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Abstract: Paralytic Shellfish Toxin blooms are common worldwide, which makes their monitoring
crucial in the prevention of poisoning incidents. These toxins can be monitored by a variety of
techniques, including mouse bioassay, receptor binding assay, and liquid chromatography with either
mass spectrometric or pre- or post-column fluorescence detection. The post-column oxidation liquid
chromatography with fluorescence detection method, used routinely in our laboratory, has been
shown to be a reliable method for monitoring paralytic shellfish toxins in mussel, scallop, oyster
and clam species. However, due to its high sensitivity to naturally fluorescent matrix interferences,
when working with unconventional matrices, there may be problems in identifying toxins because
of naturally fluorescent interferences that co-elute with the toxin peaks. This can lead to erroneous
identification. In this study, in order to overcome this challenge in echinoderm and gastropod matrices,
we optimized the conversion of Gonyautoxins 1 and 4 to Neosaxitoxin with 2-mercaptoethanol.
We present a new and less time-consuming method with a good recovery (82.2%, RSD 1.1%, n = 3),
requiring only a single reaction step.

Keywords: paralytic shellfish poisoning; toxins; post-column oxidation fluorescence; interfering
matrix peaks; thiol compounds

1. Introduction

Paralytic Shellfish Toxins (PSTs) are neurotoxic alkaloids responsible for the Paralytic Shellfish
Poisoning syndrome (PSP), produced mainly by three dinoflagellates genera: Alexandrium, Pyrodinium
and Gymnodinium. This biotoxin group is composed of Saxitoxin (STX) and its analogues. To date,
there are more than 57 known STX analogues, with the three main subgroups being: STX group
(saxitoxin (STX), neosaxitoxin (NEO), decarbamoyl saxitoxin (dcSTX)), GTXs group (gonyautoxins
1–5 (GTX1, GTX2, GTX3, GTX4 and GTX5), decarbamoyl gonyautoxins 2–3 (dcGTX2, dcGTX3)) and
C group (N-sulfocarbamoyl-gonyautoxins 1–4 (C3, C1, C2 and C4)) [1,2]. PSTs were first reported in the
1920s in the USA but now are reported worldwide, affecting the ecosystem, causing economic losses
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and human poisoning morbidity and mortality [3,4]. PSTs are fast acting toxins affecting the skeletal
muscle by binding specifically to voltage gated sodium channels, inhibiting cell communication and
causing paralysis [1,5]. The most common route of intoxication is through the ingestion of contaminated
seafood, but thanks to monitoring programs and legislation, poisoning events have been scarce in the
past 20 years [3,4]. While these measures are focused on bivalve mollusks, PSTs have been reported in
other vectors, from crustaceans to gastropods and echinoderms; thus an updated risk assessment is
currently required [6]. For many years the mouse bioassay (MBA) has been the standard reference
method for the detection and quantitation monitoring [7]. Currently, due to ethical and technical issues
associated with the MBA [8], chemical methods are preferred and mandated in regulatory monitoring
in most countries, (e.g., EU legislation [7,9]). These methods depend on commercially available
standard reference materials, which are: STX, NEO, GTX1,4, GTX2,3, GTX5, dcSTX, dcGTX2,3, C1, C2
and dcNEO. In 2006, a pre-column oxidation high performance liquid chromatography (HPLC) with
fluorescence detection (FLD) method (Lawrence method) was integrated in the European directives as
a reference method [9]. In 2011, a post-column oxidation high performance liquid chromatography
(HPLC) with fluorescence detection (FLD) method (PCOX method) was validated by the Association of
Official Analytical Chemists (AOAC International) [10]. The PCOX method presents several advantages
regarding routine analysis in comparison to the Lawrence method [11]. However, high sensitivity
to naturally fluorescent matrix interferences can pose some challenges [12]. The PCOX method is
characterized by dividing the toxins into two groups: C group (C1, C2, C3 and C4) and GTXs and
STXs group (GTX1, GTX2, GTX3, GTX4, GTX5, dcGTX2, dcGTX3, NEO, dcSTX and STX). In order to
visualize the C toxins group, the standards are diluted in milliQ water, whereas for the GTXs and STXs
group, the standards are diluted in PSP free shellfish tissue [13] and the elution pattern of the toxins
starts with GTX4 and ends with STX (Figure 1).

Figure 1. Paralytic Shellfish Toxins (PSTs) elution pattern in mussel matrix spiked with standards.

In this study, several matrices were used: bivalves, gastropods, echinoderms, crustaceans and
fish. However, as it was seen in previous studies with some scallop and oyster matrices [12,14],
there can be naturally fluorescent interferences that co-elute with GTX4.This was found in this
investigation with echinoderms and gastropods matrices. In the study of Baker et al. (2003) [15],
five fluorescent compounds were identified with the same retention as GTX4 using HPLC-FLD,
produced by two-strains of bacteria isolated from two Alexandrium species [15]. Rey et al. (2015)
found that in both scallops and oysters, there are matrix interferences that hinder detection of GTX4.
In addition, this work proved that the matrix interference varies with the date of harvesting and
location and can be species specific [12]. In addition, some of the GTXs have been shown to be
transformed reductively into STX or NEO by biologically available thiol reagents such as glutathione
(GSH) [16]. This activity was also found in another thiol compound 2-mercaptoethanol (2-ME) [17],
although the bioconversion of GTX1 and GTX4 into NEO in shellfish seems to happen specifically with
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GSH, as several researchers have observed [16,18]. These thiols selectively reduce O-sulfate group at
C11 of GTX1 and GTX4 to form NEO; these compounds also convert GTX2,3 into STX [17].

To overcome this issue of naturally fluorescent matrix interferences, mixtures of GTX1, 4 were
converted into NEO using 2-mercaptoethanol in samples which were suspected to have naturally
fluorescent interferences.

2. Results and Discussion

Sakamoto et al. [17] converted GTXs to STXs with thiol compounds: GTX1 and GTX4 (4 nmol)
were mixed with 1 mL of 8 mM 2-ME in 0.1 M phosphate buffer, pH 7.4. This mixture was then
incubated at 70 ˝C for 2 h. The procedure used by Sakamoto et al. were performed in our laboratory
but while GTX1 and GTX4 disappeared we detected no NEO formation as a result of the reaction.
However, the theoretical yield of NEO should be 0.6 nmol (15% of conversion) after this reductive
reaction, as it has been described [16] and these values are below the PCOX detection limit [12].
The low conversion rate may be due to the GTX and 2-ME conjugates. A second step is needed to
complete the reaction, which consists of an incubation with 1M 2-ME at 100 ˝C for 10 min. so that
conjugates of GTX1, GTX4 and 2-ME are converted into NEO. The percentage of recovery obtained
was lower than expected, only 40% of NEO, whereas approximately 90% was expected, according to
Sakamoto et al. [17]. In order to ensure the effectiveness of the transformation reaction, there must be
an excess of thiol. Therefore, for the second step of the reaction, different concentrations of 2-ME in
0.1 M buffer phosphate were assayed: 1 M, 3 M and 5 M. No differences were observed with these
variations in 2-ME concentration.

After taking the results into account, a different way of optimizing reaction conditions was
attempted, whereby the incubation temperature and time were varied in a one-step reaction according
to the following: 4 nmol of the standard mixture GTX1, 4 (3 nmol GTX1: 1 nmol GTX4) were mixed
with 1 M 2-ME in 0.1 M phosphate buffer, pH 7.4. The mixture was heated in a water bath at 100 ˝C
and different incubation times were tested: 10, 15, 20, 25, 30, 35 and 40 min (Table 1).

Table 1. Percentage of recovery of neosaxitoxin (NEO) after reaction of gonyautoxin (GTX)1, 4 with
2-mercaptoethanol (2-ME) 1 M in phosphate buffer 0.1 M, pH 7.4, and in gastropod matrix (average
n = 3), and RSD % (Relative Standard Deviation).

Time (min)
100 ˝C Water Bath 100 ˝C Incubator Gastropod Matrix

Average % RSD % Average % RSD % Average % RSD %

10 59.5 0.8 64.5 2.8 62.2 1.2
15 55.3 0.3 58.4 1.7 69.7 1.5
20 62.6 1.0 58.9 1.0 71.9 1.1
25 81.1 1.2 61.4 1.0 80.2 1.5
30 82.2 1.1 50.5 1.4 84.3 1.3
35 65.8 1.8 47.7 1.0 71.1 1.4
40 64.8 1.3 31.0 2.4 68.0 1.8

The same procedure was carried out in an incubator at 100 ˝C and the times tested remained
the same: 10, 15, 20, 25, 30, 35 and 40 min. In most cases, the results were lower than those obtained
with the water bath (Table 1) and although the recovery percentages are a bit higher for 10 and 15 min,
an optimal difference in recovery was observed at 30 min in the water bath. In general, the results show
that the reaction is more effective with water bath compared to oven heating, and a higher percentage
of transformed NEO was obtained after 30 min (Table 1).

The reductive reaction was replicated three times (n = 3), in three different aliquots of the standard
mixture and the average conversion percentage was 82.2% with Relative Standard Deviation (RSD) 1.1%
with regard to repeatability. Although the results were not higher than those of previous studies [17],
the reaction has been simplified from two steps to one, as shown in Figure 2a (before reductive reaction)



Toxins 2016, 8, 11 4 of 10

and Figure 2b (after reductive reaction). The recovery was also tested in real matrix of gastropod:
4 nmol of the standard mixture GTX1, 4 (3 nmol GTX1: 1 nmol GTX4) were spiked into 100 µL of
toxin-free matrix extract prepared according to what is described in Section 3.2.; 200 µL of 1 M 2-ME in
0.1 M phosphate buffer, pH 7.4 (see Equation (3)), were added and the recovery was tested at the times
mentioned previously, in the water bath at 100 ˝C. Table 1 shows that the best recovery percentage is
also for 30 min.
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Figure 2. 4 nmol of GTX1, 4 incubated with 1 M 2-ME in 0.1 M phosphate buffer, pH 7.4 during 30 min
in water bath: (a) before incubation; (b) after incubation.

Samples suspected of containing GTX4 or a co-eluting naturally fluorescent interference were
subjected to 2-ME reduction, as described in the sample preparation and transformation section.
Table 2 shows tested samples and results. It was found that when the peak was GTX4, it disappeared
and it was reduced to NEO. However, if the peak was caused by natural fluorescent components
present in the sample, the size of the peak before and after the reductive reaction did not change, as
described in the experimental section. Figure 3 shows the chromatograms of sample 477 (S. haemostoma)
before incubation with 2-ME (Figure 3a) and after incubation with 2-ME (Figure 3b). This sample
had a chromatographic peak named X, which could be either GTX4 or a natural fluorescent matrix
interference that co-elutes with the toxin. After exposure to 2-ME, this peak was not reduced and
there was no production of NEO, confirming that this peak was due to a naturally fluorescent matrix
interference. Although there might be a co-elution of GTX4 and the matrix interference, no reduction
in peak area was observed after reduction, so it can be deduced that only the interference is present.
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after transformation.

Table 2. Tested samples and results before and after reaction with 2-ME.

Code
Type of

Organism
Species Origin/Date of Collection

Before
Transformation (µM)

After
Transformation (µM)

GTX4 GTX1 NEO GTX4

351 Gastropod Umbraculum
umbraculum

Madeira Island/
September 2012 1.7 1.1 1.3 0.2

353 Starfish Echinaster
sepositus

Madeira Island/
September 2012 0.8 1.8 2.3 0.5

354 Gastropod Charonia
lampas

Madeira Island/
September 2012 90.5 3.8 29.3 25.5

412 Starfish Ophidiaster
ophidianus

São Miguel Island,
Azores/June 2013 17.3 3.7 4.4 0.7

424 Starfish O. ophidianus São Miguel Island,
Azores/June 2013 17.0 - 4.6 4.6

428 Starfish Marthaterias
glacialis

São Miguel Island,
Azores/June 2013 42.8 18.9 29.9 10.9

440 Starfish O. ophidianus São Miguel Island,
Azores/June 2013 26.4 - - -

443 Gastropod Stramonita
haemostoma Morocco/July 2013 428.6 - - -

454 Gastropod Cerithium
vulgatum Morocco/July 2013 121.6 - 0.4 0.4

470 Gastropod Monodonta
lineata Morocco/July 2013 3.9 - 2.5 2.5

474 Gastropod Onchidela
celtica Morocco/July 2013 6.9 - - -

475 Gastropod C. lampas Morocco/July 2013 8.4 - - -

477 Gastropod Stramonita
haemostoma Morocco/July 2013 2.5 - - -

483 Gastropod Gibbula
umbilicalis Morocco/July 2013 13.3 - - -

Figure 4 shows a positive sample, 454 (Cerithium vulgatum), before and after transformation
(4a and 4b, respectively). The chromatographic peak for GTX4 (X) decreased but was not completely
eliminated after the reaction. NEO was produced by the transformation, indicating that the peak was
likely due to a combination of both GTX4 and a naturally fluorescent matrix interference.
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Figure 4. (a) Sample 454 (Cerithium vulgatum) before transformation; (b) sample 454 (Cerithium vulgatum)
after transformation.

In summary, when NEO was produced after the reductive reaction, the GTX4 peak was reduced.
When NEO was not a product of the reduction, no change was observed in the GTX4 interference peak
in the chromatogram, making peak assignment easier.

Table 2 summarizes all the samples tested with code, species and results before and
after transformation.

After optimizing the conditions of the reductive reaction using 2-ME as a reductive agent, the
same settings were tested with Glutathione (GSH). A solution of 0.2 M GSH in 0.1 M phosphate buffer,
pH 7.4, was used to achieve transformation and it was found that after heating the mixture in a water
bath for 30 min, GTX1,4 did not react with Glutathione.

While previous studies [16,17] demonstrated that both thiol reagents are able to transform GTXs
in STXs, we found that, Glutathione was less effective than 2-Mercaptoethanol.

There is evidence that the action of intestinal bacteria mediates the transformation of GTXs
analogs into STXs through GSH [18–20]. This conversion increases the toxic content of PSP-bearers,
consequently increasing the toxicity in the food chain [6].

In the present study, the transformation reaction was used to confirm the presence and to quantify
GTX4 in several samples.

The PCOX method used for monitoring PSTs requires the use of toxin-free shellfish extracts
to prepare the calibration solution in order to overcome the matrix effect and also to facilitate data
interpretation [13]. The post-column method poses some challenges regarding the co-elution of matrix
peaks with toxin ones, hindering data analysis [12]; although it was optimized and validated for mussel,
clam, scallop and oyster [13], and initially these four matrixes showed no naturally fluorescent matrix
interferences, later studies [12,14] showed that both scallop and oyster have naturally fluorescent
matrix interferences. GTX1 and GTX4 elute early off the chromatographic column [13], and this region
has been shown to contain naturally fluorescent peaks in some matrices [12,14].

As toxin-free shellfish extracts of some of these matrices (echinoderm and gastropod) were not
available, the performance of the method for these new matrices was not able to be assessed or
validated. The conversion of GTX1 and GTX4 into NEO made it possible to detect and quantify GTX4
when it co-eluted with a naturally fluorescent matrix chromatographic peak. This is important because
even though this method is only validated for bivalves, PSTs have been reported in other vectors [6]
and could present a risk to the health of consumers.

It was observed that the transformation of GTX1 and GTX4 into NEO was most effective at a
concentration of 1 M 2-ME in 0.1 M phosphate buffer (pH = 7.4), because when higher concentrations
were tested (3 M and 5 M), there was no improvement in the yield of the reaction. While Sakamoto et al.
found that it was necessary to have an excess of thiol compounds for the second step of the reaction [17],
in this case there is an optimization of the protocol to a single one-step reaction using one solution
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of 2-ME. This is a remarkable improvement, although the conversion of GTX4 into NEO is not as
complete as those shown in previous studies [17], which was 82.2% of the recovery found (n = 3, RSD = 1.1%).

The naturally fluorescent matrix peak was not affected by the addition of 2-ME allowing
confirmation of non-detectable GTX4 when NEO was not produced, taking into account the decrease
in the initial peak area when the toxin is present. This protocol represents a less time-consuming, easier
and more economical way to overcome the challenge of co-eluting peaks in new shellfish matrices.

3. Experimental Section

3.1. Chemicals and Solutions

HPLC grade acetonitrile, ortho-phosphoric acid 85% (v/v), periodic acid, sodium hydroxide, nitric
acid 65% (v/v), hydrochloric acid 37% (v/v), sodium dihydrogen phosphate (NaH2PO4) and disodium
hydrogen phosphate (Na2HPO4) were acquired from Panreac Quimica S.A. (Barcelona, Spain).
Heptane sulfonate, ammonium hydroxide 30% (v/v), trichloroacetic acid (TCA), 2-mercaptoethanol
(2-ME) and glutathione (GSH) were purchased from Sigma Aldrich (Madrid, Spain).

Certified Reference Standard of NEO was purchased from CIFGA S.A. (Lugo, Spain), and
GTX1,4 was provided by NRC (Institute for Marine Biosciences, Halifax, NS, Canada) for the
identification of each toxin. A quality control standard of GTX1,4 from CIFGA S.A. was used for
transformation reactions.

3.2. Sample Preparation and Transformation

Shellfish homogenate was extracted according to the procedure indicated in PCOX method [13].
The method involves a sample extraction with 0.1 M HCl and heating it in a boiling water bath for
5 min (adjust the pH previously if required between 2 and 4, preferably 3), an extract deproteination
with 30% TCA and a neutralization with NaOH to bring the mixture pH between 2 and 4, preferably 3.
Then the extract was filtered with 0.2 µm nylon membrane syringe filter (Whatman-Sigma Aldrich,
Madrid, Spain) and injected into the system.

The samples containing the naturally fluorescent interferences were analyzed again after reductive
transformation, as described below.

Mixtures of 4 nmol GTX1, 4 were mixed with 1 M 2-ME in 0.1 M phosphate buffer, pH 7.4.
An aliquot of this mixture was analyzed by HPLC before reductive reaction to direct comparison
with an aliquot after reductive reaction. These mixtures were heated at 100 ˝C for 30 min in water
bath. An aliquot of the reduction reaction product was analyzed for toxin components by HPLC
(Izasa Scientific, Madrid, Spain). Shellfish sample extracts underwent the same process and were
analyzed by HPLC for toxin profile determination.

3.3. HPLC Toxins Identification

A modification of PCOX method was used [14] to identify PSTs. STX and GTXs groups were
separated using a Zorbax Bonus-RP column (15 cm ˆ 4.6 mm i.d., 3.5 µm particle size, part number
863668-901) from Agilent Technologies (Madrid, Spain), with column oven at 30 ˝C. Solvent A was
composed by 8.25 mM heptane sulfonate and 5.5 mM H3PO4 aqueous solution adjusted to pH 7.1
using NH4OH 28%–30%. Solvent B composition was 8.25 mM heptane sulfonate, 16.5 mM H3PO4 in
11.5% MeCN, pH 7.1 using NH4OH 28%–30%. The gradient used was 0% B over 8.4 min, then 100% B
at 8.5 min for 10 min, 0% B for 9 min before the next injection. The injection volume was 10 µL. The
running time was 30 min, with a flow rate adjusted at 0.8 mL/min. The column eluate was combined
using a tee connector with the oxidant: 100 mM H3PO4, 5 mM H5IO6 aqueous solution adjusted to
pH 7.8 with 5 M NaOH; the oxidant flow rate was set at 0.5 mL/min. The resulting mix was heated
while passing through a knitted reaction coil (teflon tube, 5 m ˆ 0.50 mm i.d.) from Supelco (Madrid,
Spain) immersed in a water bath at 80 ˝C. The eluate from the reaction coil was combined using a tee
connector with 0.1 M nitric acid at a flow rate of 0.3 mL/min, to reach a pH outflow ranging between
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5–7 [21]. Finally, the fluorescent eluted derivatives were monitored using a fluorescence detector at 330
and 395 nm excitation/emission wavelengths, respectively.

3.4. Calculation of the Concentration of GTX4

Identification of PSTs was done comparing retention times between the samples and standards.
GTX1 was quantified directly, the reductive reaction was not needed for quantification.

Consequently, the concentration was calculated using the linear regression of the calibration curve for
this toxin and the results were corrected for the method dilution [13]. The equation for calculation of
final concentration is:

µMGTX1 “ pµMˆFvol{Ext.volqˆDFq (1)

where µMGTX1 = µmol/L, final concentration of GTX1 in the extract; µM = µmol/L, concentration
obtained from calibration curve; Fvol = final volume of the deproteinized extract (560 µL);
Ext.vol = volume of crude extract used (500 µL); DF is dilution factor = 2, derived from 5 g of tissue
extracted with 10 mL.

The concentration of GTX4 was calculated after reductive reaction, from the concentration of NEO
formed, which was calculated from the linear regression curve (peak area versus concentration in µM)
with the results for injections of the standard solutions of NEO.

The concentration of NEO, as determined after GTX toxins conversion, is equal to the sum of
GTX1 and GTX4 in a 100% effective reaction. Therefore:

µMNEO “ µM for GTX1 ` µM for GTX4 (2)

The reduction reaction involves a dilution of the sample, 22 µL of sample to 200 µL of final volume;
however, the conversion is not complete, only 82.2% is transformed into NEO. These two factors should
be used to correct the concentration of NEO. The concentration must be corrected again with dilutions
factors inherent to PCOX method as shown in Equation (1).

µMNEO “ pµMˆpFre{Ext.reqˆ p100{82.2qqˆ pFvol{Ext.volqˆ DF (3)

where µMNEO = µmol/L, final concentration of NEO in the sample; µM = µmol/L, obtained using
the linear regression of the calibration curve; Fre = final volume of the reaction mixture (200 µL);
Ext.re = volume of extract used in the reaction (22 µL); 100/82.2 = recovery of reduction reaction;
Fvol = final volume of the deproteinized extract (560 µL); Ext.vol = volume of extract used (500 µL);
DF is dilution factor = 2, derived from 5 g of tissue extracted with 10 mL.

Combining Equations (2) and (3) obtains a result of:

µMGTX1 ` µMGTX4 “ pµMˆpFre{Ext.reqˆ p100{82.2qqˆ pFvol{Ext.volqˆDF (4)

If GTX1 was previously detected in the sample, it was necessary to subtract its concentration to
reduce the potential for overestimation of GTX4:

µMGTX4 “ ppµMˆpFre{Ext.reqˆ p100{82.2qqˆ pFvol{Ext.volqˆDFq´µMGTX1 (5)

If GTX1 was not detected in the sample, the concentration obtained in Equation (4) corresponds
only to GTX4.

4. Conclusions

In summary, each matrix is different and greatly influences the toxins elution pattern. With regard
to routine monitoring analyses, these various chromatographic behaviors pose some issues in the
identification or quantification of erroneous toxins. In this study, a GTX4 reductive reaction to NEO is
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being proposed. This new protocol is a less time-consuming and economical alternative to solving the
co-eluting peak problem between natural fluorescence matrix interference and toxin peaks.
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