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A b s t r a c t  

Extremes of stream flow and precipitation are commonly modeled by heavy-
tailed distributions. While scrutinizing annual flow maxima or the peaks over 
threshold, the largest sample elements are quite often suspected to be low quality 
data, outliers or values corresponding to much longer return periods than the obser-
vation period. Since the interest is primarily in the estimation of the right tail (in the 
case of floods or heavy rainfalls), sensitivity of upper quantiles to largest elements 
of a series constitutes a problem of special concern. This study investigated the sen-
sitivity problem using the log-Gumbel distribution by generating samples of differ-
ent sizes (n) and different values of the coefficient of variation by Monte Carlo ex-
periments. Parameters of the log-Gumbel distribution were estimated by the prob-
ability weighted moments (PWMs) method, method of moments (MOMs) and 
maximum likelihood method (MLM), both for complete samples and the samples 
deprived of their largest elements. In the latter case, the distribution censored by the 
non-exceedance probability threshold, FT , was considered. Using FT instead of the 
censored threshold T creates possibility of controlling estimator property. The effect 
of the FT value on the performance of the quantile estimates was then examined. It 
is shown that right censoring of data need not reduce an accuracy of large quantile 
estimates if the method of PWMs or MOMs is employed. Moreover allowing bias 
of estimates one can get the gain in variance and in mean square error of large 
quantiles even if ML method is used. 

Key words: floods, log-Gumbel distribution, estimation methods, bias, Monte 
Carlo simulation, truncation, censoring, non-exceedance probability threshold. 
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1. INTRODUCTION 

The main interest in flood frequency analysis (FFA) is the estimation of large quan-
tiles from a given time series of annual flow maxima (AM) or of peaks over threshold 
(POT). Hence, the reliability of the largest element of a series is a problem of special 
concern. Due to technical difficulties of flow discharge measurements during floods 
and short duration of flood events, as well as due to the difficulties in getting reliable 
results from physical models for complex geometries of river channels, the scarcity of 
information for high water levels is a norm. As a result, the upper limb of a rating 
curve, which is used for the conversion of water gauge heights into flow discharges, 
may be severely biased. Therefore, one deals with error-corrupted data, while the ac-
curacy of measured data decreases with increasing flood magnitudes. The highest val-
ues in annual maximum flow series may be considered as poor quality data and this 
inaccuracy undermines their information value. Quite often the largest element in a se-
ries considerably deviates from other elements and, hence, one suspects that it corre-
sponds to a much longer return period than the period of a time series. However, there 
is a lack of an objective effective method for determining whether the largest element 
of hydrological size sample is an outlier and whether its removal is justified. If the 
largest sample elements are very low quality data, their values may be considered as 
unavailable and then the parameters of a distribution are estimated from a censored 
data set. This study also encompasses the case when the largest sample element was 
erroneously excluded from the analysis and a sample deprived of its largest element 
was considered as a complete sample from a given distribution. Whereas, the view 
that heavy floods are generated by mechanisms different from those generating other 
smaller floods is in conformity with the statistical meaning of outliers. Then, one deals 
with double censoring of data. For the sake of short time series, the problem with this 
view is that it can be hardly implemented without using paleoflood data. 

The problem posed in this study is to evaluate the effect of omission of the larg-
est sample element on the accuracy of large quantile estimates for the known distribu-
tion function. Common sense should tell us that this will probably reduce the accuracy 
of large quantile estimation. As stated in the statistical literature (e.g. Kendall and Stu-
art 1973), censoring always results in the loss of estimation efficiency. Although the 
maximum likelihood (ML) and the least squares method have normally been em-
ployed, this property has been without any proof ascribed to any estimation method. It 
may not be the case for heavy tailed distributed data if the Probability Weighted Mo-
ments (PWMs) or the method of moments (MOMs) is employed and estimation accu-
racy is compared with the one got by the same method for a complete sample. Taking 
the log-Gumbel distribution, it is shown here by simulation experiments that right sin-
gly censoring need not decrease accuracy of large quantile estimates expressed by the 
mean square error (MSE). Although a censored distribution is employed for parameter 
estimation, the same holds for censored samples estimates. To be precise, according to 
Rao (1958) truncation need not result in the loss of estimation efficiency. Swamy 
(1962) shows that the truncation of normal distribution always reduces efficiency 
when both mean and variance are estimated. Note that the efficiency can serve as the 
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measure of accuracy for “unbiased” estimators while we will deal also with biased es-
timators. Then the root mean square error RMSE and bias B are commonly used meas-
ures of the performance of an estimator. As shown in the paper, allowing for biased 
estimates one can get the gain in variance and RMSE of large quantile estimates even 
if ML method is employed.  

Presently the method of L-moments (LMM) (Hosking and Wallis 1997), being  
a modification of the method of Probability Weighted Moments (PWMs) (Greenwood 
et al. 1979), dominates in FFA because of its computational simplicity and satisfactory 
performance for hydrological sample sizes. Hosking et al. (1985) and Hosking and 
Wallis (1987) found that with small and moderate samples the method of L-moments 
is often more efficient than the maximum likelihood, particularly for estimating quan-
tiles in the upper tail of the distribution. Hosking (1995) extended the theory of  
L-moments to the analysis of upper bound censored samples. His concept of the “A”-
type PWMs with Type II censoring is employed in this study and extended for the two 
other estimation methods, i.e., MOMs and MLM. Its performance with reference to a 
large quantile of the LG distribution is the subject of our investigation. The censored 
distribution (the term coined by Hosking 1995) is applied for a fixed proportion m/n of 
the sample size n and a given non-exceedance probability threshold, FT. Hence, the 
upper threshold T of a variable is a random value, as it varies from sample to sample. 
Replacement of T by FT  creates possibility of controlling the estimator property. For 
the sake of brevity, the only largest element of a sample is removed from the sample, 
i.e., m = n −1. 

There are several reasons for selecting the LG distribution for this study. First, it 
was found in our previous study (Strupczewski et al. 2007) that for two-parameter 
heavy tailed and log-normal distributions the removal of the largest sample element 
need not result in a decrease in the accuracy of large quantile estimates, while it pro-
duces a negative bias. Two-parameter models are recommended by Cunnane (1989) 
for at-site FFA. Second, nowadays there is a growing consensus that hydrological ex-
tremes are heavy-tail distributed (e.g. Katz et. al. 2002). Among two-parameter heavy-
tailed distributions, the log-logistic (LL), the log-Gumbel (LG), i.e. the two-parameter 
General Extreme Value (GEV) distribution, and Pareto are most popular for modeling 
floods, precipitation and sea level extremes. Third, a large dispersion of largest sample 
elements makes heavy-tail distributed data interesting for this study. Fourth, being a 
two-parameter distribution bounded-at-zero, LG has explicit forms of both the cumu-
lative density function (CDF) and the inverse thereof. Hence, all the three estimation 
methods can be easily applied. 

The performance of large quantile estimates, ˆFx , is assessed by Monte Carlo 
simulation experiments and compared with that of a complete sample by the same 
method. Three estimation methods, i.e. PWMs, MOMs and MLM, are employed for 
the purpose. Therefore, using a truncated distribution, an informative value of the 
largest sample element in respect to upper quantile estimates is assessed. 
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The papers is organized as follows. Followed by the notation (Section 2), the 
next section provides a short review of hydrological literature in respect to censored 
data. Application of three estimation methods to the distribution censored by a non-
exceedance probability threshold is described in Section 4 and exemplified by the LG 
distribution in Section 5. In Section 6 performance measures that are applied to large 
quantile estimators are introduced and four ways (variants) of the non-exceedance 
probability threshold FT are formulated. Design of simulation experiments employed 
to assess the  informative value of the largest element of LG samples is described in 
Section 7. Section 8 presents, discusses and compares the experimental results got by 
the three estimation methods for the estimation of quantile x0.99 for complete samples 
(subsection 8.1), for the censored data with four FT variants (subsection 8.2), and for 
quantile x0.80 (subsection 8.3), and it is completed by a comparative assessment of the 
various procedures applied (subsection 8.4). The last part, Section 9, summarizes and 
concludes the paper. 

2. NOTATION 

B( ) bias (eq. 28) 
Bδ( ) relative bias (eq. 31) 
βr r-th theoretical probability weighted moment (eq. 3) 
br r-th sampling probability weighted moment (eq. 5) 
CDF cumulative density function 
CS complete sample 
CV coefficient of variation 
E( ) expected value 
EM estimation method 
ƒ( ) probability density function 
F( ) cumulative density function 
FFA flood frequency analysis 
FT non-exceedance probability threshold 
g( ) PDF of censored distribution 
G( ) CDF of censored distribution 
LG log-Gumbel distribution 
LT likelihood function of censored distribution (eq. 10) 
m censored sample size 
MLM maximum likelihood method  
MOMs method of moments 
mr r-th theoretical moment about the origin (eq. 8) 
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ˆ rm  r-th sampling moment about the origin (eq. 9) 

MSE( ) mean square error 
n total sample size  
PDF probability density function 
PWMs probability weighted moments  
SD( ) standard deviation 
SDδ( ) relative standard deviation (eq. 31) 
Rv( ) RMSE ratio (eq. 32) 
RMSE( ) root mean square error (eq. 29) 
RMSEδ( ) relative RMSE (eq. 31) 
T censoring threshold 
V variant for selecting the FT value (V=A, B, C, D) 
var ( ) variance 
x(F)  quantile function 

( )x̂ F  or ˆFx  F-th quantile estimator 

xi:n  the i-th element of an ordered sample of size n  
α parameter of LG distribution 
θ  parameters of a distribution function 
ξ  parameter of LG distribution 

3. REVIEW  OF  HYDROLOGICAL  LITERATURE 

The data set in which largest elements are not available can be in fact considered as a 
censored data set and appropriate estimation techniques can then be applied. Because 
of its simplicity, the quantile method has been used in practice to deal with such cases, 
despite the fact that the method is recognized as inefficient. Kaczmarek (1977, p. 205) 
was one of the first who employed MLM to censored-on-the-right annual peak flow 
data, where the data were assumed to come from the log-normal population. He stated 
“Since moments from the sample are undeterminable in this case, to solve the above 
problem only the maximum likelihood and the quantile method can be used”. Phien 
and Fang (1989) used MLM to GEV samples censored on the right, left and both sides 
(censoring of Type I). It was found that censoring may reduce the bias of the parame-
ter estimators but does not necessarily increase the variances. 

Presently, censoring and truncation can be tackled by two other methods, namely, 
method of moments (MOMs) (Jawitz 2004, Strupczewski et al. 2006) and method of 
probability weighted  moments (PWMs) (Wang 1990, 1996; Hosking 1995). Introduc-
ing partial PWMs, Wang (1990, 1996) extended the definition of PWMs to singly and 
doubly censored samples. Computing sampling partial PWMs, the unavailable values 
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of sample elements are replaced by the zeros. While integrating to get the population 
partial PWMs, the censoring threshold T is expressed by the threshold non-exceedance 
probability FT. Note that in ML estimation from censored sample, the censoring 
threshold T is used both in Type I and Type II censoring (e.g. Kendall and Stuart 
1973). In fact, for a specified T, the exact value of FT from a sample is not known. 
Given that m of the n events in the sample do not exceed the threshold T, the threshold 
non-exceedance probability is estimated by Wang (1990, 1996) and Hosking (1995) as 
 FT = m/n . (1) 

As opposed to PWMs, the partial PWMs cannot be used as measures of the shape 
of the distribution; for example, the second L-moment as a measure of dispersion is 
always positive, while the second partial L-moment can be also negative. Employing 
Monte Carlo simulation for generating samples from the GEV distribution, Wang 
(1990, 1996) showed that lower bound censoring at a moderate level does not unduly 
reduce the efficiency of large quantile estimation. 

Hosking (1995) introduced two ways of extending the definitions of PWMs to 
upper bounded censored samples. His “A”-type PWMs is based on the concept of 
conditional probability. The distribution is censored by the threshold T or FT. In Hosk-
ing’s “B”-type PWMs, unobserved values are replaced by the censoring threshold T, 
i.e. PWMs are calculated from the “completed sample”. For estimating the parameters, 
Hosking prefers it to his “A”-type PWMs, and shows that for the zero-bounded expo-
nential distribution it is equivalent to the ML under Type II censoring. Using censored 
GEV and the inverse Gumbel samples from a simulation study, Hosking’s results in-
dicate that PWMs-based estimators of upper quantiles perform well and that they can 
be competitive to computationally more complex methods, such as maximum likeli-
hood.  

Recognizing the robustness of estimates to largest sample elements as a desirable 
property of an estimation method in FFA, Vogel and Fennessey (1993) and Hosking 
and Wallis (1997) deleted the largest observation from several records and compared 
relative changes of L-moment ratios of order r = 2, 3 and 4 with those of ordinary 
moment ratios and found them to be less affected by extreme observations. Following 
this way and using the data simulated by Monte Carlo experiments, Strupczewski  
et al. (2007) investigated, by employing three estimation methods, the effect of re-
moving the largest sample element on upper quantile estimators.  

4. CENSORED  DISTRIBUTION  APPLIED  TO  CENSORED  DATA 

Consider a continuous positively defined variable x with probability density function 
(PDF) ƒ(x|θ ) and cumulative density function (CDF) F(x|θ ) where θ  denotes parame-
ters. The distribution is to be estimated from only sample values that do not exceed a 
threshold T with FT = F(T). The smallest m sample values of the n-element sample 
(x1:n ≤ x2:n ≤ … ≤ xm:n ≤ xm+1:n ≤ … ≤ xn:n)  are observed. 
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Conditional on the value of m, the uncensored values constitute a random sample 
of size m from a censored distribution with PDF g(y|θ ) = ƒ(x|θ )/FT , CDF 
G(y|θ ) = F(x|θ )/FT , 0 < G < 1 and quantile function y(G|θ ) = x(F = FT  G|θ ). Here  
m is fixed and the largest (n − m) values are censored above the threshold nonex-
ceedance probability FT , which corresponds to the random value :

ˆ
m nT x≥ . The θ  pa-

rameters are to be estimated from the uncensored sample of m observed values of the 
censored distribution. Note that for a fixed proportion m/n, one gets asymptotically 

( ) ( )ˆ ˆlim lim 1Tn n
x F m n y G T

→∞ →∞
= = = = . 

PWMs estimates 

The probability weighted moments (PWMs) of a truncated distribution can be written 
as 

 ( ) ( ) ( )
1

1
0 0

1d d
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y G G y G x F F F
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Sampling PWMs of a truncated distribution are 

 
( )( )

( )( ) ( ) :
1

1 2 ..( )1
1 2 ..

m

r i n
i r

i i i r
b x

m m m m r= +

− − −
=

− − −∑  (5) 

and in particular 

 0 :
1

1 ,
m

i n
i

b x
m =

= ∑  (6) 

 
( )
( )1 :

2

11 .
1

m

i n
i

i
b x

m m=

−
=

−∑  (7) 

Equating sample and population PWMs, i.e., bj = βj  for  j = 0, 1,…, k, where (k + 1) 
stands for the number of parameters, while FT  is a given value, one gets the PWMs-
estimate of the θ  parameters. 
MOMs estimates 

Application of the method of moments (MOMs) for censored samples is analogous to 
that of PWMs. The theoretical r-th moment about the origin can be expressed as 

 ( ) ( )
1

0 0

1d d .
TF

r r
r

T
m y G G x F F

F
= =∫ ∫  (8) 
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The sample r-th moment about the origin can be written as 

 :
1

1ˆ .
m

r
r i n

i

m x
m =

= ∑  (9) 

Solving the system of equations ˆ r rm m= for r = 1,…, l, where l = k + 1 stands for the 
number of parameters, while FT is a given value, one gets the MOMs-estimate of the θ 
parameters. 
Maximum likelihood (ML) estimates 

If the smallest m observations are available, then the likelihood function (LF) can be 
expressed as 

 ( )
( )

( )
( ) ( )

:
1

; :
1 1

0

,

d

m

i nm m
mi

T i n i nmTi i

f x
L g x f x F T

f x x

θ
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θ

=

= =

= = =
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

∏
∏ ∏

∫
 (10) 

where for m fixed in advance T = xm:n . 
To copy Hosking’s PWMs “A”- type parameter estimation technique, we ex-

pressed in the equations of the maximum likelihood conditions, ∂ lnLT /∂θ  = 0 , T by 
FT  using the inverse CDF: T = φ (FT |θ ). Substituting the ML-estimates of the θ pa-
rameters into the quantile equation of the original distribution we get 

 ( )ˆˆ , 0 1.Fx F Fφ θ= ≤ ≤  (11) 

Putting F = FT  into eq. (11) one can find and compare the threshold estimate T̂ with 
the largest value of the uncensored sample of m observed values, i.e. with xm:n. 

5. LOG-GUMBEL  DISTRIBUTION  TRUNCATED  ON  THE  RIGHT 

The log-Gumbel distribution (notation after Rowiński et al. 2002) can be written as 

 ( ) ( )1 1 1exp , , 0 ,f x x xα αξ ξ ξ α
α

− − −= − >  (12) 

 ( ) ( )1exp ,F x x αξ −= −  (13) 

 ( ) ln .Fx F
α

ξ

−
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (14) 

PWMs estimates of parameters 

PWMs of the log-Gumbel censored distribution can be expressed as 
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 ( ) ( )1
1 1 1 , 1 ln ,a

r Tr
T

r r F
F

ααβ ξ α−

+= + Γ − − +⎡ ⎤⎣ ⎦  (15) 

where ( ) 1, e da t

z

a z t t
+∞

− −Γ = ∫  is the incomplete gamma function. In particular, 

 ( )0
1 1 , ln ,T
T

F
F

αβ ξ α= Γ − −  (16) 

 ( )1
1 2

1 2 1 , 2ln .T
T

F
F

α αβ ξ α−= Γ − −  (17) 

Parameter α is estimated from 
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then 
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F

α
ξ

α
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Conventional moments estimates 

The r-th moment about the origin of the censored LG distribution can be written as 

 ( )1 1 , ln .r
r T

T
m r F

F
αξ α= Γ − −  (20) 

In particular, 

 ( )1
1 1 , ln ,T
T

m F
F

αξ α= Γ − −  (21) 

 ( )22
1 1 2 , ln .T
T

m F
F
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The α parameter is set by solving eq. (23) for a given FT as 
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and ξ from 
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ML estimates 

Log of L-function (eq. 10) takes the form: 

 ( ) 1 1
: :

1 1

ln ln ln 1 1 ln ,
m m

T i n i n
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Putting  x = T  into eq. (14) one gets 
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T

α

ξ
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⎛ ⎞
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hence 

 ( )ln ln ln ln .TT Fα ξ⎡ ⎤= − − −⎣ ⎦  (29) 

Substituting eqs. (28) and (29) into eqs. (26) and (27) one gets 
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1
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T
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From eq. (27a) one obtains 
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ˆ1
:

1

1 lnˆ T
m
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i
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ξ
−
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=

∑
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and from eq. (26a) one gets 

 

ˆ1
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Solving eq. (26b) for α by an iterative method one gets the α estimate and then ξ̂  from 
eq. (27b). 
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6. VARIANTS  OF  UPPER  QUANTILE  ESTIMATION 

Because the primary interest in FFA is the estimation of large quantiles, this paper 
concentrates on the performance of estimator ( )ˆ 0.99x F =  which is then compared to 
the performance of ( )ˆ 0.80x F = . Common measures of the performance of an estima-
tor ˆFx  are its bias (B) and root mean square error (RMSE) defined by 

 ( ) ( )ˆ ˆ ,F F FB x E x x= −  (28) 

 ( ) ( ) ( ) ( )
1 21 2 22 2ˆ ˆ ˆ ˆ ,F F F F FRMSE x B x SD x E x x⎡ ⎤⎡ ⎤= + = −⎢ ⎥⎣ ⎦ ⎣ ⎦

 (29) 

where  

 ( ) ( ) ( ){ }1 21 2 2ˆ ˆ ˆ ˆvar .F F F FSD x x E x E x⎡ ⎤ ⎡ ⎤= = −⎣ ⎦ ⎣ ⎦  (30) 

It is convenient to express bias, RMSE and standard deviation as ratios with re-
spect to the quantile itself, i.e., 

 ( ) ( )ˆ ˆ ,F F FB x B x xδ =  (28a) 

 ( ) ( )ˆ ˆF F FRMSE x RMSE x xδ =  (29a) 
and 

 ( ) ( ) ( ) ( ){ }1 22 2ˆ ˆ ˆ ˆ .F F F F FSD x SD x x RMSE x B xδ δ δ⎡ ⎤ ⎡ ⎤= = −⎣ ⎦ ⎣ ⎦  (30a) 

Thus, the performance measure quantities used in the paper are expressed as the per-
centage of the underlying population quantiles (xF). 

The ratio of RMSEs 

 ( ) ( ) ( )0.99 0.99 0.99ˆ ˆ ˆ ,R x RMSE x RMSE xν ν
δ δ=  (31) 

where v stands for A, B, C and D Variants, and serves  for every estimation method as 
a measure of censoring on the accuracy of 0.99x̂ . 

For the three estimation methods, the performance of upper quantile estimators 
obtained from the censored LG distribution is compared with that of a complete sam-
ple obtained by the same method. This comparison gives the answer to the question 
“how for a LG sample and a given estimation method the lacking of its largest element 
value affects the accuracy of upper quantile estimators measured by RMSE and bias”. 

So far, the probability bound FT for censoring has been considered as a given 
value. In practice, FT is generally unknown and it has to be estimated. Taking into ac-
count difficulties in getting minimum variance unbiased estimator for truncated distri-
bution (e.g. Kendall and Stuart 1973, 32.14-23), practitioners are satisfied with meth-
ods that minimise RMSE or B, depending on their needs and a share of bias in RMSE. 
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Therefore, the first task in this study is to find FT which for given (m = n – 1, n) and 
fixed values of LG parameters, minimises RMSE of xF estimator: 

 ( ) ( )
1 22ˆ ˆmin min .

T T
T F F FF F

RMSE x E x x⎡ ⎤= −⎢ ⎥⎣ ⎦
 (32) 

This is represented here as the Variant A. However, one has to bear in mind that the 
RMSE is a good measure of performance only when bias has limited impact on it, i.e. 
the B2 is a small  fraction of MSE. Hence, the Variant B is introduced with the aim of 
getting an unbiased estimator of ˆFx : 

 ( ) ( )ˆ ˆmin min 0 .
T T

F F FF F
B x E x x= − =  (33) 

Estimation of FT by a fraction of observable sample elements (eq. 1) is con- 
sidered here as the Variant C. Note that this T̂F  may not satisfy the condition 

( ) :
ˆˆ ˆ ˆ, ,T m nT x F xα ξ= ≥ . In fact, if n is reasonably large and moreover xm:n is located 

within the main probability mass of the range of  x, then :
ˆ

m nT x≈  and T̂F m n≈ . This 
hardly happens in hydrology, where one deals with short samples and the threshold T 
is located far in the right tail of PDF. Perceiving some theoretical disadvantages using 
this simple approach for parameter estimation, Hosking (1995) stated that finite sam-
ple corrections may, in some circumstances, be worthwhile. From the unbiased esti-
mator of the mean of the exponential distribution based on the “A” type PWMs (Hosk-
ing 1995, eq. 29.3.6) one can find that FT exceeds the m/n value, asymptotically con-
verging to it. For example, taking m/n = 0.9, the probability bound FT equals 0.9128, 
0.9089, 0.9055 and 0.9028 for n equal to 20, 30, 50 and 100, respectively. The ratio 
m/n can be considered as a conservative estimate of FT. Recognized in hydrology un-
der the name “California Department of Public Works Formula” it gives the greatest 

TF  value of all commonly used plotting position formulas (Cunnane 1981, 1989; Rao 
and Hamed 2000). To tackle the case when the largest sample element is erroneously 
treated as an outlier and then removed from the sample, we put FT = 1 (the Variant D). 
It means that the (n – 1) element sample, i.e., a sample deprived of its largest element 
(xn:n), is considered as the complete sample of the LG distribution. 

Therefore, four variants for the FT value along with three estimation methods 
make all together twelve “variant/associated estimation method” procedures, denoted 
as the V/EM. Their performance is investigated and compared with those from three 
estimation procedures employed for the complete sample, which are denoted as 
CS/EM. 

For convenience, the original LG parameters ξ, α are replaced by the mean m1 
and the coefficient of variation CV. This facilitates comparison of results got for vari-
ous two-parameter models. Putting FT = 1 into eq. (20) one gets 

 ( )1 1m αξ α= Γ −  (34) 
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and from the CV definition 

 
( )

( )2

1 2
1 .

1VC
α

α

Γ −
= −

Γ −
 (35) 

The value of the threshold non-exceedance probability FT is subject to the objec-
tive function (32) in Variant A and (33) in Variant B and it will be assessed by the 
Monte-Carlo simulation experiment. Hence, n is not explicitly used in the parameter 
estimation. For a given objective function the FT  value is an implicit function of (m, n) 
and the population CV (or α) value. For the C and D Variants, there is a fixed value of 
FT , which equals m/n and one, respectively. 

7. EXPERIMENTAL  DESIGN 

The Monte Carlo experiments were carried out for each ‘point’ in the sample space 
[CV , n estimation method, variant] with the mean value equal to ten. The sample space 
consisted of 630 points, covering six values of CV (0.3,  0.6,  0.8,  1.0,  1.5,  2.0), 
seven values of n (n = 20, 30, 50, 70, 100, 1000, 10000), three estimation methods, the 
complete sample (CS) and four variants of FT, i.e., A, B, C and D, applied to censored 
samples. Note that usually CV < 1 in annual flow maxima series and their size n is less 
than one hundred. For each point in the sample subspace [CV , n], 20,000 sequences of 
length n were generated. Without loss of generality, the LG distribution mean used to 
generate the samples was m1 = 10. To obtain the value of quantile xF = 0.99 for the LG 
population with the mean equal to ten and a given value of the coefficient of variation 
CV , eqs. (14), (34) and (35) were employed. 

For each of the 20,000 sequences associated with a point in the sample subspace 
[CV , n], and three estimation methods, the distribution parameters and quantile x0.99, 
denoted as 0.99x̂ , were determined. Then, bias (eq. 28) and RMSE (eq. 29) of 0.99ˆFx =  
were assessed by averaging over all 20,000 complete samples. They are displayed in 
Tables 1–3 (columns 4–5) as the percentage of the underlying population quantiles 
(x0.99) for each estimation method separately. They serve as the reference values for 
the evaluation of the performance of the censored distribution estimates of x0.99. 

Then the largest sample element (xn:n) from each sequence of length n was re-
moved, i.e., m = n − 1 and the twelve V/EM procedures were applied to estimate pa-
rameters for the censored data. For each of the 20,000 censored samples of a point in 
the subspace [CV , n], a given FT value and m = n − 1, the distribution parameters (α, ξ) 
were estimated by: eqs. (18) and (19) for PWMs; eqs. (23) and (24) for MOMs; and 
eqs. (26b) and (27b) for MLM. Then the quantile estimate 0.99x̂  was computed by eq. 
(14). Its bias (eq. 28) and RMSE (eq. 29) were assessed by averaging over all 20,000 
censored samples. The results expressed as the percentage of the underlying popula-
tion quantiles (x0.99) are shown in Tables 1–3 (columns 6–14). Note that for the C and 
D Variants, there is a fixed value of FT equal to (n – 1)/n and 1, respectively, while for 
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the A and B Variants the FT value has to be found for every point in the sample sub-
space [CV , n] and every estimation method according to the respective objective func-
tion. The search for FT starts from FT = 1, i.e. from the value of the D Variant, and is 
continued until the optimum FT has been found. 

8. EXPERIMENTAL  RESULTS 

The performance of the LG estimator 0.99x̂  got by the A, B, C and D Variants with the 
three estimation methods is related to that got from the complete sample by the same 
estimation method. Therefore, the assessed measures of performance of the CS esti-
mator 0.99x̂  (columns 4–5 of Tables 1–3) are briefly discussed first, followed by those 
got from the A, B, C and D Variants (columns 6–14 of Tables 1–3). The value of the 
coefficient of variation  CV  and the corresponding value of the L-variation coefficient 
τ are displayed in column 1, while the corresponding value of the population quantile  
x0.99 in the next column. For the sake of brevity, the SD values are not presented in the 
tables as they can be calculated by a reader from RMSEδ  and  Bδ  values by eq. (30a). 

8.1 Performance of estimators of 0.99x̂  from complete samples 

For all points in the sample subspace [CV , n], the MLM estimators of x0.99  (Table 3) 
are superior to the estimators of the other two methods (Tables 1 and 2) both in respect 
to the bias (col. 5) and the root mean square error (col. 4). The PWMs estimators of 
x0.99 are less accurate than those of the method of moments but for small CV values 
(i.e., represented by CV = 0.3 in Tables 1 and 2) and large hydrological samples for 
CV > 0.6. However, MOMs produces much larger absolute bias ( )0.99ˆB xδ  than does 
either PWMs or MLM, and the difference between them grows rapidly with the CV 
value. Therefore, in spite of the competitiveness of ( )0.99ˆRMSE xδ  got from MOMs, 
both a large bias and its share in ( )0.99ˆRMSE xδ  make MOMs unsatisfactory for the 
LG distribution. 

Moreover, contrary to MLM and PWMs, the MOMs bias remains considerably 
high for large samples, e.g., for CV = 2.0 and n = 10,000 it equals –10.8% of the x0.99 
value and its share in the MSE value is as high as 80%. It is much lower for the x0.99 
estimate got from the censored distribution (Variants A, B and C) while the SD values 
remain of similar magnitude, which results in lower RMSE values. Such a large bias is 
characteristic of samples derived from two-parameter heavy tailed distributions with a 
large CV value. It cannot be solely explained by the algebraic bound of CV (Katsnelson 
and Kotz 1957). Note that the algebraic bound depends on the sample size but not on 
the distribution and its population value of CV. For a set of n non-negative values xi , 
not all equal, the coefficient of variation CV cannot exceed (n – 1)1/2, attaining this 
value if and only if all but one of the xi’s are zero. Hence, for n = 10,000 one gets the 
upper bound ˆ 100VC ≤ , while the largest population CV  considered equals two. 
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 Table 1  
Measures of the performance of PWMs estimator of x0.99 for complete and censored data  

of the LG distribution in percentage of x0.99 

Complete data Incomplete data (m = n – 1) 
Variant A Variant B Variant C Variant D CV 

(τ) x0.99 n 
RMSEδ  Bδ FT

A ARMSEδ Bδ
A FT

B BRMSEδ
CRMSEδ Bδ

C DRMSEδ  Bδ
D 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
20 22.56 0.70 .9874 18.67 –6.57 .9736 20.11 26.91 10.94 20.24 –14.40 
30 18.19 0.48 .9903 15.54 –4.87 .9810 16.35 20.03 7.14 17.03 –11.64 
50 14.02 0.18 .9927 12.43 –3.02 .9877 12.85 14.58 4.20 13.67 –8.80 
70 11.67 0.04 .9943 10.57 –2.35 .9907 10.83 11.85 2.93 11.67 –7.28 
102 9.74 0.00 .9958 8.96 –1.83 .9933 9.12 9.75 2.08 9.87 –5.85 
103 3.03 –0.15 .9993 2.97 –0.28 .9991 3.01 2.99 0.12 3.18 –1.36 

0.3 
(0.14) 21.00 

104 0.97 –0.16 .9998 0.95 0.00 .9998 1.00 0.99 0.03 1.05 –0.39 
20 41.04 1.18 .9937 30.34 –15.93 .9738 36.23 52.75 18.32 31.42 –23.68 
30 33.50 0.92 .9940 25.50 –11.59 .9809 28.65 36.87 11.81 26.96 –19.74 
50 25.87 0.41 .9950 20.63 –7.65 .9876 22.21 26.02 7.02 22.14 –15.47 
70 21.51 0.12 .9955 17.65 –5.54 .9905 18.64 20.88 4.91 19.21 –13.14 
102 17.93 0.03 .9965 15.12 –4.18 .9931 15.75 17.16 3.55 16.50 –10.85 
103 5.51 –0.31 .9993 5.18 –0.47 .9991 5.30 5.25 0.26 5.72 –3.02 

0.6 
(0.24) 31.83 

104 1.79 –0.34 .9999 1.73 –0.05 .9999 1.77 1.80 0.09 1.92 –0.91 
20 48.49 0.89 .9964 35.09 –21.40 .9744 44.88 65.46 22.53 35.79 –27.67 
30 40.39 0.79 .9955 29.70 –15.30 .9812 34.80 46.59 14.55 30.97 –23.35 
50 31.70 0.33 .9958 24.16 –10.07 .9878 26.62 31.96 8.66 25.69 –18.58 
70 26.56 0.04 .9962 20.74 –7.58 .9906 22.30 25.42 6.07 22.45 –15.95 
102 22.22 –0.04 .9970 17.88 –5.80 .9933 18.88 20.86 4.43 19.44 –13.32 
103 6.85 –0.42 .9993 6.24 –0.60 .9991 6.30 6.35 0.38 7.00 –4.01 

0.8 
(0.28) 37.44 

104 2.24 –0.46 .9999 2.12 –0.06 .9999 2.11 2.23 0.14 2.42 –1.25 
20 52.84 0.34 .9974 38.26 –24.76 .9746 48.92 75.89 25.90 38.70 –30.45 
30 44.74 0.45 .9966 32.59 –18.38 .9815 39.59 53.90 16.72 33.69 –25.91 
50 35.72 0.12 .9965 26.62 –12.25 .9878 30.01 36.66 10.00 28.14 –20.83 
70 30.20 –0.14 .9967 22.93 –9.27 .9907 25.03 28.93 7.01 24.71 –18.02 
102 25.44 –0.18 .9973 19.86 –7.04 .9932 21.27 23.71 5.14 21.51 –15.17 
103 7.92 –0.53 .9994 7.03 –1.10 .9991 7.25 7.19 0.48 7.98 –4.81 

1.0 
(0.32) 41.67 

104 2.59 –0.57 .9999 2.44 –0.16 .9999 2.46 2.57 0.18 2.83 –1.59 
20 57.42 –1.05 .9975 42.23 –27.85 .9752 56.60 92.46 31.36 42.59 –34.38 
30 49.72 –0.54 .9975 36.57 –22.30 .9820 44.77 63.68 20.06 37.39 –29.58 
50 40.78 –0.55 .9972 30.08 –15.27 .9881 35.02 44.29 12.18 31.54 –24.13 
70 35.09 –0.67 .9971 26.04 –11.41 .9909 29.07 34.47 8.54 27.90 –21.08 
102 29.98 –0.60 .9977 22.72 –9.03 .9934 24.76 28.24 6.32 24.48 –17.94 
103 9.69 –0.73 .9994 8.23 –1.14 .9992 8.34 8.48 0.67 9.51 –6.15 

1.5 
(0.35) 48.05 

104 3.19 –0.77 .9999 2.91 –0.16 .9999 3.10 3.10 0.25 3.53 –2.17 
20 58.90 –1.96 .9986 44.07 –31.36 .9755 59.98 99.46 33.78 44.33 –36.21 
30 51.49 –1.24 .9965 38.28 –21.56 .9822 47.72 68.50 21.76 39.07 –31.32 
50 42.77 –1.05 .9974 31.70 –16.57 .9884 37.42 47.65 13.24 33.12 –25.72 
70 37.11 –1.07 .9974 27.51 –12.78 .9910 31.09 37.35 9.35 29.39 –22.56 
102 31.97 –0.92 .9979 24.10 –10.12 .9936 26.48 30.62 6.93 25.88 –19.31 
103 10.63 –0.86 .9994 8.83 –1.22 .9992 8.97 9.14 0.78 10.28 –6.85 

2.0 
(0.38) 51.17 

104 3.51 –0.89 .9999 3.16 0.00 .9999 3.17 3.39 0.30 3.88 –2.49 
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 Table 2   
Measures of the performance of MOMs estimator of x0.99 for complete and censored data  

of the LG distribution in percentage of x0.99 

Complete data Incomplete data (m = n – 1) 
Variant A Variant B Variant C Variant D CV 

(τ) x0.99 n 
RMSEδ  Bδ FT

A ARMSEδ Bδ
A FT

B BRMSEδ
CRMSEδ Bδ

C DRMSEδ  Bδ
D 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
20 22.15 –4.48 .9840 19.78 –8.39 .9672 21.83 27.11 8.83 23.20 –19.57 
30 19.43 –3.43 .9880 16.81 –6.22 .9773 18.08 21.30 6.19 20.04 –16.59 
50 16.27 –2.56 .9920 13.79 –4.40 .9850 14.73 16.33 4.02 16.61 –13.36 
70 14.25 –2.12 .9940 11.91 –3.66 .9894 12.42 13.53 2.94 14.57 –11.57 
102 12.41 –1.67 .9950 10.34 –2.26 .9924 10.72 11.46 2.26 12.63 –3.27 
103 4.53 –0.54 .9993 3.83 –0.42 .9992 3.93 3.89 0.27 4.75 –3.27 

0.3 
(0.14) 21.00 

104 1.54 –0.39 .9999 1.39 –0.07 .9999 1.43 1.48 0.11 1.73 –1.12 
20 32.42 –12.94 .9850 30.92 –15.35 .9645 33.91 39.06 9.96 36.73 –33.16 
30 28.84 –11.00 .9890 27.05 –11.93 .9766 29.53 33.71 8.30 32.67 –29.24 
50 24.85 –9.11 .9930 23.04 –9.16 .9853 24.95 27.97 6.32 28.11 –24.77 
70 22.34 –8.03 .9950 20.33 –8.15 .9894 21.84 24.32 5.13 25.33 –22.21 
102 20.02 –6.91 .9960 17.99 –5.97 .9923 19.31 21.04 4.23 22.59 –19.58 
103 9.65 –2.80 .9994 7.65 –1.30 .9991 8.09 8.01 0.85 10.48 –8.73 

0.6 
(0.24) 31.83 

104 4.07 –1.73 .9999 3.13 –0.26 .9999 3.54 3.56 0.45 4.81 –3.99 
20 36.45 –17.72 .9710 32.50 –8.87 .9574 34.07 35.87 4.84 42.15 –38.90 
30 32.39 –15.59 .9840 29.09 –10.13 .9725 30.38 31.91 4.68 37.94 –34.80 
50 27.96 –13.45 .9900 25.28 –7.52 .9831 26.63 27.76 4.23 33.12 –30.07 
70 25.23 –12.17 .9930 22.78 –6.76 .9885 23.65 24.87 3.85 30.18 –27.32 
102 22.70 –10.84 .9956 20.36 –6.79 .9922 21.14 22.30 3.62 27.23 –24.47 
103 11.72 –5.30 .9995 9.56 –2.46 .9991 10.10 10.11 1.18 13.87 –12.25 

0.8 
(0.28) 37.44 

104 5.82 –3.32 .9999 4.20 –0.51 .9999 4.63 4.94 0.72 7.16 –6.37 
20 39.54 –21.23 .9560 31.70 –4.58 .9477 32.26 32.03 –1.39 45.79 –42.79 
30 35.10 –19.04 .9720 28.53 –4.23 .9653 28.77 28.73 –0.63 41.54 –38.64 
50 30.36 –16.82 .9850 24.92 –4.88 .9808 25.09 25.30 0.16 36.62 –33.81 
70 27.46 –15.46 .9890 22.76 –3.36 .9866 23.00 23.17 0.79 33.61 –30.99 
102 24.77 –14.04 .9920 20.64 –1.95 .9902 21.08 21.14 1.32 30.57 –28.04 
103 13.28 –7.77 .9993 10.33 –1.27 .9992 10.95 10.60 1.01 16.59 –15.12 

1.0 
(0.32) 41.67 

104 7.37 –5.09 .9999 5.05 –0.91 .9999 5.80 5.84 0.90 9.29 –8.58 
20 44.53 –26.19 .9230 27.93 –2.33 .9165 28.14 29.56 –12.05 50.71 –48.05 
30 39.50 –24.00 .9480 24.55 –1.62 .9449 24.63 26.12 –10.33 46.47 –43.91 
50 34.27 –21.77 .9650 20.93 0.34 .9653 20.94 22.75 –8.54 41.51 –39.05 
70 31.14 –20.39 .9710 18.87 2.96 .9769 19.05 20.64 –7.03 38.47 –36.18 
102 28.25 –18.93 .9825 17.21 1.33 .9841 17.31 18.57 –5.72 35.36 –33.16 
103 16.16 –12.14 .9987 10.02 1.00 .9988 10.06 10.06 –0.84 20.88 –19.67 

1.5 
(0.35) 48.05 

104 10.32 –8.70 .9999 5.87 –0.10 .9999 5.91 6.18 0.57 13.04 –12.47 
20 47.19 –28.44 .8900 25.73 0.50 .8929 25.77 30.24 –17.38 52.91 –50.41 
30 41.83 –26.28 .9240 21.90 –0.67 .9212 21.95 26.78 –15.43 48.70 –46.30 
50 36.34 –24.09 .9450 18.22 1.71 .9507 18.31 23.35 –13.35 43.76 –41.45 
70 33.10 –22.73 .9560 15.77 2.87 .9633 16.09 21.05 –11.63 40.73 –38.59 
102 30.12 –21.28 .9679 14.15 2.98 .9748 14.46 18.83 –10.05 37.61 –35.56 
103 17.87 –14.46 .9973 7.93 2.57 .9983 8.23 9.45 –3.30 23.04 –21.95 

2.0 
(0.38) 51.17 

104 12.11 –10.81 .9998 5.13 1.24 .9999 5.39 5.56 –0.48 15.08 –14.58 
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 Table 3   
Measures of the performance of MLM estimator of x0.99 for complete and censored data  

of the LG distribution in percentage of  x0.99 

Complete data Incomplete data (m = n – 1) 
Variant A Variant B Variant C Variant D CV 

(τ) x0.99 n 
RMSEδ  Bδ FT

A ARMSEδ Bδ
A FT

B BRMSEδ
CRMSEδ Bδ

C DRMSEδ  Bδ
D 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
20 17.52 –1.62 .9780 17.25 –5.92 .9476 18.39 18.23 –0.50 18.33 –11.22 
30 14.29 –1.05 .9830 14.20 –3.80 .9657 14.76 14.71 –0.29 14.98 –8.23 
50 11.12 –0.69 .9890 11.08 –2.37 .9799 11.31 11.31 –0.21 11.56 –5.58 
70 9.36 –0.55 .9916 9.35 –1.71 .9850 9.51 9.48 –0.20 9.73 –4.33 
102 7.78 –0.39 .9938 7.78 –1.18 .9896 7.86 7.85 –0.14 8.05 –0.45 
103 2.48 –0.02 .9993 2.48 –0.12 .9991 2.48 2.48 0.00 2.50 –0.45 

0.3 
(0.14) 21.00 

104 0.79 –0.01 .9999 0.79 0.00 .9998 0.79 0.79 0.00 0.79 –0.06 
20 29.29 –1.11 .9880 27.49 –11.62 .9528 30.50 30.96 0.70 28.00 –16.41 
30 23.57 –0.69 .9910 22.63 –8.14 .9687 24.22 24.50 0.58 23.08 –12.17 
50 18.19 –0.50 .9930 17.74 –4.88 .9802 18.56 18.59 0.30 18.09 –8.34 
70 15.23 –0.45 .9944 15.00 –3.56 .9861 15.44 15.48 0.13 15.31 –6.51 
102 12.63 –0.32 .9956 12.50 –2.46 .9903 12.74 12.77 0.09 12.74 –4.92 
103 4.01 –0.01 .9994 4.00 –0.23 .9992 4.00 4.01 0.04 4.02 –0.69 

0.6 
(0.24) 31.83 

104 1.28 –0.01 .9999 1.28 0.00 .9998 1.28 1.28 0.00 1.28 –0.10 
20 34.70 –0.55 .9930 31.54 –14.80 .9547 35.84 36.87 1.63 31.82 –18.24 
30 27.68 –0.30 .9930 26.05 –9.86 .9694 28.38 28.89 1.19 26.34 –13.58 
50 21.25 –0.28 .9950 20.47 –6.37 .9815 21.52 21.76 0.66 20.73 –9.36 
70 17.75 –0.31 .9955 17.33 –4.51 .9864 17.97 18.06 0.37 17.58 –7.32 
102 14.69 –0.23 .9964 14.45 –3.16 .9904 14.82 14.87 0.25 14.66 –5.54 
103 4.65 0.01 .9995 4.63 –0.33 .9990 4.65 4.65 0.06 4.66 –0.79 

0.8 
(0.28) 37.44 

104 1.48 –0.01 .9999 1.48 0.00 .9998 1.48 1.48 0.00 1.48 –0.11 
20 38.66 –0.03 .9950 34.27 –16.60 .9552 39.84 41.24 2.42 34.42 –19.40 
30 30.63 0.04 .9950 28.37 –11.45 .9705 31.20 32.06 1.71 28.56 –14.48 
50 23.40 –0.08 .9960 22.34 –7.33 .9811 23.80 24.01 0.95 22.53 –10.01 
70 19.51 –0.18 .9962 18.92 –5.20 .9869 19.69 19.87 0.56 19.13 –7.85 
102 16.12 –0.14 .9969 15.79 –3.66 .9906 16.24 16.33 0.39 15.97 –5.95 
103 5.09 0.02 .9995 5.07 –0.35 .9990 5.09 5.09 0.07 5.09 –0.85 

1.0 
(0.32) 41.67 

104 1.62 0.00 .9999 1.62 0.00 1.0000 1.62 1.62 0.00 1.62 –0.12 
20 44.56 0.88 .9990 37.99 –20.10 .9572 45.32 47.78 3.71 38.01 –20.86 
30 34.91 0.64 .9970 31.55 –13.48 .9713 35.38 36.68 2.55 31.62 –15.64 
50 26.49 0.27 .9970 24.91 –8.53 .9824 26.67 27.23 1.44 25.02 –10.85 
70 22.00 0.05 .9970 21.13 –6.13 .9878 22.05 22.45 0.89 21.27 –8.54 
102 18.15 0.01 .9980 17.65 –4.75 .9900 18.38 18.39 0.61 17.78 –6.49 
103 5.70 0.04 .9996 5.68 –0.47 .9992 5.69 5.71 0.10 5.70 –0.93 

1.5 
(0.35) 48.05 

104 1.81 0.00 .9999 1.81 0.00 1.0000 1.82 1.81 0.00 1.82 –0.13 
20 47.47 1.37 1.0000 39.67 –21.49 .9583 47.71 51.02 4.40 39.67 –21.49 
30 36.97 0.97 .9980 33.00 –14.55 .9727 37.05 38.92 3.00 33.03 –16.14 
50 27.95 0.45 .9980 26.09 –9.51 .9839 27.80 28.76 1.69 26.17 –11.22 
70 23.18 0.18 .9976 22.15 –6.76 .9875 23.28 23.67 1.06 22.26 –8.84 
102 19.09 0.10 .9978 18.50 –4.74 .9912 19.14 19.36 0.72 18.62 –6.73 
103 5.99 0.05 .9996 5.96 –0.49 .9992 5.98 5.99 0.11 5.98 –0.97 

2.0 
(0.38) 51.17 

104 1.90 0.00 .9999 1.90 0.00 1.0000 1.90 1.90 0.00 1.91 –0.14 
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8.2 Performance of estimators of 0.99x̂  from censored samples 

Variant A 

The objective was to find for each point in the sample subspace [CV , n] and for each 
of the three estimation methods (Tables 1–3), the FT value (column 6) minimizing the 
RMSE (eq. 32) and to compare the performance of this estimator 0.99x̂  with that got 
from the complete sample. In general, the results of the three methods are consistent. 
For each point in the sample subspace [CV , n] and for each estimation method a gain 
in accuracy in relation to the complete sample is observed, i.e., ( )A

0.99ˆ 1R x <  (eq. 31). 
A gain is the largest for PWMs and the smallest for MLM. Taking, as an example, 
n = 70 and CV = 1 as the value rarely exceeded by the sample ˆ

VC  in FFA, one can 
read from Tables 1–3 that ( )A

0.99ˆR x  amounts to 0.759, 0.829 and 0.970, for PWMs, 
MOMs and MLM, respectively. Note that MLM estimates of complete data (Table 3, 
col. 4) are superior to two other methods’ estimates of incomplete data (Tables 1 and 
2, col. 7) for any sample size.  
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Fig. 1. ( )A
0.99ˆR x  versus CV  for selected sample sizes n of PWMs method. 
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For each estimation method, the standard deviation ( )A
0.99ˆSD xδ  is much smaller 

than that got for the complete samples ( )0.99ˆSD xδ . ( )A
0.99ˆR x  (see eq. 31) decreases 

with CV  for MLM and for PWMs up to CV = 1 only (Fig. 1) tending to one for  
infinitely large samples. For these two methods (Tables 1 and 3) the bias ( )A

0.99ˆB xδ  

(col. 8) is much greater than that of a complete sample ( )0.99ˆB xδ  (col. 5) and is 
growing with CV as shown in Fig. 2 for PWMs. For MOMs, a quite different situation 
is observed both in respect to ( )A

0.99ˆR x  and ( )A
0.99ˆB xδ . In general a decrease of 

( )A
0.99ˆR x with both CV and n is observed. For CV ≤ 0.6, ( )0.99ˆB xδ  (col. 5) and 

( )A
0.99ˆB xδ  (col. 8) do not differ much. Then ( )A

0.99ˆB xδ  sharply decreases with grow-

ing CV , becoming much smaller than ( )0.99ˆB xδ  and it tends to zero with growing n. 
Therefore, a good performance of MOMs in Variant A, observed for large CV values 
and expressed by the low values of ( )A

0.99ˆR x , is mainly due to the reduction of bias 
of a complete sample’s estimator x0.99 (Table 2, col. 5). 

 
 

 

 

Fig. 3. The ( )A
0.99ˆTF x  values versus n for various CV values and three estimation methods: 

(a) PWMs,  (b) MOMs,  (c) MLM.  

 (b)

 (c) 

(a) 
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For PWMs and MLM, the FT
A values do not change much with CV. Such a low 

sensitivity of FT
A to CV (and to F of the upper quantile – see Section 8.3) is convenient 

for practical application, when the population CV value is not known and an interest 
may concern upper tail estimation but a single large quantile. For MOMs, ( )A

0.99ˆTF x  
slightly varies with CV up to CV = 0.6, then its decrease with CV is observed. Compar-
ing the FT

A (x0.99) values in col. 6 with FT
C values (see eq. 1), it is seen that they are 

greater than (n – 1) /n  for all points in the sample subspace [CV , n] and all three esti-
mation methods (Fig. 3), but for MOMs with CV ≥ 1.5. 
Variant B 

For each point in the sample subspace [CV , n] and for both MOMs and PWMs but not 
for MLM, ( )B

0.99ˆ 1R x < , pointing to a gain in the efficiency of 0.99x̂  in relation to the 
respective complete sample estimator got by the same method. Although MLM gives 

( )B
0.99ˆ 1R x > , its unbiased estimator of x0.99 is more efficient than that of the other two 

methods (Tables 1 and 2, col. 10). As a rule, the ( )B
0.99ˆR x  values are larger than 

( )A
0.99ˆR x  for any of the estimation methods. This is a price for getting unbiased 

 
 

 
 

 

Fig. 4. The ( )B
0.99ˆTF x values versus n for various CV values and three estimation methods:  

(a) PWMs, (b) MOMs, (c) MLM. 
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0.99x̂ . Similarly, the standard deviation of 0.99x̂  [ ( )B
0.99ˆSD xδ ] is greater than 

( )A
0.99ˆSD xδ  for all three estimation methods, being in general smaller than that of the 

complete samples for MOMs and PWMs and a bit greater for MLM. Comparing 
( )B

0.99ˆR x  with ( )A
0.99ˆR x  and ( )B

0.99ˆTF x  with ( )A
0.99ˆTF x , one can see that 

( )0.99ˆRMSE xδ  is sensitive to the FT value. Note that ( ) ( )B A
0.99 0.99ˆ ˆT TF x F x< for all 

three estimation methods. Moreover note that the ML-probability threshold ( )B
0.99ˆTF x  

is only a little greater than that of eq. (1) (Fig. 4c). 
Variant C 

In the Variant C, the plotting position formula FT = m/n with m = n – 1 is used.  
The best and only acceptable results are obtained for MLM. The ( )C

0.99ˆRMSE xδ  val-
ues (Table 3, col. 11) are here much lower than those of two other methods and only a 
little greater than that of complete sample (Table 3, col. 4). Moreover, ( )C

0.99ˆB xδ  of 

MLM (col. 12) being the smallest of the three methods is of similar size as one  
from the complete sample (col. 5), i.e., as ( )0.99ˆB xδ , and for CV ≤ 0.6, it is even 

smaller than ( )0.99ˆB xδ . Because of a large bias and large variance of 0.99x̂ , setting 
FT = (n – 1)/n is improper for PWMs and MOMs. 
Variant D 

Removal of the largest sample element xn:n and putting FT = 1 means that the resulting 
sample is considered as a complete sample of a given distribution. It would be sub-
stantiated if xn:n were an outlier. However, one may erroneously remove it from a 
sample treating the censored (n – 1) element sample as the complete sample of the 
same distribution. It is important for practice to learn consequences of the wrong deci-
sion in respect to both the RMSE and the bias. As shown by Strupczewski et al. (2007) 
for the log-Gumbel, log-logistic, Pareto and log-normal thirty-element samples and 
three CV values, such an error may be beneficial for the accuracy of large quantile es-
timates measured by RMSE but it causes their underestimation. Note that the assump-
tion FT = 1 leads to a contradiction, as then the censoring threshold T is infinite, i.e., 
T (FT = 1) = ∞, while the removed element xn:n < ∞.  

The accuracy of .99x̂  got by PWMs and MLM exceeds the accuracy of Variants B 
and C, but only a little lower than one of Variant A. The ( )D

0.99ˆR x values (col. 13/col. 4 
in Tables 1 and 3) are less than one at least for hydrological sample sizes and for all 
CV values, but for MLM with CV = 0.3 it is slightly greater than one. For a given n and, 
CV ≥ 0.6, ( )D

0.99ˆR x  is quite stable, i.e. it does not change much with CV. Application 
of MOMs to the incomplete sample does not improve the accuracy of the 0.99x̂  estima-
tor, as ( )D

0.99ˆR x  (Table 2) is greater than one for all points in the sample subspace 
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[CV , n]. This is so only for CV ≤ 0.6 and small samples (n ≤ 30), whereas for MOMs in 
the Variant D it shows superiority to Variant C. 

As one can expect, the deletion of xn:n  will cause underestimation of 0.99x̂  – un-
welcome property for design of hydraulic structures. For every estimation method, 

( )D
0.99ˆB xδ  is greater than for any other variants including the complete sample. How-

ever, a large ( )D
0.99ˆB xδ  value is compensated for by the smallest ( )D

0.99ˆSD xδ of all 

variants including ( )0.99ˆSD xδ . The experimental results of Variant D provide an an-
swer to the question of what to do with the uncertain largest element of the log-
Gumbel distributed sample. If it is wrongly identified as an error corrupted value and 
removed, one would get the performance of 0.99x̂  as in the Variant D. In the opposite 
case, the performance of 0.99x̂  will correspond to that of a complete (n – 1) element 
sample. Referring to comparative assessment of robustness of PWMs and MOMs x0.99 
estimators to largest sample element, the differences of absolute value of biases (cols. 
5 and 14 of Tables 1 and 2) point to MOMs as to a slightly more robust method. 

8.3 Performance of the estimator 0.80x̂  

So far the performance of the estimator 0.99x̂  has been analyzed. One can expect that 
the largest sample element would have a lesser impact on the “censored distribution” 
estimate of a smaller quantile than 0.99x̂ . The accuracy of “censored distribution” 
quantile 0.80x̂  in relation to the complete sample is investigated here. It is also interest-
ing to learn the extent to which the values of FT

A and FT
B depend on the quantile of in-

terest, i.e., to compare ( )A
0.99ˆTF x with ( )A

0.80ˆTF x  and ( )B
0.99ˆTF x  with ( )B

0.80ˆTF x . For 
the sake of brevity the results are shown for three CV values only, namely 0.3, 0.6 and 
1.0, and PWMs (Table 4).  

Applying Variants A and B for the x0.80 estimation, one can see (Table 4, cols. 8 
and 12) that the “censored distribution” estimates are still superior to those of the 
complete sample, i.e., ( )A

0.80ˆ 1R x <  and ( )B
0.80ˆ 1R x <  for all CV and n values consid-

ered. As expected, their accuracy is lower than that of the 0.99x̂  quantile, i.e., 
( ) ( )A A

0.80 0.99ˆ ˆR x R x>  and ( ) ( )B B
0.80 0.99ˆ ˆR x R x> . For the Variant C of the “censored 

distribution,” one can see a similar pattern of ( )C
0.80ˆR x  and ( )C

0.99ˆR x  in respect to CV 
and n, and that ( ) ( )C C

0.80 0.99ˆ ˆR x R x> . The ( )C
0.80ˆR x  values fall below one for large 

samples only. The ( )D
0.80ˆR x and ( )D

0.99ˆR x  values differ considerably. While 

( )D
0.99ˆR x is less than one for small and medium size samples, ( )D

0.80ˆR x  is always 
greater than one. Therefore, Variant D applied for PWMs procedure results in de-
crease of RMSE for large quantiles only. ( )A ˆT FF x  and ( )B ˆT FF x values are fairly ro-



W.G. STRUPCZEWSKI  et al. 674 

bust for the probability F of estimated upper quantile, as ( )A
0.80ˆTF x and ( )B

0.80ˆTF x  are 

only slightly lower than ( )A
0.99ˆTF x  and ( )B

0.99ˆTF x , respectively. All of them are 

greater than FT
C = (n – 1)/n. Note that both ( )A

0.80ˆTF x  and ( )B
0.80ˆTF x  can be regarded 

as independent on the CV. 

 Table 4   
Measures of the performance of PWMs estimator of x0.80  for complete and censored data  

of the LG distribution in percentage of x0.80   

Complete data Incomplete data (m = n – 1) 
Variant A Variant B Variant C Variant D CV 

(τ) x0.80 n 
RMSEδ  Bδ FT

A ARMSEδ Bδ
A FT

B BRMSEδ
CRMSEδ Bδ

C DRMSEδ  Bδ
D 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
20 8.34 –0.29 .9839 7.73 –1.48 .9778 7.87 11.31 6.67 9.00 –6.06 
30 6.92 –0.21 .9881 6.44 –1.07 .9839 6.53 8.43 4.34 7.42 –4.76 
50 5.42 –0.18 .9918 5.11 –0.67 .9895 5.16 6.05 2.54 5.81 –3.49 
70 4.58 –0.16 .9937 4.34 –0.52 .9921 4.37 4.91 1.78 4.91 –2.83 
102 3.84 –0.12 .9953 3.67 –0.37 .9942 3.69 4.01 1.25 4.10 –2.23 
103 1.22 –0.08 .9992 1.21 –0.03 .9992 1.21 1.22 0.14 1.28 –0.50 

0.3 
(0.14) 11.55 

104 0.39 –0.08 .9998 0.38 –0.01 .9998 0.39 0.39 0.02 0.41 –0.15 
20 13.38 –1.02 .9837 12.61 –3.35 .9737 13.09 17.24 7.91 14.39 –10.21 
30 11.28 –0.73 .9879 10.52 –2.46 .9813 10.81 13.08 5.15 12.00 –8.18 
50 8.99 –0.56 .9917 8.38 –1.63 .9877 8.54 9.60 3.01 9.51 –6.16 
70 7.66 –0.47 .9935 7.13 –1.21 .9907 7.24 7.87 2.11 8.10 –5.09 
102 6.47 –0.35 .9952 6.05 –0.91 .9934 6.11 6.51 1.50 6.81 –4.09 
103 2.09 –0.17 .9992 2.02 –0.12 .9991 2.04 2.05 0.21 2.22 –1.05 

0.6 
(0.24) 12.12 

104 0.69 –0.15 .9998 0.66 0.01 .9998 0.67 0.67 0.04 0.73 –0.33 
20 16.55 –2.03 .9844 16.01 –5.02 .9722 16.80 21.77 8.92 18.11 –13.31 
30 14.12 –1.50 .9881 13.41 –3.60 .9802 13.93 16.65 5.82 15.22 –10.82 
50 11.43 –1.12 .9919 10.71 –2.45 .9872 10.99 12.29 3.43 12.17 –8.29 
70 9.84 –0.92 .9935 9.14 –1.77 .9904 9.32 10.10 2.40 10.43 –6.94 
102 8.39 –0.70 .9952 7.77 –1.34 .9931 7.89 8.38 1.74 8.83 –5.67 
103 2.83 –0.28 .9992 2.64 –0.19 .9991 2.67 2.70 0.27 2.98 –1.62 

1.0 
(0.32) 12.24 

104 0.94 –0.23 .9999 0.89 –0.03 .9998 0.90 0.90 0.07 1.03 –0.54 

8.4 Comparative assessment of estimation methods  

ML estimates of large quantile are superior to the estimates of two other methods both 
for the complete samples of log-Gumbel distribution and all variants applied for LG 
truncated distribution (Table 5). A loss in efficiency due to censoring is observed 
(Variant B in Table 3). However allowing estimates to be biased, a reduction of RMSE 
can be obtained (Variants A and D in Table 3). The RMSE value slightly changes with 
the probability threshold FT while its two terms, i.e., B2 and  SD2, are increasing and 
decreasing function of FT , respectively.  

As concerns the two other methods, an unbiased estimator (Variant B) is more ef-
ficient than the one from a complete sample got by the same method. The asterisk in 
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Table 5 denotes the variants giving lower value of RMSE and |Bias| than those of 
complete samples. Analyzing the bias only (Table 5), the PWMs estimators are supe-
rior to the MOMs estimators for the Variants A and C, but still worse than the MLM 
estimators. Note that PWMs estimators x0.99 of complete samples have a little less bias 
than the ML estimators and a larger RMSE.  

 Table 5  
Ranking of the estimation methods for 0.99x̂  

of LG samples with CV < 1 

Variant Criterion 
 

Estimation
method CS 

A B C D 
Σ 

PWMs 2 2* 3* 3 2* 12 

MOMs 3 3* 2* 2 3 13 Minimum of 
RMSE 

MLM 1 1* 1 1 1* 5 

PWMs 1 2 UB 3 2 8 

MOMs 3 3 UB 2 3 11 Minimum of 
|Bias| 

MLM 2 1 UB 1* 1 5 

Note:  Numbers 1, 2, 3 denote  the ranks while 1 is the highest  rank; the 
asterisk indicates the lower value of the  performance measure than  that 
from  complete  samples (CS) by  the same method;  UB – unbiased esti- 
mator of 0.99x̂ ; Σ is the total of ranks. 

Since the accuracy of 0.99x̂  is highly sensitive to the threshold non-exceedance 
probability FT , the key point in the application of any of the three methods is setting 
the FT value. The estimate ( )ˆ 1TF n n= −  of the threshold non-exceedance probability 
is not acceptable for PWMs and MOMs and hydrological sample sizes, giving too 
small a value. From Tables 1–3 one can see that ( ).99ˆ 1R x <  comes for any ( )0.99ˆTF x  

value from at least the intervals ( )B,1TF , ( )B A,T TF F , and ( )A ,1TF , for PWMs, MOMs 

and MLM, respectively. It is an important statement for application, as in practice, 
while dealing with a single sample the population CV is not available 

9. CONCLUSIONS 

Employing the simulation experiments for the log-Gumbel (LG) distributed data, the 
effect of the removal of the largest element of a sample on the accuracy of large quan-
tile estimates has been assessed. Three estimation methods are employed for the LG 
and censored LG distributions, i.e., Probability Weighted Moments (PWMs), conven-
tional Moments (MOMs) and Maximum Likelihood (ML), and four variants for se-
lecting the threshold non-exceedance probability FT of the censored distribution. Ex-
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perimental results are analyzed in respect to two cases of practical interest: (i) when 
the largest element is erroneously deleted from a sample (Variant D) and an incom-
plete sample is considered as a complete LG sample (i.e., FT = 1); (ii) when it is inten-
tionally removed (Variants A, B, C and D) as error corrupted value. The following 
conclusions are drawn from the study: 

� As it has been expected, censoring results in the loss of efficiency of  
ML-estimates. However, allowing for bias of estimates, reduction of MSE 
is obtained (Variants A and D for CV ≥ 0.6) 

� ML-estimators of large quantiles are superior to the estimators of the two 
other methods for both complete and censored data. 

� For PWMs method and MOMs, censoring results in a gain in relative effi-
ciency of upper quantile estimate (Variant B) and in considerable reduction 
of RMSE (Variant A and Variant D for PWMs only). 

� For each estimation method, RMSE of a large quantile is highly sensitive to 
the FT value.  

� For PWMs method, low sensitivity of A
TF  and B

TF  to both the coefficient 
of variation and the cumulative probability F of upper quantile xF  has been 
observed – a convenient property for application. 

� As shown for PWMs method, the relative accuracy of ˆFx  got from cen-
sored distribution  increases with the increase in F. 

� The formula FT = m/n, where m = n – 1, is not acceptable for both PWMs 
method and MOMs and hydrological sample sizes, because it yields too 
small a value and worst results of all the four variants in respect to both 
bias and MSE. 

� Large bias is observed when MOMs is applied to complete data, which can-
not be solely explained by the algebraic bound of CV. 

� Taking into account the fragmentary results obtained for D
TF = 1 

(Strupczewski et al. 2005, 2007), similar results can be expected for other 
two-parameter heavy tail distributions, including log-normal which is on 
the border between PDFs having moments and heavy-tailed PDFs. 

Therefore, using an appropriate procedure the removal of the largest element in a 
sample originated from a given two-parameter heavy tailed distributions like the log-
Gumbel, may lead to increase in relative accuracy (often at the cost of bias) if the 
large-quantile estimators. The competitiveness of PWMs estimators of upper quantiles 
to those of MLM stated in the literature (e.g., Hosking and Wallis 1997) has not been 
confirmed by the presented results either for complete or censored samples of the log-
Gumbel distribution. However, in reality the true distribution is never known, while 
the interest is focused on upper quantiles estimation. As shown by Strupczewski et al. 
(2002a, b) L-moments estimates of upper quantiles are much more robust to distribu-
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tional choice than those of ML-method. Therefore, finding the largest element of an-
nual peak flow series as uncertain value and aiming to get estimator less sensitive to 
the model error, the “A”-type PWMs with type II censoring  is advocated for large 
quantiles estimation. 
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