising when considering the diameter

diam(G) = max
i,j∈N

distG(ij)

of any graph G with M edges, 0 ≤M ≤
(
n
2

)
. The random graph G(n,M)

is the probability space where any G = (N,E) realizes with probability

Prob[G] =

{
M !((n

2)−M)!

(n
2)!

if |E| = M ,

0 if |E| 6= M .

If M = M(n) <
(
n
2

)
satisfies (as n → ∞) 2M2

n3 − log n → ∞, then almost
every graph G in G(n,M) has diameter diam(G) = 2 (see [3, Corollary
10.11 (ii), p. 263]). Also, if functions d = d(n),M = M(n) satisfy (as
n → ∞) (a) logn

d − 3 log log n → ∞, (b) 2d−1Mdn−d−1 − log n → ∞,
(c) 2d−2Md−1n−d− log n→ −∞, then almost every graph in G(n,M) has
diameter d (see [3, Corollary 10.12 (ii), p. 263], while if only conditions (a)
and (b) hold, then almost every graph has diameter ≤ d). More generally,
almost every graph with M = M(n)� n− 1 edges has diameter ≤ c log n
for some constant c = c(M). In conclusion, if the diameter increases
as log n or slower, then so also must the average vertex–vertex distance,
entailing that most networks with a sufficient number of edges shall display
the small-world effect.

4.3 Degree correlation: assortativity coefficient

� When analyzing degree correlation, the concern basically is with all pairs
of values k, l for vertex degrees, i.e. 0 ≤ k, l < n, and with the likelihood
that a randomly chosen edge has ends with degrees k and l.

� For any network G = (N,E) and all 0 ≤ k, l < n− 1, consider the ratio

ρklG =
|{{i, j} : {i, j} ∈ E, dG(i) = k + 1, dG(j) = l + 1}|

|E|

of the number of edges whose ends have degrees k + 1 and l + 1, to the
total number |E| of edges. Evidently,∑

0≤k,l<n−1

ρklG = 1,

and thus
ρ̄G :=

∑
0≤k,l<n−1

klρklG

is the average over all edges of G of the product of their endnodes’ degrees.
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� As already mentioned, degree correlation in complex networks G is mea-
sured via comparison with the configuration model G(n, (pk)αkmin

, with
degree distribution (pk)αkmin

similar or identical to that of G. In the con-
figuration model, the mean 〈ρ〉 of ρ̄G simply is

〈ρ〉 =
∑

0≤k,l<n−1

klqkql, where

qk =
(k + 1)pk+1∑

l≥kmin
lpl

is the excess degree distribution from Section 4.1.

Hence qkql is the mean of ρklG in the configuration model G(n, (pk)αkmin
) or

probability that a randomly chosen edge has ends with degrees k and l.

� The comparison between any given network G and the configuration model
G(n, (pk)αkmin

) thus achieves by means of quantity

rG =
ρ̄G − 〈ρ〉

σ2
q

=
1

σ2
q

 ∑
0≤k,l<n−1

kl
(
ρklG − qkql

) , where

σ2
q =

∑
k≥kmin

k2qk −

 ∑
k≥kmin

kqk

2

is the variance of distribution qk.

� The sign of rG depends on the difference between ρ̄G and its expectation
or mean 〈ρ〉 in the configuration model. More precisely, if rG = 0, then
G displays no degree correlation. On the other hand, if rG < 0, then G
displays negative degree correlation or disassortative mixing. Finally, if
rG > 0, then G displays positive degree correlation or assortative mixing,
which is precisely the case of (most) social networks. Hence rG is called
the “assortativity coefficient” (of G).

4.4 Clustering coefficient

� The clustering coefficient cc(G) of a network G = (N,E), E ∈ 2N2 is

cc(G) =
3× number of triangles in G

number of connected triples in G
∈ [0, 1],

where the number of triangles in G equals tr(A3)/6, i.e. the trace of
the third power of the adjacency matrix of G divided by 6 (see above),
while a connected triple (in G) is a tree on three vertices (included in G).
Every triangle thus corresponds to three connected triples. In words, the
clustering coefficient is the ratio of three times the number of complete
subgraphs K{i,j,h} ⊆ G spanned by triples {i, j, h} ⊆ N of vertices, to
the number of trees on three vertices included in G. Hence cc(G) is the
probability that by randomly choosing two edges {i, j}, {i, h} ∈ E with a
common end i, the other two ends j, h are also adjacent: {j, h} ∈ E.

� In the configuration model G(n, (pk)αkmin
) with same degree distribution

(pk)αkmin
as G, the mean of the clustering coefficient can be computed as
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follows. If two neighbors j, h ∈ N1
i of the same vertex i ∈ N have excess

degrees k and l, then the probability that a randomly chosen edge links j
and h is 2[k/(2|E|)][l/(2|E|)]. The “mean number” of edges between j and
h thus is |E| times this quantity, or kl/(2|E|). In fact, since the configura-
tion model obtains by placing the uniform probability over the admissible
orderings of the 2|E| stubs (see above), the probability that any two 2t-th
and 2t − 1-th consecutive positions (t = 1, . . . , |E|) in an admissible ran-
dom order are associated with j and h is 2[k/(2|E|)][l/(2|E|)], the first 2
counting the two ordered pairs (j, h), (h, j). Hence the mean number of
edges between j and h is this probability multiplied by the number |E|
of pairs of consecutive positions in an admissible random order of stubs.
Since both vertices are neighbors of i, both k and l are distributed accord-
ing to the excess degree density qk (see above), and averaging over such a
distribution the mean or expected clustering coefficient is

〈cc〉 =
1

2|E|

 ∑
k≥kmin

kqk

2

=
1

2|E|

(
〈k2〉 − 〈k〉
〈k〉

)2

=
1

n

(
〈k2〉 − 〈k〉

)2
〈k〉3

,

where 2|E| = n〈k〉. This is the probability that for any two edges sharing
a common end i in G(n, (pk)αkmin

) their other two ends j, h ∈ N1
i are also

adjacent. While 〈cc〉 explains sufficiently well the values of the clustering
coefficient observed in non-social networks G (such as the Internet, World
Wide Web and metabolic complexes), meaning that 〈cc〉 and cc(G) are
roughly the same, the clustering coefficient observed in social networks G
takes much higher values than its expectation 〈cc〉 in the configuration
model, i.e. cc(G) � 〈cc〉. Finally note that for the traditional random
graph G(n, p) the mean clustering coefficient simply is 〈cc〉 = p.
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