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Resistance to available antibiotics in pathogenic bacteria is currently a global challenge since the number
of strains that are resistant to multiple types of antibiotics has increased dramatically each year and has
spread worldwide. To unlock this problem, the use of an ‘antibiotic adjuvant’ in combination with an
antibiotic is now being exploited. This approach enables us to prolong the lifespan of these life-saving
drugs. This digests review provides an overview of the main types of antibiotic adjuvants, the basis of
their operation and the remaining issues to be tackled in this field. Particular emphasis is placed on those
compounds that are already in clinical development, namely B-lactamase inhibitors.

© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
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The discovery of penicillin during the first half of the 20th cen-
tury and all the antibiotics developed thereafter undoubtedly rep-
resents one of the most important achievements in medicine.
These drugs have not only saved millions of lives but are also a
key tool in the success of common hospital procedures such as
general surgery, organ transplantation, dialysis for renal failure
and chemotherapy for cancer, for which their capacity to treat sec-
ondary infections is crucial. Regrettably, the ability of these drugs
to cure infectious diseases is now in serious danger due to the
emergence and spread worldwide of strains that are multidrug-
resistant to antibiotics.! The European Center for Disease Preven-
tion and Control (ECDC) estimates that about 25,000 Europeans
die each yearas a direct consequence of a multidrug-resistant
infection and €1.5 billion is spent in extra patient care costs.?
According to the U.S. Center for Disease Control & Prevention
(CDC), a similar number of deaths also occur in the USA.

The WHO has recently published a global priority pathogens list
of antibiotic-resistant bacteria (Table 1).> Based on diverse criteria
such as mortality, prevalence of resistance, treatability or current
pipeline, bacterial pathogens have been ranked as critical, high
and medium. This study revealed that the situation is highly criti-
cal for healthcare-associated infections caused by the Gram-nega-
tive ESKAPE pathogens Acinetobacter baumannii, Pseudomonas
aeruginosa and Enterobacteriaceae (including Klebsiella pneumoniae,
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Escherichia coli, Enterobacter spp., Serratia spp., Proteus spp., Provi-
dencia spp., and Morganella spp.). These bacteria are resistant to
carbapenems, which are the only remaining therapy that is often
considered as antibiotics of last resort.* To this list we must add
Mycobacterium tuberculosis, the causative agent of tuberculosis,
which is already considered as a top global health priority. The
high and medium categories involve increasingly drug-resistant
bacteria that require more monitoring and prevention activities.
This priority list of bacterial pathogens is an excellent guide for
the prioritization of incentives and funding for R&D aimed at dis-
covering new and effective antibacterial therapies, which is
undoubtedly necessary.’

A recent study has shown that resistance to antibiotics is a nat-
ural phenomenon that predates the golden age of antibiotic ther-
apy due to the intrinsic evolutionary character and adaptability
of bacteria.® Nonetheless, human behavior has undoubtedly been
decisive in reaching bacterial resistance to the current alarming
levels. One of the key factors is the abuse and misuse of these drugs
over the years in humans, animals and plants, including for the
treatment of non-bacterial diseases. As shown recently, this behav-
ior has favored the appearance of tolerance and this, in turn, facil-
itates the emergence of resistance.” Another critical point that is
limiting our capacity to deal with multidrug resistant bacteria is
the flagging investment in R&D on novel antibiotics by the large
pharmaceutical companies since the 1960s. This is mainly due
to: (a) the huge economic cost of bringing a drug to the market;
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Table 1
WHO priority bacterial pathogens list for research and development of new
antibiotics.”

Priority ~ Bacterial Pathogen

Critical ~ Acinetobacter baumannii, carbapenem-resistant
Pseudomonas aeruginosa, carbapenem-resistant
Enterobacteriaceae,” carbapenem-resistant, 3rd generation
cephalosporin-resistant

Mycobacteria, including Mycobacterium tuberculosis

High Enterococcus faecium, vancomycin-resistant
Staphylococcus aureus, methicillin-resistant, vancomycin
intermediate and resistant
Helicobacter pylori, clarithromycin-resistant
Campylobacter, fluoroquinolone-resistant
Salmonella spp., fluoroquinolone-resistant
Neisseria gonorrhoeae, 3rd generation cephalosporin-resistant,
fluoroquinolone-resistant

Medium Streptococcus pneumoniae, penicillin-non-susceptible
Haemophilus influenza, ampicillin-resistant
Shigella spp., fluoroquinolone-resistant

@ Ref. 3.
P It includes Klebsiella pneumonia, Escherichia coli, Enterobacter spp., Serratia spp.,
Proteus spp., and Providencia spp., Morganella spp.

(b) the low profit margin for non-chronic diseases of this type com-
pared with continuing ones such as cancer or mental diseases and
(c) the belief that the great therapeutic arsenal available was suffi-
cient to deal with this issue.® As a consequence, the clinical pipe-
line for antibiotics is almost empty compared to more than 500
chronic-disease drugs for which resistance is not an issue.

It is also relevant that most of the antibiotics in clinical use tar-
get a small number and the same type of key functions for bacterial
survival and resistance to them is widespread and well known
(Table 2).°

Specifically, the available antibiotics target: (1) cell-wall
biosynthesis; (2) protein synthesis (subunit 30S or 50S of ribo-
some); (3) DNA replication and repair (RNA polymerase, DNA gyr-
ase); (4) folic acid metabolism; and (5) membrane structure. An
analysis of the antibiotics currently in clinical development (about
40 small molecules) revealed that unfortunately this trend has not
changed significantly (Fig. S1).'° The Pew Charitable Trust high-
lighted that nearly all of the antibiotics approved in the last
30 years are modifications of earlier classes to make them more
efficient and robust against resistant bacteria. Specifically, only
two of them are compounds with a new mechanism of action
(Fig. 1): (a) Brilacidin (PMX-30063, Phase 2, Cellceutix Corp.) is a
synthetic mimetic of host defense protein, which is the first line
of defense against microbial infection in many species; and (b)
ACHN-975 (Phase 1, Achaogen Inc.), which is an inhibitor of LpxC
— an enzyme involved in the Lipid A biosynthesis.

Table 2
Bacterial targets of antibiotics in clinical use.

Target

Cell-wall
biosynthesis

Type of Antibiotic®

Penicillins, cephalosporins, carbapenems, monobactams,
cycloserine, fosfomycin, glycopeptides,
lipoglycopeptides

Aminoglycosides, tetracyclines (Subunit 30S)
Oxazolidinones, macrolides, thiopeptides,
chloramphenicol, fusidic acid, clindamycin (Subunit 50S)
Rifamycins, ansamycins, actinomycins, tiacumycins (RNA

Protein synthesis

DNA replication

and repair polymerase)
Fluoroquinolones, aminocoumarins (DNA gyrase)
Folic acid Sulfonamides, trimethoprim
metabolism
Membrane Lipopeptides, polymyxins
structure

2 The target is included in brackets.
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Fig. 1. Antibiotics in clinical trials that have a new mechanism of action.

Taken together, it seems clear that it is crucial to search not only
for more effective anti-infective drugs but also to develop novel
chemical entities with new mechanisms of action. A great deal of
effort is currently being devoted, particularly in academia, to inves-
tigate the potential of unexploited essential processes in bacteria
and to develop novel scaffolds that target them, as well as to study
the biochemical basis of these targets in detail. The increasing
availability of bacterial genome sequences in general, and the iden-
tification of the essential genes for bacterial survival in particular,
have contributed greatly to the progress made in this area of
research. However, the development of antibiotics that act on
novel targets is a very challenging and expensive task, as evidenced
by the fact that there are only two compounds in clinical trials that
meet this premise. A good example is CARB-X (Combating Antibi-
otic Resistant Bacteria Biopharmaceutical Accelerator), the world’s
largest public-private partnership, which was recently created and
is devoted antibacterial preclinical R&D.!! Funded by BARDA and
the UK’s Wellcome Trust, and supported by NIAID, CARB-X will
spend $450 million from 2017-2021 to bring innovative treat-
ments toward clinical trials. In contrast, greater success has been
achieved with those approaches that minimize the emergence
and impact of resistance to antibiotics by the use of an ‘antibiotic
adjuvant’ in combination with an antibiotic. This booming and suc-
cessful strategy will be the focus of this digest review. An overview
of the recent efforts carried out on such combined therapies to face
the challenge of multidrug resistance to antibiotics is reviewed.

Antibiotic Adjuvants: These compounds are also named ‘resis-
tance breakers’ or ‘antibiotic potentiators’'>~>! and they have little
or no antibiotic activity but co-administered with the antibiotic
they either (i) block the main bacterial resistance mechanisms or
(ii) enhance the antimicrobial action of the drug. From the drug
discovery point of view, this combined drug therapy has the
advantage that it is not necessary to expend effort in the challeng-
ing and expensive identification of new targets that are essential
for bacterial survival.

There are four main mechanisms of antibiotic resistance
(Fig. 2)%%:

(1) Enzymatic inactivation of the antibiotic — an existing cellu-
lar enzyme is modified to react with the antibiotic in such a
way that it no longer affects the bacteria. One of the most
relevant examples are B-lactamase enzymes, which hydro-
lyze the most widely used antibiotics, i.e., B-lactams (peni-
cillins and cephalosporins), and represent the most
prevalent cause of antibiotic resistance in Gram-negative
bacteria.
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Fig. 2. Schematic representation of the main bacterial mechanisms of antibiotic
resistance.

(2) Drug excretion by activation of efflux pumps - these pro-
teins, which are able to eliminate a wide variety of com-
pounds from the periplasm to the outside cell, are
activated by the bacteria to eliminate the antibiotic. This is
a particularly important resistance mechanism in P. aerugi-
nosa and Acinetobacter spp.

(3) Decreased uptake by changes in the outer membrane per-
meability - these variations hinder the effective entrance
of the antibiotic.

(4) Modifications on the drug target - these changes decrease or
destroy the binding efficiency of the antibiotic and therefore
limit its potency.

To block the aforementioned mechanisms of antibiotic resis-
tance, three main types of antibiotic adjuvants have been devel-
oped: (a) B-lactamase inhibitors; (b) efflux pump inhibitors; and
(c) outer membrane permeabilizers. In addition, to enhance the
antimicrobial action of the drug, a great deal of research has
recently been devoted to exploring the potential of targeting bacte-
rial pathogenicity, i.e., the capacity of the bacterium to cause an
infection.?> The attenuation of bacterial virulence will make the
bacterium less able to establish successful infection and, in conse-
quence, it would be cleared by the host immune response or the
antibiotic. Anti-virulence drugs have not yet reached clinical trials,
but it seems to be a promising strategy since these compounds
would create an in vivo scenario similar to that achieved by vacci-
nation with a live attenuated strain. Excellent reviews of the com-
pounds identified from natural sources or synthetically developed
to target bacterial virulence have been published.>* An overview of
the antibiotic adjuvant strategies is provided below.

p-Lactamase Inhibitors. They are the most successful and clini-
cally used antibiotic adjuvants to overcome resistance to f-lactam
antibiotics, which despite 70 years of clinical use still remain at the
forefront of antibiotic chemotherapy.?® These inhibitors protect
antibiotics from a very efficient bacterial inactivation mechanism
involving B-lactamases (EC 3.5.2.6). These enzymes hydrolyze the
B-lactam core of B-lactams in an acylation-deacylation-based pro-
cess. Based on protein sequence similarities, four major B-lacta-
mase classes (A, B, C and D) are known. The class A, C and D
enzymes are serine-B-lactamases whereas class B enzymes are
metallo-B-lactamases that use one or two Zn?* ions coordinated
to histidine, cysteine and aspartate residues to catalyze the hydrol-
ysis of the B-lactam bond. Among them, carbapenem-hydrolyzing
class D p-lactamases (CHDLs), which are also known as ‘oxacilli-
nases (OXAs), are the most rapidly growing and diverse group of
B-lactamases with over 500 reported enzymes.?® They are found
among the most clinically challenging species including A. bau-
mannii, P. aeruginosa, E. coli, and Proteus mirabilis and they are able
to hydrolyze penicillins, extended spectrum cephalosporins and
aztreonam. It is therefore not surprising that significant effort is

currently been devoted to the development of efficient inhibitors
against the most important CHDLs in clinical settings, namely
0OXA-23, OXA-24/40 and OXA-48. From the drug design point of
view, the CHDL enzymes are very challenging due to the uncom-
mon structure of their active site in comparison with the other
B-lactamases (A—C). Thus, it has been proposed that the ability of
these enzymes to hydrolyze carbapenems is provided by a tun-
nel-like entrance to the active site formed by the side chains of a
tyrosine or phenylalanine and a methionine (Fig. 3). In general, this
tunnel-like structure of CDLDs enzymes forms a hydrophobic bar-
rier that controls access to the active site to only certain substrates
and it remains mainly unchanged after ligand binding.?” In prac-
tice, this structure of the active site results in a more limited effi-
ciency of the available p-lactamase inhibitors in clinical use, i.e.,
clavulanic acid (1), sulbactam (2) and tazobactam (3) (Fig. 4A).
These compounds, which are mechanism-based covalent inhibitors
that make a stable adduct through the catalytic serine, are clini-
cally ineffective against class C and D B-lactamases. Three main
types of inhibitors have been developed recently to overcome this
limitation and these are summarized below.

Penicillin-based sulfones - In the early 1990s and after the dis-
covery of clavulanic acid, the first f-lactamase inhibitor to be used
in the 1980s in combination with penicillins, such as amoxicillin,
which was isolated from the bacteria Streptomyces clavuligerus by
Beecham Group (now part of GSK) in 1976,%® the first penicillin sul-
fones, sulbactam (2) and tazobactam (3), were developed. In con-
trast to clavulanic acid, compounds 2 and 3 undergo a ring
opening after nucleophilic attack by the catalytic serine due to
the formation of a sulfinate group, which is absent from the p-lac-
tam antibiotics (sulfide). The generation of this good leaving group,
in combination with the extra electrostatic interactions with rele-
vant residues of the active site, is key for the efficiency of these
irreversible inhibitiors. In 1986, researchers from Pfizer found that
the incorporation a (2-pyridyl)methylene group at C6 of the sul-
bactam, compound 4a, increases its efficacy against B-lactamases
from S. aureus and E. coli (micromolar) due to the formation of an
indolizine adduct 5, which is resistant to hydrolysis (deacylation)
(Fig. 4B).*° Related with the latter, in 1989 Coleman et al.>° devel-
oped a very potent penem-based inhibitor, namely BRL 42715, that
at concentrations of 0.25 pug/mL or less enhanced the activity of
amoxicillin against many B-lactamases. Despite the very high effi-
ciency of this compound its instability was an issue. It was subse-
quently shown that the inhibitory efficacy of 4a increases
dramatically upon incorporation of a catechol moiety, compound
LN-1-255 (4b), that also facilitates internalization through the
outer membrane via bacterial iron uptake pathways.>!*?> The use
of such a Trojan horse strategy that involves the incorporation of
iron chelating moieties (siderophores) in the compound has
increased dramatically in recent years in antibiotic drug discov-
ery.>® This approach is currently being exploited in antibiotics in
clinical trials and these include monobactams MC-1 and BAL-
30072 and cephalosporin S-649266. The inspiration for the use of
such chelating groups comes from nature, as they are present in
diverse natural products produced by bacteria (enterobactin, fer-
richrome, pyochelin, pyoverdine, etc.). LN-1-255 proved to be very
efficient in vitro against the most worrisome and clinically relevant
CHDLs in A. baumannii and it had an efficacy of inhibition that was
10-1000-fold better than tazobactam or avibactam and it also low-
ered MIC values from 32 to 2 pg/mL>? LN-1-255 represents a
potential new therapeutic option in combination with carbapen-
ems or cephalosporins against resistant A. baumannii strains.
Future preclinical studies on infection animal models are expected
to show the potential of this promising and very efficient inhibitor.

Diazabicyclooctanes - Other B-lactamase inhibitors that have
already shown their potential as antibiotic adjuvants are diazabi-
cyclooctanes (DBOs) (Fig. 4C). These compounds, which were first
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Fig. 3. Overall structures of class A and D p-lactamase enzymes: (A) OXA-24 from A. baumannii (PDB code 3G4P,*” 1.1 A). (B) OXA-23 from A. baumannii (PDB code 4K0X,*®
1.31 A). (C) CTX-M-97/Aztreonam adduct from E. coli (PDB code 5G18,%” 1.1 A). (D) OXA-24/penicillin-based sulfone adduct from A. baumannii (PDB code 3FV7,°% 2.0 A). The
position of the tunnel-like entrance to the active site in (A) and (B) involving Tyr112 and Phe110 (green) and Met223 and Met221 (orange) is highlighted. The position of the
catalytic serine is shown in red. Note how the catalytic serine is well protected from the solvent environment for class D enzymes (A,B).

investigated as B-lactam mimics in the mid-1990s by Hoechst Mar-
ion Roussel (now part of Sanofi-Aventis), were found to be efficient
B-lactamase inhibitors. DBOs react with the enzyme by formation
of a carbamoyl adduct that does not undergo further ring-opening
transformations. This distinct reactivity of DBOs allows the regen-
eration of intact inhibitor without hydrolysis during the enzymatic
deacylation process.*”

Avibactam (6a), which was the pioneer DBO in clinical use, was
approved in late 2014 by the FDA in combination with ceftazidime
for the treatment of complicated intra-abdominal and complicated
urinary tract infections.>® Avibactam (6a) displays excellent inhibi-
tory activity against most class A and C enzymes, such as TEM-1,
KPC-2 and P99, and also proved to inhibit penicillin-binding pro-
teins (PBPs).>° However, this compound showed a more variable
efficiency toward CHDLs and in some of them, mainly OXA-23
and OXA-24, which are mainly responsible for carbapenem-resis-
tance in A. baumannii, they were not efficient.>* Durand-Réville
et al.*° have shown recently that the activity of avibactam (6a)
against the latter enzymes can be improved by the incorporation
of a double bond and a methyl group in the six membered ring,
compound ETX2514 (Fig. S2). It has been suggested that the poorer
access to the active site of some of these OXA enzymes is respon-
sible for this reduced efficiency.*! Structural and kinetic studies
revealed a key role of serine and lysine residues in the deacylation
process that regenerates the inhibitor and highlighted the struc-
tural differences between B-lactamase enzymes to explain its reac-
tivity (Fig. S3).*> Other combination therapies involving avibactam
(6a) and further developed DBO compounds, such as relebactam
(6b) and zidebactam (6d), are in clinical trials (Table 3). Moreover,
OP0595 (6¢), a recently developed DBO compound that is in Phase

1 clinical trials, in addition to being a class A and C B-lactamase
inhibitor was found to be an inhibitor of PBP2 and several Enter-
obacteriaceae and also an enhancer of B-lactam antibiotics due to
binding to other PBPs besides PBP2.%*

Boronic acids as transition state analogs — These compounds were
developed after the discovery that serine proteases can be inhib-
ited by boronic acids.** Kiener and Waley*> applied this idea to
the class A B-lactamase from B. cereus and showed that diverse
boronic acid derivatives were inhibitors of the enzyme in the
mM range (Fig. 5). The inhibition is due to the formation of a tetra-
hedral intermediate with the catalytic serine that mimics the tran-
sition state in the hydrolytic reaction catalyzed by B-lactamase
(Fig. 5A).%° The latter finding - in combination with further modi-
fication of the initial scaffolds mainly by the incorporation of side
chains similar to those observed in the natural penicillins [(thio-
phen-2-yl)acetamido group] and the introduction of extra binding
interactions in the pocket close to the catalytic serine (compounds
7-11) - led to a decrease in the inhibition potency against clini-
cally relevant class A and C B-lactamase enzyme to the nanomolar
range, e.g., compound 11 (K; = 1 nM) (Fig. 5B).*’ The resolution of
diverse crystal structures of the AmpC B-lactamase/adduct com-
plexes provided a detailed knowledge of the basis of the high affin-
ity of these transition state mimetics that explored two pockets
close to the catalytic serine (Fig. S4).*’® Moreover, fragment-
guided design involving the replacement of the amide moiety by
diverse sulfonamides provided K; values in the subnanomolar
range, e.g., compounds 12-15.%% In vivo studies in mice infected
with B-lactamases expressing E. coli showed that the combination
of cefotaxime and compound 15 is able to cure the infection in 65%
yield.
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Table 3
Combination drug therapies (antibiotic + B-lactamase inhibitor) in clinical trials.

Name Antibiotic B-Lactamase Phase, Company Possible application
inhibitor

WCK5222 Cefepime Zidebactam  Phase 1, Wockhardt Complicated urinary tract infections, hospital-acquired-/ventilator-associated bacterial pneumonia
Ltd

ATM-AVI Aztreonam  Avibactam Phase 2, AstraZeneca  Complicated intra-abdominal infections

CXL Ceftaroline  Avibactam Phase 2, Pfizer Inc./ Multi-resistant bacterial infections

fosamil Allergan PLC

MK-7655? Imipenem Relebactam  Phase 3, Merck Sharp Complicated urinary tract infections, complicated intra-abdominal infections, hospital-acquired-/
& Dohme Corp. ventilator-associated bacterial pneumonia, acute pyelonephritis

Carbavance Biapenem RPX7009 Phase 3, Rempex Complicated urinary tract infections, complicated intra-abdominal infections, hospital-acquired-/

Pharmaceuticals

ventilator-associated bacterial pneumonia, febrile neutropenia, bacteremia, acute pyelonephritis

@ It also includes Cilastatin, an inhibitor of the human dehydropeptidase enzyme, which is found in the kidney and is responsible for degrading Imipenem.

Subsequent evaluation of diverse cyclic boronate esters
designed to improve the selectivity towards B-lactamases vs other
serine hydrolases that transform linear substrates allowed the
identification of RPX7009.%° This compound was able to restore
the activity of carbapenems against K. pneumoniae carbapenemase
(KPC). A combination with biapenem at 4 png/mL was very efficient,
with MICsq values of 0.12 ug/mL against KPC-producing Enterobac-
teriaceae that coexpresses between one and four additional B-lacta-
mases (including class A, CTX-M and non-carbapenemase OXA) or
hyperexpressed chromosomal AmpC enzymes.”® However, this
efficiency was not seen with Enterobacteriaceae expressing other
B-lactamases, such as OXA-48. This combination drug therapy,
named as Carbavance, is currently under Phase 3 clinical trials.

Efflux Pump Inhibitors (EPIs). In 1980, McMurry et al.>! first
demonstrated that active export of tetracycline is a common ingre-

dient of the bacterial resistance mechanism to this drug. It was
later shown that this is in fact a widely extended phenomenon
for a wide variety of antibiotics that decreases their efficiency by
between 1- and 64-fold.>*~>°

This finding triggered significant effort to discover inhibitors of
active efflux pumps as an attractive strategy for restoring the activ-
ity of existing antibiotics. Further studies revealed that this mech-
anism of resistance is non-specific and, as a consequence, the
identification and development of efficient EPIs proved to be very
challenging and this has hampered their discovery. The most com-
mon antibiotic-efflux systems in pathogenic bacteria, such as P.
aeruginosa, are the Major Facilitator Superfamily (MFS) and Resis-
tance/Nodulation/Division Superfamily (RND). A wide variety of
compounds, either synthetic or from natural sources, have been
reported and have recently been reviewed.®® These compounds
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are tetracyclines, piperidines, aminoglycosides, quinolines, pyri-
dopyrimidines and arylpiperazines, among others.

Outer Membrane Permeabilizers. The limited efficiency of some
antibiotics for the treatment of infections caused by Gram-negative
bacteria is largely due to the particularly complex structure of their
membrane. Specifically, the membrane is well designed with an
extra layer (the outer membrane) that is mainly composed of
polyanionic lipopolysaccharides, which limits the entrance of small
molecules such as antibiotics. The use of permeabilizers proved to
be a good approach to improve the antibiotic uptake. These com-
pounds are usually cationic and amphiphilic or are chelators that
destabilize the outer layer of the outer membrane by either inter-
action with the polyanionic lipopolysaccharides or by capture of
outer layer cations, respectively. As a consequence, this region of
the outer membrane becomes more permeable, thus facilitating
the drug uptake. Examples of outer membrane permeabilizers
are polymyxins, such as colistin, aminoglycosides, cationic pep-
tides, cationic cholic acid derivatives or polyamines.®! It is worth
highlighting that phenylalanine-arginine B-naphthylamide (PABN,
also called MC-207,110),°? which is one of the most studied EPIs
and has proved to be efficient in reducing the resistance to fluoro-
quinolone antibiotics in P. aeruginosa, has recently been shown to
permeabilize bacterial membranes. In particular, PABN proved to
have similar activity to Polymyxin B nonapeptide in E. coli®> and
enhanced the efficacy of p-lactams against wild type and AmpC-
overexpressing strains of P. aeruginosa.®® It is therefore possible
that PagN might have a dual antibiotic adjuvant action.

Outlook: Among the strategies that are currently being explored
to unlock the worldwide emergence and spread of multidrug resis-
tant bacteria, the use of an ‘antibiotic adjuvant’ in combination with
an antibiotic has proven to be very efficient with several combina-
tions currently in clinical studies. This approach has two main
advantages: (i) the lifespan of the available antibiotic arsenal can
be prolonged, and (ii) the pressure on the challenging development
of novel chemical entities that disable unexplored bacterial targets
can be relaxed. The principal disadvantages of their use are: (i) as
with other combined therapies, the risk of adverse effects due to

potential drug-drug interactions, and (ii) more complex studies
are required to establish effective codosing regimes since compat-
ible pharmacokinetic and pharmacodynamic properties between
the antibiotic and adjuvant antibiotic are required.

Blocking the enzymatic inactivation of B-lactam antibiotics by
B-lactamase inhibitors is without doubt the most validated
approach, with numerous compounds, such as clavulanic acid (1),
sulbactam (2) and tazobactam (3), already in clinical use and many
others in clinical development. This success has relied on crucial
detailed studies on the mechanism of action and the extensive
structural and biochemical knowledge of the p-lactamase
enzymes. The lack of such knowledge for the other types of antibi-
otic adjuvants summarized here has hampered their expansion.
Efforts devoted to this aspect would help to enhance the efficacy
and improve toxicity profiles of the outer membrane permeabiliz-
ers as well as EPIs.

In spite of the advances in the use of B-lactamase inhibitors,
there is an urgent need to develop effective inhibitors of class B
B-lactamases (metallo-B-lactamases), for which at present there
are no inhibitors available, and their dissemination among relevant
Gram-negative bacteria, such as Enterobacteriaceae, Pseudomonas
aeruginosa, Klebsiella pneumonia, Escherichia coli and Acinetobacter
baumannii is growing dramatically.®® Significant effort must also
be devoted to the inhibition of CDLD enzymes, particularly those
with a more closed active site, such as 0XA-24/40, which are com-
monly present in the most clinically challenging species that have
been classified as ‘bacterial pathogens of critical priority’ by the
WHO.
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A. Supplementary data

The list of the antibiotics currently in clinical development clas-

sified by target (Fig. S1), 3D models for sulbactam, tazobactam, BRL
42715, LN-1-255, avibactam and RPX7009 and detailed view of
several enzyme/inhibitors adducts (Figs. S2—S4). Supplementary
data associated with this article can be found, in the online version,

at

http://dx.doi.org/10.1016/j.bmcl.2017.08.027. These data

include MOL files and InChiKeys of the most important compounds
described in this article.
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