
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2013

Popularity, interoperability, and impact of
programming languages in 100,000 open source
projects
Tegawende F. BISSYANDE

Ferdian THUNG
Singapore Management University, ferdianthung@smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Lingxiao JIANG
Singapore Management University, lxjiang@smu.edu.sg

Laurent Réveillère

DOI: https://doi.org/10.1109/COMPSAC.2013.55

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
BISSYANDE, Tegawende F.; THUNG, Ferdian; LO, David; JIANG, Lingxiao; and Réveillère, Laurent. Popularity, interoperability,
and impact of programming languages in 100,000 open source projects. (2013). COMPSAC '13: 2013 IEEE 37th Annual Computer
Software and Applications Conference: Proceedings: 22-26 July, 2013, Kyoto, Japan. 303-312. Research Collection School Of Information
Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1817

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13250344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1817&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1817&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1817&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/COMPSAC.2013.55
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1817&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1817&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Popularity, Interoperability, and Impact of Programming Languages
in 100,000 Open Source Projects

Tegawendé F. Bissyandé1∗ , Ferdian Thung2, David Lo2, Lingxiao Jiang2 and Laurent Réveillère1

1Laboratoire Bordelais de Recherche en Informatique, France
2Singapore Management University, Singapore

{bissyande,reveillere}@labri.fr,{ferdianthung,davidlo,lxjiang}@smu.edu.sg

Abstract—Programming languages have been proposed even
before the era of the modern computer. As years have gone,
computer resources have increased and application domains
have expanded, leading to the proliferation of hundreds of
programming languages, each attempting to improve over
others or to address new programming paradigms. These
languages range from procedural languages like C, object-
oriented languages like Java, and functional languages such
as ML and Haskell. Unfortunately, there is a lack of large
scale and comprehensive studies that examine the “popular-
ity”, “interoperability”, and “impact” of various programming
languages. To fill this gap, this study investigates a hundred
thousands of open source software projects from GitHub
to answer various research questions on the “popularity”,
“interoperability” and “impact” of various languages measured
in different ways (e.g., in terms of lines of code, development
teams, issues, etc.).

Keywords-Programming languages; Popularity; Interoper-
ability; Open source; Software projects; GitHub

I. INTRODUCTION

Computers have a unique purpose: to perform instructions

given to them by us humans. A natural question arises when

a computer tries to understand and perform any given in-

struction: in what format the instructions should be so that it

may be easy for humans to describe and easy for computers

to understand. Assembly languages, mostly low-level and

specific to certain computer architectures, have early been

proposed to ease the programming of computer instructions

by using mnemonics. To improve developer productivity and

facilitate large scale software development and maintenance,

many higher-level languages with a stronger abstraction

from the details of a computer have also emerged. 70 years

after the apparition of the modern computer, hundreds, if

not thousands, of programming languages have existed—the

Wikipedia Internet encyclopedia lists about 600 languages1.

Various programming languages have their advantages

and disadvantages. Assembly languages are often accredited

to be easier to work with hardware and execute more

efficiently, while higher-level languages often provide a

rich set of grammatical rules and vocabulary that makes

∗The work was done while the author was visiting Singapore Manage-
ment University.

1http://en.wikipedia.org/wiki/List of programming languages

programming much easier for developers. Some program-

ming languages have been introduced fairly recently, while

others have been used for decades. For example, C# was

only introduced in 2001, while C has been in use since

1972. There are also various ways to classify languages

into various categories, including procedural languages (e.g.,

Fortran, Pascal, and ANSI C), aspect-oriented languages

(e.g., AspectJ), object-oriented languages (e.g., Java and

C++), and functional languages (e.g., Haskell). Thus, there

are a wide variety of options that developers can choose

when writing applications.

Due to the wide variety of programming languages out

there, there is a need to investigate the popularity, interop-

erability, and impact of different programming languages.

“Popularity” of programming languages is a challenging

property to assess. In this study we investigate different

correlations of software development metrics with the use of

common programming languages. We use the term “interop-

erability” to refer to the extent to which two programming

languages are used together in software projects. An under-

standing of these factors could help, for example, developers

select languages to use or learn, and could help managers

assess developer pool sizes in function of their skills in

programming languages.

Despite the above-mentioned benefits, there have been,

however, limited studies that investigate the popularity, inter-

operability, and impact of different programming languages.

Thus there is a need for a comprehensive analysis of these

factors based on a large number of projects written in various

programming languages. In this work, we fill this need

by investigating a hundred thousands projects and analyze

these factors by answering a set of research questions. Since

“popularity”, “interoperability” and “impact” are concepts

that involve many variations, we explore these properties of

programming languages across several dimensions. In par-

ticular, our study aims at answering the following questions:

RQ1: How popular are the various programming languages

in terms of adoption in real-world software projects?

RQ2: How many projects are written in more than one

programming language and what is the degree of

interoperability of each language towards the others?

2013 IEEE 37th Annual Computer Software and Applications Conference

0730-3157/13 $26.00 © 2013 IEEE

DOI 10.1109/COMPSAC.2013.55

303

Published in COMPSAC '13: 2013 IEEE 37th Annual Computer Software and Applications Conference:
Proceedings: Kyoto, Japan, 22-26 July, 2013, pp. 303-312.
http://doi.org/10.1109/COMPSAC.2013.55

RQ3: Is there a correlation between the programming lan-

guage used and the project success?

RQ4: What is the correlation between the programming

language used and the number of issue reports?

RQ5: How does the programming language correlate with

the size of the development team?

A previous study related to ours is the TIOBE program-

ming community index which ranks various programming

languages [15]. The ranking is based on “the number

of skilled engineers world-wide, courses, and third-party

vendors”.2 The rank is computed by performing searches

on a number of search engines including Google, Bing,

Yahoo!, Wikipedia, Amazon, YouTube, and Baidu. The

data used by TIOBE is not freely available and we could

not find a description of the exact methodology for the

ranking on TIOBE’s site. Different from TIOBE’s ranking,

we investigate the popularity, interoperability, and impact

of programming languages from a different angle: we do

not look into search engines or analyze skilled engineers,

courses, or third party vendors; rather, we analyze a hundred

thousands of open source software projects. We believe

that analyzing actively developed software artifacts is a

promising way to understand how programming languages

are being used. We describe our approach in detail in this

paper and make our data publicly available3. Conway has

also provided a ranking of languages based only on their

appearance in GitHub projects [2]. In this study we further

investigate the amount of lines of code written for each

language.

Our study is made possible by the availability of a large

amount of data in GitHub. Millions of projects are publicly

available for download in GitHub. There are small and

large projects; large ones include the Linux kernel (with

over 10,000,000 lines of code written by more than 9,000

contributors). The availability of a wealth of project data

allows us to explore a variety of interesting questions on the

popularity and impact of various programming languages.

We are however aware that the findings based on these

open source projects are only meant to shed light, to some

extent, on the usage of common programming languages.

Some languages might be under-represented in the dataset

of projects because of the constraints in their development

context. For example, the VHDL language, which is seldom

in our dataset, is widespread for embedded systems in the

industry, a domain that tend not to publish their work to

open source platforms. Aside from such cases, our study

provides a clear picture on the popularity of programming

languages in public domain.

For this study, we have obtained 100,000 git repositories

from GitHub. We have analyzed the contents of each of the

git repositories to find software code. We count the numbers

2http://www.tiobe.com/index.php/content/paperinfo/tpci as of June 2012
3Upon request.

of lines of code written in various programming languages.

Based on this information, we can answer our formulated

questions related to the popularity and interoperability of

programming languages. We also collect various information

related to project success, reported issues, and team sizes.

The contributions of this work are as follows:

1) As far as we know, we are the first to analyze the pop-

ularity of various programming languages by analyzing

a hundred thousands of open source software projects.

We report the popularity of various programming lan-

guages in various dimensions: the numbers of projects

written in a language, the numbers of lines of code

written in a language, and the numbers of developers

that “read”/“write” a language.

2) We analyze the interoperability of various programming

languages based on projects that are developed using

more than one programming language. We measure

how close a pair of programming languages are based

on their interoperability.

3) We describe the correlation between programming lan-

guages and project “success” in the developer commu-

nity, reported bugs, and development team sizes.

The rest of this paper is organized as follows. In Sec-

tion II, we provide preliminary information on various

programming languages and GitHub. In Section III, we elab-

orate the methodology of our empirical study. In Section IV,

we present the results of our study. We list the threats to

validity in Section V. Section VI discusses related work.

We conclude and describe future work in Section VII.

II. PRELIMINARIES

In this section, we introduce various programming lan-

guages, and briefly describe GitHub and the kind of projects

it hosts.

A. Programming Languages

Programming languages define the grammar and seman-

tics used by human beings to communicate and interact with

machines. Programming languages, such as the one used by

Ada Lovelace in her first program [5], have existed before

the invention of modern computers in the 1940s. With the

advent of the computer, programmers started to use assembly

languages. Seventy years later, hundreds of programming

languages have been invented. While some have been dis-

carded with the arrival of their better alternatives, others have

kept their usage trends. A few more recent programming

languages have quickly gained momentum in the last years.

Each programming language belongs to a category that is

more or less suitable for different programming tasks and

computing environments. We only focus on 30 commonly

known programming languages that appear in our dataset.

Table I describes each language, its category, and its year

of apparition. The oldest one, Fortran, was proposed 56

years ago, while the most recent, C# appeared about 10

304

Table I
30 COMMON PROGRAMMING LANGUAGES

Language Main classifications Appearance
Fortran Imperative / Procedural 1957
Lisp Functional / Interpreted 1958
COBOL Imperative / Compiled 1959
Yacc Syntax handling 1970
Pascal Imperative / Procedural 1970
ANSI C Imperative / Procedural 1972
ML Functional / Compiled 1973
Sed Command Line/Parsing 1973
Lex Lexical analysis 1975
Shell (sh) Command Line / Interpreted 1977
Awk Rule based / Scripting 1977
C Shell (csh) Command Line / Interpreted 1978
Ada Concurrent 1980
VHDL Dataflow 1980s
Modula-3 Imperative / Object-Oriented 1980s
C++ Imperative / Object-Oriented 1983
Perl Imperative / Object-Oriented 1983
Objective-C Object-oriented 1983
Erlang Functional / Compiled 1986
Tcl Scripting 1988
Expect (exp) Scripting / Automation 1990
Haskell Functional 1990
Python Interpreted / Object-Oriented 1991
Fortran 90 (f90) Imperative 1991
JavaScript Object-Oriented 1995
Java Object-Oriented 1995
PHP Imperative 1995
Ruby Imperative 1995
JSP Imperative 1999
C# Imperative/Functional/Object-Oriented 2001

years ago. These languages are classified into categories

with functional and object-oriented features, compiled and

interpretive designs, scripting and execution purposes, etc.

Given the capabilities of general purpose programming

languages, a programming task can often be implemented

in any of them. Then, why a language would be preferred

against another? It is important to understand such a question

as it may provide insights for designing better languages.

Before understanding “why”, it is important to know what

the “popular” programming languages are and what the

impact of a language is on the evolution of a project, which

are the topics of this paper.

B. GitHub

GitHub is a project hosting site that has introduced the

concept of social coding by providing many developer-

friendly features. It can be viewed as a socio-technical

network. GitHub has thus gained a wide acceptance and

adoption among developers, and its website indicates that it

is currently4 hosting more than 3,000,000 project reposito-

ries. Thanks to GitHub’s extensive REST [4] APIs5, we are

able to identify about 1,300,000 million repositories whose

contents are publicly available for use.

GitHub uses git [7] as its revision control system for

source code versioning. It enables forking, which allows to

create copies of repositories, and it supports pull requests
for merging changes from copies to the source repository, to

facilitate contributions from developers who are not project

team members. Aside from source code revision control,

GitHub integrates common software development facilities,

such as bug/issue trackers and wiki pages.

4http://github.com as of June 2012
5http://developer.github.com

A large number of projects, such as those from the

Apache community, which are developed outside the GitHub

platform, i.e., autonomously or on other platforms such as

Sourceforge, have their repositories mirrored in GitHub. This

fact indicates that by using GitHub projects, we do not limit

ourselves to the GitHub community or to git. Furthermore, a

number of famous companies such as FacebookTM host open

source versions of their projects on GitHub. This suggests

that our project dataset contains projects managed by diverse

communities. While the large number of projects hosted by

GitHub and its extensive APIs for accessing the projects

enable large studies like ours, there are still some challenges

that we need to address, such as (1) collecting and managing

huge amount of data, and (2) inferring important information

which are not directly available from the APIs, such as the

number of source lines of code in a project.

III. METHODOLOGY

To perform our empirical study, we need a large number

of projects that may represent the universe of all projects.

The software projects should be written for various purposes

by diverse teams in a variety of languages. We have done a

manual exploratory survey of the projects on GitHub, inves-

tigating the development teams, the application domains and

the range of programming languages used in the projects.

We have thus found that projects hosted by GitHub are

very diverse and thus suitable to the requirements of our

study. We have also found that GitHub is used as the main

development platform for over a million projects, and that

it may also be used as a mirror for popular projects, such

as Apache or Linux.
For our study, we consider the first 100,000 projects

returned by the GitHub APIs. There appears to be no distinct

ordering scheme in the returned list of projects6 which also

vary on subsequent requests. Given these projects, we extract

several types of information for each project:
General project information: Each repository is moni-

tored by GitHub and tracked based on different features. In

this paper, we consider the concepts of watchers and forks.

“Watchers” is a metric for measuring interest and activity in

a project. It gives an indication of the amount of attention

that is given to a project by the developer community: an

aspect of project “success”. Watchers typically use project

releases, report bugs, and incidentally promote the project in

their socio-technical network. “Forks” is a metric for mea-

suring the active involvement of the developer community in

the growth of a project’s code base and the improvement of

its quality. While these metrics are not absolute, they provide

good insights on the “success” of a project.
Source Lines of code: To compute the number of

physical source lines of code (sloc), we download each

project’s code repository and rely on the SLOCCount7 tool.

6The list is available at http://momentum.labri.fr/orion/project list.txt
7http://www.dwheeler.com/sloccount/

305

This tool computes actual lines of code, ignoring code

comments and blank lines. It supports 29 of the languages

considered in our study. We have extended SLOCCount to

add support for the 30th language, namely JavaScript.

Developer contributions: We also consider the contrib-

utors for a given project inferred from the commits. Whether

a contributor to a project is registered or not in GitHub, his

information is always available in the git repositories that

he contributes to. This inference is particularly important

for projects that are just mirrored in GitHub but whose

development is done on the project’s own website.

Issue Reports: Finally, we consider issue reports as

an important artefact of software development process. For

each project repository, we have crawled the corresponding

issues database on GitHub. Though an “issue” may refer to

a bug report or a feature request, we study them together as

both are good indications of the interest that the programmer

community gives to a project.

Based on the aforementioned information for each project,

we extensively explore the popularity and impact of pro-

gramming languages in various dimensions.

IV. EMPIRICAL EVALUATION

In this section, we investigate the research questions de-

scribed in Section I to assess the popularity of programming

languages. We investigate beforehand the dataset to ensure

that most of the projects are non toy projects of substantial

sizes. To this end we count the total lines of source code

(LOC) in each project. Fig. 1 plots the percentages of

projects with different numbers of lines of source code. Over

70% of the projects contain more than 1,000 LOC. Around

35% of the projects include more than 5,000 LOC, while

more than 20% contain more than 10,000 LOC. Finally,

over 600 projects contain more than 1,000,000 LOC. This

distribution suggests that a significant number of the projects

in the dataset are of substantial sizes.

%
 o

f P
ro

je
ct

s

0
20

40
60

> 1,000
> 5,000
> 10,000
> 50,000
> 100,000
> 500,000
> 1,000,000

Figure 1. Distribution of the Dataset Projects in Terms of Total LOC

A. RQ1: Popular Programming Languages

To provide insights into the first research question, we

investigate the popularity of the 30 programming languages

in terms of the number of lines of code in the 100,000

software projects that are written in each particular language,

the number of projects that contain code in each particular

language, and the number of developers that are involved in

a project that contain code in each particular language. We

describe the results of our study in the following paragraphs.

Table II
Programming Language Popularity—Lines of Code

Rank Language # LOC % LOC

1 ansi c 1,615,634,331 60.83 %

2 javascript 296,893,761 11.18 %

3 c++ 217,566,364 8.19 %

4 php 167,458,938 6.31 %

5 java 99,308,060 3.74 %

6 ruby 59,967,003 2.26 %

7 python 53,850,088 2.03 %

8 c# 31,560,343 1.19 %

9 lisp 27,614,150 1.04 %

10 sh 22,605,731 0.85 %

11 objective c 16,570,836 0.62 %

12 perl 16,413,762 0.62 %

13 pascal 11,766,801 0.44 %

14 erlang 7,335,480 0.28 %

15 yacc 1,646,328 0.06 %

16 ml 1,550,750 0.06 %

17 fortran 1,468,246 0.06 %

18 tcl 1,351,073 0.05 %

19 haskell 1,117,902 0.04 %

20 jsp 972,759 0.04 %

21 ada 878,412 0.03 %

22 f90 588,801 0.02 %

23 lex 573,349 0.02 %

24 vhdl 485,806 0.02 %

25 expect 318,554 0.01 %

26 awk 199,513 0.01 %

27 cobol 135,257 0.01 %

28 csh 74,608 0.00 %

29 sed 26,549 0.00 %

30 modula3 985 0.00 %

60.8%

11.2%
8.2%

6.3%
3.7%

2.3%
2%
5.5%

ansi c
javascript
c++
php
java
ruby
python
others

Figure 2. Language Popularity — Lines of Code

Table II shows the ranking of various programming

languages in terms of total lines of code written in each

language. C code dominates with 1.6 billion lines of code

(60.83% of all LOC that we analyze). Next to C code is

JavaScript and C++ code, which have 296 (11.18%) and

217 (8.19%) millions lines of code respectively. PHP and

Java follow with 6.31% and 3.74% of all LOC respectively.

Other well-known languages, such as Ruby, Python, and C#,

only account for 2.26%, 2.03%, and 1.19% of all LOC.

Functional languages, such as ML and Haskell, appear in

more than 1.5 (0.06%) millions and 1 million (0.04%) LOC.

The least popular programming languages in terms of LOC

are C-Shell, Sed, and Modula3.

Figure 2 represents the distribution of LOC for the top-

ranked languages. The predominance of C can be related to

the fact that many operating system kernels, including the

Linux kernel (10,064,207 lines of C code as of June 2012)

and its device-specific flavors, are among the projects with

the largest code bases and are written in C.

Language popularity can also be measured in terms of

its adoption by the number of software projects using the

language. Thus, for each programming language, we count

the number of projects that contain code written in this

306

Table III
Programming Language Popularity—Appearance in Projects

Rank Language # Projects % Projects

1 javascript 27,873 27.87 %

2 ruby 19,857 19.86 %

3 python 15,224 15.22 %

4 sh 14,444 14.44 %

5 php 11,023 11.02 %

6 java 10,646 10.65 %

7 ansi c 10,142 10.14 %

8 c++ 6,865 6.87 %

9 perl 5,741 5.74 %

10 objective c 3,721 3.72 %

11 c# 3,082 3.08 %

12 lisp 2,005 2.01 %

13 pascal 1,165 1.17 %

14 haskell 1,071 1.07 %

15 jsp 958 0.96 %

16 yacc 887 0.89 %

17 erlang 652 0.65 %

18 awk 601 0.60 %

19 lex 567 0.57 %

20 sed 409 0.41 %

21 tcl 255 0.26 %

22 csh 242 0.24 %

23 ml 208 0.21 %

24 ada 195 0.20 %

25 fortran 134 0.13 %

26 expect 102 0.10 %

27 f90 77 0.08 %

28 vhdl 45 0.05 %

29 modula3 13 0.01 %

30 cobol 10 0.01 %

language. Table III details the ranking of the programming

languages in this scenario. This metric (i.e., popularity by

the number of projects) is similar to GitHub’s own metric.

Our findings are globally similar to the ranking provided by

GitHub and used by Conway in his study.8 JavaScript largely

outranks other programming languages with 27,873 projects,

which represents 27.87% of all projects in our dataset. The

next ones in the ranking are also other scripting languages

that are popularly used in 19.86% (Ruby), 15.22% (Python),

and 14.44% (Shell) of the projects, respectively. Then follow

general-purpose programming languages, such as Java, C,

C++, and C#, which are used in 10.65%, 10.14%, 6.87%,

and 3.08% of the projects respectively.

We also note that the Haskell functional language has

gained popularity with 1,071 projects (1.07%) containing

Haskell code. Based on this metric, Haskell outranks ML,

its counterpart functional language. Finally, the least popular

programming languages are VHDL, Modula3, and Cobol,

which, even when combined, are found in less than 1% of

all projects.

Table IV details the distribution of the top-10 main

languages in the projects. In this study, we consider a

language to be the main language for a project when it is

the language with the most lines of code. The top ranks

are still held by scripting languages. However, when we

compare the numbers of projects in Table IV with those in

Table III, we can see that scripting languages are often used

as supporting languages. For example, although JavaScript

appears in almost 28 thousands projects, it is the main

8http://redmonk.com/sogrady/2012/09/12/language-rankings-9-12/

language in only about 9 thousands (34.50% of all projects

with some JavaScript code); The Shell scripting language

appears in over 14 thousands projects, but it is the main

language in only 3 thousands (22%) projects. Compiled

programming languages, such as Java, C, and C++ are used

more often as main languages (> 50%) in projects.

Table IV
Language Popularity—Top-10 Main Languages in Projects

Rank Language # Projects

1 ruby 12,642

2 python 10,165

3 javascript 9,616

4 java 8,861

5 php 7,886

6 ansic 6,307

7 c++ 4,477

8 sh 3,311

9 objective c 2,982

10 perl 2,472

Another metric that we use to investigate the popularity

of a language is the number of developers using it in

their projects. For computing the ranking, we assume that

all developers in a project are knowledgeable in the main

language of the project. Figure 3 illustrates the distribution

of developers for the top ranked languages. Overall, C

appears to be the most popular language among developers,

followed by Ruby, Python, Java, and C++. JavaScript and

C# are only used by 8.97% and 3.42% of the developers.

The detailed results for all languages are shown in Table V.

Languages such as C-Shell, Modula3, and Cobol appear to

be used by relatively insignificant numbers of developers.

%
 D

ev
el

op
er

s

0
5

10
15

20

ansic
ruby
python
java
c++
php
javascript
shell
perl
c#

Figure 3. Language Popularity—Adoption by Developers. Percentages of
developers that adopt different programming languages.

Ansi C, JavaScript and C++ top our ranking in terms
of LOC. Most of the projects in our dataset contain
code in JavaScript, Ruby in Python. Finally, Ansi
C, Ruby and Python are used in projects with the
largest developer pools. These findings suggest that
these languages should be learned.

B. RQ2: Multi-Language Projects
Developers often rely on different programming languages

to implement different functionalities in a single project. The

second research question investigates the interoperability of

languages to identify the languages that are popularly used

in multi-language projects. We assume that two languages

are “interoperable” if they are used in a same project.

307

Table V
Programming Language Popularity—Developer Pool. Numbers and

percentages of developers that adopt different programming
languages.

Rank Language # Developers % Developers

1 ansi c 48,373 22.08%

2 ruby 34,878 15.92%

3 python 29,764 13.58%

4 java 27,567 12.58%

5 c++ 26,708 12.19%

6 php 22,790 10.40%

7 javascript 19,651 8.97%

8 sh 11,345 5.18%

9 perl 7,587 3.46%

10 c# 7,499 3.42%

11 objective c 6,405 2.92%

12 lisp 3,644 1.66%

13 haskell 2,026 0.92%

14 erlang 1,757 0.80%

15 pascal 1,161 0.53%

16 ml 408 0.19%

17 tcl 213 0.10%

18 jsp 151 0.07%

19 fortran 75 0.03%

20 yacc 67 0.03%

21 ada 48 0.02%

22 vhdl 48 0.02%

23 f90 28 0.01%

24 sed 8 0.00%

25 expect 7 0.00%

26 lex 5 0.00%

27 awk 4 0.00%

28 csh 3 0.00%

29 modula3 3 0.00%

30 cobol 1 0.00%

Table VI
Language Interoperability. Numbers and percentages of projects

written in multiple programming languages, that include different
programming languages.

Rank Language # Multi Language % Multi Language
Projects Projects

1 javascript 18,353 21.81%

2 sh 12,456 14.80%

3 ruby 9,782 11.62%

4 python 7,757 9.22%

5 ansi c 7,646 9.09%

6 php 6,160 7.32%

7 c++ 4,577 5.44%

8 java 4,163 4.95%

9 perl 3,841 4.56%

10 objective c 1,593 1.89%

11 c# 1,391 1.65%

12 lisp 1,239 1.47%

13 pascal 958 1.14%

14 jsp 925 1.10%

15 yacc 884 1.05%

16 awk 598 0.71%

17 lex 567 0.67%

18 haskell 464 0.55%

19 sed 405 0.48%

20 erlang 394 0.47%

21 tcl 243 0.29%

22 csh 241 0.29%

23 ada 187 0.22%

24 ml 153 0.18%

25 fortran 129 0.15%

26 exp 101 0.12%

27 f90 71 0.08%

28 vhdl 33 0.04%

29 modula3 10 0.01%

30 cobol 9 0.01%

Table VI shows that scripting languages are ranked the

first in terms of interoperability. The top-1, JavaScript, is

used in over 18 thousands (21.81 %) of multi-language

projects, followed by Shell (14.80%), Ruby (11.62%), and

Python (9.22%). The C programming language, PHP, C++,

and Java also appear in respectively 9.09%, 7.32%, 5.44%

and 4.95% of the multi-language projects. On the other hand,

Haskell and ML are less interoperable, appearing in 0.55%

and 0.18% of the projects. The least interoperable languages

are VHDL, modula3, and Cobol which, together, appear in

less than 1% of multi-language projects.

We further survey the interoperability of languages by

detailing the relationships among them to establish how lan-

guages interoperate and which ones are mostly used together.

The relationship graph in Figure 4 gives an overview of how

languages interoperate within projects. The thicker the edge

between two nodes in the graph, the more projects contain

code in the two corresponding languages. We observe that

all languages interoperate with one another, though with

different degrees of interoperability. Shell is the language

that interoperates the most with other languages. Shell is

indeed a scripting language that is used in many projects to

write automation scripts for compilation, install, launch, etc.

A subset of languages that consists of shell, ansi c, ruby,

php, java, c++, c#, perl, javaScript, and python, are used

together more often than the others. Objective C appears

to be less interoperable with others. ML and Haskell have

weak relationships with other languages.

Figure 4. Language Interoperability—All Languages. Relationships among
the 30 languages in Table I. The thicker a line between two languages, the
more projects contain code written in these two languages.

Figure 5 focuses on the interoperability of a subset of

mainstream languages. The graph shows that JavaScript

interoperates well with php and ruby, two other common

languages used in web programming.

Finally, in Figure 6, we explore the relationships between

ANSI C and all other languages. The graph reveals that C

interoperates well with many languages. This is possibly

related to the fact that mainstream languages, such as C++,

Java, Objective C, and C# are derivatives of C. Furthermore,

we note that C and C++ interoperate the best with each other.

JavaScript, Shell and Ruby appear to be used together
with most of the languages. Ansi C and its derivatives,
which are syntaxically close, also interoperate very
well. Web programming languages are often used
together in projects.

308

Figure 5. Language Interoperability—Mainstream Languages. Rela-
tionships among mainstream languages. The thicker a line between two
languages, the more projects contain code written in these two languages.

Figure 6. Language Interoperability—ANSI C. Relationships between
ANSI C with other languages. The thicker a line between two languages,
the more projects contain code written in these two languages.

C. RQ3: Programming Languages and Success

In the third research question, we investigate the lan-

guages used by successful projects. To estimate the success

of a project, we rely on the amount of interest shown to

the project that could be measured based on social coding

features of GitHub.

1) Watchers: A project is found successful user-wise if

many GitHub users watch its development. Table VII details

the average numbers of watchers per project containing code

in each programming languages. In this scenario, we con-

sider only one main language per project to reduce outliers

in multi-language projects. Objective-C is thus the language

of the most number of watched projects: on average 91

watchers per project. The median number of watchers, i.e.,

5, is also the highest. Erlang has the same median number

of watchers as Objective-C, but there are 6 times more

Objective-C projects than Erlang’s. In terms of the average

number of watchers per project, JavaScript-based and Ruby-

based projects are also popular. Among mainstream com-

piled languages, C# and C++ appear the first, each of which

Table VII
Language and Project Success — Watchers. Means and medians of

numbers of watchers for projects written in different languages.
Rank Language Mean Median Significance

1 objective c 91.6 5 +

2 javascript 65.8 2 +

3 ruby 60.5 2 +

4 erlang 52.6 5 +

5 sh 28.8 1 +

6 python 26.8 1 -

7 php 24.8 2 -

8 yacc 24.3 1 -

9 c# 23.6 1 +

10 c++ 23.1 1 -

11 ansi c 19.7 1 +

12 lisp 17.3 1 +

13 java 16.8 1 -

14 ml 15.5 1 -

15 tcl 15.0 2 -

16 perl 12.2 1 -

17 haskell 10.0 1 -

18 fortran 9.9 1 -

19 f90 9.5 1 -

20 ada 8.9 1 +

21 pascal 7.2 1 -

22 lex 3.0 2 +

23 jsp 2.8 1 -

24 awk 2.2 2 -

25 csh 2.0 3 -

26 vhdl 1.9 1 -

27 sed 1.8 1 -

28 exp 1.0 1 +

29 modula3 1.0 1 +

30 cobol 1.0 1

has on average 23 watchers per project. Projects using C or

Java as the main language have on average 19 or 16 watchers

respectively. Once again, Modula3 and Cobol appear at the

bottom of the ranking.

We use the Mann-Whitney-Wilcoxon (MWW) test, a non-

parametric statistical hypothesis test, to assess the statistical

significance of the difference between the distribution of

projects for a given language and the distribution of projects

for the next language in the table. The + sign, in the

Significance column, indicates that the mean value for the

corresponding language in a row is significantly higher than

the mean for the language in the following row. Otherwise,

a - sign is indicated. Projects written in Objective C have

significantly more watchers than those written in JavaScript

which in turn have significantly more watchers than those

written in Ruby.

2) Forks: GitHub also tracks the number of forks for

a given project. This number is a useful indication of the

number of non-team developers volunteering to participate

in the development of the project. Similar to the estimation

of interest using the number of watchers, we present mean

and median numbers of forks per project per language. The

detailed results are presented in Table VIII. Objective-C still

tops the ranking with an average of 12 forks and a median

value of 2. The Lex and C-Shell languages have the same

median value as Objective-C, but they are actually used in

relatively fewer projects (Cf. Table III). JavaScript and Ruby

are also still highly ranked. Overall, the results of analyzing

interest using the number of forks are in line with those

using the number of watchers.

Once again, the MWW test reveals that the differences

of mean values are statistically significant for Objective C,

Ruby, Erlang, JavaScript and a few more languages.

309

Table VIII
Language and Project Success — Forks. Means and medians of

numbers of forks for projects written in different languages.
Rank Language Mean Median Significance

1 objective c 12.1 2 +

2 ruby 10.9 1 +

3 erlang 9.9 1 +

4 javascript 8.9 1 +

5 c# 6.4 1 -

6 php 6.1 1 +

7 sh 5.7 1 +

8 python 5.6 1 +

9 c++ 5.2 1 +

10 java 5.1 1 +

11 lisp 4.4 1 -

12 ansi c 4.2 1 -

13 ada 3.7 1 -

14 pascal 3.6 1 -

15 tcl 3.0 1 -

16 perl 2.9 1 -

17 ml 2.8 1 -

18 yacc 2.6 1 -

19 fortran 2.4 1 -

20 haskell 2.4 1 -

21 lex 2.3 2 -

22 f90 1.6 1 -

23 csh 1.5 2 -

24 jsp 1.4 1 -

25 vhdl 1.4 1 -

26 exp 1.0 1 -

27 sed 1.0 1 +

28 awk 1.0 1 +

29 modula3 1.0 1 +

30 cobol 1.0 1

Objective C and Ruby appear to be the languages
that are used in projects that tend to draw the
most interest. A quick sampling of projects written
in Objective C shows that many of them are for iOS
(iPhone) applications.

D. RQ4: Programming Languages and Issues

To investigate the correlation between programming lan-

guages and issues, we compute the mean and median num-

bers of issues per project for each language. Since many

projects do not enable its issue tracker on GitHub as their

development activities occur in their own websites where

they have their own issue/bug tracking systems, we only

consider those projects with at least 1 issue reported in

GitHub. The results are presented in Table IX. C++ is the

language used in projects with the most issues reported (64

issues per project on average, and a median value of 6). ML

and C# follow in the ranking with an average of 55 and 50

issues per project.

Figure 7 shows the distribution of the number of issues

for the top-10 languages drawn as boxplots. Each boxplot

presents 5 vertical lines. From left to right, the first line indi-

cates the MINIMUM, i.e., the least value, excluding outliers

which are identified by the R system9 (when constructing a

Modified Boxplot). Data points on the left of this line are

outliers (determined by the R statistical computing tool).

The second line indicates the LOWER QUARTILE, i.e, 25

% of data points are on the left side of this line. The third

line is the MEDIAN, the middle of the dataset. The fourth

line indicates the UPPER QUARTILE, i.e., 25% of data

points are on the right side of this line. Finally, the fifth line

indicates the MAXIMUM, i.e., the greatest value, excluding

9http://r-project.org

Table IX
Language and Issues. Means and medians of number of issues for

projects written in different programming languages.
Rank Language Mean Median Significance

1 c++ 64.4 6 -

2 ml 55.3 3 -

3 c# 50.6 9 -

4 fortran 46.7 8 -

5 pascal 46.3 3 -

6 php 41.8 7 -

7 ruby 40.3 8 +

8 java 37.8 6 -

9 ansi c 36.7 10 -

10 python 35.7 7 -

11 sh 31.1 6 -

12 erlang 30.7 10 -

13 lisp 30.5 5 -

14 haskell 30.1 4 +

15 javascript 29.3 8 +

16 objective c 23.3 6 +

17 perl 21.9 3 -

18 tcl 20.8 7 -

19 yacc 15.0 10 -

20 ada 13.0 25 -

21 jsp 5.3 2 -

22 f90 3.0 1 -

23 vhdl 2.0 2

24 csh - -

25 sed - -

26 awk - -

27 lex - -

28 exp - -

29 cobol - -

30 modula3 - -

outliers (determined by the tool). All data points on the right

side of this line are outliers.

Aside from Pascal, ML, and Fortran, which are used by

few projects, the box plots are similar for the rest of the

languages. This suggests that there is no clear correlation

between a programming language and the number of issues

for the language. Finally, the results of the MWW tests,

which are included in the table, reveal that the differences

are not, for most of the languages, statistically significant.

●● ●● ●● ●● ●●● ● ●● ●●● ●● ● ●● ●● ●● ●● ● ● ●●●● ●●●● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●●● ● ●● ●● ● ●● ● ●● ●● ●● ● ● ● ●● ● ● ●●●● ● ●● ●● ●● ●● ●●●● ●● ●●● ● ●●● ●● ● ● ● ●●●● ●●● ● ●● ●●●●● ●● ●● ● ●●●● ● ●●●● ●●●● ●● ● ●●●● ●●● ● ●● ●● ●● ● ●●● ● ●●● ● ● ●●● ●●●● ● ●● ●● ●● ●● ● ●●● ●● ●● ● ●● ● ●●● ●● ●●● ●● ● ●●●● ●●●● ● ●●● ● ● ● ●●●● ●● ●● ●●● ● ●● ● ●● ●● ● ●●●● ●● ●● ●●● ●●● ●●● ● ●● ● ● ●●● ●● ● ● ●● ●● ● ●● ● ●● ●● ●● ● ● ●● ● ●● ●● ● ●●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ● ● ●● ● ●● ●● ● ●● ●● ● ● ●● ●● ●● ● ●● ● ● ●● ●●● ●● ●● ● ●●● ● ●● ●●● ●● ●● ● ●● ●●● ●● ● ●●● ● ●● ●●●● ●● ● ●● ●●● ● ●● ●● ●● ●● ● ●● ● ● ● ●●● ●● ●● ● ●● ●● ● ● ●●● ●● ●●● ●● ● ●● ●● ●●●●● ● ●● ●● ●●●● ●● ●● ●●●●● ● ●● ● ●● ●● ●●● ●●● ● ● ●●●● ● ●● ●●● ● ●● ●●● ●● ●

● ●● ●● ● ●● ●● ● ●● ● ●●●● ● ●● ● ●● ● ●●● ●●●●● ●●● ●●● ●● ●● ●● ●●●●● ●● ● ●● ●● ●● ● ● ●● ●●● ●● ●●● ● ● ● ●●● ● ●●● ● ● ● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ● ●● ● ●● ● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ● ●●● ● ●●● ● ●●● ●● ●●● ● ●● ●● ●● ● ●● ● ●●● ●● ● ●● ●● ●● ●● ●●● ● ●●●● ●● ● ●●● ● ●

●● ● ●● ●●● ●●● ●● ●● ● ● ● ●● ● ● ●● ●● ●●●● ●●●● ● ●● ● ●● ● ● ●● ●● ● ●● ● ●●● ●●● ●●●● ●● ●●● ●● ● ●●● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ● ● ●● ● ●● ● ●● ● ● ●●●● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ● ●● ●● ● ●● ● ● ●●● ●● ●● ● ● ●● ●● ●●● ●● ●● ●● ● ●● ●●● ●● ●● ● ● ●● ●● ●● ●●● ●● ● ●● ● ●●● ● ●● ● ●● ● ●●● ●● ● ●● ●●● ● ●● ●● ●●● ●● ● ●● ●● ●● ●●● ●●● ● ●●●● ●● ●● ● ●● ●● ●● ● ● ●● ●●● ●●● ● ●●●● ● ●●● ●●●●● ●● ●● ●●● ●● ●● ●● ● ● ●●●●●● ●● ● ●●● ● ●● ●● ● ● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ● ●● ● ● ●●●● ●● ● ●●● ●●●

●●● ●● ●●● ●● ● ●●●● ●● ●● ●● ●● ●● ● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ●●● ● ● ●● ● ●●●● ● ●● ● ● ●● ● ●●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●● ●●●●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●● ● ●● ● ●● ● ●● ● ● ●● ●●●● ●● ● ● ●● ● ●●●●● ●●● ●● ●●● ●● ●●● ●●● ● ● ●● ●● ●●● ●●● ●●● ●●● ● ● ●● ●● ● ● ●●● ● ●● ● ● ●●● ● ● ●●● ●● ●● ● ● ●● ●●● ●● ● ● ●●● ●●● ●● ● ●● ● ●●● ●●●● ●● ● ●●●● ● ● ●●● ● ●●● ●●● ●●●● ●● ● ●● ● ●● ●● ●● ● ●●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●●● ●●● ● ●● ●● ● ●● ● ● ●● ● ●●●● ●●● ● ●● ● ●● ●● ● ●● ● ● ●●● ●●● ● ●● ● ●● ●● ● ●●● ● ●● ●●●● ●●●● ●● ● ●●●●● ●●● ● ● ● ●● ● ●● ●● ●● ● ●● ●● ● ●● ● ●●● ●● ● ●● ●●● ●●●● ●●● ●● ● ● ●● ●● ●●●●●●● ● ● ●●●●● ●● ● ●● ● ●●● ● ● ●● ●● ●● ● ●● ●● ● ●● ● ●●● ● ● ● ●●● ● ● ●● ● ●● ●●● ● ●● ●●●●● ● ●●●● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●● ● ●●● ● ● ●● ● ●●● ●●●●● ● ●● ●● ● ●●● ●● ●●● ● ●● ●● ● ●●● ●● ●● ● ●● ● ● ●●●● ●● ●●●●● ● ●●● ●● ● ●●●● ●● ● ●● ●● ●● ●●●●● ●●● ● ●●● ● ● ● ●●● ●● ● ●● ● ●● ● ●●● ●● ● ●●●●● ●● ●● ●● ●● ●● ● ●●●● ● ● ● ●● ●●● ● ●● ●● ● ●● ● ●● ● ● ●● ●● ● ● ●●● ● ●● ● ●● ●● ● ●●● ● ●●●● ● ●●●● ● ●● ●●● ●● ● ●● ●● ●●● ● ● ●●●●● ●● ●● ●● ●●●●● ●● ● ●● ●● ● ●●●●● ● ●● ●● ● ●●●● ●● ● ●● ●●● ● ● ●● ●● ● ●●●●● ●● ●● ● ●● ● ● ●●● ● ●● ●● ●●● ●● ● ●● ● ●●● ●●● ● ● ●●● ● ●●●● ●● ● ●●●● ● ●●

●● ● ●●● ●●● ● ● ●● ●● ●● ● ●●● ● ●● ●● ●● ●● ●●● ●● ●●● ●●●● ● ●● ●●●● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●● ● ●●● ●● ●●●● ●● ●● ●● ●●● ● ●●● ● ●●● ●● ● ● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●● ● ●● ● ●● ● ●●● ● ●●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ● ● ●● ●●● ●● ●● ●● ● ●●● ●● ●●● ● ●● ● ●●● ● ●●●● ● ●● ●●● ●● ● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●●● ●● ● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●● ● ●●● ●●●● ● ● ●● ● ●●● ●● ●●●●● ● ●●● ● ●● ●● ● ●● ● ●●● ●●● ●●● ●● ●● ●●● ● ●● ● ●● ● ●● ●● ●● ●● ● ● ●● ●●● ● ●● ●● ● ●● ●● ●● ● ● ●● ●● ● ●●● ●● ●● ●● ●●● ● ●● ● ●● ● ●● ●● ●● ●● ● ● ● ●● ●● ●● ●● ●●● ●● ●● ●●●●● ● ● ● ●● ●●●● ●●●

●● ●● ● ● ●● ● ●●

●

● ● ●●● ● ● ●● ●●●● ●●● ●● ●● ●● ●● ●● ● ● ● ●●● ● ● ● ●●● ●● ●● ● ●●● ●● ●●● ●● ●● ●● ● ●●●● ●●● ●● ● ●●● ●●●● ●● ● ●● ●● ●●● ● ●● ●●

● ●● ● ●

● ● ●● ● ●●● ●● ●● ●●● ● ● ●●● ● ●● ● ● ●● ● ●● ●● ●● ●● ●● ●●● ● ●●●● ● ● ●●● ●● ●● ●● ●● ● ●● ● ●● ●● ● ● ●● ●●● ●● ●● ● ●●● ●● ●●● ● ●●● ●● ● ●● ● ● ●● ● ● ●●● ● ●● ● ●● ● ●● ● ●●●● ●●● ●● ●●● ● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●

python
ansi c

java
ruby
php

pascal
fortran

c#
ml

c++

1 10 100 1000 10000

of issues

Figure 7. Number of Issue Reports for the Top-10 Languages with the
Highest Average Number of Issue Reports

The prevalence of issue reports for a given project
does not appear to be correlated to the programming
language used to write the software code.

E. RQ5: Programming Languages and Teams

Finally, we investigate the constitution of development

teams based on the used language, so as to identify lan-

guages that are more “collaboration friendly”. We compute

the average and median numbers of developers per project

for each programming language.

310

Table X details the results on the average team size for

each programming language. The C programming language

is the top-1 language with an average of 46 developers per

project but a median value of 1. Once again, this average is

likely pulled up by operating system projects, such as the

Linux kernel (9395 contributors as of June 2012), which

usually involve a large number of developers. C++ ranks

the second; Ruby, another “popular language” in terms of

appearance in projects, is ranked the 5th.

Tcl, Erlang, Yacc, Expect, and C-Shell have a high median

of 2, but are used in a small set of projects (Cf. Table III),

making this finding statistically less reliable. Ruby, python,

and JavaScript projects show very distinct distributions of

team sizes and respectively have about 5 (5th), 4 (10th),

and 3 (19th) developers on average per project.

In Figure 8, the boxplot shows that the distributions of

team sizes may not be clearly correlated to languages. The

significance tests also confirm this fact as few the differences

of mean values are statistically significant for a limit number

of languages.

Table X
Language and Team Size. Means and medians of team sizes for

projects written in different programming languages.
Rank Language Mean Median Significance

1 ansi c 46.5 1 -

2 c++ 9.4 1 -

3 tcl 7.7 2 -

4 erlang 6.1 2 +

5 ruby 5.3 1 +

6 sh 4.8 1 -

7 java 4.7 1 -

8 perl 4.7 1 -

9 c# 4.5 1 -

10 php 4.3 1 +

11 python 4.1 1 +

12 lisp 4.1 1 -

13 ml 4.1 1 -

14 haskell 3.7 1 -

15 pascal 3.5 1 -

16 fortran 3.2 1 -

17 ada 3.0 1 -

18 objective c 2.9 1 +

19 javascript 2.8 1 -

20 yacc 2.4 2 -

21 exp 2.3 2 -

22 vhdl 2.0 1 -

23 jsp 1.8 1 -

24 f90 1.8 1 -

25 lex 1.7 1 -

26 sed 1.6 1 -

27 csh 1.5 2 -

28 modula3 1.3 1 -

29 awk 1.0 1 +

30 cobol 1.0 1

● ●●● ● ●● ● ●●●●● ● ●● ●● ●● ● ● ●●●●● ●●●● ●●● ●● ● ●● ●● ●● ●●●● ● ●●● ● ●● ●● ●● ●●● ● ●● ●●●● ●● ● ● ● ●● ●●●●●● ● ●● ● ● ●● ● ●● ●●● ●●●● ●●● ●● ●● ●● ●●●● ● ●●●● ● ●●●● ●● ●● ●●● ●●● ● ●● ●● ●● ●● ●● ●● ● ●● ●● ● ●●● ●● ● ● ●●●●● ● ●●●● ● ● ●● ● ● ●●● ●● ●●● ●● ● ● ●●●● ●● ● ●● ●● ● ●●● ●●●●● ●● ●● ● ●● ●● ●● ● ●● ● ●●●●● ●● ●● ●● ●●●●● ●● ●●●●●● ●●●● ●● ●● ●● ●● ● ●● ● ●●● ● ●●●● ●● ● ●● ●●●● ●●●● ●●● ●● ● ●● ●●● ●● ●● ●● ●●●●● ● ●● ●● ● ●● ●●● ●● ●● ●●●●● ●● ● ●●●●● ●● ●● ●● ●● ●●●● ●● ● ●● ●●●● ●●● ●● ● ●● ●● ●● ● ●● ●●● ●● ● ●●● ●●●● ●● ●●● ● ●● ●● ●●● ●● ●●● ●● ● ●● ●● ● ● ●● ● ●●● ●●● ●● ● ●●● ● ● ●● ●● ●●● ●● ●● ● ● ● ●● ● ●● ●●●●● ●● ●●●● ●● ●●● ●●● ●● ● ●● ●● ●●●● ●● ●● ●● ● ●● ●● ●● ●●● ●● ●● ● ●● ●● ●●●● ●●● ● ●●●● ● ●● ● ●●● ● ●●● ●●●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ● ●●● ●● ●● ●●●● ●● ●● ●●● ●●● ● ●● ●●● ● ●●● ●●●● ● ● ●●● ●● ● ● ● ●●● ●●● ●● ● ●●● ●●● ●● ● ●● ●●●● ●● ●●●● ●● ●●● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●● ● ●● ● ●●●●●● ●●● ●● ●● ●●● ● ● ●●●●● ● ●● ●● ● ●● ●● ●● ●● ●● ●●●● ● ● ● ● ●● ●●●● ●●● ●● ●● ●●● ●●●● ●●● ●● ●● ●●● ● ● ●●● ● ● ●● ●●● ●● ●● ●●● ●●● ●● ●● ●● ●●●● ●● ● ● ●●●● ●●●● ● ●●● ● ● ●● ● ●● ● ● ●●● ●● ●● ●●● ●● ●●● ● ● ●● ● ● ●●● ● ●●● ●●● ● ●● ●● ●●● ● ●● ●●● ●●● ●●● ● ● ●●● ●● ● ●●●● ● ●●●● ●● ● ●● ●● ● ●●● ● ●●● ● ●●● ●●● ● ●● ●● ●● ●● ● ●●● ●● ●● ●● ●● ● ●●●● ● ●●●● ● ●●● ● ●● ●● ● ●●● ●●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ● ●● ● ●●● ●● ●●● ●●● ●● ● ●●●● ●●● ●●● ●● ●●● ●● ●●● ●● ●●●● ●●●●● ●● ●●● ● ●●●●● ●● ●●● ●●● ● ● ● ●●●●● ●●●● ●● ●●● ●● ●● ●●● ●●●●● ●●●●●●● ●● ●●● ● ●● ●● ●● ●●●● ●● ●●● ● ● ●● ● ●● ●● ●●● ●●● ●● ●● ●● ●●●● ●●● ●● ●●● ● ●●● ● ● ●●● ●● ●● ● ● ●● ●●● ●● ●● ●● ● ●●●● ●●● ●● ● ●●●● ●● ● ●●●●● ●●● ●●●●● ●● ● ●●● ● ●●● ●● ● ●●●● ● ● ● ●●● ● ●● ●●● ●● ●● ● ●●●● ●●●● ●●●● ● ● ● ●● ● ●●●● ● ● ●●● ● ●● ●●●●●●● ●● ●●● ●●● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●●●● ●● ●● ●● ●● ●●●●● ● ●●● ●●● ● ●● ●● ●●●●●● ●●● ●●● ● ●●● ● ● ● ●● ● ●●● ● ● ●●●●● ● ●● ● ●● ● ● ●● ●● ●●● ●●●● ● ●● ●● ● ●●● ● ●● ●● ●● ●● ●● ●●● ● ● ●● ●●● ●●● ●●● ●●● ● ●● ● ●●●●● ● ● ●● ● ● ●● ●● ●●●● ● ● ●● ●● ● ● ● ●● ●● ●●● ●●●●● ● ● ●● ●●● ● ●●

●● ● ●●● ●● ●●●●● ●●● ●● ● ●●● ●● ● ●●●●● ●●●● ●● ●● ●● ● ●● ●● ●● ● ●● ● ●●● ●●● ●● ●●● ● ● ● ●● ● ● ● ●● ●●● ●●●● ● ●● ● ●●●●● ●● ● ●●● ●●● ● ●● ● ●●●●● ● ●●●● ●●● ●●● ●● ●●● ●● ●●●●●●● ●●● ●●●●● ● ● ● ●● ● ● ●● ●● ●● ●● ●●●● ● ●● ●●● ●● ● ●● ●● ●● ●● ● ●●● ● ●● ● ● ● ●● ●●●●● ●● ●●● ● ●●●● ●● ● ●● ● ● ●●● ●● ●●● ●●●● ●●● ●●● ●● ●● ●● ● ●●●● ●●● ●●● ●●● ●● ●● ● ●●● ● ●● ●●● ●● ● ●● ●● ● ● ●●●●●● ● ●●● ●● ● ●● ●● ● ●● ●●● ●● ● ● ●● ●●●●● ●●● ● ● ●●●●● ●● ●●●●● ●● ●●● ●● ● ● ● ●● ●●● ● ●● ● ●● ●● ●● ● ●● ●●●● ● ●●● ● ●● ●● ● ●●● ●● ●● ●● ●●●● ●● ●● ●●● ● ●● ●● ●● ● ● ● ●●●●● ●● ●●● ●●● ● ● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●●●● ● ● ●●● ● ●● ●● ●●●● ●●● ●● ●●●● ●● ● ●● ●●● ●● ●●● ● ● ●●● ●●● ●●● ● ● ●● ●● ● ●●● ●● ●● ●●● ●

● ●● ●●● ●●● ●● ● ● ●●●● ●● ● ●●●● ●● ●●● ●● ●● ●●●● ●● ● ●● ● ●●●● ●● ● ●● ●●●●●●●● ●● ●●●●● ●●●● ●●● ●● ●●● ●●●●●●● ●● ● ●●●● ●● ●● ●●●● ●●● ●●●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●● ● ●● ● ●● ● ●●●● ●●● ● ●●●● ●●●●● ●● ●●● ●●●●●● ●●● ●●● ●● ●● ●●●● ●●● ● ●●● ●●● ●●●●● ●●● ●● ●● ● ●● ●●●●●● ●● ●●● ●●●● ●●●●● ● ●●● ●● ●●● ●●● ●●●● ● ●● ●●●● ●● ●● ●● ●●● ●●● ● ● ●● ●●● ●●●● ●●● ●● ●●● ●● ●● ● ●●●● ●● ●● ● ●● ●●● ● ●●● ●●●●● ●● ●● ●● ● ● ●●● ●● ● ●●● ●● ●●● ●● ● ●● ●●●● ●●● ● ●● ● ●● ●● ●●● ●● ●● ●●●● ●● ●●●●● ●● ●● ●● ●●● ●●● ●● ●● ● ●●● ●●●●●●● ●●●●● ●● ●● ● ●● ● ●●● ●● ●●●● ●● ●●● ●●●● ●●●● ●●●●● ●● ●● ●●●● ●● ● ●●● ●● ● ●● ● ●● ●●● ●●●●● ●●● ● ●● ●●●● ●●● ●● ●●● ● ●●● ●● ●● ● ● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●● ● ● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●● ● ●● ● ● ●●●●● ●● ●●● ● ●● ●● ● ● ●● ●● ● ●● ●● ●●● ●●●●● ●●●● ●●● ●● ●● ●●● ●

● ●● ●●●●●● ●●●●● ●●●● ● ●●● ●● ●●● ● ●●● ● ●● ●● ● ●● ●● ●●●●●●● ●● ● ●●●● ● ●● ●● ●● ● ● ●● ●●● ● ●● ●●● ●●●● ● ●● ●●● ●●● ●● ●● ●● ●● ●●●● ●● ●●● ●● ● ● ●● ●●● ●● ●● ●●●●●● ● ●●● ●● ●● ● ●● ●●● ●● ● ●●●●● ●● ● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ● ● ● ●● ●● ●● ● ●●● ●● ●● ●●● ● ● ●● ● ● ●● ● ●● ● ● ●●●●●● ● ●●● ●●●● ● ● ●●●● ● ● ●● ●● ● ●● ●● ●●●● ● ●●● ● ●●●● ● ●●● ●● ●●●● ●●● ●●● ●● ● ●●● ● ●● ●● ●●● ●● ●●●●● ● ●●●●● ●● ●●● ●● ●●● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ● ● ● ●● ●●●●● ● ●●● ●● ●●● ● ●●● ● ●● ●● ● ●●● ●●●● ●● ●●●● ●●● ●●●●● ● ●● ●●● ●●● ● ●●● ●●●● ● ● ●●●● ●●● ● ● ●●●● ● ●●● ●● ● ●●●●● ●● ● ●● ●● ● ●● ●● ●●● ● ●●●●● ● ●●●● ●●● ●● ●● ●● ● ●● ●● ●●● ● ●●●● ● ●● ● ● ●●● ●● ●●● ●● ●●●● ● ●● ●● ● ●●● ●●●●● ●● ●●●●●● ●● ●●●● ●● ● ●●● ●● ●●● ●●●●● ●●●● ●●● ● ●●● ●● ●●●● ●●●● ●●● ● ●● ● ●● ● ●●● ●●●● ●●● ●●●● ● ●● ● ● ●●●●● ●●● ● ●● ● ●●●●● ●● ●● ●●●● ● ●●● ●● ●● ●●● ●● ●● ● ● ● ●● ●●● ● ●● ●● ●● ●●● ●● ● ●●● ● ● ●● ● ●● ●● ●●● ●●● ●●●● ● ● ●● ●●● ●● ● ●●● ●● ●●● ●● ●● ●● ●●● ●● ● ●● ●● ● ● ●● ●●●● ● ●● ●●● ●● ●●● ● ●●●● ● ●●● ●● ●●● ● ●● ●●● ● ●● ● ●● ●● ●●● ● ● ●● ●● ●●● ● ●● ●●●● ●● ●● ●● ●●● ●● ●●●● ●● ●● ●●●●● ●●● ●● ●● ●●●● ●● ●● ● ●● ●● ● ●●●● ●●● ●●●●● ●● ●●●●● ● ●●●● ●● ●●●●● ●● ●●● ●●● ●● ● ●●● ●● ●● ●● ●●●●● ● ● ●● ●●●●●● ●●●● ● ●● ● ●●● ● ●●●●● ●● ●●● ●●● ● ● ●●● ● ● ●● ●● ● ●●●● ●●● ● ●●●●● ●● ●●●● ● ●● ●● ●● ●● ●●●● ●● ●●●●● ●●●● ●● ●● ●●● ● ● ●●● ● ● ●●● ● ●●●● ●●● ●●● ●● ●●● ● ●●● ●● ●●● ● ● ●● ●●●● ● ●●●● ●●●● ● ●●● ●●● ● ●● ●●● ● ●● ●●● ●● ●●● ●● ● ● ●●● ●●● ● ●●● ● ●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ●●● ●● ●●●● ●●● ●●● ● ● ●● ●● ●● ● ● ●●●●●● ●●● ● ●●●● ●●● ●● ● ● ● ● ●●● ●● ●●● ●● ● ● ●● ●● ● ●●●● ●●●● ●● ● ●●● ●●● ●●● ●● ● ●● ●●● ● ● ●● ●● ●● ●● ●●● ● ●●● ●●● ●● ● ●●●● ●●●●● ● ●●● ●● ●●●●●● ● ●● ● ●●● ● ●● ●●●● ● ●●●● ●● ● ●● ●●●●●● ●●● ●●●●●● ● ●● ● ●●●●● ● ● ●●● ●● ●●● ●●● ●● ●●●● ●● ●●●● ● ●●● ● ●●● ● ●●● ●●●● ● ● ●●● ●●● ●●●●● ● ●●● ●● ● ●● ●● ●●● ● ●● ● ●●● ●●● ● ●● ● ●●●● ● ● ●● ●●●●● ●● ●● ● ● ●● ●● ● ● ●●●●● ● ● ●●● ● ●●●● ●● ●● ● ●● ●●●● ● ●●● ● ●●● ●●● ●● ● ●●● ●●●● ●●●● ● ●●●●● ● ●●●● ●● ● ●●●●● ●● ●●● ●●●● ● ●●● ● ●●● ●●● ●● ●●● ● ●●● ●● ● ●●●● ●● ●● ● ● ●●● ● ●● ●● ●● ● ● ●●●●●● ●● ●●●● ● ●●● ● ●●● ●● ●●●● ● ●●●● ●●●●● ●●● ●● ●● ●●● ●● ● ●● ● ●● ●●●● ●●● ●● ●● ●● ●●● ●● ●● ●● ● ●● ●●●● ●● ● ●●● ● ●● ●● ● ●● ●●

● ●●● ● ●● ●●● ●● ●●●● ●● ●● ●●●● ● ● ●● ●●● ●●● ● ● ● ●●● ●● ●●● ● ●● ●●● ● ● ●● ●●● ●●● ●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●● ●●●● ●● ● ●● ● ● ●●●●● ●●● ●● ●● ●● ●● ● ●● ● ● ●● ●●● ●●● ●● ●● ●● ●● ● ●● ●● ●● ● ●●●●●● ●● ●●● ● ●●● ● ●●●● ●●●● ●●●● ●● ●●● ●●● ●● ●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●●●● ●● ●● ●●● ●● ● ● ●● ●●● ●●● ●● ● ●●● ●● ●● ●● ●●● ● ●●● ●● ●●● ● ●● ●● ● ● ● ●●● ●● ● ●●●●● ●● ●● ● ●●● ● ●● ●● ●● ●●● ●● ● ● ●●● ●● ●●● ●●●●●● ● ●● ●●●●●● ●●●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ●●●● ● ●●● ●●● ●● ●●● ●● ●●●●● ● ●● ●● ●●●●● ●● ●● ● ●●●●● ●●● ●●● ●●● ●●● ● ●● ●● ●●● ●●●● ●● ●● ● ●● ●●● ●● ●●●●● ●●● ●●● ●●●●● ●●●●●● ●●● ●● ● ●●●●●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ● ●●●● ●●● ● ●●●● ●● ● ●●●●● ●●● ●● ●●● ● ●●●●● ●● ●● ●● ●●●● ● ●●● ●● ●● ●●●●●● ●● ●●●● ● ●●● ● ●● ●●● ●● ●● ●●●● ●● ● ●●●● ●●● ●●● ● ●●● ●● ● ●● ●●● ● ●● ●●●● ● ● ● ●●● ●● ●● ● ●●● ●● ●● ●●●● ●● ●●● ●● ●● ● ●●● ● ● ●● ●●● ●● ●● ●● ●●●●● ●●● ●● ●●●●● ●●● ●● ●●●● ●●● ● ● ●● ●● ● ●●● ●● ● ●● ●●●●● ●● ●●● ● ●● ●● ●●●●● ●●● ●●●●● ●●● ●● ●●●● ●●●● ● ●● ● ●●● ●● ●●● ● ●● ●● ●●●● ●●● ●● ●●●● ●●● ● ●● ●●● ●● ●●● ●●● ●● ●● ●●● ●●●● ● ●●● ●● ● ●●●●● ● ●●● ● ●●● ●●● ●● ●●●●● ●●●●● ●

●● ●● ● ●●● ● ●● ●●● ●●●● ● ● ●● ●● ●● ●● ●● ● ●●● ●● ●●● ●●●● ●● ●● ●●● ● ● ●●● ●●● ●●●● ●● ● ●●● ●● ●● ● ●●● ●● ●● ● ●●●●●●●● ●● ●● ●● ●● ●●●● ● ●●● ● ●● ●●● ●●●●● ●● ● ●●● ●● ● ● ●●● ●● ● ● ●●● ●● ● ●● ● ●●●● ●● ●●● ● ● ●● ● ●●●● ●●●● ●●●● ● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●●● ●● ●●●● ●● ●●● ● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ●●● ●●●● ●●● ●● ● ●● ●● ●●● ● ●● ●●● ●●●●● ●●● ●●●● ●●● ●● ●●● ● ●● ●● ●● ● ● ● ●●● ●●●● ● ●●● ● ●● ● ●●●● ● ●●●●● ●●● ●●● ●● ●●● ●● ● ● ●●● ●● ●● ●●●●● ● ●● ●●● ●●●● ●●●● ●●●● ●● ●●● ● ● ●● ●● ● ●● ● ● ●●● ● ● ●● ●● ● ●● ●● ●● ●● ●●●● ● ●● ● ● ●●● ● ●●● ●● ●● ●● ● ●●●● ●● ● ● ●●●●● ●●●● ●● ● ●●● ●● ●●● ●● ● ●●●●●● ●● ●● ●●● ●●● ● ●● ●●●● ● ●● ●● ●● ●●●● ● ●● ●● ● ●● ●● ● ●●●● ●●● ● ● ●● ●● ●●● ●● ●●● ●●●● ●● ●●● ●● ● ●● ● ● ●● ●● ●● ●● ● ● ●●● ●● ● ●● ●●●● ●● ●● ●●● ● ● ● ● ●● ● ●● ●●● ●● ● ●● ● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ● ●●● ● ●●●● ●●●● ●●●●● ● ●●● ●● ● ●● ● ●●● ● ●● ●● ● ●● ●●● ● ●●●● ● ●● ●●● ● ●●● ●●● ●● ●●● ●●● ●●●● ● ●●●●● ● ●● ● ●● ●●●● ● ●● ●● ● ●● ●●●● ●●● ●●● ●● ● ●●● ● ●● ● ●● ●● ●●● ●● ● ●● ●● ●● ●●● ●●●● ●● ● ●● ● ●● ●● ● ●●●● ●●● ● ● ●● ●● ●●●●● ●● ●● ●●●● ●●● ●● ●●●● ● ●●● ●● ●●● ●● ●● ●● ●●● ● ●● ●●● ●●● ●●● ●● ●● ●● ● ●● ●● ● ●● ●● ● ●●●● ●●● ● ● ●● ●● ● ●●● ●● ● ●● ● ●●● ● ●●●● ●● ●● ●● ●●●●● ●● ●●●● ●●●●● ●● ●●● ●●●● ● ●●● ●● ● ● ● ●● ● ● ●● ●● ●● ● ●●● ●● ●●● ●●● ●●● ●●●●●● ●● ● ●●● ● ●●● ●●● ●●● ●● ●● ● ● ●●● ● ● ●●● ● ●●● ● ●● ● ●● ●●● ● ●● ●●●●● ●●● ●● ●● ●● ●● ● ●● ●● ● ●● ●●●● ● ● ● ● ●● ●● ●●●●● ●● ●●● ●●●● ●●● ●●● ●● ●●● ●●●● ● ●●● ●● ●● ●●● ● ● ●● ● ● ●● ●●● ● ●● ● ●●●●● ● ● ● ●● ●● ●● ●● ●●●● ●●● ●● ●●● ● ● ●●● ●● ● ● ●● ●●● ● ●● ● ●●●● ● ●●●● ●● ●● ●●● ● ● ●● ●●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ● ● ●●● ● ●● ● ●● ● ●● ●●● ●●● ● ● ●●●● ●●● ●●●● ● ● ●● ●● ●●● ●●●●●● ●● ● ●●● ●● ●●● ●●● ●● ●●●● ●● ● ● ●●●●● ● ●● ●●● ● ●●●● ●● ●●● ● ●● ● ●● ●●● ●●● ● ●●●● ● ●● ● ●●●● ●● ●●● ● ●●● ● ●● ●●●●● ● ●●●● ● ●●●● ●● ● ●● ●● ●●● ●● ● ●●● ● ●● ●●● ●● ●● ● ● ●●● ●● ●● ●● ●● ● ●●●●● ● ● ●●● ●●● ● ●● ● ●● ● ●● ●● ● ●●●●●● ● ●●● ●● ●● ●●●●● ●●● ● ●●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●●●● ●● ●● ●●●●●● ●●● ●● ●●● ● ●●● ● ●● ●●●● ●● ●● ●●● ●●●● ●● ●●●● ●●●●●● ●●● ● ●●● ●● ● ●● ●● ● ●●● ●●● ●● ●● ●● ●●●●●● ●● ●●● ●● ●● ●● ●● ●● ● ●● ●●● ● ●●● ●● ●● ● ● ●● ●●● ●●●● ●●● ●● ●●● ● ●● ● ● ●●●● ●● ●●● ● ● ●● ●● ●●● ● ●●● ● ●●●● ●● ●●● ●● ● ●●● ● ●●●● ● ●● ●●●●● ● ●● ●● ●● ● ●●●● ● ●●●●●●● ●● ●● ●● ● ●● ● ●●●● ●● ● ● ●● ●● ●●● ● ● ●●● ● ●●● ● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ● ●●● ●● ● ●●● ●● ●● ● ●● ● ●●● ● ●● ● ●●● ●●● ● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ● ● ● ●●● ●● ●● ●●● ● ● ●● ●● ● ●●● ● ●● ●●● ● ●● ●●● ● ● ●●● ●● ● ●● ●● ●●● ●●● ●●● ●● ●● ●●●● ● ●● ●●●● ● ● ●●●●● ●●●● ●● ●●● ●●●●● ●● ● ●● ● ● ●● ●● ●● ● ●●● ●● ● ●●● ●● ●● ● ●●●●● ●●● ●● ● ●● ●● ●● ●● ● ●●● ●● ●● ●● ● ●● ●●●● ● ●●● ●●● ●● ●●● ● ●●●●● ● ●● ●●● ●●● ●●● ● ●●● ●● ●● ●● ●●● ●● ● ●●● ●● ● ●● ●●● ● ●● ●●●● ●●● ●● ●●● ● ●●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ● ● ●● ●●●● ●● ●● ●● ● ●● ●●●● ●● ● ●● ●● ●● ●●●● ● ●●● ● ● ●● ● ● ● ● ●●● ●● ●● ● ●● ● ●●●● ●● ●●● ● ●●● ●●● ●● ● ●● ●●● ● ●●●● ● ●● ●●● ●● ●● ● ●●● ●● ●●● ●● ● ●● ●●● ●● ● ●●● ●●●● ● ●● ●● ●●● ● ●● ● ● ● ●●●● ● ● ●● ●● ●● ●● ● ●● ●●● ●●●● ●●●● ● ● ●●● ●● ● ●● ●●● ●● ●●● ●● ● ● ●●●●●● ●● ●● ●●● ● ●●● ● ●● ●● ●● ● ● ● ●●● ●● ●● ● ●● ●●● ●●● ●●● ●●● ●●●●● ●●●● ●●● ● ●●● ● ●● ● ●●● ●● ●● ●● ●● ●●●●● ● ●● ●● ●●●● ●●● ●● ●● ●● ● ●●● ●●● ●●●● ● ●● ●● ●● ●●●● ●●● ●● ● ●● ● ●●● ●● ●●● ●● ● ●●● ●●● ●● ●●● ●● ●● ●● ●● ●● ● ● ●● ●●●● ●● ●●● ●●●●● ●●● ●● ●●● ●●●●●● ●● ●● ● ● ●●● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ●● ●● ● ●● ●●● ● ●●●● ● ●●●● ● ●●● ●● ●● ●●● ●● ● ●●●●● ● ●●● ● ●●● ●● ●●●● ●● ●●● ●● ●● ●● ● ●●●● ●● ●● ●●● ● ●●●● ●● ●● ●● ●●●● ● ●● ●●●● ●●● ●●● ● ●● ●● ● ●●● ●● ● ● ●● ● ●● ●● ● ●●● ● ●●● ●●●● ●●● ●● ● ● ●● ● ●● ●●● ●● ● ●● ● ●●●●● ●●●●●● ●● ●●● ●●● ●● ●● ● ●●●● ● ● ● ●●● ●● ● ●● ●●●● ● ●●● ●● ●● ●●●● ● ● ● ●● ● ●● ●●● ● ● ● ●● ●●● ●●● ●●●● ●● ● ●● ● ●●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ● ● ●● ●● ●●● ●●● ●● ●● ● ● ●●● ●● ●● ● ●● ●● ● ●●● ●● ●●●●● ●● ● ●● ●●●●●● ● ●● ●● ● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ● ●●● ●●● ● ● ● ● ●● ●●● ●● ●●●● ● ● ●●● ●● ●● ●●● ● ● ●●● ●● ●● ●●● ● ●●●● ●●● ●●● ● ●● ●● ●●●● ●● ●●● ●● ●●● ●●●● ● ●● ● ●● ● ●● ● ●●● ●● ● ● ●● ●●●● ● ●●●● ●● ●●●●●● ● ●● ● ●●●● ●● ●● ● ●●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●●● ●●●●● ●●●●

●●●● ●●●● ●● ●●● ●● ●● ● ●● ●● ●●●● ●●● ● ● ●●●● ●● ●● ●● ● ●●●● ●● ●● ●●● ●● ●● ●● ● ●●●● ● ●●● ●● ●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●●● ● ● ●●● ●●● ●● ● ●● ●● ●

● ●● ●● ●

●●●●●● ●●● ●● ●● ●● ●●● ● ●● ●● ●● ● ●●●●● ●● ●●●● ●●● ● ● ●●● ●●●● ●● ●● ● ●● ●●● ● ●● ● ●●● ●● ● ●● ● ● ●●●● ● ●●●● ●● ●● ●● ● ●● ●● ● ●●●● ●● ●● ●●●● ●● ●●● ● ●●●● ●● ●● ●● ●● ● ●● ● ●● ● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ● ●● ● ● ●● ● ●●●●●● ● ●●● ●●●● ● ●● ●● ●●● ● ●●● ●●●● ● ●● ●● ● ●● ● ● ●●● ●●● ●●●● ● ●● ●● ●● ●● ●●● ●● ●● ● ●● ●● ● ● ●● ● ●● ● ●●●●● ●●● ● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●●●● ● ● ●●● ●●● ●●● ●● ●●●●● ●●● ●● ●● ●●●● ●● ●● ● ●● ●●● ●● ●● ●●● ●●●●●● ●●● ● ●●● ●● ●● ● ● ●● ● ●● ●●● ●● ● ●● ●● ● ●● ●● ●● ●● ●●● ● ● ●● ●●● ●● ●● ● ●● ● ● ●● ●● ●● ● ●●● ●● ●● ●●● ● ●● ●● ●● ●● ●● ●●●● ● ● ●● ●●● ●●●● ● ●●● ● ● ●●● ●●● ●● ●● ●●● ●● ● ●●●● ●● ●● ●● ●●● ● ● ●●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ●● ●●● ●● ●●● ● ●●● ●●● ●●● ●● ●● ●●●● ●● ● ● ●● ●● ●● ●● ● ●●● ●● ●● ●●● ●●● ● ●● ●●●● ● ● ●●● ●●●● ●●● ●●●●● ●● ●●● ●●●●● ● ●● ●●● ● ●● ●●● ●● ●● ●● ● ●● ● ●● ● ●● ●● ●● ● ●●● ●● ●●●● ● ● ●●●● ● ● ●● ●●● ●● ● ●● ● ●● ● ●● ●●●● ● ●●● ● ●● ●● ●● ●●●● ● ●●● ●● ●● ●●●● ●● ● ● ●● ●●● ●●● ● ●●● ● ●●●● ●●●● ● ●●● ●● ●● ●●● ●●● ● ●● ● ●● ● ●● ● ●●●● ●●●●●●● ●●● ● ●●●● ●●● ●● ●● ●● ●●● ●● ●●● ● ●●● ● ●● ●● ●● ●● ● ●● ● ●●●● ●● ●● ●●● ●●●● ● ●●● ● ●●● ●● ●● ● ●●● ●● ● ●● ● ●●●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●● ●● ●

●● ●● ● ●● ●● ●●●● ●●● ●●●● ●●●●● ●●● ●●● ● ●● ●● ● ●● ●● ● ●●● ●● ●● ●●● ●●● ●●● ● ●●● ●●●● ● ●●● ●● ●● ●● ●● ● ●●● ●● ● ●●● ●● ●● ●●● ● ● ●●● ●●● ●● ●●● ● ●●● ● ●●● ● ●● ● ● ●● ● ● ●●● ●●●● ● ●● ●●● ●● ●● ● ●●● ●● ●● ● ●● ●● ●● ● ●●● ●●● ●●●● ●● ●●● ●● ●●●● ● ●●●● ● ●●● ●● ●● ●● ●●● ●●● ●● ●●● ● ●●●● ● ●●● ●● ●● ●●● ●● ●● ● ●● ● ●● ● ●● ●●●● ●● ● ●● ●● ●● ●● ●● ●● ● ●●●● ● ●●●● ●● ●● ●● ●● ● ●● ● ●● ● ● ●● ●● ●● ●● ●● ● ●● ●●●● ● ● ● ●●● ● ● ● ●●● ● ●● ●●● ●● ●● ● ●●● ●● ●●● ●● ●● ● ●● ● ●●● ●●● ●● ●●● ●● ● ●● ● ●● ● ● ● ●●● ● ●● ● ●●● ● ●●●●● ● ● ● ●● ● ●●●●●● ● ●●●● ●● ●● ●● ●● ● ●● ●● ●●●● ● ●●● ● ●● ●● ● ● ●●● ●● ●●●● ●● ●● ●●● ●●●● ● ●● ●● ●●● ● ●● ●● ● ●●●●● ●●● ●●●●● ●●●●● ●●● ●●●● ● ●● ● ●● ●● ●● ● ● ●● ●● ●●●● ● ●● ● ● ●● ●● ●●● ●● ●● ●● ● ●●● ● ●● ●● ●● ●● ●● ●● ●●●●● ● ● ●●● ●●●● ●●●● ●● ●●● ● ●●● ● ●● ●● ● ●●●● ●●● ●● ● ●● ● ● ●●● ●●● ●● ●● ●● ● ●●● ● ● ●● ●●● ●● ●● ● ●● ●● ● ● ●●● ●● ●● ● ●● ●● ●●●●●● ●● ● ● ●●● ●●● ●● ●● ● ●●●●● ●● ●●●●● ● ●●● ● ●● ● ●●● ●●●●● ●● ● ●●● ●●● ●●● ● ●●● ● ● ●●●●●● ●● ●● ● ●●● ●● ●● ●●● ●● ●● ●●●● ●●●● ● ● ● ●●● ● ●●● ●●● ●● ● ●●● ●● ● ●●● ●● ●● ● ● ●●● ●●● ● ●● ●● ●● ●● ●● ● ● ●● ●●●● ●●● ● ● ●●●●●● ● ●● ●● ●● ●● ●●● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ●●● ● ●● ● ●● ●● ●● ●● ● ●●● ● ●●●● ● ●●● ●●● ●● ● ●● ●●● ●● ●● ●● ● ●●● ● ●●● ● ●●● ●●● ●●● ●● ●● ●● ●● ●● ● ●● ●● ●●● ●● ●● ● ● ●● ●●● ●●● ●●●● ● ●● ●● ● ●●● ●●●●● ● ●●●● ●● ●● ● ●●● ●●● ● ● ●● ●●● ●● ● ●●● ● ●● ●● ●●● ●● ●● ●● ● ●●● ● ● ● ●● ●●● ●●●● ● ● ●● ●●● ●● ●●● ●●● ● ●● ● ●● ●●● ● ● ●● ●●● ● ●●●● ●●● ● ●●● ● ● ● ●● ●● ●● ●● ●●●● ●●● ●● ● ●●● ● ●●● ●● ●●● ● ●● ● ●● ●●● ●● ● ●● ●●● ●●● ● ● ●●●● ●●● ●●●● ●● ●●●● ● ●●●● ●●● ●●● ● ●● ●●● ●● ●●●● ●●● ●● ● ●● ●●● ● ●● ● ●● ●●● ●●●● ● ●●●●● ●●●●● ●●●●●●●●●● ●● ●● ● ●●● ● ● ●● ●●● ● ● ●●● ●● ● ●●● ●●●● ●● ●●● ●●● ●● ●● ●●● ● ●● ● ●● ● ●●● ●● ● ●● ● ●●● ●●●● ● ● ●● ● ●●●● ●● ●●●● ●●● ●● ●●● ● ● ●●● ●●●● ●● ●● ● ●● ●● ●●● ●●● ●● ● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●●●● ●● ●●● ● ● ●●●●● ● ●● ●●●●● ●●● ●● ●●● ●● ●● ●●● ● ●● ● ● ●●● ●● ●●● ●● ● ● ●●●● ●●● ●● ●●●

php
c#

perl
java

sh
ruby

erlang
tcl

c++
ansic

1 10 100 1000 10000

of developers

Figure 8. Size of Development Teams for the Top-10 Programming
Languages with the Highest Average Size of Development Teams

The top-3 languages with projects having highest
average team sizes are Ansi C, C++ and TCL. Ansi C
has a high mean due to the presence in our dataset
of highly distributively developed projects, such as
Linux, whose code are in Ansi C.

V. THREATS TO VALIDITY

This study bears some threats to validity mainly related

to the datasets we rely on.

Origin of datasets: Our empirical findings are based on

open source projects found on GitHub which lead to results

that may not generalize to the universe of software projects

produced by developers. We have not considered legacy

projects that are still in use but not actively developed on

GitHub either. Other practices behind the corporate wall may

lead to a different popularity ranking of the languages that

programmers are paid to work with. Nonetheless, our find-

ings remain relevant as many companies, such as Facebook

and Google, release some of their software as open source

and invest in open source projects that appear on GitHub.

Furthermore, companies are likely to hire developers based

on the skills they can justify and that can be leveraged,

implying that languages used for open source development

are unlikely unrelated to those used in corporations.

Size of datasets: This study is limited to 100,000

projects. Though a sizeable sample, it cannot equate the

millions of software programs whose code can be retrieved

from the World Wide Web [1]. GitHub alone contains over

1 million public repositories. It is to be noted however that

our findings on 100,000 projects, in the case of language

appearance in projects, are inline with the ranking provided

by GitHub10. This suggests that our sample dataset is

representative of the universe of GitHub projects.

VI. RELATED WORK

The history, the fundamentals, the trends, and the evo-

lution of programming languages have been the subject

of numerous studies in the literature. As early as 1963,

the proliferation of programming languages has lead Rosen

Saul to produce a “historical” survey of programming lan-

guages [9]. That study was then enriched in 1966 to account

for further developments [10], and the author has proposed a

10-year summary in times where Cobol and Fortran were the

languages used in most of the world production systems and

were believed to remain so into “the foreseeable future” [12].

Sammet has also discussed in this epoch the fundamentals

of programming languages, addressing both used languages

and unimplemented concepts [13].

A number of research work has also gone into defining

what makes a programming language popular while others

have proposed explanations to how some languages have

outlived community expectations and others were early

abandoned. In his work on the longevity of languages,

10https://github.com/languages

311

Mashey has suggested that early successes in programming

languages such as C have built such an ecosystem that

it may have become prohibitively costly to move to new,

and possibly, better languages [8]. In earlier work, Wadler

has discussed why no one uses functional languages [16].

We have however found that, 15 years later, Haskell and

ML have not disappeared and are still lead languages in a

significant portion of software development projects. More

recently, Derk has written an essay from a historical per-

spective [3] where she concludes that the language quality

itself is not important, one must rather look at the application

domain the language is fit for. This suggestion appears to

relate to some of our findings: JavaScript and Ruby are fit

for web programming which, with today’s rush into social

media, is a strongly evolving application area. Thus the

popularity of these languages appears to be high, despite

common critics on different aspects of the languages.

Listing programming languages is relatively easy. Many

websites, such as Wikipedia, enumerate hundreds of lan-

guages. Ranking languages in terms of popularity is however

more challenging. Most attempts have indirectly inferred the

popularity of languages by using different non-programming

indicators: what languages are most sought in the job market;

which ones are most referred to in fora; etc.

Ranking based on search engines’ hits: The TIOBE

software research firm, based in the Netherlands, publishes

every month the TIOBE programming community index [15]

where they provide the trends for Turing Complete [14]

programming languages that have entries in Wikipedia. They

base their index on the number of hits from Alexa’s11 top

web sites with search facilities, including known search

engines such as Google, Bing, Yahoo! and Baidu, and others:

Blogger, wikipedia, Amazon, Youtube, etc. In their June

2012 report, TIOBE’s analysts confirm the increase in trend

for the Haskell programming language that they have been

observing for some time. Nonetheless, it is to be noted

that the TIOBE index is not about the best programming

language or the language in which most lines of code have

been written. Instead, TIOBE’s index is an indication of the

buzz surrounding a programming language.

Ranking based on real usage: The above depicted web-

sites indirectly investigate the popularity of programming

languages supposedly because it is impossible to “look over

programmers shoulders and note what languages they’re

coding in” [6]. Yet, the momentum of Open Source software

has flooded the world wide web with all-size, all-type

and all-purpose software projects in repositories that track

information on every aspect of the development. GitHub

is one example of hosting platform where such studies

can be conducted on real-world projects. To the best of

our knowledge, Drew Conway was the first to exploit

information from GitHub to investigate the popularity of

11http://www.alexa.com

programming languages [2]. He directly relied on GitHub’s

language popularity ranking which is based on the number

of projects they appear in, and compares12 it with data

on developer questions on StackOverflow. In our study

however, we investigate beyond the appearance in projects.

We consider the actual usage of the language in the code

base compared to other the languages.

VII. CONCLUSION AND FUTURE WORK

Programming languages come and go. Only a few are

adopted and thrive. While many scientific studies have

discussed how to create a good programming language and

why some languages become popular, less attention has been

paid to the actual popularity of languages.
In this paper, we describe the findings of our empirical

study on a sizeable dataset of 100,000 projects. This study

corroborates different assumptions made in the literature on

the popularity of programming languages. We have found

that earlier popular languages, such as C, are still current

with a large code base, while the rush in web development

has made JavaScript and Ruby pervasive. Finally, Objective-

C, a language tightly related to the products of a successful

vendor, namely Apple, has also been gaining much attention.
In future work, we plan to investigate the evolution in

the popularity of programming languages. We also plan to

consider a bigger dataset with 1 million projects from both

GitHub and other project hosting sites.

REFERENCES

[1] J. M. Bieman and V. Murdock, “Finding code on the world wide
web: A preliminary investigation,” in SCAM, 2001.

[2] D. Conway, “Ranking the popularity of programming languages,”
http://www.dataists.com/2010/12/, 2010.

[3] M. Derk, “What makes a programming language popular?: an
essay from a historical perspective,” in ONWARD, 2011.

[4] R. T. Fielding, “Architectural styles and the design of network-
based software architectures,” Ph.D. dissertation, University of
California, Irvine, 2000.

[5] J. Fuegi and J. Francis, “Lovelace babbage and the creation of the
1843 ’notes’,” Annals of the History of Computing, IEEE, vol. 25,
no. 4, pp. 16–26, 2003.

[6] R. S. King, “The top 10 programming languages,” http://spectrum.
ieee.org/at-work/tech-careers/.

[7] J. Loeliger, Version Control with Git: Powerful Tools and Tech-
niques for Collaborative Software Development. O’Reilly, 09.

[8] J. R. Mashey, “Languages, levels, libraries, and longevity,” Queue,
vol. 2, no. 9, pp. 32–38, Dec. 2004.

[9] S. Rosen, “Programming systems and languages: a historical
survey,” in AFIPS, 1964, pp. 1–15, reprinted in [11].

[10] ——, Programming systems and languages. Some recent develop-
ment, 1966, in [11], pp. 23-27.

[11] ——, Programming systems and languages. McGraw Hill, 1967.
[12] ——, “Programming systems and languages 1965-1975,” Com-

mun. ACM, vol. 15, no. 7, pp. 591–600, Jul. 1972.
[13] J. E. Sammet, Programming Languages: History and Fundamen-

tals. Prentice-Hall, Inc., 1969.
[14] M. Sipser, Introduction to the Theory of Computation, 1st ed.

International Thomson Publishing, 1996.
[15] TIOBE, “Tiobe programming community index definition,”

http://www.tiobe.com/index.php/content/paperinfo/tpci/tpci
definition.htm.

[16] P. Wadler, “Why no one uses functional languages,” SIGPLAN
Not., vol. 33, no. 8, pp. 23–27, Aug. 1998.

12See http://redmonk.com/sogrady/2012/09/12/language-rankings-9-12/

312

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2013

	Popularity, interoperability, and impact of programming languages in 100,000 open source projects
	Tegawende F. BISSYANDE
	Ferdian THUNG
	David LO
	Lingxiao JIANG
	Laurent Réveillère
	Citation

	Popularity, Interoperability, and Impact of Programming Languages in 100,000 Open Source Projects

