
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2013

Orion: A software project search engine with
integrated diverse software artifacts
Tegawende F. BISSYANDE

Ferdian THUNG
Singapore Management University, ferdianthung@smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Lingxiao JIANG
Singapore Management University, lxjiang@smu.edu.sg

Laurent Réveillère

DOI: https://doi.org/10.1109/ICECCS.2013.42

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
BISSYANDE, Tegawende F.; THUNG, Ferdian; LO, David; JIANG, Lingxiao; and Réveillère, Laurent. Orion: A software project
search engine with integrated diverse software artifacts. (2013). ICECCS 2013: 2013 International Conference on Engineering of
Complex Computer Systems: Singapore, 17-19 July 2013: Proceedings. 242-245. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/1816

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13250343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICECCS.2013.42
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Orion: A Software Project Search Engine with
Integrated Diverse Software Artifacts

Tegawendé F. Bissyandé1, Ferdian Thung2, David Lo2, Lingxiao Jiang2 and Laurent Réveillère1
1Laboratoire Bordelais de Recherche en Informatique, France

2Singapore Management University, Singapore
bissyande@labri.fr, ferdianthung@smu.edu.sg, davidlo@smu.edu.sg, lxjiang@smu.edu.sg, reveillere@labri.fr

Abstract—What projects contain more than 10,000 lines of code
developed by less than 10 people and are still actively maintained
with a high bug-fixing rate? To address the challenges for
answering such enquiries, we develop an integrated search engine
architecture that combines information from different types of
software repositories from multiple sources. Our search engine
facilitates the construction and execution of complex search
queries using a uniform interface that transparently correlates
different artifacts of project development and maintenance, such
as source code information, version control systems metadata,
bug tracking systems elements, and metadata on developer
activities and interactions extracted from hosting platforms.

We have built an extensible system with an initial capability of
over 100,000 projects collected from the web, featuring various
software development artifacts. Using scenarios, we illustrate the
benefits of such a search engine for different kinds of project
seekers.

I. INTRODUCTION

Software programmers, managers, and researchers often
have the need to search for software projects for various
reasons, such as looking for good pieces of code to reuse,
looking for a good project to join, looking for good subjects
for analysis, etc. However, their activities are often challenged
by the difficulties in identifying appropriate software projects
satisfying their needs. For example, in software engineering
research, developing evidences to validate one’s results often
requires empirical evaluation with real-world datasets that are
collected on the basis that they hold properties relevant to the
evaluation. To this end, researchers usually resort to existing
software project repositories where large amounts of data are
publicly available for use to answer an enquiry like “what
projects produce source code with more than 1,000 test cases
and where more than 10,000 bugs have been reported?”.
Unfortunately, identifying and collecting such data, while
lacking any scientific value, is an obligatory passage which
is commonly recognized to be a tedious exercise [3]–[5].
Indeed, the dispersion of datasets in various repositories as
well as the heterogeneity of their representations complicate
extensive analysis of data from multiple sources. Furthermore,
extracting knowledge from the large sets of information is
challenging as it requires time, computational power, and an
understanding of the correlations that exist among the data.
Consequently, researchers who undertake to collect software
data for their studies usually spend a significant portion
of their time searching across different platforms to look
for the few software systems that meet their requirements.

Simplifying software data collection and manipulation as well
as improving navigation across those data may save much
research time and yield a positive impact on the strength and
the validity of research studies. These challenges also apply
to developers who can hardly determine which projects would
benefit the most from their expertise while being a “friendly”
development environment for them, and to users who often
experience frustration in their quest for the “right” software to
use.

In this work, we propose Orion, a search engine architecture
where information extracted from source code, versioning
repositories, bug tracking systems, collaborative development
platforms, etc. are merged to build a knowledge database that
can easily be queried through a user-friendly language, the
Orion DSL. To this end, we have acquired and curated large
amounts of data from a number of popular project hosting plat-
forms. We have then defined and isolated a number of software
system characteristics and their corresponding development
artifacts that we have furthermore linked to enable advanced
queries that may span over multiple information sources.

Orion combines the data sources and integrates the informa-
tion so as to allow the linked data to be searched in a unified
platform. Related work to ours has mainly focused on making
the data readily available by means of centralization [1],
[5], or aimed at regularly delivering snapshots and statistics
on monitored projects [7]. While these efforts have enabled
researchers to more easily study the data globally, they do not
expose any new combinations of data to yield richer datasets,
nor do they allow for advanced queries across data sources.
We extend these work by building a search engine on top of
a knowledge database.

The main contributions of this paper are as follows:
• We discuss the opportunities and challenges in the context

of project search by exploring a few search scenarios.
• We propose the Orion search engine for empowering

users, developers and researchers in their quests.
• We highlight the capabilities of our prototype implemen-

tation with datasets from a large variety of sources, such
as bug reports, source code versioning information, and
developer activities, from tens of thousands projects.

Section II motivates this work and outlines the challenges
that we face in the design of a project search engine. Sec-
tion III and IV discuss our approach and related work. Finally,
Section V summarizes the status and future work.



II. MOTIVATIONS

Thanks to the momentum of open source philosophy, a
wide range of project development artifacts are available on
project homepages and on hosting platforms, creating un-
precedented opportunities for research studies on real software
development activities, for code reuse by novice as well as
experienced programmers, for the exploration of diversified
software alternatives, etc. Discovering the relevant project
however, remains a tedious endeavor, with the current search
capabilities on the world wide web. We now describe complex
and challenging search scenarios.

A. Search Scenarios
A programmer searching for a good and suitable project

to reuse. Mark is a programmer whose latest assignment
involves the implementation of a visualization software. He
has opted for OpenGL, but for bootstrapping reasons, he is
seeking code samples for understanding the internals of the
API and potentially for reuse. Mark thus seeks (1) a project
dealing with OpenGL, that is (2) still actively maintained and
that (3) other people have tested before and contributed with
feature requests and bug reports. In addition, Mark has an
obligation to (4) respect his company restrictions on licenses.

Unfortunately, this search is challenging using the tradi-
tional approach. It consists of scanning programmer forums,
and visiting several development websites. To address these
challenges, we build an extensible and maintenable knowledge
database of software projects that will deliver rich query
capabilities for users.
A researcher on a quest for datasets. Research fellow Robert
is interested in bug localization. To assess his latest approach,
he is in need for datasets from several programs with specific
development properties: (1) The programs must have had a
significant number of bugs during their development cycle;
(2) the programs should include test cases as, commonly, test
cases allow to detect many bugs and thus can be used to replay
software faults; (3) finally, to reduce the threats to validity and
ensure that his approach can be generalized, Robert is seeking
for programs from different software development teams.

As in the previous scenario, this search scenario requires
information that is dispersed and may even be hidden in
the deep web (e.g., in the source code). Thus, to retrieve
such a set of programs, Robert must visit numerous websites,
potentially downloading several software programs that will
later be dismissed, before settling for a set of datasets that is
smaller than he hoped for or whose development artifacts do
not properly fit his goals.

B. Summary of Challenges
From the scenarios depicted above we distinguish two main

challenges for an effective search of software projects on the
web:

1) Dispersed Information: Information on development ar-
tifacts of software projects are stored in heterogeneous reposi-
tories which are often located at various decorrelated sites and
which, furthermore, may not be connected among them: e.g.,
developers commit code changes in version control systems,

report and manage bugs in bug trackers, discuss and interact in
mailing lists or hosting platforms, etc. This dispersion of data
complicates any search that leverages a combination of criteria.
Even on hosting platforms, such as GitHub1 and Freecode2,
where these information appear together in the project page,
they are still not integrated in a way that allows a search using
criteria based on multiple information types.

2) Flat Queries: Traditional search engines like the
GoogleTM search engine, index web pages based on the appear-
ance of terms and rely on information retrieval techniques to
return query results. Consequently, a project seeker who enters
a flat query, e.g., “project in Ocaml”, can only expect search
engines to return pages containing the provided keywords
without any guarantee that the terms appearing in the pages
bear the same meaning as intended by the user. Thus, while
having been proven powerful and scalable, current search
engines are simply not data aware [2]. Indeed, in such settings,
the notion of a project entity does not exist and meaningful
project query results cannot be returned where all attributes
are composed to form the relevant data.

III. ORION

To address the challenges for finding relevant software
projects, two essential requirements must be met, namely (1)
information integration to limit the impact of the heterogeneity
of software repositories as well as their dispersion in various
locations and (2) the possibility for an effective search through
an expressive query system. The design of the Orion search
engine approach, illustrated in Figure 1, is motivated by
these requirements. The main objective of Orion is to reduce
the gap between user’s search intent and the interpretation
that search engines associate to search queries. To this end,
we propose to use a domain-specific language to formulate
search specifications that describe the criteria for selecting
relevant projects. The queries written with the high-level Orion
DSL are translated into low-level advanced database queries
where several information tables are joined to select, from
a knowledge database, a set of projects. This knowledge
database of projects is constructed and maintained by crawling
the web for project code and development artifacts.

Knowledge 
database

Knowledge 
database

Source code repositories

Bug/issue trackers

Version control 
systems

Project pages

….

Web crawl + Extraction + Processing

DB queriesDB queries

Project-search 
domain-specific query

Project-search 
domain-specific query

Translation

Fig. 1. The Orion approach
A software project entity includes a variety of information

types including project metadata such as the project name, its
owner, its description and a set of labels defining it, source
code information such as the used programming languages, the
number of lines of code and the presence of test cases, bug
reports and feature requests, development context information

1 github.com 2 freecode.com

2



such as project creation date, different code commit dates, size
of development team and developers. All these information
types must be captured by the DSL and should be readily
extractable from the knowledge database.
A. A Declarative Query Language

Expressive and intuitive queries are essential for improving
the user-experience in the quest of software projects. The
Orion DSL3 was built to capture the characteristics of software
projects, the variety of search criteria, and the readiness at
which users can navigate across project data. This DSL is
close to human natural language and uses common English
keywords and expressions (e.g., “SEARCH 3 PROJECTS”).

We illustrate the expressiveness of the language by provid-
ing a specification for a possible query that programmer Mark
(cf. Section II-A) might submit for his search scenario. In this
query, the programmer is searching for an application dealing,
i.e., tagged, with “OpenGL” and whose user community is
still interested in the project and continues to submit requests
for improvements (the numbers of feature requests and bug
reports are each larger than zero). At the same time, the
development team must have honored more feature requests
and fixed more bugs than the numbers of current ones. Finally,
the programmer filters out all licensing schemes (namely GPL
v1 and GPL v2) that conflict with his company policy.

The DSL specification in Figure 2 describes the query
for projects that contain candidate code for reuse by a pro-
grammer. In this case, the requester imposes search criteria
that checks the paradigms and techniques (e.g., webservice,
cryptographic algorithms, graphics library etc.) developed or
used in the projects. The search also contains an exclude block
which removes from the results projects that match specific
criteria. Finally, this query explicitly suggests a diversification
of the results from different project owners. It furthermore
sorts the results to return in priority the first 2 projects with
the longest existence period.

SEARCH 2 PROJECTS: NAME, LICENSE, LABELS, SUMMARY, FIRST COMMIT,
MAIN LANGUAGE, NEW FEATREQS, FEATREQS CLOSED,
NEW BUGREPS, BUGREPS CLOSED, LAST COMMIT

INCLUDE:
LABELS = opengl
FEATREQS CLOSED > NEW FEATREQS
BUGREPS CLOSED > NEW BUGREPS

;;
EXCLUDE:

LICENSE = GPLv1|GPLv2
;;
PREFER:

OWNER IS DIFFERENT
CREATION DATE IS FAR

;;

Fig. 2. Programmer query for candidate library and code for reuse
This specification example highlights the need for a knowl-

edge database which contains a sizeable corpus of software
projects containing a variety of information types that are
linked to form project entities which can be queried and for
a dedicated engine for translating the Orion specification in
low-level requests that could be executed by the underlying
knowledge database.
B. A Knowledge Database

The Orion integrated search engine is built atop a knowledge
database that is constructed in two steps: Firstly, we collect

3 Due to space constraints, further information on the DSL is only available
at http://momentum.labri.fr/orion

software project data from around the web; Secondly, we infer
the links among data from various sources, merge the data, and
expose them for queries.

1) Harvesting the web: The World Wide Web has endless
amount of information on software development projects. With
the momentum on open-source development, a number of
platforms have emerged to offer project hosting services.
Sourceforge4 and Google Code5 and the GitHub6 social coding
site are popular examples of such platforms that mainly are
built around source code repositories while providing other
tools such as bug tracking systems. Strong organizations, such
as the Apache Software Foundation7 or the Linux community8,
host the development of their projects on their own portals
where large amounts of data are available for download.

a) GitHub - a software project corpus In this work, we
use data collected from GitHub to build the main corpus
of software projects for our database. This platform is very
convenient for repository mining as it provides an extensive
REST API9 for accessing its internal data stores. We have used
the API to retrieve general information on 100,000 repositories
hosted by GitHub. Nevertheless, given a project, its informa-
tion can be incomplete in GitHub. We therefore augment our
data with information extracted from other hosting platforms
and project development portals to enrich the amount of
information collected for many projects.

b) Reaching out to other platforms and beyond the web
As GitHub is meant for collaborative development, single-
man projects for delivering small utilities are often hosted
on other platforms such as Google Code and Freecode10.
Google Code furthermore provides extensive tagging facilities
to developers for labelling and categorizing their projects.
These tags can be relied upon to improve query results. Due to
these considerations, we also collect data for 50,000 projects
from Google Code and for 35,000 projects from Freecode. All
these project sources provide common information types, such
as name and source code, which are already available in the
corpus in the case of projects that are also hosted in GitHub.
In such cases, the corpus is augmented with information types
that are not available in GitHub. However, when a project
is only available from one source, the queryable information
types are restricted to those available in the dataset.

Finally, we note that other important information for the
success of queries, as illustrated by our motivating search
scenarios, are not apparent on the hosting platforms. These
information include the number of lines of code which can
only be inferred after an offline processing of source code.
The real distribution of programming languages used in the
projects also requires a refined investigation of the source
code of each project to differentiate the main language from
appearing languages. The source code tree structure from
which we deduce e.g., the extent of test cases is also not
available directly from project page. Instead, we download

4 sourceforge.net 5 code.google.com 6 github.com 7 apache.org
8 kernel.org 9 api.github.com 10 freecode.com

3

http://momentum.labri.fr/orion
sourceforge.net
code.google.com
github.com
api.github.com
freecode.com


TABLE I
QUERY RESULTS OF PROGRAMMER-SOUGHT LIBRARIES

NAME LICENSE SUMMARY LABELS FEATREQS BUGREPS NEW FEATREQS NEW FIRST LAST MAIN
CLOSED CLOSED FEATREQS BUGREPS COMMIT COMMIT LANGUAGE

angleproject New BSD License ANGLE: Almost Native d3d, google, graphics, html5, 15 182 8 27 2010-03-03 2012-04-04 cppGraphics Layer Engine OpenGL, OpenGLES, webgl
skia Other Open Source 2D Graphics Library 2D,C,cplusplus,CrossPlatform [...] 10 166 12 87 2006-09-20 2011-09-16 cppOpenGL,PDF,Perspective,Vector

every source code repository ourselves in order to explore
these properties.

In total, our knowledge database supports a dozen informa-
tion types and is extensible to include additional types. After 1
week of continuous data collection, we have processed about
1.5 terabytes of raw data to fill our MySQL database with
2 gigabytes of harvested information data. To ensure query
performance, we have referred to the best practices in MySQL
database tuning, and created lookup indices in all tables.
C. Querying with Orion

The Orion search engine takes as input a high-level specifi-
cation that is checked for correctness and translated into a low-
level database request for querying the knowledge database.

In Table I we show the results of the programmer request.
The results are comprised of projects with the “opengl” label
with code licenses that are neither GPLv1 nor GPLv2. The
query was answered by aggregating project data from GitHub,
Google code and source code raw data. The engine exploited
the license annotations and the tags provided in Google code
by the developer teams.

Table II shows the result of the researcher query that were
returned by the Orion search engine. In this case, the specifi-
cation11 requested 5 projects with at least 100 bug reports and
1000 test cases from different development communities. To
identify those relevant projects, Orion correlated information
from repository metadata, bug tracking systems, and source
code. TABLE II

QUERY RESULTS OF RESEARCH DATASETS

NAME Organization # BUGREPS # TESTS
rails rails 6760 1318
node joyent 3491 2709
jboss-as jbossas 2541 3448
maqetta maqetta 2596 3137
hiphop-php facebook 518 5093

IV. RELATED WORK

In [10], Nagappan has reported on the discussions of a work-
ing group that describes the opportunities and challenges in
using open source software repositories for empirical studies.
In the past years, significant effort has been spent into collect-
ing, curating, and analyzing data from open source projects
around the world. The FLOSSMole12, Flossmetrics [3] and
Sourcerer [1] projects collect data and/or provide statistics on
their collected data, but are not suitable for selecting a subset
or identifying a unique project based on desired properties.

The GHTorrent project aims at bringing GitHub’s rich prod-
uct and process data to the hands of research community [5].
Unfortunately, contrary to Orion, they do not improve this col-
lection for the many projects whose real development activities
occur outside of GitHub. The FRASR framework for analyzing
software repositories has mostly focused on addressing the

11 More information at http://momentum.labri.fr/orion 12 flossmole.org

challenges for data collection and curation [11]. They do not
exploit the large datasets in GitHub and its clean APIs. The
TA-RE project aims to facilitate sharing of benchmark datasets
among researchers [8], through an exchange language.

Project hosting platforms such as GitHub offer search
facilities in their user interfaces and through their APIs. The
capabilities of these search engines are however limited to a
few information types (e.g., search by language), and do not
allow advanced queries across on multiple criteria. Finally,
search results are returned as unstructured text [9].

CodeBroker [12], Examplar [6] and PortFolio [9] identify
and return relevant projects or functions by mining source code
repositories. Orion on the hand is focused at searching for
project entities based on different search criteria for diverse
development artifacts.

V. CURRENT STATUS & FUTURE WORK
In this paper, we have introduced Orion, a unified platform

for searching relevant software projects. We have downloaded
and processed software development artefacts for tens of
thousands of software projects on popular hosting platforms
and crawled development artifacts data on the web to build our
prototype knowledge database. Orion enables the execution of
various complex queries that are not supported by traditional
web search engines. Orion furthermore comes with a language
targeted at project search.

We continue to collect more project data into our knowledge
database. We are currently assessing the Orion approach
through a large user study to explore four aspects: (1) the
actual need for Orion, i.e., how does it compare with tra-
ditional search engines?, (2) its usability/expressiveness to
evaluate the intuitiveness and capabilities of the DSL, and (3)
its productivity in terms of the satisfaction of users towards
the results yielded by the search engine.

REFERENCES
[1] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An internet-scale

software repository,” in SUITE, 2009.
[2] T. Cheng and K. C.-C. Chang, “Entity search engine: Towards agile

best-effort information integration over the web,” in CIDR, 2007.
[3] J. M. Gonzalez-Barahona, G. Robles, and S. Dueñas, “Collecting data

about floss development: the flossmetrics experience,” in FLOSS, 2010.
[4] G. Gousios and D. Spinellis, “A platform for software engineering

research,” in MSR, 2009.
[5] ——, “Ghtorrent: Github’s data from a firehose,” in MSR, 2012.
[6] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and

C. Cumby, “A search engine for finding highly relevant applications,”
in ICSE, 2010.

[7] J. Howison, M. Conklin, and K. Crowston, “FLOSSMole: a collaborative
repository for FLOSS research data and analyses,” IJITWE, Jul. 2006.

[8] S. Kim, T. Zimmermann, M. Kim, A. Hassan, A. Mockus, T. Girba,
M. Pinzger, E. J. Whitehead, Jr., and A. Zeller, “TA-RE: An exchange
language for mining software repositories,” in MSR, 2006.

[9] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in ICSE, 2011.

[10] N. Nagappan, “Potential of open source systems as project repositories
for empirical studies working group results,” in Empirical Software
Engineering Issues, 2006.

[11] W. Poncin, A. Serebrenik, and M. van den Brand, “Process mining
software repositories,” in CSMR, 2011.

[12] Y. Ye and G. Fischer, “Supporting reuse by delivering task-relevant and
personalized information,” in ICSE, 2002.

4

http://momentum.labri.fr/orion
flossmole.org

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2013

	Orion: A software project search engine with integrated diverse software artifacts
	Tegawende F. BISSYANDE
	Ferdian THUNG
	David LO
	Lingxiao JIANG
	Laurent Réveillère
	Citation


	Introduction
	Motivations
	Search Scenarios
	Summary of Challenges
	Dispersed Information
	Flat Queries


	Orion
	A Declarative Query Language
	A Knowledge Database
	Harvesting the web

	Querying with Orion

	Related work
	Current status & Future work
	References

