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Detecting Anomalies in Bipartite Graphs with Mutual Dependency Principles

Hanbo Dai Feida Zhu Ee-Peng Lim HweeHwa Pang
School of Information Systems, Singapore Management University
{hanbo.dai.2008, fdzhu, eplim, hhpang}@smu.edu.sg

Abstract—Bipartite graphs can model many real life appli-
cations including users-rating-products in online marketplaces,
users-clicking-webpages on the World Wide Web and users-
referring-users in social networks. In these graphs, the anoma-
lousness of nodes in one partite often depends on that of their
connected nodes in the other partite. Previous studies have
shown that this dependency can be positive (the anomalousness
of a node in one partite increases or decreases along with that
of its connected nodes in the other partite) or negative (the
anomalousness of a node in one partite rises or falls in opposite
direction to that of its connected nodes in the other partite).

In this paper, we unify both positive and negative mutual
dependency relationships in an unsupervised framework for
detecting anomalous nodes in bipartite graphs. This is the
first work that integrates both mutual dependency principles
to model the complete set of anomalous behaviors of nodes
that cannot be identified by either principle alone. We for-
mulate our principles and design an iterative algorithm to
simultaneously compute the anomaly scores of nodes in both
partites. Moreover, we mathematically prove that the ranking
of nodes by anomaly scores in each partite converges. Our
framework is examined on synthetic graphs and the results
show that our model outperforms existing models with only
positive or negative mutual dependency principles. We also
apply our framework to two real life datasets: Goodreads as
a users-rating-books setting and Buzzcity as a users-clicking-
advertisements setting. The results show that our method
is able to detect suspected spamming users and spammed
books in Goodreads and achieve higher precision in identifying
fraudulent advertisement publishers than existing approaches.

Keywords-Anomaly Detection; Bipartite Graph; Mutual De-
pendency; Mutual Reinforcement; Node Anomalies

I. INTRODUCTION

Many real life applications can be modeled as bipartite
graphs, including users-rating-products in online market-
places, users-clicking-webpages on the World Wide Web and
users-referring-users in social networks.

In these bipartite graphs, a directed edge carries the
“opinion” of a source node towards a target node. For
instance, an edge conveys the rating given to a product by a
user or the number of times a user has clicked on a webpage.

Moreover, from the perspective of a target node, an edge
can be identified as agreeing or disagreeing by whether the
opinion carried by this edge agrees with the majority opinion
on the target node. For example in Figure 1, we show a
toy example with 5 users (represented by s1 to s5) and 3
products (represented by t1 to t3) with the edges carrying
ratings on a scale of 5. We observe that edge (s4, t2) and
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Figure 1. A toy example of 5 users rating 3 products, where the solid
lines represent agreeing edges and the dotted lines represent disagreeing
edges.

edge (s2, t3) do not agree with the majority opinion on target
nodes t2 and t3 respectively. We denote the two disagreeing
edges with dotted lines and the agreeing edges with solid
lines.

In general, in a bipartite graph, anomalous nodes are the
minority and are inconsistent with the rest of the nodes
in the same partite. From this toy example, we first try
to manually identify node anomalies that are inconsistent
with the rest in terms of opinions. We see from the figure
that users s1, s2 and s3 hold the same opinion toward
products t1 and t2, on the other hand, s4 and s5 agree on
t3. However, disagreeing edges (s4, t2) and (s2, t3) show
that {s1, s2, s3} and {s4, s5} hold different opinions on
products. Since the majority of the source nodes should be
normal, users in {s1, s2, s3} are considered to be normal.
As a result, products t1 and t2 that are agreed upon by the
normal users are normal products, whereas the product t3
agreed by anomalous users are considered to be anomalous.
A possible scenario is: {s1, s2, s3} are normal users who
like products t1 and t2. Also s2 thinks that product t3 is
very good. However, products t2 and t3 that are given high
ratings by normal users are given very low ratings by s4 and
s5, who are possibly two spammers hired to demote t2 and
t3.

In reality, we are not likely to be able to observe a clear
split between opinion groups. Rather we need to derive
“local” principles for identifying anomalous nodes in both
partites. One observation is that we cannot judge a node by
its edges alone, instead we should also involve the linked
nodes in the other partite. For example, we cannot say s2 is



anomalous simply because he gives t3 a minority rating. In
fact, it is natural for s2, a normal node, to give a minority
rating to t3, which is mostly demoted by spammers. In
contrast, s4 giving a minority rating to t2 should be identified
as anomalous. This is because t2 is a normal product and
thus any user who disagrees with the majority who gave
high ratings is suspicious. Similarly, we cannot say s5 is
normal simply because he gives t3 a majority rating, as the
fact that t3 is anomalous makes s5 giving an agreeing edge
to t3 also anomalous.

Thus, an agreeing edge plays a positive mutual depen-
dency role on its source and target. For example, s1 is more
normal if t1 is more normal and vice versa; similarly, s5

is more anomalous if t3 is more anomalous and vice versa.
It can also be observed that an disagreeing edge acts as
a negative mutual dependency channel on its ends. For
example, s2 is more normal if t3 is more anomalous and
vice versa.

We emphasize that both positive and negative mutual
dependencies are important. For example, s5 would not
be marked as anonymous without the positive mutual de-
pendency on the anomalous t3. Further, t3 is flagged as
anomalous only due to the negative mutual dependency on
s2, a normal user.

We therefore arrive at the following integral set of mutual
dependency principles: (I)positive mutual dependency
states that a source is more anomalous if it gives agreeing
edges to anomalous targets, and more normal if it gives
agreeing edges to normal targets. (II)negative mutual de-
pendency states that a source is more anomalous if it gives
disagreeing edges to normal targets, and more normal if
it gives disagreeing edges to anomalous targets. Although
the principles are stated in terms of judging source nodes,
equivalent principles apply on target nodes.

Previous studies have proposed to model only one of the
principles. The mutual reinforcement principle is utilized to
rank webpages [1], to identify salient terms and sentences
[2], to detect reliable users and contents in social media [3]
and to find suspicious reviewers [4]. The negative mutual
dependency principle is used to detect biased users and
controversial products in evaluation systems [5]. We are the
first to propose a generic anomaly detection framework that
integrates both sets of mutual dependency principles.

Our contributions are summarized as follows:
• We are the first to propose a generic node anomaly

detection framework with mutual dependency princi-
ples that capture the complete set of anomalous node
behaviors.

• We mathematically formulate our principles and itera-
tively compute the anomaly scores of source and target
nodes. We prove that with our algorithm, the ranking
of source and target nodes converges.

• We design an algorithm to generate synthetic bipartite
graphs and compare our model with competitors that in-

corporate either positive or negative mutual dependency
principles; experiment results show that our model
achieves much higher precision.

• We apply our model on two real life datasets:
Goodreads and Buzzcity. The results show that we
can identify suspected spamming users and spammed
books in Goodreads. For the Buzzcity data with la-
beled ground truth, we also identify fraudulent IP
addresses along with the fraudulent advertisement pub-
lishers in Buzzcity with higher precision than existing
approaches.

The rest of the paper is organized as follows. Section
II discusses related work. We formulate our problem and
present our model in Section III, and Section IV reports on
experiments. We conclude the paper in Section V.

II. RELATED WORK

Our work is related to existing studies on graph anomalies.
In [6], a node is considered as anomalous if its neighborhood
significantly differs from those of others. The neighborhood
of a node is summarized by pairs of neighborhood features,
which are assumed to follow power law distribution. The
nodes whose neighborhoods deviate from the fitted power
law curve are flagged as node anomalies.

[7] detects node anomalies in semantic graphs. The neigh-
borhood of a node is summarized by paths of various length.
A node is an anomaly if it carries abnormal semantic paths,
which is discovered by the standard distance based anomaly
detection techniques.

Anomalous subgraph patterns are studied in [8]. The basic
assumption is anomalies induce irregularities in the informa-
tion content of the graph. They further assume regularities or
normal patterns are the best substructures pattern in terms of
Minimum Description Length (MDL). Subgraph outliers are
the ones experiencing less compressions by best substructure
patterns.

In [9], node anomaly in bipartite graph is studied. A
source/target node is anomalous if the average similarity of
its 1 hop neighbors are low. The similarity of nodes are then
computed using random walk.

However, we differ from the aforementioned studies as
we detect node anomalies based on the novel mutual depen-
dency principles and we detect anomalies in both partites
simultaneously.

Our work is also closely related to studies on mutual
dependency of different types of nodes in graphs. [1] pro-
poses the concepts of authority and hub and use the mutual
reinforcement principle to rank webpages. The assumption
is a good authority is pointed by many good hubs and a good
hub points to many good authorities. [10] also uses mutual
reinforcement principle to study the veracity of information
on the web. They assume a web site is trustworthy if it
provides many pieces of true information, and a piece of



information is likely to be true if it is provided by many
trustworthy web sites.

Salient terms and sentences are identified using positive
mutual dependency principle in [2]. They assume a term has
high saliency score if it appears in many sentences with high
saliency scores and a sentence has high saliency score if it
contains many terms with high saliency scores. [11] extends
the model in [2] and proposes mutual reinforcement chain
of document, sentence and terms.

In [3], users, questions and answers in the community
question answering setting are modeled as three types of
nodes. Coupled multiple mutual reinforcing relationships
among the three types of nodes are utilized to detect high-
quality answers, questions, and users. [4] finds suspicious
reviewers in constructed review graph with three types of
nodes including reviewers, reviews and stores by positive
mutual dependency principle. The trustiness of reviewers,
the honesty of reviews, and the reliability of stores are
iteratively computed and thus the spam reviews are detected.

[5] uses negative mutual dependency principle to detect
bias users and controversial products in evaluation systems.
A reviewer is more biased if he deviates more on less
controversial objects and an object is more controversial if
there is greater deviation by less biased reviewers.

However, our framework is different from existing work
as it incorporates both positive and negative mutual depen-
dency principles. Another difference is we prove the ranking
of nodes stays unchange after certain number of iterations,
whereas existing studies either shows the scores converge to
the principle eigenvector of some matrix or only demonstrate
the convergence of scores by experiments.

III. ANOMALY DETECTION FRAMEWORK

A. Problem Definition

Given a bipartite graph G = 〈S ∪ T, E,A〉, where S =
{s1, ..., s|S|} is a set of nodes in the source partite, T =
{t1, ..., t|T |} is a set of nodes in the target partite, E ⊂ S×T
is a set of directed edges from the source partite to the target
partite, and A = {aij} is a set of labels attached to edges,
such that

aij =
{

0, if (si, tj) is an agreeing edge;
1, if (si, tj) is a disagreeing edge.

the anomaly detection problem is to assign an anomaly
score to each node in each partite. The anomaly score of
a node is a value in [0, 1], with [0, 0.5) being the normal
range and (0.5, 1] being the anomalous range. In particular,
0 indicating absolute normality and 1 indicating absolute
anomaly.

B. Model Formulation

To facilitate formulation, we summarize our aforemen-
tioned principles in Table I.

principles source edge target
positive normal agreeing normal
mutual dependency anomalous agreeing anomalous
negative normal disagreeing anomalous
mutual dependency anomalous disagreeing normal

Table I
MUTUAL DEPENDENCY PRINCIPLES.

We first show how to compute the anomaly score si of
source node si from an edge label aij and the corresponding
anomaly score tj of target node tj . Our principle is that
(I)when aij = 0, si mirrors tj, i.e., si = tj; (II)when aij = 1,
si is the opposite of tj, i.e., si = 1− tj. The two conditions
together give rise to:

si =
{

tj, aij=0;
1− tj, aij=1.

It is easy to see that the above formula is equivalent to :
si = (1− 2aij)tj + aij .

When it comes to compute the anomaly score tj from si

and aij , an equivalent formula applies.

tj =
{

si, aij=0;
1− si, aij=1.

We hence have tj = (1− 2aij)si + aij , as source and target
are symmetric in our principles.

We calculate the anomaly score of a node si or tj as
the aggregated anomaly score of all its linked target or
source nodes. As we want to account for the impact of
all the connected nodes, in the absence of information on
the relative importance of various connected nodes, the
reasonable option is to give them equal weights. The simple
average achieves this, while keeping the score within [0,1].
Furthermore, average allows nice matrix transformation of
our formula. Hence we have the following formula:

{
si = AV Gtj :(si,tj)∈E(1− 2aij)tj + aij

tj = AV Gsi:(si,tj)∈E(1− 2aij)si + aij
(1)

C. Iterative Computation

We can now design the iterative process to compute the
anomaly scores of sources and targets by translating formula
1 into a matrix form.

Let WS = [wS
ij ] be a |S| by |T | matrix s.t.

wS
ij =

{ 1
out degree of si

, if (si, tj) ∈ E;
0, otherwise.

Similarly, Let WT = [wT
ji] be a |T | by |S| matrix, s.t.,

wT
ji =

{ 1
in degree of tj

, if (si, tj) ∈ E;
0, otherwise.



We then define X = [xij ] as a |S| by |T | matrix s.t.

xij =
{

aijw
S
ij , if (si, tj) ∈ E;

0, otherwise.

Y = [yji] as a |T | by |S| matrix s.t.

yji =
{

aijw
T
ji, if (si, tj) ∈ E;

0, otherwise.

Let X be a vector with |S| rows s.t. xi =
∑|T |

m=1 xim and
Y be a vector with |T | rows s.t. yj =

∑|S|
m=1 yjm.

Let S and T denote the vectors of anomaly scores of
sources and anomaly scores of targets respectively, Formula
1 can be translated to the matrix form as follows:{

S = (WS − 2X)T + X
T = (WT − 2Y )S + Y

S and T are computed iteratively. Let Sk and Tk denote
the vectors of anomaly scores of sources si and anomaly
scores of targets tj in iteration k respectively, then we have
the following iterative formula to compute the anomaly
scores of source and target nodes.
{

Sk = (WS − 2X)(WT − 2Y )Sk−1 + (WS − 2X)Y + X
Tk = (WT − 2Y )(WS − 2X)Tk−1 + (WT − 2Y )X + Y

(2)

D. Convergence

The formula of HITS [1] based on the mutual rein-
forcement principle can be represented as the eigenvector
equation and the iteration computation of hub and authority
scores will converge to the principle eigenvector of AT A and
AAT respectively, where A is the adjacency matrix of the
graph. Other existing work including [11] transforms their
corresponding matrix to a stochastic and irreducible one by
column normalization in order to guarantee convergence.
In [5], although their formulation is not in the form of
eigenvector equation, they translate their formula into an
eigenvector equation by assuming the sum of the anomaly
scores of all source or target is 1. To guarantee convergence,
they normalize the scores during the iterative computation.

However, in our case, we do not make the assumption
about the sum of anomaly scores. Nor can we normalize
the corresponding matrix as done in the previous studies.
This is because, since any score above 0.5 is considered
as anomalous and any score below 0.5 implies normality,
normalization may convert a node’s score above 0.5 to a
score below 0.5, which leads to a “wrong” perception about
this node in the iteration process.

In this section, we prove that under certain assumptions,
the ranking of nodes in each partite stays unchanged after
a certain number of iterations. We only show the proof for
source nodes here. The proof for target nodes is similar, as
source and target are symmetric in our model.

Let Q = (WS−2X)(WT−2Y ) and b = (WS−2X)Y +
X . Here, Q is a |S| by |S| matrix, b is a vector with |S|

rows and Sk is the score vector with |S| rows. Thus, we
have Sk = QSk−1 + b.

Lemma 1: For Sk = QSk−1 + b, where k ≥ 1, if the
initial value S0 = (0.5, 0.5, ..., 0.5)′, Sk always has the
solution of (0.5, 0.5, ..., 0.5)′, for any k > 1.

This lemma is easily proven. According to our formula-
tion, if the anomaly scores of all targets are 0.5, then the
anomaly scores of all sources are also 0.5, regardless of the
edge label. Therefore, if the initial anomaly score vector for
source is (0.5, 0.5, ..., 0.5)′, all scores of source nodes stay
at 0.5 for any number of iterations.

We then have the following Lemma 2 to transform Sk =
QSk−1 + b to facilitate the convergence study.

Lemma 2: Let e be a |S| dimensional vector with all
its elements being 1, i.e. e = (1, 1, ..., 1)′. If the largest
eigenvalue of Q is smaller than 1, given any initial vector
S0 such that ∀ i, j ≤ |S| (i 6= j), si

0 = sj
0 6= 0.5, then

Sk = QSk−1 + b can be represented as
Sk

‖Qke‖1 = θQke
‖Qke‖1 + 0.5e

‖Qke‖1 where −0.5 ≤ θ ≤ 0.5.
Proof: Since Sk = QSk−1 + b, after we substitute

Sk−1 by QSk−2 + b and then substitute Sk−2 and so on,
we arrive at Sk = QkS0 + (I + Q + ... + Qk−1)b.

As the largest eigenvalue ρ(Q) < 1, we have lim
k→∞

Qk =

0. I + Q + ... + Qk is in fact the Neumann Series, which
has been shown to converge to (I −Q)−1 [12]. Therefore,
Sk converges to (I −Q)−1b for an arbitrary S0.

Let Rk be another anomaly score vector and R0 = 0.5e.
According to Lemma 1, we have R1 = QR0 + b = 0.5e,
R2 = QR1 + b = 0.5e, and in general, Rk = QRk−1 + b =
0.5e, for every k ≥ 1.

Since the initial vector S0 has equal elements that are not
0.5, we can denote any initial vector as S0 = (0.5 + θ)e.
As the initial anomaly score is assumed to be within [0,1],
we have −0.5 ≤ θ ≤ 0.5.

For any θ, (−0.5 ≤ θ ≤ 0.5), we have S1 = QS0 + b =
Q(0.5e+ θe)+ b = QR0 + b+Qθe = R1 +Qθe. Similarly,
we can show that S2 = R2 + Q2θe.

Therefore, we have Sk = θQke + Rk = θQke + 0.5e,
which can be represented as: Sk

‖Qke‖1 = θQke
‖Qke‖1 + 0.5e

‖Qke‖1 .

With Lemma 2, in order to study the convergence of Sk,
we can prove the convergence of Qke

‖Qke‖1 , since other parts

of θQke
‖Qke‖1 + 0.5e

‖Qke‖1 are of known value.

Lemma 3: Qke
‖Qke‖1 converges when k →∞.

Proof: Let σ(Q) = {λ1, λ2, ..., λx} denote x number
of distinct eigenvalues of Q. According to [12], there exists
a nonsingular matrix P s.t.

J = P−1QP =




J(λ1) 0 · · · 0
0 J(λ2) · · · 0
...

...
. . .

...
0 0 · · · J(λx)


 ,

J is called the Jordan form of Q, and each of the J(λi) takes



the form of




J1(λi) 0 · · · 0
0 J2(λi) · · · 0
...

...
. . .

...
0 0 · · · Jy(λi)


 , where y

can be calculated as in [12],

J?(λi) =




λi 1
. . . . . .

. . . 1
λi




m×m

, where m can be

calculated as in [12]. Therefore, we have Q = PJP−1,
and Qk = PJkP−1. Since J is block diagonal, we have

Jk =




J(λ1)k 0 · · · 0
0 J(λ2)k · · · 0
...

...
. . .

...
0 0 · · · J(λx)k


 .

Since J(λi) is also block diagonal, we are interested to know
the form of J?(λi)k with m ×m, which can be shown as

J?(λi)k =




λk
i

(
k
1

)
λk−1

i · · · (
k

m−1

)
λk−m+1

i

λk
i

. . .
...

. . .
(
k
1

)
λk−1

i

λk
i




Let D be the set of distinct terms that appear in at
least one element of Qke. Each term in D is of form(

k
m− 1

)
λk−m+1, where m ≥ 1 and λ ∈ σ(Q).

Therefore, Qke =




...∑
j ci,jdi,j

...


. Here i represents the

i-th element of Qke, j represents the j-th term of an element,
and ci,j is a non-zero real value.

It can be easily proven as follows that there exists a d∗ ∈
D, such that ∀d ∈ D − {d∗}, lim

k→∞
|d|
|d∗| = 0. For any given

two terms in D, we have
(I) if the terms contain the same λ, then(
k

m1

)
/

(
k

m2

)
→ 0, when k →∞,m1 < m2.

(II) if the terms of an element contain different λ1 and

λ2, then
(

k
m

)
(λ1

λ2
)k → 0, when k →∞, λ1 < λ2.

Therefore, there exists a d∗ ∈ D such
that ∀d ∈ D − {d∗}, lim

k→∞
|d|
|d∗| = 0. As

Qke
‖Qke‖1 = Qke∑

i |
∑

j ci,jdi,j | = Qke/|d∗|∑
i |

∑
j ci,jdi,j/d∗| , we

have, lim
k→∞

Qke
‖Qke‖1 = lim

k→∞
Qke/|d∗|∑

i |
∑

j ci,jdi,j/d∗| .

For the denominator, for the terms di,j = d∗, the limit
of di,j/d∗ is 1, whereas for the terms di,j 6= d∗, di,j/d∗

is 0. Hence, the limit of the denominator is the sum of
the ci,j where the corresponding di,j = d∗. On the other
hand, the limit of the numerator is a vector of real values
where only the elements whose terms contain d∗ is non-

zero value. Hence, the whole fraction converges. Therefore,
Qke

‖Qke‖1 converges when k →∞.
With Lemma 3, we have the following Theorem 1 regard-

ing the convergence of anomaly scores Sk:
Theorem 1: For Sk = QSk−1 + b, where k ≥ 1, if the

largest eigenvalue of Q is smaller than 1, given any initial
vector S0 such that ∀ i, j ≤ |S| (i 6= j), si

0 = sj
0 6= 0.5,

then Sk converges when k →∞.
With Lemma 2 and Lemma 3, this theorem is obvious.

We now study the convergence of rankings of nodes ac-
cording to their anomaly scores Sk. We have the following:

Theorem 2: For Sk = QSk−1 + b, where k ≥ 1, if the
largest eigenvalue of Q is smaller than 1, given any initial
vector S0 such that ∀ i, j ≤ |S| (i 6= j), si

0 = sj
0 6= 0.5,

then ∃ an integer K > 0 such that the ranking of elements
in Sk will stay unchanged ∀ k > K.

Proof: Since Q’s largest eigenvalue is smaller than
1, and the initial vector S0 contains identical values not
equal to 0.5, according to Lemma 2, we have Sk

‖Qke‖1 =
θQke
‖Qke‖1 + 0.5e

‖Qke‖1 . Let Qke
‖Qke‖1 (i) denote the i-th element of

vector Qke
‖Qke‖1 . Let ∆ = mini,j( Qke

‖Qke‖1 (i) − Qke
‖Qke‖1 (j)),

then for any i, j, we have | Qke
‖Qke‖1 (i)− Qke

‖Qke‖1 (j)| ≥ ∆.

According to Lemma 3, Qke
‖Qke‖1 converges. Hence, for

any real number ε > 0, ∃ an integer K > 0, s.t., ∀k > K,
maxi(| Qk+1e

‖Qk+1e‖1 (i) − Qke
‖Qke‖1 (i)|) < ε. Therefore, if ε is

smaller than ∆/2, the above still holds.
Suppose Qke

‖Qke‖1 (i) > Qke
‖Qke‖1 (j), for any ε < ∆/2, we

have Qk+1e
‖Qk+1e‖1 (i) > Qke

‖Qke‖1 (i) − ε, and Qk+1e
‖Qk+1e‖1 (j) <

Qke
‖Qke‖1 (j) + ε. Since | Qk+1e

‖Qk+1e‖1 (i) − Qke
‖Qke‖1 (i)| < ε

and | Qk+1e
‖Qk+1e‖1 (j) − Qke

‖Qke‖1 (j)| < ε, we always have
Qk+1e

‖Qk+1e‖1 (i) > Qk+1e
‖Qk+1e‖1 (j).

Therefore, the relative order of Qke
‖Qke‖1 (i) and Qke

‖Qke‖1 (j)
stays unchanged for all k > K. Therefore, we have proven
that there exists an integer K > 0, s.t. the ranking of all
elements in Sk never changes ∀k > K.

With the proven Theorem 2, we know that with certain
assumption about Q and as long as we set the identical initial
value for all source nodes, the ranking of source nodes will
stay the same after a certain number of iterations. Now the
question is, will different runs with initial vectors of different
identical values converge to the same ranking?

The following theorem shows that (I)if two different runs
involve different identical initial values that are both smaller
0.5, the final rankings are the same; (II)if two different
runs involve different identical initial values that are both
greater than 0.5, the final rankings are the same; (III)if one
run involves initial values smaller than 0.5 and another run
involves initial values greater than 0.5, the final rankings are
the opposite.



Theorem 3: For Sk = QSk−1 + b, where k ≥ 1, if the
largest eigenvalue of Q is smaller than 1, we have:
(I) given one initial vector S0, such that ∀ i, j ≤ |S| (i 6= j),
si

0 = sj
0 < 0.5, and another initial vector S∗0, such that

∀ i, j ≤ |S| (i 6= j), si
0 = sj

0 < 0.5, then there exist an
integer K > 0, such that the two rankings Sk and S∗k are
identical ∀k > K.
(II) given one initial vector S0, such that ∀ i, j ≤ |S| (i 6= j),
si

0 = sj
0 > 0.5, and another initial vector S∗0, such that

∀ i, j ≤ |S| (i 6= j), si
0 = sj

0 > 0.5, then there exist an
integer K > 0, such that the two rankings Sk and S∗k are
identical ∀k > K.
(III) given one initial vector S0, such that ∀ i, j ≤ |S|
(i 6= j), si

0 = sj
0 < 0.5, and another initial vector S∗0,

such that ∀ i, j ≤ |S| (i 6= j), si
0 = sj

0 > 0.5, then there
exist an integer K > 0, such that the two rankings Sk and
S∗k are exactly the opposite ∀k > K.

Proof: Since Q’s largest eigenvalue is smaller than 1,
and the initial vector S0 contains identical values not equal
to 0.5, according to Lemma 2, we have Sk

‖Qke‖1 = θQke
‖Qke‖1 +

0.5e
‖Qke‖1 , where −0.5 ≤ θ ≤ 0.5.

Since the initial vector S0 has equal elements not equal
to 0.5, we have denoted in Lemma 2 any initial vector as
S0 = (0.5+θ)e. When θ > 0, the initial vector has elements
larger than 0.5, whereas when θ < 0, the initial vector has
elements smaller than 0.5.

Therefore, (I) actually states S0 = (0.5 + θ)e, S∗0 =
(0.5 + θ∗)e with θ < 0 and θ∗ < 0. (II) involves θ > 0 and
θ∗ > 0 and (III) suggests θ < 0 and θ∗ > 0.

Thus, we have Sk = θQke + 0.5e and S∗k = θ∗Qke +
0.5e. It is easy to see that if (I)θ < 0 and θ∗ < 0 or (II)θ > 0
and θ∗ > 0, Sk will only differ from S∗k by some scale.
The rankings of all elements will be the same. When (III)θ <
0 and θ∗ > 0, any two elements in Sk will have a reverse
ranking in S∗k. Thus Sk is a reverse ranking of S∗k.

According to Theorem 2, suppose K and K∗ are the two
integers where the rankings of Sk and S∗k stay unchanged,
we know ∀k > max(K,K∗), both rankings will stay
unchanged. Therefore, we have proven (I), (II) and (III).

Theorem 3 suggests that if we set the initial value to be
smaller than 0.5, implying originally all nodes are normal,
we will get the ranking that is exactly the opposite of that
we get if we set the initial value to be larger than 0.5,
implying originally all nodes are anomalous. Thus, the initial
values act as the “prior view” towards all nodes. Since we
assume the normal nodes are the majority, we therefore
should always set the initial value to be smaller than 0.5.

E. Iterative Algorithm

With these Theorems we now design our iterative algo-
rithm, Algorithm 1 to compute the ranking of source nodes.
The ranking of target nodes can be computed similarly.

Algorithm 1 Iterative algorithm to compute ranking of
source nodes.
Input: bipartite graph G = 〈S ∪ T, E, A〉, initial value x,
number of iterations ranking stays unchanged y.
Output: rankings of S, Ŝ.

1: Set S0=(x, x, ..., x)′.
2: Let Ŝ∗ be the ranking of S according to S0.
3: c=0; k=1.
4: while c ≤ y do
5: Compute anomaly score for source nodes as in Formula 2,

Sk = (W S − 2X)(W T − 2Y )Sk−1 + (W S − 2X)Y + X .
6: Ŝ keeps the ranking of S according to Sk .
7: if the distance between Ŝ and Ŝ∗ is 0 then
8: c++.
9: else

10: c = 0.
11: Ŝ∗ = Ŝ.
12: k++.
13: return Ŝ

We set the initial score vector of both source and target
nodes as (0.1, 0.1, ..., 0.1)′. We measure the rankings of the
two consecutive iterations by Kullback-Leibler divergence
[13]. In practice, the actual number of iterations needed is
small, which is studied in the experiments section.

IV. EXPERIMENTS

In this section, we evaluate our node anomaly detection
framework on both synthetic data and real life data. We
generate synthetic bipartite graphs with properties that are
necessary for testing different detection models. We show
the precisions of our method as well as other existing
methods on these synthetic graphs. Experiments on two
real life data, namely Goodreads and Buzzcity showcase the
ability to identify suspicious spamming users and spammed
books in Goodreads and to identify fraudulent users and
advertisement publishers in Buzzcity with higher precision
than existing approaches, both unsupervised and supervised.

A. On Synthetic Data

1) Synthetic Data Generation Algorithm: We first set
aside 4 sets of nodes as anomalous source nodes SA, anoma-
lous target nodes TA, normal source nodes SN and normal
target nodes TN and then generate edges among them. In
order for an injected anomalous node to be anomalous,
it has to possess at least one kind of anomalous charac-
teristics: giving/receiving disagreeing edges to/by normal
nodes or giving/receiving agreeing edges to/by anomalous
nodes. Similarly, for an injected normal node to be normal,
it has to have at least one kind of normal characteristics:
giving/receiving disagreeing edges to/by anomalous nodes
or giving/receiving agreeing edges to/by normal nodes.

We generate edges in the following sequence: from SA to
TA, from SA to TN , from SN to TA, and then from SN to
TN . We introduce parameters in the generation algorithm so
that it generates graphs of different properties (e.g., the ratio
of disagreeing edges to agreeing edges), which are necessary
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Figure 2. An illustration of the synthetic data generation and its properties.
In the graph, there are four sets of nodes, anomalous source nodes SA,
anomalous target nodes T A, normal source nodes SN and normal target
nodes T N . The values on the edges represent the expectation of the number
of edges from one node set to another.

to test our method as well as others’. We also make sure
that in the algorithm generate these properties for source
and target nodes simultaneously so that later steps would
not mess up the properties generated by the previous ones.
Parameter n controls the size of SN and TN , α is the ratio
of |SA| to |SN | or the ratio of |TA| to |TN |, β is the ratio
of the expected number of disagreeing edges to the expected
number of agreeing edges for any anomalous node, and 1/γ
is the ratio of the expected number of disagreeing edges to
the expected number of agreeing edges for any normal node.
The detailed algorithm is shown in Algorithm 2 followed
by the analysis and the explanation of the graph properties
controlled by these parameters.

Algorithm 2 Generate synthetic bipartite graph
Input: parameters: n, α, β, γ
Output: bipartite graph, G

1: Generate node sets for G: SN , SA, T N , T A such that |SN | =
|T N | = n, |SA| = |T A| = α · n, (0 < α < 1)

2: for each node s in SA do
3: Randomly select a target node set T ∗ ⊂ T A, where |T ∗| is

randomly drawn from [0, α · n], (α · n ≤ |T A| = α · n).
4: Generate agreeing edges from s to each node in T ∗.
5: Randomly select a target node set T ∗ ⊂ T N , where |T ∗| is

randomly drawn from [0, α · n · β], (α · n · β ≤ |T N | = n).
6: Generate disagreeing edges from s to each node in T ∗.
7: for each node t in T A do
8: Randomly select a source node set S∗ ⊂ SN , where |S∗| is

randomly drawn from [0, α · n · β], (α · n · β ≤ |SN | = n).
9: Generate disagreeing edges from each node in |S∗| to t.

10: for each node s in SN do
11: Randomly select a target node set T ∗ ⊂ T N , where |T ∗| is

randomly drawn from [0, α2 ·n·β ·γ], (α2 ·n·β ·γ ≤ |T N | = n).
12: Generate agreeing edges from s to each node in |T ∗|.
13: return G

Figure 2 illustrates the properties of our generated graphs.
Specifically, after step 6, it can be easily shown that for
any anomalous source, the expectation of the number of
agreeing edges is α ·n/2; and the expectation of the number
of disagreeing edges is α · n · β/2.

We can also compute for any node in TN , the expected
number of edges linking from SA as: 1

α·n·β+1 ·
∑α·n·β

i=0
i
n ·

α · n = α2 · n · β/2.

Similarly, since |SA| = |TA|, for any node in TA, the
expected number of edges linking from SA is exactly α·n/2.

After step 9, for any anomalous target in TA, the expecta-
tion of the number of edges from SN is α·n·β/2. Similarly,
for any node in SN , the expected number of edges to TA

is α2 · n · β/2.
After step 12, we can compute that for any node in SN ,

the expectation of the number of edges to TN is α2·n·β·γ/2.
Since |SN | = |TN |, for any node in TN , the expectation of
the number of edges from SN is also α2 · n · β · γ/2.

Now, for any node in SA or in TA, the ratio of the ex-
pected number of disagreeing edges to the expected number
of agreeing edges is α·n·β/2

α·n/2 = β. On the other hand, for
any node in SN or in TN , the ratio of the expected number
of disagreeing edges to the expected number of agreeing
edges is α2·n·β/2

α2·n·β·γ/2 = 1/γ. The controlling of these ratios is
therefore achievable by varying parameters.

In bipartite graphs, each edge carries the opinion of
source node to target node. It is natural to expect that
the opinions generated by the normal nodes prevail the
opinions generated by the anomalous nodes, we should be
able to set the parameters so as to control the opinions
from anomalous nodes always being minority. Specifically,
since disagreeing edges are always between anomalous and
normal nodes, the opinions from normal and anomalous
nodes carried by disagreeing edges are always equal. Thus,
we want the opinions in the form of expected number of
agreeing edges among normal nodes to be larger than those
among anomalous nodes.

The expected number of agreeing edges among normal
nodes is (|SN |+ |TN |) ·α2 ·n ·β · γ/2 = α2 ·n2 ·β · γ. The
expected number of agreeing edges among anomalous nodes
is (|SA|+|TA|)·α·n/2 = α2 ·n2. According to the anomaly
being minority assumption, we have α2 ·n2 ·β ·γ > α2 ·n2,
which leads to β > 1/γ. Thus, we set β to be larger than
1/γ to guarantee the graphs are properly generated.

Other parameter constraints can be derived from the
generation algorithm. They are α · n · β ≤ 1 derived from
step 5 and step 8 and α2 · β · γ ≤ 1 derived from step 11.

2) Results: We compare our model denoted as IMD
with the models that are based on only one of the mutual
dependency principles. We denote the one with positive
mutual dependency principle as PMD implemented as in [2]
and the one with negative mutual dependency principle as
NMD implemented as in [5]. We also incorporate the random
guess method denoted as RG. We vary the parameters and
test the precisions of all methods.

We first test with a fixed α and β, how 1/γ affects the
results. Note that both β and 1/γ can be set as any real num-
ber. If they are smaller than one, agreeing edges dominate
for each node. If they are larger than one, disagreeing edges
dominate. We set |SN | = |TN | = n as 200 and set α = 0.5.
β can be derived as smaller than or equal to 2. We set β=2
and set 1/γ={1.9, 1.5,1,0.5} to test on graphs where agree-
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Figure 3. Results on synthetic data. Y -axis shows the average
precision@K and X-axis shows different 1/γ values. (a) with α=0.5, β=2,
varying 1/γ; (b) with α=0.5, β=0.5 and varying 1/γ; (c) with β = 0.5,
1/γ = 0.49 and varying α.

ing edges dominate for anomalous nodes. We also try β=0.5
and vary 1/γ={1/2.1, 1/4, 1/6, 1/8} to test on graphs where
agreeing edges dominate for anomalous nodes. The values
for 1/γ satisfy the aforementioned parameter constraints.
For each parameter setting, we generate 3 bipartite graphs
and measure each method by precision@K, where K is the
number of true anomalous source/target nodes. Our results
with β=2 is shown in Figure 3(a) and the results with β=0.5
in Figure 3(b). Y -axis shows the average precision@K and
X-axis shows different 1/γ values. The curve with IMD s is
regarding the performance of method IMD on source nodes.
Similarly, IMD t is for target nodes.

We can see from the figures that our method IMD gets
perfect precision over all settings, much better than the
competing ones. When β is fixed and 1/γ gets smaller,
anomalous nodes are getting more characterized by disagree-
ing edges and less characterized by agreeing edges compared
to normal ones. As a result, it becomes easier for the model
NMD that propagates anomaly scores through disagreeing
edges to identify anomalous nodes. At the same time it
becomes harder for the model PMD that propagates anomaly
scores through agreeing edges to identify anomalous nodes.

As IMD takes into consideration both mutual dependency
principles and propagate anomaly scores on both types of
edges, we are able to achieve the perfect precision. This
shows that both the positive and negative mutual dependency
relationships are necessary for anomaly detection.

To test whether the performance will be affected by the
number of anomalous nodes α, we set β = 0.5 and 1/γ =
0.49. The results are shown in Figure 3(c), which suggests
that, as α changes, the performance of NMD and PMD are
only as good as the random guess. The explanation is when
1/γ is only slightly smaller than β, the normal nodes and
the anomalous nodes are giving out almost the same ratio of
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Figure 4. Results on synthetic data with varying noise level π.

number of agreeing edges to disagreeing edges. This makes
the anomalous nodes hard to discriminate from the normal
ones for NMD and PMD.

3) Results with Noisy Ground Truth: We have shown the
results on synthetic graphs generated under the assumption
that normal nodes never behave anomalously and anomalous
nodes never show any normal behaviors. This assumption
makes sure that the anomalous and normal nodes are truly
the ground truth. Here we also experiment on synthetic
bipartite graphs with noisy ground truth. In other words,
anomalous nodes may possess some normal behaviors: giv-
ing/receiving disagreeing edges to/by anomalous nodes or
giving/receiving agreeing edges to/by normal nodes; nor-
mal nodes may show anomalous behaviors: giving/receiving
disagreeing edges to/by normal nodes or giving/receiving
agreeing edges to/by anomalous nodes.

Parameter π is used to control the probability of a node
having the behavior of its opposing role. Specifically, we
modify the Algorithm 2 such that when agreeing edges
are generated in step 4 and step 12, each edge has a
probability of π of being a disagreeing edge. Similarly, when
disagreeing edges are generated in step 6 and step 9, each
edge has a probability of π of being an agreeing edge. Note
that the larger the π is, the less likely the anomalous and
normal nodes are the real ground truth.

We vary π and set other parameters as n = 200, α = 0.5,
β = 0.5, 1/γ = 0.5, as the competing method performs
better on this setting. The results are shown in Figure 4. As
we can see that, even in the presence of noise, IMD is still
the best. Even when the noisy level is 0.3, IMD resists all
noisy information. When π = 0.5, all methods are as good
as the random guess. This is because, when anomalous nodes
manifest the same amount of anomalous behavior as normal
behaviors, anomalous nodes are no longer anomalous.

4) Convergence Speed: Here we study during the iterative
computation, how fast the rankings converge. We measure
the distance between the rankings of two consecutive itera-
tions by Kullback-Leibler divergence [13]. If two rankings
are the same, the KL divergence distance is 0. We set
α = 0.5, β = 0.5, 1/γ = 0.5 and π = 0.1. We vary the
size of n from small to large, such that the total number of
nodes in the generated graphs are from 100 to 10,000. The
KL divergence distance v.s. the number of iterations curves
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for sources are shown in Figure 5. The curves for targets are
similar and are omitted due to space constraint. Note that
the figure shows the number of iterations until the distance
becomes 0. In practice, our algorithm runs 10 more iterations
to guarantee the distance does stay as 0 afterwards. We can
see from the plot that our node ranking stays unchanged
after only a small number of iterations.

B. On Real-life Data

1) Goodreads Data: Goodreads1 is the largest website
for people to write book reviews, rate books, recommend
books to friends and socialize online with other readers or
writers. According to its website, it has more than 9,000,000
members who have added more than 320,000,000 books
to their shelves. To facilitate exploration, Goodreads create
“listopia” for users to quick find interesting books and
maybe vote for their favorites. A book can be rated by any
user on a scale of 5.

We utilize the API provided by Goodreads to crawl our
data on May 20, 2012. Since the number of books and users
are too large, we start from a popular book list in Goodreads’
listopia, called “Dealbreakers: If You Like This Book, We
Won’t Get Along”. We crawl from this list that books that
have less than 1000 user ratings. We then crawl all the users
who have rated these books and have rated less than 1000
books. We further go another hop to get all the books that
are rated by the previously crawled users and have less than
1000 user ratings. The bipartite graph is thus generated with
users as the source partite, books as the target partite and
the edges suggests users rating books.

We only crawl the books and users with less than 1000
neighbors so that we would not run into some really popular
books and end up with too large a dataset. The other reason
is that the anomalous books and users with fewer ratings are
easier to examine and make sense of.

As our model takes in edge labels which are either
agreeing or disagreeing, we thus map the rating carried by
an edge to a label as follows. If this rating is a minority
rating of all ratings given to the same book, then this edge

1http://www.goodreads.com/

is given a disagreeing label; otherwise, this edge is given a
agreeing label. The majority ratings are the ones within 2
standard deviation from the mean of all ratings given to a
target.

We iteratively filter away target nodes with less than 10
edges and source nodes with less than 2 edges, as books
rated by less than 10 users are not drawing enough attention
from the audience and less likely to be spammed. Similarly
users only rate one book are not influential enough, even if
they are spammers. In the end, we have a bipartite graph with
7982 source nodes, 9169 target nodes and 163621 edges.

We apply our anomaly detection method on this bipartite
graph. The top-1 anomalous book returned is “Justin Bieber:
My World”, published in August 1st 2010, and written by
Justin Bieber. It received 100 ratings, with 48 of score 5,
4 of score 4, 4 of score 3, 3 of score 2 and 41 of score
1. Judging by this rating distribution, we know the opinions
on this book are rather divided. Moreover, it is very hard
to tell whether the users giving out 1 or the users giving 5
are spamming or anomalous simply by rating distribution.
However, our approach is able to identify out of 99 users,
25 of them are anomalous users (i.e., users whose anomaly
scores are greater than 0.5). Interestingly, these anomalous
users are all giving low ratings (1 or 2) to this book and
none of them gives textual comments to this book. Our
model considers these 25 users anomalous as when they
rate other books, they tend to disagree with normal users
and agree with other anomalous users. We find that some
of the 25 users including Angela and Kimiko, who rated
around twenty books and mostly gave low ratings are not
quite far away from the average rating. Based on our results,
we may think that the book “Justin Bieber: My World” is
unfairly demoted by some users.

Top-2nd is also a book by Justin Bieber, called “I ♥ Justin
Bieber”. It received 23 ratings, with 22 of them being 5.
Unlike the top-1 book, this book is anomalous, as there
are 9 identified anomalous users giving out score 5 to it.
Almost all 9 users seem to be the fans of Justin Bieber.
Their comments are about loving the person, not the book.
One of them even has the user name as “JustinBieberLover”.
We therefore conclude that this book is somewhat spammed
by his fans to promote the book.

Other top 10 anomalous books include 3 other Justin
Bieber’s books, “Kardashian Konfidential” by Kourtney
Kardashian and “Birth Control Is Sinful in the Christian
Marriages and Also Robbing God of Priesthood Children!!”
by Eliyzabeth Yanne Strong-Anderson. All these books are
identified by our model as being rated by some suspicious
users.

2) Buzzcity data: BuzzCity2 is a global mobile advertis-
ing platform, where publishers host on their own websites
the advertisement of advertisers. If anyone clicks on the

2http://www.buzzcity.com/



advertisements, the publishers and the BuzzCity platform
get money paid by advertisers. It is suspected that some
fraudulent publishers would hire spammers to click on the
advertisement hosted on their websites to gain money. To
maintain a healthy ecosystem, BuzzCity has good intention
to identify these spammers.

Buzzcity provides around 10 million click logs during a
three day’s period from Jan 26, 2012 to Jan 28, 2012. The
dataset contains the encoded IP address of each click on each
publisher. As a publisher may have multiple websites, the
click data is already aggregated by publishers. Buzzcity has
asked its own employees to label the publishers as “OK”,
“Observation” (meaning not sure) or “Fraud”. This dataset
will be made public for a fraud detection competition.

We apply our model to detect the fraudulent clickers (i.e.,
IP addresses) and publishers with clickers as one partite,
publishers as the other partite and edges suggest users click
on publishers. Since each edge carries the number of clicks
from a clicker to a publisher, we map the number of clicks
to agreeing and disagree edges as we do for the Goodreads
data. We iteratively filter out nodes with less than 2 edges,
as they are unlikely to be fraudulent. As a result, we have
132540 source nodes, 1428 target nodes, among which 1264
are OK, 77 are Observation and 87 are Fraud cases. Thus a
random guess may achieve a precision of around 0.06.

The completing methods of our IMD are PMD with
positive mutual dependency, NMD with negative mutual
dependency, the distance-based anomaly detection approach
DIST and a supervised approach, decision tree DT. For
DIST, the distance between two publishers is defined as the
KL divergence distance between the corresponding two click
distributions of publishers. A click distribution of a publisher
is the normalized histogram on the number of clicks from all
clickers of this publisher. The distance-based anomaly score
is computed as in [14]. As for DT, for each publisher, we
define 7 features including total number of unique clickers,
total number of clicks, the ratio of number of clicks to the
total number of unique clickers, as well as mean, median,
standard deviation and skewness of the click distribution. We
use C4.5 implemented by WEKA [15] with 10 fold cross-
validation and output the prediction score of each publisher.

Since each method can output a ranking of the publishers
according to its computed scores, we thus measure the
performance of the top ranked publishers of each method
by Precision@K. We vary K from small to as large as 87,
the number of labeled fraudulent publishers. The results are
shown in Figure 6. As we can see from the plot that our
method IMD performs the best among all approaches.

V. CONCLUSIONS

We proposed a generic anomaly detection framework on
bipartite graphs, based on the integral set of mutual depen-
dency principles. We are the first to unify the positive and
negative mutual dependency principles and design iterative
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Figure 6. Precision@K curves on Buzzcity dataset.

algorithm with guarantee that the ranking of sources or tar-
gets will stay unchanged for a certain number of iterations.
We tested our framework on both the synthetic data and
two real life datasets, namely Goodreads and Buzzcity. The
results in these datasets show that our model outperforms the
models with either positive or negative mutual dependency
principles, which demonstrates the necessity of incorporat-
ing both principles for anomaly detection tasks. Moreover,
we successfully identified suspicious users and books in
Goodreads and achieved higher precision in detecting fraud-
ulent publishers in Buzzcity than existing approaches.
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