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Abstract—This paper describes our experiences and obser-
vations with a localization system that continuously tracks the
indoor location of a large number of consumer mobile devices.
Unlike past work that focuses principally on the accuracy of
the location tracking algorithm, we study the performance of
the localization system in terms of key additional metrics: scal-
ability and energy-efficiency, which can sometimes conflict with
the desire for high accuracy. To ensure that our solution can
handle both Android and iOS-based mobile devices (& other
closed mobile platforms), we adapt the conventional client-
side fingerprinting-based localization approaches to develop
a novel and practical infrastructure-based location tracking
strategy. We study the relative accuracy to the two approaches
in two different types of indoor buildings. Our studies establish
how the building and its occupancy characteristics affect
the accuracy achievable by different algorithms, and provide
insights into why scalable, energy efficient and accurate indoor
location tracking remains a challenge in practice.

Keywords-indoor localization; urban sensing;

I. INTRODUCTION

As part of the LiveLabs project [1] at Singapore Man-
agement University (SMU), we are currently building an
urban-scale testbed that (a) permits real-time gathering of
fine-grained context data from over 30,000 participants in
multiple urban spaces (mostly indoors), and (b) enables the
testing of next-generation mobile services and applications
that utilize such context. As location remains one of the
most important participant contexts, we are developing and
evaluating solutions that can continuously track the indoor
location of a large participant population.

Most indoor localization techniques, in our view, have fo-
cused almost exclusively on accuracy, demonstrated through
limited experiments performed on a small set of devices. In
addition, most of the traditional Wi-Fi fingerprinting based
approaches implicitly assume that the mobile clients are able
to periodically query the signal strengths of all the Wi-Fi
APs deployed in the indoor environment. However, both
of these attributes need to be re-examined when building

This work was performed at Singapore Management University by
Azeem J. Khan while he was a Research Fellow and by Vikash Ranjan
while he was a Research Engineer
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a solution that needs to scale to numerous commodity
smartphones. In particular:

• Between the two most dominant smartphone operating
systems, only the Android OS offers an open API to
retrieve Wi-Fi scan data; iOS based devices (which
comprise approx. 70% of the Singaporean smartphone
market) offer no such functionality. Hence, our solution
must also work for smartphones that do not allow
client-side measurement of Wi-Fi AP RSSI values.

• For a large-scale, continuous location tracking frame-
work, we must carefully consider two additional per-
formance metrics: scalability and energy-efficiency.
Clearly, a practical solution must permit the simulta-
neous tracking of 100s to 1000s of collocated mobile
devices, and must ensure that the battery drain is not
severe enough to hamper the lifestyles of consumers.

This paper describes our recent experiences, in these two
important systems areas, in building and evaluating the first
version of such a continuous location tracking system in real
life, public indoor spaces. More specifically, we have built
indoor location tracking software for both the Android and
iOS platforms and shall present our experimental insights
obtained by testing this software in two public indoor
locations:

1) Mall: a large, and very crowded shopping mall in
central Singapore.

2) SIS: School of Information System campus building
at SMU.

We emphasize at the outset that our solutions are not
research prototypes—they work with the pre-existing com-
mercial Wi-Fi enterprise infrastructure already deployed
in these locations. We shall not only discuss how the
features/limitations of current commercial enterprise Wi-
Fi solutions affect the metrics of accuracy and scalability,
but also scrutinize how a variety of differences in the two
environments (such as the number/density of deployed APs,
the building layout and time-varying changes in the density
of inhabitants) impact our performance metrics.
Research Questions: Our main research questions are the
following:

• How does one design a “server-based” continuous
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location tracking solution (for iOS devices), and how
does the resulting location tracking accuracy presently
compare with more conventional client-side fingerprint-
based localization (performed on Android devices)?

• What characteristics of the indoor environment (such
as the number/density of distinct APs, the mix of
pressurized-indoor and non-pressurized outdoor spaces,
and the occupant density) affect the location system’s
accuracy, and by how much?

• What are the performance limitations or character-
istics exhibited by representative commercial Wi-Fi
infrastructures (APs & controllers) today, and how
do such infrastructure characteristics lead to possible
tradeoffs between scalability vs. accuracy for practical
infrastructure-based location tracking?

• How do the relative energy-overheads of different
sensors (specifically, Wi-Fi scanning, accelerometer &
compass), when used for continuous location sensing,
affect the energy-efficiency vs. accuracy tradeoffs for
both Android and iOS devices?

Key Contributions: We emphasize that our focus is not
on designing theoretically-new localization algorithms, but
instead on understanding the practical, systems-related is-
sues that impact the performance of a “representative”
set of algorithms. Our main objective is to gain a better
understanding of how localization algorithms fare in the real
world. Accordingly, we make the following key and useful
contributions in this paper:

1) Describe localization algorithms for Android and
iOS and compare them. We describe a relatively
straightforward localization strategy that combines
Wi-Fi fingerprinting with inertial motion estimation
via a Viterbi-based algorithm for temporal location
tracking. While the implementation of this generic
approach for Android devices is straightforward, we
propose a novel Wi-Fi controller-assisted “limited-
reverse-fingerprinting” based mechanism solution for
iOS devices. We then compare the relative accuracy
achievable on the Android and iOS devices.

2) Study sensitivity of results to variations in building
characteristics and occupancy: We show that the
accuracy results achieved are independent of some of
the algorithm parameters (e.g., depth of the Viterbi
tree), but are quite susceptible to building-specific vari-
ations, some of which are static (such as the number
of distinct APs) and some of which are quite dynamic
(such as the occupant density). These observations
help establish the benefits of real-time RF fingerprints,
which can help deal with time-varying changes in the
indoor radio environment.

3) Reveal the performance limitations of existing
controller-based solutions: We demonstrate that Wi-
Fi infrastructure-centric solutions, which rely on the
ability to continuously query either the Wi-Fi con-

Mall SMU
Number of Floors 7 5
Indoor/Outdoor Fully-Indoor Mixed Indoor+

Outdoor (Floor 1&2)
Avg. Floor Area (sq.m) 50001 3000

Avg. Store/ 8 3
Room Width (m)

No. of Wi-Fi APs/floor 7 12
Avg. AP Distance (m) 15 8

No. of Fingerprint 26 (floor 1) 67 (floor 2)
Landmarks 27 (floor 2) 76 (floor 4)

Table I
MALL STATISTICS

troller (or individual APs) to dynamically retrieve
“reverse signal strength” information, can suffer due to
possible performance bottlenecks in commercial Wi-
Fi controllers and the staleness of readings reported
by the APs, and then demonstrate how this bottleneck
leads to a tradeoff between individual device location
accuracy and overall system scalability (number of
devices simultaneously tracked).

4) Identify the necessity of manual tuning Our ex-
perience illustrates what we believe to be an impor-
tant, often-overlooked drawback of current localization
technology. We discover that the location tracking
performance is quite sensitive to the specific prop-
erties of each individual indoor space, and its usage,
implying that the location tracking accuracy cannot be
universally predicted, but shows site-specific variations
and requires customized adjustments.

II. BUILDINGS AND THE DATA COLLECTION PROCESS

To evaluate our developed large-scale Wi-Fi based indoor
location tracking system, we have focused on two different
‘public’ buildings (both of which are key LiveLabs testbed
venues):

• Mall: The first building is a very large (over 800,000
sq. ft of indoor space) shopping mall near our Univer-
sity with multiple floors and a ‘well-shaped’ internal
structure: all floors above the first floor can look onto
the first floor. The building is rectangular in shape.
The entire building is closed and has a central HVAC.
For the purposes of this study, we concentrated on
evaluating our location tracking technologies on two
representative floors: 1 & 2 (which are also the two
busiest floors in the mall).

• SIS: The second building is the School of Information
Systems (SIS) building in our University. SIS is a 5
storey, almost L-shaped structure, with the shorter of
the two segments having a partially circular boundary at
the extremity. The first floor is open (non-pressurized),
containing the visitor waiting and security/reception
areas. The second floor is also partially open: while the

1Of the total floor area of ∼ 10, 000 sq.m, only about 5000 sq.m., was
directly accessible for consumers.



seating area and corridors are non-pressurized, the class
rooms, the meeting rooms and the research centres are
closed and controlled by the central HVAC. The top 3
floors are all pressurized and centrally air-conditioned.

Table I details some of the key attributes of these two
buildings, including the size and the nature of Wi-Fi AP
deployment. It is important to point out that both buildings
exhibit variation in the occupant density, but at different
scales. More specifically, Mall shows very high visitor
loads in the evenings and weekends (and is relatively less
congested during the daytime on weekdays). While such
variations are less pronounced at SIS, we observe higher
densities (especially on floors 1-3) by students during class
hours. The labs and staff offices, located on floors 4 & 5,
see relatively less fluctuation in occupancy loads.

A. The Data Collection Process
Our location tracking solutions are based on fingerprint-

ing-namely, the (for now, offline) collection of RF measure-
ments at known ‘landmark’ points within the buildings (see
Table I for details). To generate the RF fingerprint maps,
we employed two slightly different strategies for iOS and
Android devices. For Android devices, we use a custom
application that scanned for Wi-Fi access points across all
channels once every 50ms. The application collected the
〈timestamp, RSSI, AP BSSID〉 of each AP for these scans for
at least 2500 seconds. This was performed at 53 different
landmark locations in Mall (26 on floor 1 and 27 on floor
2) and 143 locations in SIS, and was repeated 6 times,
across different days and at different times of the day. These
measurements were used to construct fingerprint maps for
each building.

For the iOS platform (where the network level information
such as BSSID of APs and RSSI measurements are not
available on the mobile device), we employed a “reverse”
fingerprinting strategy, with the iPhone’s uplink SNR value
being logged and measured at the AP. Due to various
constraints we faced with the deployed Wi-Fi infrastructure
(to be discussed in Section IV), we had to perform SNR
sampling at much lower frequency (1 Hz); at each landmark,
we gathered at least 300 samples. This data was collected at
3 different times of the day on 2 different days, for a total
6 sets of readings.

In all cases, the data was collected with the user standing
stationary (facing each of the 4 cardinal directions) at each
landmark. To capture the directionality of movement, the
user took both a clockwise and counter-clockwise walk
along the path connecting the landmarks. The offline finger-
printing and online performance evaluation were performed
using the Samsung Galaxy S3 phones (for the Android
platform), and the iPhone 4 (for the iOS platform).

B. Choosing the Landmark Granularity
Any fingerprinting-based algorithm must first define the

spatial granularity of the fingerprinted landmarks—in effect,

this decides the lower bound (best case) of the location
tracking error. We first measured the Wi-Fi signal strength
variation in the two buildings to ascertain the useful spa-
tial granularity for landmarks–i.e., the minimum change in
location that resulted in a perceptible change in the RF
measurements.

The two buildings have very different layouts, which
impact the spatial variation of RF signals. Mall has a
rectangular shape and a symmetric, “open” layout–all the
shops are located along the periphery of the rectangle, with
almost no obstructions or walks in the interior. The SIS
building, on the other hand, is maze-like, with many sharp
corners, interior rooms and associated walls. Consequently,
in SIS, even small position changes can alter the line-of-
sight to certain APs, and thus lead to significant changes in
RF signal strengths.

To understand these effects, we measured signal-strength
in Mall at a granularity of 4 meters (with stores typically
being 8 meters wide, our landmarks are effectively half-
a-store apart). In SIS, we used the regularly-spaced fire
sprinkler points, spaced 3 meters apart, as our initial land-
marks. Each fingerprinted landmark is represented by a L
dimension vector [(APi, SignatureAPi)]. The ‘signature’
of AP depends on the specific Wi-Fi localization algorithm
employed: it is the mean of signal strength for RADAR and
the probability mass function (p.m.f.) for HORUS [2], an-
other Wi-Fi localization technique. To understand the spatial
sensitivity of these fingerprints, we used the more detailed
p.m.f. (as this provides more discriminatory power than
simple averages), and computed the Earth Mover Distance
(EMD) [3] (a measure of dissimilarity between two prob-
ability distributions) between a selected landmark and its
nearby points. As shown in Fig. 1, our plots show the EMD
of 2 selected landmarks, separately for SIS (landmarks 18
and 19 on level 4) of SIS and Mall ( landmark 9 and 17
on level 2). In level 4 of SIS, landmark 18 lies along a long
corridor, while landmark 19 lies near the intersection of two
paths. As a consequence, as seen in Figure 1a., the EMD
plots show that the RSSI measurements begin to diverge
only after ≈ 9 meters at landmark 18, while they exhibit
a much higher spatial sensitivity for landmark 19. In Mall
(see Figure 1b.) on the other hand, the EMD metric remains
relatively unchanged until we move at least 16 meters away
(roughly corresponding to 2 store widths).
Key Insight: Our measurements clearly show that Wi-Fi
RSSI values have different spatial sensitivity in different
buildings. In SIS, the RF measurements show meaningful
divergence after a separation of ≈ 6 meters, whereas the
divergence becomes meaningful only at about 16 meter
separation in the ‘open-layout’ Mall. These results sug-
gest that the location tracking accuracy of purely Wi-Fi
fingerprinting-based techniques can, at best, be about 6
meters in SIS and about 16 meters (±1 store) in Mall.
The performance of Wi-Fi based localization algorithms is
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Figure 1. Earth Mover Distance (EMD) Metric as a function of distance from reference landmark

thus not universal, and will vary appreciably depending
on the building structure and layout. In particular, fine-
grained indoor localization is particularly challenging in
more ‘open’ structures, commonly found in malls.

III. THE BASE LOCALIZATION ALGORITHMS

In this section, we describe our basic algorithms for indoor
localization software, first focusing on the Android imple-
mentation (which permits scanning and real-time recording
of Wi-Fi signal strengths on the phone), and then discussing
the corresponding analogue for iOS devices. (Modifications
specifically tailored to address limitations imposed by an
infrastructure-driven solution for the iOS platform will be
discussed separately in Section IV.)

Our base localization strategy employs a two-step ap-
proach, conceptually illustrated in Figure 2. The two-step
approach seeks to combine the benefits of Wi-Fi fingerprint-
ing (which defined the first generation of indoor location ap-
proaches) with the power of sensor-based motion estimation
(made possible by the recent availability of multiple sensors,
such as the accelerometer and compass, on commercial
smartphones) and involves the following steps:

1) In the first step, a Wi-Fi fingerprint-based location
technique periodically (approximately every few sec-
onds) produces a list of estimated positions (at suc-
cessive time instants) ordered in decreasing order of
probabilities.

2) In a logically separate process, an inertial sensor-
sampling module computes a set of possible motion
vectors (i.e. the angular direction and movement dis-
tance ) taken by the user within these time instants.

3) Finally, we employ a Viterbi-like path likelihood es-
timation algorithm (described in Section III-C) that
combines the outputs of the Wi-Fi location estimator
and the inertial motion estimator to determine the
most likely path (i.e., temporal sequence of locations
visited), and hence obtain the most likely location.

Conceptually, the use of motion vectors and the Viterbi-
like path likelihood computation process should enable us to
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• Controller query (iOS)

• On phone(Android)myrls

Wifi Scan (RADAR):
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Sensor Sampling:

• Accelerometer: Step counter

• Compass: angle of movementmyrls

Viterbi

Computation

Time

ti

Time

ti+1

Dead Reckoning from ti to ti+1

Top k locations at ti+1

Top k locations at ti

Location at 

time ti

Figure 2. The location estimation algorithm

“smoothen” the estimated output, avoiding certain observed
jumps or teleportation effects between successive Wi-Fi
based location estimates, and helping track the evolution
of location between ‘landmarks’. However, from a systems
perspective, this potential additional accuracy comes with
extra ‘energy cost’ (the sensing on the device’s sensors)—a
tradeoff that we shall revisit in Section V-B.

This conceptual and modular architecture allows us to
independently experiment with different algorithms for each
of the steps above. For example, in this paper, we will report
on the use of RADAR as an exemplar of the Wi-Fi location
estimator. (We have implemented a HORUS-based solution
as well, but do not discuss details of those results here as
they are overall very similar to RADAR.) Likewise, in this
paper, we shall use an accelerometer-based step-counting
and compass-based angular direction computation strategy,
but these may easily be substituted in future versions by
more advanced motion estimators (e.g., additionally using
the gyroscope). Similarly, different variants of the base
Viterbi-like path estimation algorithm may be used as well.

A. RADAR implementation for Android and iPhone

We first describe a RADAR-based implementation of
the Wi-Fi fingerprinting-based location estimation algorithm.
This algorithm is conceptually applicable to both Android
and iPhone devices, with the distinction that the iPhone ver-
sion requires ‘reverse fingerprinting’, i.e., an offline training



phase that records the phone’s signal strength (as measured
by its associated AP) at known ‘landmark’ points. The
offline training process for RADAR is straightforward.

For the Android implementation, the phone performs a
Wi-Fi scan at each landmark location. For each landmark, it
then computes the mean of the RSSI values (independently
for each of the APs observed during the scan), effectively
creating a M dimensional vector (where M is the total
number of APs in that indoor facility). Finally, we create
a fingerprint map (of dimension {number of APs}x{number
of landmarks}) consisting of multiple tuples of the form
computed for each landmark location Li as follows:

. . .

Li, [RSSIiAP1
, . . . , RSSIiAPM

]

Li+1, [RSSIi+1
AP1

, . . . , RSSIi+1
APM

]
. . .


In the online phase, the user’s (Android) smartphone

performs multiple scans of the Wi-Fi access points (typical
scanning frequency is 20 Hz), at a given time t, and then
computes the mean for the sampled RSSI values of each AP,
which is presented as following m(t) vector:

m(t) = [RSSI∗AP1
, . . . , RSSI∗APM

]

The RADAR location estimation algorithm then calcu-
lates the Euclidean distance (in the M -dimensional RF
space) of these mean RF RSSI vector m(t) from the M -
dimensional points (associated with the landmark positions)
in the RF fingerprint map created earlier. Our implement
then picks the top K nearest landmarks as those with the
smallest Euclidean distance values, and then assigns each
such landmark a probability that is inversely proportional to
the corresponding Euclidean distance.

For the iPhone, the mathematical steps, of the RADAR-
based computation of the most-probable locations, remains
fundamentally unchanged. However, as we shall see later
(in Section IV-B), the iPhone fingerprint will consist of the
single AP to which the phone is associated and the SNR
value (of the phone, as measured by that AP). Accordingly,
in this case, at any given landmark, the fingerprint map will
simply consist of a tuple: 〈Li, APi, SNRAPi〉, where APi

denotes the AP with which the phone associates while sta-
tionary at landmark Li. Neither the fingerprint nor the actual
‘scan’ can now use the signal strength values measured by
the other APs. In this case, the top−K values returned are
restricted solely to that set of locations that are within the
‘association zone’ of the current AP, and the M -dimensional
RF vector is now replaced by a 1-dimensional SNR value.

B. Inertial motion computation

The inertial motion vector is computed continuously, in-
between those instants when the Wi-Fi fingerprint-based
likely locations are estimated. We utilize the two embedded
sensors, accelerometer and compass, for computing the
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Figure 3. The Viterbi algorithm used to estimate current location.

distance and the angular movement direction respectively.
(As both the Android and iOS APIs allow for the retrieval
and use of these two sensors’ values, this algorithm is
effectively identical on both platforms.) The accelerometer
readings (sampled at 50 Hz) are first transformed into a
‘step-count’ estimate, which is then multiplied by a tread
length to obtain the effective movement distance (denoted
by ∆D). To accommodate diversities across different in-
dividuals, without requiring individual-specific training and
customization, we simply use 3 separate tread length values
{0.45m, 0.5m, 0.55m}, thereby creating 3 different esti-
mates for ∆D.

The magnetic compass readings are integrated (with ∆D)
to obtain the net displacement vector of the user. Unfortu-
nately, magnetic compasses are known to suffer from various
indoor artefacts (e.g., readings fluctuate significantly near
elevators and escalators due to the presence of ferromagnetic
material). We empirically observed that, even at rest on our
office table for 20 minutes, the phones’ compass readings
fluctuate with a Gaussian distribution, with 90% of the
readings lying within a range of ± 1 degree. Accordingly,
we also take three possible compass readings into our
computation—the mean value θ, θ−1 and θ+1. By allowing
3 possible values for ∆D, and three possible values for the
angular direction this module effectively generates 9 equi-
probable displacement vector estimates.

C. Viterbi-like path estimation algorithm

Our Viterbi-like algorithm probabilistically combines the
periodic Wi-Fi location estimates with the intervening mo-
tion vector estimates to compute the relative likelihood of
different ‘motion paths’ (evolution of the location over time),
and thus helps select the most likely location (taking into ac-
count the temporal correlation and activity behavior of each
individual). The basic principles of this algorithm (adapted
from [4]) are illustrated in Figure 3. The Viterbi algorithm
is associated with a parameter called depth, where depth
effectively denotes the number of consecutive time instants



Algorithm 1 Indoor Localization
1: The objective of the algorithm is to detect the best

location at time t in the past when user is at time t+ 1
2: procedure RADAR PROBABILITY
3: Calculate the best-k locations at times ti and ti+1

4: P (Lj(ti)); j = 1, . . . ,K
5: P (Lj(ti+1)); j = 1, . . . ,K
6: end procedure
7: procedure DEAD-RECKONING PROBABILITY
8: Calculate the conditional probability of connecting
Lm(ti)→ Ln(ti+1)

9: Dead-reckoning provides set S of 9 expected loca-
tions of Lm(ti) at time ti+1: Lj

m(ti); j = 1, . . . , 9
10: Among 9 locations in S, Ln

m(ti) denotes the closest
point to Ln(ti+1)

11: P (Ln(ti+1)|Lm(ti)) =

1

d(Ln
m(ti),Ln(ti+1))2∑k

j=1
d(Lj

m(ti),Lj(ti+1))
2

12: end procedure
13: procedure BEST-PATH SELECTION
14: Calculate the probability of path Lm(ti) →

Ln(ti+1) occurs
15: P (Lm(ti) → Ln(ti+1)) = P (Lm(ti)) ∗

P (Ln(ti+1)|Lm(ti)) ∗ P (Ln(ti+1))
16: There are k2 paths, path with highest probability is

selected → identify the location at time t
17: end procedure

that are used to find the path probability i.e. likelihood
of a path being taken, for each individual. Algorithm 1
outlines the steps in our Viterbi computation for depth = 2.
Note that, due to the nature of the algorithm, the computed
location is always one of the ‘landmarks’ established earlier
(as the choices for L(ti) and L(ti+1) are always limited to
these fingerprint landmarks).

IV. IPHONE AND OTHER CLOSED SYSTEMS

As mentioned before, the iOS platform (and other closed
platforms such as Windows Mobile and Blackberry) do
not allow a user-space application on the mobile device to
receive signal strength estimates of all the nearby Wi-Fi APs
(or even that of the currently-associated AP), making the
use of traditional client-side fingerprinting-based localization
techniques impossible. We have thus investigated and imple-
mented a ‘server-side’ solution, where we interface with one
or more commercially-deployed Wi-Fi “controllers” (which
control the operation of multiple APs) to retrieve the signal
strength information on the uplink (between the mobile
device and individual APs).

On investigating the properties of the enterprise-grade Wi-
Fi networks deployed at SMU and the Mall, we found that
each AP kept track of the signal strength (reported as signal-
to-noise ratio or SNR) of mobile devices that were actively
associated with it. The APs did not provide any information
about clients that were associated with a different AP.
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Accordingly, our infrastructure-assisted approach uses only
the knowledge of {currently associated AP, SNR} of each
mobile device. Note that, although our focus is on the iOS
platform, this approach works seamlessly for any mobile
device, independent of its specific OS.

A. iOS vs Android: indoor localization accuracy
We now investigate the location accuracy when the Wi-

Fi fingerprints are based purely on {currently associated
AP, SNR} values, reported by the Wi-Fi controllers. To
implement this infrastructure-assisted approach, the location
tracking software now needs both a client and a server
component. In our implementation, the iOS device has an
application installed, that triggers a query for the associated
AP and SNR values to a location server (a Linux PC), which
in turn queries the controller with the MAC address of the
phone. (We discuss the mechanics of querying the controller
in Section IV-B). The server then replies with the SNR value
seen by the AP to which the mobile is currently associated.
This value is then used for looking up the fingerprint map
to produce a list of most-likely k locations, as described in
Section III, which is then combined (on the phone) with the
steps of inertial motion estimation and Viterbi smoothing
(which remain identical to that described in Section III).

For iOS devices, the fingerprint map at each landmark
contains the AP’s BSSID and the average SNR value seen
by that AP when the mobile device was located at that
landmark. Due to time-varying changes in the RF envi-
ronment, as well the hysteresis in AP handoff algorithms,
we observed that, depending on direction of movement, at
any landmark location the mobile device can be associated
with different APs (at different times). Accordingly, the
fingerprint map at each landmark contains multiple tuples
of < connectedAP, SNR >.

Figure 4 shows the CDF of the location error observed
by our client-based implementation (for Android) and the
server-side implementation (for iOS), for both SIS (level
2) and Mall (level 2). It is easy to see that the richer set
of APs observed during client-based Wi-Fi scanning allows
the Android-based location tracking software to perform
much better than the infrastructure-based mechanism used
for iOS devices. The Android system could identify the



user’s location with error of 1 landmark distance at 87%
and 65% of the time in Mall and SIS respectively, and
was 100% accurate at an error tolerance of ±3 landmarks. In
contrast, the iOS solution, based on querying the controller,
results in a location error of ±2 landmarks approximately
70% of the time in SIS, and only 25% in the Mall. (As
discussed shortly, the controller-based solution also suffers
from stale SNR values provided by the APs.) Here, we made
two interesting observations:

1) For the client-side Wi-Fi scanning (on Android), we
see that the accuracy (in terms of landmarks) is worse
in SIS than in Mall. In contrast to Mall, SIS has
a much denser deployment of APs, leading to a very
large dimensionality of the APs in the fingerprint map.
The Euclidean distance calculation in RADAR is not
robust at handling a very large vector dimensionality
(large number of APs). Accordingly, for client-side
Wi-Fi fingerprinting based approaches, we suggest
restricting the map to a pre-filtered smaller subset of
APs (e.g., the top-N APs with the highest RSSI values)
at each landmark.

2) Conversely, the controller-querying based location
tracking for iOS performs much better in SIS than
in Mall. For the commercial Wi-Fi infrastructures
we experimented with, the SNR values are updated
only periodically (often once every 3-4 mins!!) while
the mobile continues its association with its current
AP; a re-association, however, causes an immediate
triggered update of the SNR values. Due to the denser
AP deployment, mobile users perform more frequent
inter-AP handoffs in SI , leading to the use of more
up-to-date SNR information in location tracking.

B. Controller Limitations

Our server-side implementation of location tracking re-
quires the periodic querying of the Wi-Fi controller(s) for
the current SNR value of mobile nodes. Unfortunately,
the present generation of Wi-Fi controllers are designed
primarily for static management of mobile devices (e.g.,
authentication setup), and not for supporting the high-
throughput retrieval of real time network statistics. The first
problem is that the controller receives updated SNR values
only when the mobile actually transmits; consequently, the
information available on the controller is often very stale.
For a non-active mobile, we found the value of the last
received transmission varied from 151–209 seconds; this
was a contributory factor to the poor performance of the
infrastructure-based approach for iOS (Figure 4).

A bigger potential issue is the throughput bottleneck for
query when the number of mobiles being monitored is
large. We found that the SNR information could be obtained
from the controller either via a console-based command line
interface (CLI) or via SNMP, both have performance limi-
tations. For the CLI mode, even with automated tools (such
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Figure 5. Accuracy of localization vs. Wi-Fi SNR polling interval

as Expect) we were able to obtain a maximum sustained
throughput of only 15 queries/sec on the ArubaTM3600
controller. Given that the SNR values for different mobile
devices must be obtained individually, this suggests that
the interval between successive SNR queries for a specific
device can grow significantly, when the number of devices
being concurrently located increases (e.g., 150 users implies
an interval of 10 secs). Conversely, the SNMP-based query
throughput is much higher. In our experiments, a controller
managing ≈60 APs (in our SIS building) and more than
a 1000 concurrent users could support a query rate of
≈200 records/sec. The drawback, is that the SNMP-based
query does not permit the querying for individual mobile
nodes; instead, the MIB table contains entries listed by the
MAC addresses of APs. Accordingly, to query a single
mobile device, the entire SNMP table must be retrieved
and searched. For example, if we assume 5000 concurrent
users in Mall, the SNMP-based approach would require a
minimal interval (5000/200=) 25 secs between successive
SNR queries for the same mobile device.

The above examples illustrate that there is clearly a de-
pendency between the number of mobile nodes being tracked
and the interval at which localization can be performed
for an individual device. This can significantly affect the
resulting location accuracy. To establish this impact, we
varied the interval between successive Wi-Fi polls performed
on the Android device, to mimic the impact that longer
intervals would have in an infrastructure-based solution. (We
avoided running this experiment directly on the controllers,
as the IT departments were reluctant to let us stress-test
the live Wi-Fi networks.) Figure 5 shows the resulting
CDF of the location error in SIS, under different values
for the Wi-Fi polling interval (the number of concurrent
users that would result in the corresponding interval, under
the SNMP query approach, are also provided). It is clear
that, as the interval increases (beyond 6 secs), the location
accuracy degrades sharply–at an interval of 20 secs, we can
achieve an accuracy of ±1 landmark only 10% of the time.
Our result clearly establishes an important characteristics of
infrastructure-based localization schemes: there is a tradeoff
between individual location accuracy and the number of
mobile devices being tracked. In high-traffic indoor envi-
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Figure 7. Impact of occupant density on location accuracy in Mall

ronments (Mall often has 5000-10,000 concurrent visitors
on weekday evenings), this can be a serious limitation for
large-scale, continuous location tracking.

V. ISSUES IN A PRACTICAL DEPLOYMENT

A. Density of people

1) Impact on fingerprint data: While analysing the fin-
gerprint data, we observe that within similar time of the
day at the same location, the RSSI seen by the mobile is
affected by the density of people in the building. As we
used RADAR (using mean of signal strength) and HORUS
(using distribution of signal strength) as exemplars of Wi-
Fi location estimation, we measure the impact of occupant
densities on the RSSI variation ranges, as well as on the
mean RSSI value of all the APs.

We measure the variation range of RSSI of all the APs,
and calculate the percentage of these values belong to 5 bins:
less than 5, 5–10, 10–20, 20–30 and > 30 dBm. Figure 6a.
and 6.b. show a common trend for both Mall and SIS
buildings, in that the RSSIs have higher variation ranges
when the density of people increases. For example, in SIS
at low occupant density (2pm) , 44% and 30% of the APs
have the RSSI variations belong to 5–10 and 10–20 dBm
respectively; however, at high occupant density (7pm), it is
14% and 56% respectively. This clearly shows that about
25% of the APs have shifted from small RSSI variations to
large RSSI variations. These observations suggest that we
should have different fingerprint maps at different occupant
density, especially if we use RSSI distribution-based loca-
tion estimators (such as HORUS).

Figure 6.c and 6.d plot the graphs showing the percentage
of APs having the mean RSSI value seen by mobile device
fall into 5 bins: < −90, −90 to −80, −80 to −70, −70
to −60, and −60 to −50 dBm (we do not have APs with
RSSI value greater than −50dBm). The figures do not show
a significant change in the distribution of mean RSSI values
(when the mean for each landmark is computed using a
longer measurement duration of 6 mins) when there is a
change in occupant density.

2) Impact on indoor localization performance: Figure 7
shows the indoor localization performance (using RADAR)
with both iOS and Android systems in Mall at different

WI-FI WI-FI + Viterbi
Power Consumption (mW) 14.538 251.842
Accuracy ± 1 landmark 77% 87 %

Table II
ENERGY CONSUMED VS. ACCURACY OBTAINED BY DIFFERENT

ALGORITHMS

occupant densities (low density at 2pm & high density at
7pm). We have previously seen that higher occupant density
implies a wider range of RSSI signals. Accordingly, during
indoor location tracking, when the average RSSI values are
computed using Wi-Fi scans over short time intervals (2.5
secs), the variation in these average values is likely to be
larger when the occupant density is high. Consequently, the
location tracking accuracy will be lower when the location
estimates are computed using a static fingerprint map.

B. Energy versus Accuracy
We now study the energy overheads of our location

tracking solution. As the SNR value has to be fetched from
a controller for closed system, it is plausible to run the
entire localization algorithm on a server which can access
the controller. But one of the inputs to the Viterbi algorithm
is the set of motion vectors, which should be computed
on the phone as it requires access to the phone-embedded
sensor data. We measured the power drawn for the Wi-Fi and
inertial sensing components on a Samsung SII phone over
a 20 minute interval; this experiment was repeated 5 times.
Table II presents the mean energy usage of these two com-
ponents (averaged over the 5 repetitions). We observe that
the inertial sensors (i.e. accelerometer and magnetometer)
dominate the energy usage in the entire indoor localization
algorithm, draining an additional 237mW from the battery.
Moreover, based on our empirical studies, we note that the
use of the Viterbi algorithm (i.e. using inertial sensors)
results in a location error within ±1 landmark 87% of
the time; in contrast, the use of Wi-Fi fingerprinting alone
provides the same location accuracy only 77% of the time.
Clearly, the additional improvement in location accuracy
offered by the use of inertial sensing may be attractive for
intermittent sensing, but can pose an unacceptable energy
overhead when executed continuously.

VI. RELATED WORK

Indoor localization has been extensively studied in the
research community over the past decade, with the dominant
approaches employing various combinations of RF (Wi-
Fi) signal strength fingerprinting [5], [2], trilateration and
triangulation techniques using RF [6], [7], [8], [9]. Several
papers have also studied dead-reckoning techniques using
sensors such as accelerometers and compass [10], [11], [12],
[13]. Other non-RF based ambient fingerprinting techniques
have used sound and light [14], [15], [16]. A fairly com-
prehensive study [17] of different research proposals noted
that no solution fits all environments and that a number of
challenges have yet to be addressed.
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Figure 6. Impact of people density on RSSI variation range and RSSI mean

As far as we know, no proposal so far has looked into
addressing the limitations of iOs and other closed mobile
platforms. We also focus specifically on the challenge of
tracking individuals in indoor locations continuously, and
under widely varying occupant densities.

VII. SUMMARY AND FUTURE WORK

In this paper, we have focused on building a continuous
indoor location tracking system that scales both in the
number of participants tracked and in the types of mobile OS
platforms supported (specifically, Android and iOS). Most
prior work on Wi-Fi fingerprinting conveniently assumes
that the mobile device can retrieve Wi-Fi AP signal strength
readings. Since that is not practical in many devices having
significant consumer market share, we have implemented a
modified infrastructure-assisted solution that employs ‘re-
verse fingerprinting’ by querying the commercial Wi-Fi
controller infrastructure; this is supplemented by inertial mo-
tion estimates derived from smartphone-embedded sensors.
Empirical testing on both a campus building and a busy,
large shopping mall show that the localization accuracy not
only depends on the building layout, but also on the density
of the deployed APs. Our experimental studies reveal two
major, but somewhat unappreciated, issues that need to be
addressed before a universally-applicable location solution
can be implemented: a) limitations on the query throughput
of commercial controllers lead to an undesirable tradeoff
between the number of concurrent devices being located
and the localization accuracy, and b) time-varying changes
in the occupancy density lead to significant changes in the
indoor RF signal map, implying the need to move to a more
dynamic fingerprint database.

Our results show that indoor localization techniques are
not yet capable of supporting continuous, fine-grained lo-
cation tracking: the energy overheads of inertial motion
estimation and continuous Wi-Fi tracking are still not low
enough to permit continuous operation. Going forward,
we are working towards improving both performance and
accuracy. First, we are working to exploit crowd-sourced
RF measurements (from building occupants) to improve the
accuracy of the Wi-Fi fingerprint database in real time.
Second, we are exploring a query-driven location tracking
paradigm, where the parameters of the location tracking
algorithm are adjusted continually, on an individual-basis,

taking into account the fidelity needs of the applications that
use such location context.
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