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ABSTRACT
In this paper, considering time-averaged velocity as a random variable, two-dimensional (2D) velocity distributions in open-channel flow have been
derived based on the Shannon entropy concept and the principle of maximum entropy. The velocity distributions so derived have limited practical
use, since they contain too many parameters that need to be experimentally calibrated and hence are not convenient to apply. This work develops
a new entropy-based approach for deriving a 2D velocity distribution in open-channel flow, thereby investigating a rectangular geometric domain.
The derived distribution is parsimonious, and the values determined using the proposed distribution are found to be in good agreement with the
experimentally-measured velocity values.

Keywords: Entropy, flow measurement, open-channel flow, Shannon entropy, streamflow, velocity distribution

1 Introduction

The velocity distribution is fundamental in the hydraulic mod-
elling of natural rivers, including modelling of sediment and
contaminant transport, the design of channels, river training
works, and hydraulic structures, or the development of rating
curves. For an accurate velocity distribution over the full range
of flow stages, velocity measurements must be carried out during
flood events, which result in considerable difficulties and danger.
Therefore, it is desirable to define in a simple and quick way the
velocity distribution based only a few sampling points.

Considering that the velocity is subjected to uncertain-
ties arising from natural and/or man-made causes, Chiu
(1987) considered time-averaged velocity as a probabilistic
variable, unlike traditional approaches which assume it to
be a deterministic variable (Tang and Knight 2009). Since
then, one-dimensional (1D) velocity distributions have been
derived and employed in hydraulics (Chiu 1987, 1989, Barbé
et al. 1991, Chiu and Said 1995, Kirkgoz et al. 2009),
whereas two-dimensional (2D) velocity distribution has resulted
from the extension of the entropy-based method (Chiu 1988,
Chiu and Hsu 2006). Although the latter distribution has
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been used in theoretical investigations, its practical use is
limited.

Therefore, the objective of this study is to derive a 2D veloc-
ity distribution using the Shannon entropy, so that the coordinate
system is mathematically sound and the distribution is parsimo-
nious, and to interpret the distribution parameters in terms of
hydraulic characteristics.

2 Derivation of 2D velocity distribution using entropy

2.1 The principle of maximum entropy

To obtain the least biased probability density function (PDF)
of velocity, the entropy of the velocity distribution must be
maximized subject to the specified constraints. The reason for
entropy maximization stems from the principle of maximum
entropy (POME) postulated by Jaynes (1957), stating that any
system in the equilibrium state under steady constraints tends
to maximize its entropy. As a river reaches a dynamic (or quasi-
dynamic) equilibrium, the entropy must attain its maximum value
(Singh et al. 2003). The POME states that the velocity distri-
bution obtained by entropy maximization will be least biased
towards what is not known about the velocity and most biased
towards what is known via constraints. This principle is also con-
sistent with the theory of minimum energy dissipation proposed
by Yang (1972, 1976). The constraints have physical meaning
as discussed below. Therefore, the derivation of the 2D veloc-
ity distribution involves the following steps: (1) definition of
the continuous form of the Shannon entropy, (2) specification
of velocity information in terms of constraints, (3) maximiza-
tion of entropy and derivation of the probability distribution
of velocity, (4) derivation of the 2D velocity distribution, (5)
expression of the 2D probability distribution, and (6) estimation
of parameters.

2.2 The Shannon entropy

Let temporally-averaged velocity u be treated as a random vari-
able with f (u) as its PDF. Then, the Shannon (1948) entropy of
u or f (u) is defined as

H (u) = −
∫

f (u) ln[f (u)]du (1)

in which f (u)du represents the probability of u between u and
u + du. Entropy H (u) quantifies the uncertainty associated with
u or its PDF. Here, the objective is to derive f (u) by applying the
POME (Jaynes 1957), subject to specified constraints on velocity.

2.3 Specification of constraints

Information on velocity can be derived from the laws of conser-
vation of mass, momentum, and energy. Chiu (1987) and later
Barbé et al. (1991) observed that for purposes of deriving time-
averaged velocity distributions, it is sufficient to use only mass

conservation. Therefore, constraints for the PDF of velocity f (u)

are expressed with umax as the maximum value of u at or below
the water surface and ū as the mean velocity as

∫ umax

0
f (u) du = 1 (2)

and ∫ umax

0
u f (u) du = ū (3)

The average velocity constraint in Eq. (3) is derived from, and
hence satisfies, mass conservation (Barbé et al. 1991). This
formulation does not include energy or momentum conservation.

2.4 Maximization of entropy and probability distribution

In accordance with the POME, H (u) can be maximized subject
to Eqs. (2) and (3) using the method of Lagrange multipliers and
recalling the calculus of variation, resulting in

f (u) = exp(λ1 + λ2u − 1) (4)

where λ1 and λ2 are Lagrange multipliers.

2.5 The 2D velocity distribution

Consider a 2D domain (x, y), with x as the transverse direction
and y as the vertical direction measured from the bed upward
positive. Thus, u = u(x, y) and its PDF is f [u(x, y)] and the
cumulative probability distribution function (CDF) is F[u(x, y)].
Taking the partial derivatives of F(u) with respect to x and y,

∂F(u)

∂x
= dF(u)

du
∂u
∂x

= f (u)
∂u
∂x

∂F(u)

∂y
= dF(u)

du
∂u
∂y

= f (u)
∂u
∂y

(5)

From Eq. (4), Eqs. (5) are rewritten as

exp(λ2u)
∂u
∂x

= exp(1 − λ1)
∂F(u)

∂x

exp(λ2u)
∂u
∂y

= exp(1 − λ1)
∂F(u)

∂y

(6)

Let quantity exp(λ2u) be w so that the partial derivatives of w
with respect to x and y are

∂w
∂x

= ∂ exp(λ2u)

∂x
= λ2 exp(λ2u)

∂u
∂x

∂w
∂y

= ∂ exp(λ2u)

∂y
= λ2 exp(λ2u)

∂u
∂y

(7)
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Substitution of Eqs. (7) into Eqs. (6) gives the following system
of equations:

∂w
∂x

= λ2 exp(1 − λ1)
∂F(u)

∂x
∂w
∂y

= λ2 exp(1 − λ1)
∂F(u)

∂y

(8)

Equations (8) can be integrated using the Leibniz rule that states

∫ (x,y)

0,0

∂w
∂x

dx + ∂w
∂y

dy = w(x, y) − w(0, 0) (9)

Because the point (0,0) lies on solution domain’s contour, u at
this point is equal to 0, and the right-hand side of Eq. (9) becomes

w(x, y) − w(0, 0) = w(x, y) − exp(λ2u)

= w(x, y) − exp(0) = w(x, y) − 1 (10)

The definite integral of the first part of Eq. (9) is calculated at a
generic point (x̄, ȳ) identified by means of a polygonal curve that
starts from (0,0), passes across (x̄, 0), and ends at (x̄, ȳ) so that

∫ (x̄,ȳ)

0,0

∂F(u)

∂y
λ2 exp(1 − λ1)dy + ∂F(u)

∂x
λ2 exp(1 − λ1)dx

=
∫ ȳ

0

∂F(u)

∂y
λ2 exp(1 − λ1)dy = λ2 exp(1 − λ1)F(u)

(11)

in which (x̄, ȳ) represents a point of the domain.
The right-hand side of Eq. (11) can be equated to the right-

hand side of Eq. (10) to obtain

w(x, y) = 1 + λ2 exp(1 − λ1)F(u) (12)

Because w(x, y) = exp(λ2u), Eq. (12) is rewritten as

exp[λ2u(x, y)] = 1 + λ2 exp(1 − λ1)F(u(x, y)) (13)

resulting for u(x, y) in

u(x, y) = 1
λ2

ln[1 + λ2 exp(1 − λ1)F(u(x, y))] (14)

Equation (14) contains the two Lagrange multipliers λ1 and λ2,
which are determined using Eqs. (2) and (3). Integration of Eq.
(2) yields

∫ umax

0
exp(λ1 − 1 + λ2u) du = 1 ⇒ λ2 exp(1 − λ1)

= exp(λ2umax) − 1 (15)

Considering Eq. (15) and with λ2umax = G as entropic parameter
(Chiu 1988), Eq. (14) becomes

u(x, y) = umax

G
ln[1 + (exp(G) − 1) · F(u(x, y))] (16)

in which parameter G is determined using the constraint
expressed by Eq. (3). Equation (16) is the 2D velocity distri-
bution in terms of umax, G, and 2D CDF. Substitution of Eq. (16)
in Eq. (4) yields the PDF of velocity f (u), which results in the
uncertainty associated with the 2D velocity distribution or the
PDF of u, when inserted into Eq. (1).

Using the PDF f (u) defined by Eq. (4), the ratio between the
mean and the maximum velocities can be derived as an exponen-
tial function of G only. A constraint equation used for deriving
velocity distributions, for example Eq. (3), is often referred to as
the average value of velocity, for example, the average velocity
in the geometric space uav . This average value is, however, dif-
ferent from ū in Eq. (3), a point often overlooked in the literature.
Therefore, for the cross-sectional average velocity, one must use
with A as the total area of the 2D domain

uav = 1
A

∫
A

umax

G
ln[1 + (exp(G) − 1) · F(u)] dA (17)

Equation (17) can be solved to obtain G. Referring to a geometric
domain in which uav and umax are known, one can determine first
G using Eq. (17) and then calculate the velocity distribution using
Eq. (16), once the CDF in 2D is defined.

In practice, the method requires uav and umax to be measured.
In particular, uav is calculated from the discharge and the flow
area or inferred from the ratio uav/umax, which was proved to
be constant over time by Chiu and Said (1995), Xia (1997), and
Moramarco et al. (2004). Consequently, if the stage-discharge
curve is available at a certain station, only umax, generally simple
to measure, is required to apply the 2D velocity model. This
model invokes that the cross-section be practically invariant with
time which is not always true because of water hyacinth growth,
accumulation of debris, or erosion and deposition affecting the
average velocity.

2.6 The CDF in the 2D case

The CDF depends on the geometry of the domain, which must
have the following properties: (1) defined between 0 and 1, (2)
continuous and differentiable, and (3) its value on the borders
must be 0 and have just one point in which it reaches 1. Consider
a rectangular channel in which the distribution of velocity is
symmetrical with respect to the vertical axis. One can distinguish
the position of coordinates, the location of umax occurring on or
below the water surface depending on distance y0 of the point
at the maximum velocity from the channel bed, and the size of
domain H (height) and B/2 (half width).

It is convenient to convert this domain into a dimensionless
form using the normalizing quantities B and H as ψ = y/H ,
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Figure 1 Symmetrical rectangular dimensionless domain

ξ = 2x/B, and ψ0 = y0/H , in which the ratio u/umax instead of
u is considered (Fig. 1). Using these variables and geometrical
considerations (Appendix), F(u) is obtained as

F(u) = (1 − ξ 2)H/B · 4

·
[(

ψ

2

)ln 2/(ln 2−ln(ψ0))

−
(

ψ

2

)2 ln 2/(ln 2−ln(ψ0))
]

(18)

Equation (18) satisfies all the aforementioned properties: it
is continuous and differentiable, varies between 0 and 1, and
reaches the value 1 as ξ = 0 and ψ = ψ0.

The CDF F(u) given by Eq. (18) has two parts: (1 − ξ 2)H/B

expresses the dependence on ξ and the second part expresses
the dependence on ψ . In the first part, the ratio H/B appears
as an exponent, meaning that as the domain is very wide and,
consequently, as H/B → 0, the first part of F(u) tends to 1 and
so F(u) depends only on ψ . Therefore, as the domain becomes
very wide, F(u) must depend just on ψ , following also a physical
intuition. Then, Eq. (18) becomes

F(u) = 4 ·
[(

ψ

2

)ln 2/(ln 2−ln(ψ0))

−
(

ψ

2

)2 ln 2/(ln 2−ln(ψ0))
]
(19)

Equation (19) gives the 1D velocity distribution if the maximum
velocity is on or below the water surface. This case was discussed
by Chiu (1988), and the equations are comparable, suggesting
that the 2D theory proposed here, when applied to the 1D case,
represents nearly his formulation.

2.7 Parameter G

To apply the 2D velocity distribution equation given by Eq. (16),
parameter G must be evaluated by means of Eq. (17). Using Eq.
(18) for F(u), one can specify Eq. (17) as

uav

umax
=

∫ 1

0
dψ

∫ 1

0

1
G

ln

{
1 + (exp(G) − 1) · (1 − ξ 2)H/B · 4

·
[(

ψ

2

)ln 2/(ln 2−ln(ψ0))

−
(

ψ

2

)2 ln 2/(ln 2−ln(ψ0))
]}

dξ

(20)

To obtain G, Eq. (20) needs to be solved numerically because
of its implicit form, depending on H/B, ψ0, and uav/umax. The
entropic parameter tends to be invariant at a channel section,
whether the flow is steady or unsteady (Chiu et al. 2005). Mora-
marco and Singh (2010) noted that the entropic parameter is also
independent of the energy or the water surface slope.

3 Comparison with Chiu’s 2D distribution

3.1 Chiu’s distribution

Chiu (1987, 1988, 1989) derived a general expression for CDF of
velocity by introducing equations for isovels where each curve in
the physical space has a constant value of velocity. For estimat-
ing discharge during floods, Moramarco et al. (2004) developed
a practical method by assuming that the 2D Chiu equation, writ-
ten for the vertical where the maximum velocity occurs, also
applies to other verticals as (Chiu 1988, 1989, Chiu and Said
1995, Greco 1999)

u
umax,i

= 1
Mi

ln
[

1 + (exp(Mi) − 1)
ψ

ψ0,i

(
1 − ψ

ψ0,i

)]
,

i = 1, 2, . . . , Nv , (21)

where i is the ith vertical; ψ , the vertical distance measured from
the channel bed divided by the water depth; ψ0,i, the value of
ψ with the maximum velocity; and Nv the number of verticals
sampled. Weaknesses of the above approach include require-
ment of too many parameters and the physical basis for using
isovels. The modification of Moramarco et al. (2004) is simpler,
but it still requires information on average velocity, position, and
magnitude of maximum velocity for each vertical.

3.2 Experimental measurements

To evaluate the proposed 2D velocity distribution, experimen-
tal velocity data were collected. Table 1 presents the following
characteristics: reference, number of data, channel width, water
depth, maximum velocity umax, average velocity uav , relative
vertical position of maximum velocity ψ0 = y0/H , and value of
entropy parameter G from Eq. (20). Each series contains velocity
observations distributed along various verticals, so that for each a
2D distribution of experimental velocity is obtained. Only a pre-
liminary validation is discussed herein for the lack of more data,
which is a limitation on the validation of the proposed model.

3.3 Validation

For each data series, velocity profiles were estimated using the
proposed 2D distribution and by means of the work of Chiu
(1988) and as revised by Chiu and Hsu (2006). For the data
of Chiu and Hsu (2006), the observed velocity distribution, the
proposed 2D distribution, and Chiu’s 2D velocity distribution
are shown in Fig. 2. The profiles based on the proposed velocity

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
5:

57
 1

7 
Se

pt
em

be
r 

20
17

 



788 G. Marini et al. Journal of Hydraulic Research Vol. 49, No. 6 (2011)

Table 1 Characteristics of velocity data

Number Channel Water
Reference of data width [cm] depth [cm] umax[cm/s] uav [cm/s] ψ0 [−] G [−]

Bortz (1989) 29 121.9 18.3 78.3 71.6 0.95 7.032
Chiu and Hsu (2006) 29 61 18.3 126.3 90.0 0.62 0.759
Guo (1990) 13 10 2.3 37.9 29.0 0.72 0.469
Run14 Guy et al. (1966) 24 243.8 27.4 125.3 112.7 0.90 4.978
Run28 Guy et al. (1966) 25 243.8 18.3 131.7 117.7 0.84 3.716
Run1 Steffler et al. (1983) 194 114.3 14.6 84.4 75.5 1.00 7.364
Run2 Steffler et al. (1983) 307 114.3 22.5 54.3 49.0 1.00 6.353

Figure 2 Comparison between experimental data and theoretical velocity profiles at section ξ = (a) −25%, (b) 0%, and (c) +25%: (�) experiment,
(—) theory, and (- -) Chiu and Hsu (2006)

distribution compare better with experimental data than do the
profiles of Chiu. In addition, the average dav and maximum dmax

values of these differences and three validation indices were cal-
culated. The difference is defined as |u − u∗|/umax, in which u∗ is
calculated by means of the proposed or Chiu’s distribution. The
validation indices of Krause et al. (2005) used were the coeffi-
cient of determination r2, the Nash–Sutcliffe efficiency E, and
the index of agreement ia.

The values of differences and indices are given in Table 2 for
each series. Again, the proposed 2D distribution yields smaller
differences and validation indices better than Chiu’s distribution.

As stated above, Chiu’s distribution needs many parameters,
whereas the proposed distribution needs just the average and
maximum velocities and the position of umax.

For the sake of brevity, the velocity profiles for other series are
not presented; Fig. 3 shows the differences between the experi-
mental and theoretical profiles inferred from the proposed 2D
distribution. A similar figure for Chiu’s distribution is omitted.
The results given in Table 2 confirm the largest scatter of the
points related to Chiu’s approach with respect to Fig. 3.

For a few points, there are large differences between experi-
mental and theoretical values. These are related to lower velocity

Table 2 Deviations and validation indices for all series

Reference Approach dav [−] dmax [−] r2 [−] E [−] ia [−]

Bortz (1989) Proposed 0.0493 0.1727 0.8192 0.6609 0.9181
Chiu (1988) 0.0528 0.1925 0.7668 0.5688 0.9131

Chiu and Hsu (2006) Proposed 0.0542 0.1930 0.8936 0.8728 0.9633
Chiu (1988) 0.0757 0.2801 0.8908 0.7368 0.9220

Guo (1990) Proposed 0.0864 0.2146 0.8741 0.8399 0.9550
Chiu (1988) 0.0556 0.3875 0.9594 0.8193 0.9339

Run14 Guy et al. (1966) Proposed 0.0783 0.3853 0.8709 0.6519 0.8892
Chiu (1988) 0.0828 0.3726 0.8719 0.6396 0.8894

Run28 Guy et al. (1966) Proposed 0.0203 0.0553 0.9768 0.9469 0.9883
Chiu (1988) 0.0315 0.0723 0.9711 0.8882 0.9740

Run1 Steffler et al. (1983) Proposed 0.0555 0.2016 0.9363 0.8379 0.9683
Chiu (1988) 0.0651 0.2341 0.9153 0.7780 0.9578

Run2 Steffler et al. (1983) Proposed 0.0544 0.3691 0.9647 0.9647 0.9909
Chiu (1988) 0.1063 0.4553 0.9484 0.5988 0.9318
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Figure 3 Comparison between experimental and theoretical data (2D
proposal) with (�) Bortz (1989), ( ) Chiu and Hsu (2006), (�) Guo
(1990), (•) Run14 Guy et al. (1966), (∗) Run28 Guy et al. (1966), (+)
Run1 Steffler et al. (1983), and (-) Run2 Steffler et al. (1983)

areas or to boundary areas, near either the bottom or the banks.
These differences are large for both Chiu’s and the proposed dis-
tributions. These differences can be explained as follows: (1)
Experimental data near the boundary suffer from greater uncer-
tainty than those obtained from other areas. Thus, it is likely
that these data are not as precise as expected. (2) Banks and the
channel bottom significantly affect the velocity and both the pro-
posed and Chiu’s models are based on only one constraint which
is based on mass conservation and do not explicitly account for
boundary effects. Scatter related to points not near the boundary
limits the method. Table 2 shows that the proposed 2D veloc-
ity distribution is remarkably accurate and superior to Chiu’s
distribution.

4 Conclusions

This research has developed a new 2D velocity distribution using
entropy. The derivation uses a probability function defined in
a 2D symmetric rectangular domain. The agreement between
experimental velocity measurements and the velocity computed
from the 2D distribution data is quite close. Neither parame-
ter calibration nor isovel equation is required; only the average
velocity and the maximum velocity and its position have to be
known: while the first can be inferred from a stage-discharge
curve or from the maximum velocity, the second has to be mea-
sured. The proposed plane velocity distribution is parsimonious
and superior to existing velocity distributions.

Appendix

Consider a rectangular channel with the CDF F[u(x, y)] to be
searched of properties defined in Section 2.5. A CDF should
be based on available experimental data and satisfy similarity
in the velocity distribution, so that suitable parameters appear
in the final equation depending on both ξ and ψ . Assume that
the first part depends on ξ and the second part on ψ only; each

part must vary from 0 to 1 so that the product yields 0 on the
border and 1 at (0, ψ0). The first part depending only on ξ has
to be symmetrical on the ψ axis and its derivative has to be nil.
The simplest equation satisfying these properties is the parabolic
equation

1 − ξ 2 (A1)

If the rectangular domain is very wide (H � B), F should depend
not on ξ , but only on ψ , and the first part should be equal to 1.
This is satisfied by the exponent H/B to obtain

(1 − ξ 2)H/B (A2)

The second part of F(u) must depend only on ψ , and it must be
ψ(0) = 0, and ψ(ψ0) = 1. Starting from the simple case ψ0 = 1
and using the parabolic equation, one obtains

4

[
ψ

2
−

(
ψ

2

)2
]

(A3)

Since ψ0 can be <1, Eq. (A3) exponent a for each term is
introduced, with a as a function of ψ0

4

[
ψ

2

a

−
(

ψ

2

)2a
]

(A4)

Because a(ψ0) must have the properties <1 for ψ0 between 0 and
1, =1 as ψ0 = 1, and as ψ = ψ0 ψ(1) = ψ0, a(ψ0) is determined
from [

ψ0

2

a

−
(

ψ0

2

)2a
]

= 1
4

(A5)

Insertion of the expression for a into Eq. (A4) gives

4

[
ψ

2

ln(2)/(ln(2)−ln(ψ0))

−
(

ψ

2

)2 ln(2)/(ln(2)−ln(ψ0))
]

(A6)

The product of Eqs. (A2) and (A6) finally gives Eq. (18).

Notation

a = function of ψ0 [−]
A = total area of cross-section [L2]
B = width of cross-section [L]
dav = average difference between experimental and

theoretical data [−]
dmax = maximum difference between experimental and

theoretical data [−]
E = Nash–Sutcliffe efficiency validation index [−]
f (u) = PDF of u [−]
F(u) = CDF of u [−]
G = entropic parameter [−]
H = height of cross-section or water depth [L]
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H (u) = Shannon entropy of u [−]
ia = index of agreement [−]
M = entropic parameter in Chiu’s 2D approach [−]
Mi = entropic parameter for ith vertical of Moramarco

et al. (2004) [−]
Nv = number of verticals sampled by Moramarco et al.

(2004) [−]
r2 = coefficient of determination [−]
u = temporally-averaged velocity [LT−1]
u∗ = value of velocity calculated [LT−1]
uav = cross-sectional average velocity [LT−1]
umax = maximum velocity [LT−1]
umax,i = value of umax for ith vertical given by Moramarco

et al. (2004) [LT−1]
unum = velocity from a numerical model [LT−1]
ū = mean velocity [LT−1]
w = exp(λ2umax) [−]
x, y = coordinates in a 2D domain [L]
x̄, ȳ = coordinates of a point defined in a 2D domain [L]
y0 = vertical coordinate for u = umax in a 2D domain [L]
λ1, λ2 = Lagrange multipliers [−]
ξ , ψ = coordinates in a 2D dimensionless domain [−]
ψ0 = vertical coordinate for u = umax in a 2D

dimensionless domain [−]
ψ0,i = value of ψ0 for ith vertical given by Moramarco

et al. (2004) [−]
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