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Abstract: The pivotal proposal of this work is to present a reliable algorithm based on the local
fractional homotopy perturbation Sumudu transform technique for solving a local fractional Tricomi
equation occurring in fractal transonic flow. The proposed technique provides the results without
any transformation of the equation into discrete counterparts or imposing restrictive assumptions
and is completely free of round-off errors. The results of the scheme show that the approach is
straightforward to apply and computationally very user-friendly and accurate.
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1. Introduction

Partial differential equations of mixed type with boundary conditions have played an important
role in describing real world problems such as in elementary research conducted by Tricomi [1]. Mixed
type partial differential equations [2,3] are used to investigate transonic flow and they produce special
boundary value problems, known as Tricomi and Frankl problems [1,4]. Transonic flows include a
change from the subsonic to the hypersonic region [4,5] via the sonic curve. Consequently, transonic
flows are very attractive phenomena occurring in aeronautics and hydraulics. The familiar mixed
type partial differential equation is known as a Tricomi equation, yuxx ` uyy “ 0, because of Tricomi,
who found this mathematical model, for the function u “ upx, yq of two variables x and y. It acts as
a basis for the mathematical modelling of the transonic flows, since it is of elliptic and hyperbolic
type, where the coefficient y of the second order partial differential coefficient of the required function
u “ upx, yqwith respect to x changes sign. This mathematical equation is also parabolic at the points
where y vanishes.

The Tricomi equation [1] is a mixed type of linear partial differential equation of the second
order, which has been used to narrate the theory of plane transonic flow [6–9]. The Tricomi equation
was used to recount differentiable problems for the theory of plane transonic flow. However, for the
fractal theory of plane transonic flow with non-differentiable expressions, the Tricomi equation is
not registered to report them. Recently, local fractional calculus [10] was tried for non-differentiable
problems, for instance fractal heat conduction [10,11], damped and dissipative wave equations in
fractal strings [12], local fractional Laplace equations [13], the Helmholtz equation associated with
local fractional derivatives [14], the wave equation on Cantor sets [15], Navier–Stokes equations on
Cantor sets [16], local fractional Schrödinger equations [17], Korteweg–de Vries equations involving
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local fractional derivative [18], etc. In recent times, the local fractional model of the Tricomi equation in
fractal transonic flows was recommended in the form [19,20]

yβ

Γp1`βq
B2βupx, yq
Bx2β `

B2βupx, yq
By2β “ 0, (1)

where the size upx, yq is the non-differentiable function, and the local fractional operator indicates [10]

Bβupx, tq
Btβ

“
∆β pupx, tq ´ upx, t0qq

pt´ t0q
, (2)

where
∆β pupx, tq ´ upx, t0qq – Γp1`βq rupx, tq ´ upx, t0qs (3)

The Tricomi equation finds its application in modeling transonic flow [21–23]. Inspired and
motivated by the ongoing research in this area and wide applications of local fractional differential
equations, we propose the local fractional homotopy perturbation Sumudu transform method
(LFHPSTM) to solve the local fractional model of the Tricomi equation appearing in fractal transonic
flow pertaining to the local fractional derivative boundary value conditions. The LFHPSTM is a
conjunction of the classical homotopy perturbation method (HPM) [24–26] and the local fractional
Sumudu transform technique. The formation of this article is as developed. In Section 2, the local
fractional integrals and derivatives are initiated. In Section 3, the local fractional homotopy
perturbation Sumudu transform method is proposed. In Section 4, the non-differentiable numerical
solutions for local fractional Tricomi equation along the local fractional derivative boundary value
conditions are specified. Finally, in Section 5, the conclusions are discussed.

2. Local Fractional Integrals and Derivatives

In this section, we review the basic theory of local fractional calculus, which is applied in this
research article.

Definition 1 ([10–20]). For the relation |x´ x0| ă δ, when ε, δ ą 0 and ε ą R, we permit the function
f pxq P Cβpa, bq, while

ˇ

ˇ

ˇ
f pxq ´ f px0q

ˇ

ˇ

ˇ
ă εβ, 0 ă β ď 1, (4)

exists.

Definition 2 ([10–20]). Consider the interval [a, b] and ptj, tj`1q, j “ 0, . . . , N ´ 1, t0 “ a,
and tN “ b with ∆tj “ tj`1 ´ tj, ∆t “ max t∆t0, ∆t1, ∆t2, . . .u a partition of this interval. Then,
the local fractional integral of f pxq is explained as

a Ib
pβq

f pxq “
1

Γp1`βq

b
ż

a

f ptqpdtqβ “
1

Γp1`βq
lim

∆tÑ0

j“N´1
ÿ

j“0

f ptjqp∆tjq
β, (5)

Definition 3 ([10–20]). Suppose the function f pxq fulfill state in Equation (4), then the inverse formula
of Equation (5) is defined as follows:

dβ f px0q

dxβ
“ Dpβqx f px0q “

∆β p f pxq ´ f px0qq

px´ x0q
β

, (6)

where
∆β p f pxq ´ f px0qq – Γp1`βqr f pxq ´ f px0qs. (7)
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The formula of the local fractional derivative, employed in this paper, is given as follows [10]:

dβ

dxβ
xnβ

Γp1` nβq
“

xpn´1qβ

Γp1` pn´ 1qβq
, n P N. (8)

3. Local Fractional Sumudu Transform

The Sumudu transform was initially proposed and developed by Watugala [27] and some of
its important properties were discovered and investigated by Belgacem et al. [28] and Belgacem and
Karaballi [29]. Katatbeh and Belgacem [30] employed the Sumudu transform to solve fractional
differential equations. Gupta et al. [31] used the Sumudu transform to solve generalized fractional
kinetic equations. Belgacem [32] investigated the applications of the Sumudu transform to Bessel
functions and equations. Belgacem [33] introduced and analyzed deeper Sumudu properties.
Bulut et al. [34] obtained the analytical solutions of some fractional ordinary differential equations by
using the Sumudu transform technique. The Sumudu transform method is also coupled with HPM to
investigate the fractional biological population model [35]. The local fractional Sumudu transform of a
function f pxq is first introduced and defined by Srivastava et al. [36] in the following manner:

LFSβ t f pxqu “ Fβpzq

“ 1
Γp1`βq

8
ş

0
Eβp´z´βxβq f pxq

zβ pdxqβ, 0 ă β ď 1
(9)

and the inverse formula is expressed as follows

LFS´1
β

 

Fβpzq
(

“ f pxq, 0 ă β ď 1. (10)

4. Local Fractional Homotopy Perturbation Sumudu Transform Method

In order to establish the basic idea of the LFHPSTM, we assume the following linear differential
equation with a local fractional derivative

Lβupx, tq ` Rβupx, tq “ hpx, tq, (11)

where Lβ denotes the linear local fractional differential operator, Rβ is the remaining linear operator
and hpx, tq is a source term.

Using the local Sumudu transform on Equation (11) yields

Uβpx, zq “ upx, 0q ` zβuβpx, 0q ` z2βu2βpx, 0q ` . . .

`zpk´1qβupk´1qβpx, 0q ´ zkβLFSβ

“

Rβupx, tq
‰

` zkβLFSβ rhpx, tqs .
(12)

Applying the inverse of the local fractional Sumudu transform on Equation (12), we have the
following result

upx, tq “ upx, 0q ` tβ
Γp1`βq

uβpx, 0q ` t2β

Γp1`2βqu
2βpx, 0q ` . . .

` tpk´1qβ

Γp1`pk´1qβqu
pk´1qβpx, 0q ´ LFS´1

β

”

zkβLFSβ

“

Rβupx, tq
‰

ı

`LFS´1
β

”

zkβLFSβ rhpx, tqs
ı

.

(13)

Now we use the HPM [24–26]

upx, tq “
8
ÿ

n“0

pnunpx, tq. (14)
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Substituting Equation (14) in Equation (13), we get the following result:

8
ř

n“0
pnunpx, tq “ upx, 0q ` tβ

Γp1`βq
uβpx, 0q ` t2β

Γp1`2βqu
2βpx, 0q ` . . .

` tpk´1qβ

Γp1`pk´1qβqu
pk´1qβpx, 0q ´ pLFS´1

β

„

zkβLFSβ

„

Rβ

8
ř

n“0
pnunpx, tq



`LFS´1
β

”

zkβLFSβ rhpx, tqs
ı

.

(15)

which is a mixture of the local fractional Sumudu transform technique and HPM. Comparing the
coefficients of like powers of p, we get

p0 : u0px, tq “ upx, 0q ` tβ
Γp1`βq

uβpx, 0q ` t2β

Γp1`2βqu
2βpx, 0q ` . . .

` tpk´1qβ

Γp1`pk´1qβqu
pk´1qβupx, 0q ` LFS´1

β

”

zkβLFSβ rhpx, tqs
ı

,

p1 : u1px, tq “ ´LFS´1
α

”

zkβLFSβ

“

Rβu0px, tq
‰

ı

,

p2 : u2px, tq “ ´LFS´1
β

”

zkβLFSβ

“

Rβu1px, tq
‰

ı

,
...

(16)

Therefore, the solution of Equation (11) is given by

upx, tq “ lim
NÑ8

N
ÿ

n“0

unpx, tq (17)

5. Nondifferential Solutions for the Local Fractional Tricomi Equation

In this section, we present the nondifferential solutions for the Tricomi equation pertaining to the
local fractional derivative occurring in fractal transonic flow with local fractional derivative boundary
value conditions.

Example 1. Firstly, we investigate the following local fractional Tricomi equation

yβ

Γp1`βq
B2βupx, yq
Bx2β `

B2βupx, yq
By2β “ 0 (18)

subject to the initial-boundary value conditions

upx, 0q “ 0,

uph, lq “ 0,

upx, 0q “ x2β

Γp1`2βq ,

Bβupx,0q
Byβ “ 0.

(19)

Applying the local fractional Sumudu transform on Equation (18), we get

Uβpx, zq “ upx, 0q ` zβuβpx, 0q ` z2βLFSβ

„

´
yβ

Γp1`βq
B2βupx, yq
Bx2β



(20)

which implies

Uβpx, zq “
x2β

Γp1` 2βq
` z2βLFSβ

„

´
yβ

Γp1`βq
B2βupx, yq
Bx2β



(21)
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Applying the inverse local fractional Sumudu transform to Equation (21) gives

upx, yq “
x2β

Γp1` 2βq
` LFS´1

β

„

z2βLFSβ

„

´
yβ

Γp1`βq
B2βupx, yq
Bx2β



(22)

Now using HPM [24–26] we get

8
ÿ

n“0

pnunpx, yq “
x2β

Γp1` 2βq
` pLFS´1

β

»

—

—

–

z2βLFSβ

»

—

—

–

´
yβ

Γp1`βq

B2βp
8
ř

n“0
pnunpx, yqq

Bx2β

fi

ffi

ffi

fl

fi

ffi

ffi

fl

(23)

Comparing the like powers of p, we get the following components of the series solution

p0 : u0px, yq “ x2β

Γp1`2βq ,

p1 : u1px, yq “ ´
y3β

Γp1`3βq ,

p2 : u2px, yq “ 0,
...

(24)

Finally, we get the exact solution of Equation (18) with the local fractional derivative boundary
value conditions Equation (19), namely

upx, yq “ lim
NÑ8

N
ř

n“0
unpx, yq

“ x2β

Γp1`2βq ´
y3β

Γp1`3βq

(25)

Example 2. Next, we study the local fractional Tricomi equation of the form

yβ

Γp1`βq
B2βupx, yq
Bx2β `

B2βupx, yq
By2β “ 0 (26)

and the initial conditions are presented as

upx, 0q “ xβ
Γp1`βq

,

Bβupx,0q
Byβ “ xβ

Γp1`βq
,

(27)

Applying the local fractional Sumudu transform to Equation (26), we get

Uβpx, zq “ upx, 0q ` zβuβpx, 0q ` z2βLFSβ

„

´
yβ

Γp1`βq
B2βupx, yq
Bx2β



(28)

which gives

Uβpx, zq “
xβ

Γp1`βq
` zβ

xβ

Γp1`βq
` z2βLFSβ

„

´
yβ

Γp1`βq
B2βupx, yq
Bx2β



(29)

Applying the inverse local fractional Sumudu transform to Equation (29), we have

upx, yq “
xβ

Γp1`βq

„

1`
yβ

Γp1`βq



` LFS´1
β

„

z2βLFSβ

„

´
yβ

Γp1`βq
B2βupx, yq
Bx2β



(30)
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Now using HPM [24–26], we get

8
ř

n“0
pnunpx, yq “ xβ

Γp1`βq

”

1` yβ

Γp1`βq

ı

`

pLFS´1
β

»

—

–

z2βLFSβ

»

—

–

´
yβ

Γp1`βq

B2βp
8
ř

n“0
pnunpx,yqq

Bx2β

fi

ffi

fl

fi

ffi

fl

(31)

Comparing the coefficients of like powers of p provides

p0 : u0px, yq “ xβ
Γp1`βq

”

1` yβ

Γp1`βq

ı

,

p1 : u1px, yq “ 0,
p2 : u2px, yq “ 0,

...

(32)

Hence, we get the exact solution with non-differential term, as follows:

upx, yq “ lim
NÑ8

N
ÿ

n“0

unpx, yq “
xβ

Γp1`βq

„

1`
yβ

Γp1`βq



(33)

6. Conclusions

In the present paper, the local fractional Tricomi equation with its applications in fractal transonic
flow is discussed by using the local fractional homotopy perturbation Sumudu transform technique.
We obtain the solution with non-differential terms by applying this approach. The results show that
the proposed technique is very efficient and can be used to solve various kinds of local fractional
differential equations. Hence, the introduced method is a powerful tool for solving local fractional
linear equations of physical importance.
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