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Abstract  

In this article we propose a new multivariate generalized autoregressive conditional heteroscedasticity 

(MGARCH) model with time-varying correlations. We adopt the vech representation based on the conditional 

variances and the conditional correlations. Whereas each conditional-variance term is assumed to follow a 

univariate GARCH formulation, the conditional-correlation matrix is postulated to follow an autoregressive 

moving average type of analog. Our new model retains the intuition and interpretation of the univariate 

GARCH model and yet satisfies the positive-definite condition as found in the constant-correlation and Baba-

Engle-Kraft-Kroner models. We report some Monte Carlo results on the finite-sample distributions of the 

maximum likelihood estimate of the varying-correlation MGARCH model. The new model is applied to some 

real data sets. 

 

KEY WORDS: BEKK model, Constant correlation, Maximum likelihood estimate, Monte Carlo method, 

Multivariate GARCH model, Varying correlation 

 

1. INTRODUCTION 

After the success of the autoregressive conditional heteroscedasticity (ARCH) model and the generalized 

ARCH (GARCH) model in describing the time-varying variances of economic data in the univariate case, 

many researchers have extended these models to multivariate dimension. Applications of the multivariate 

GARCH (MGARCH) models to financial data have been numerous. For example, Bollerslev (1990) studied 

the changing variance structure of the exchange rate regime in the European Monetary System, assuming the 

correlations to be time invariant. Kroner and Claessens (1991) applied the models to calculate the optimal debt 

portfolio in multiple currencies. Lien and Luo (1994) evaluated the multiperiod hedge ratios of currency 

futures in a MGARCH framework. Karolyi (1995) examined the international transmission of stock returns 

and volatility, using different versions of MGARCH models. Baillie and Myers (1991) estimated the optimal 

hedge ratios of commodity futures and argued that these ratios are nonstationary. Gourieroux (1997, chap. 6) 

presented a survey of several versions of MGARCH models. See also Bollerslev et al. (1992) and Bera and 

Higgins (1993) for surveys on the methodology and applications of GARCH and MGARCH models. 

 

Bollerslev et al. (1988) provided the basic framework for a MGARCH model. They extended the GARCH 

representation in the univariate case to the vectorized conditional-variance matrix. Their specification follows 

the traditional autoregressive moving average time series analog. This vech representation is very general, and 

it involves a large number of parameters. Empirical applications require further restrictions and 

simplifications. A useful member of the vech-representation family is the diagonal form. Under the diagonal 

form, each variance-covariance term is postulated to follow a GARCH-- type equation with the lagged 



variance-covariance term and the product of the corresponding lagged residuals as the rightside variables in 

the conditional-(co)variance equation. 

 

It is often difficult to verify the condition that the conditional-variance matrix of an estimated MGARCH 

model is positive definite. Engle et al. (1984) presented the necessary conditions for the conditional-variance 

matrix to be positive definite for a bivariate ARCH model. Extensions of these results to more general models 

are, however, intractable. Furthermore, such conditions are often very difficult to impose during the 

optimization of the log-likelihood function. Bollerslev (1990) suggested a constant-correlation MARCH (CC-- 

MGARCH) model that can overcome these difficulties. He pointed out that under the assumption of constant 

correlations, the maximum likelihood estimate (MLE) of the correlation matrix is equal to the sample 

correlation matrix. As the sample correlation matrix is always positive definite, the optimization will not fail 

as long as the conditional variances are positive. In addition, when the correlation matrix is concentrated out 

of the log-likelihood function further simplification is achieved in the optimization. 

 

Because of its computational simplicity, the CC-MGARCH model is widely used in empirical research. 

However, although the constant-correlation assumption provides a convenient MARCH model for estimation, 

many studies find that this assumption is not supported by some financial data. Thus, there is a need to extend 

the MGARCH models to incorporate time-varying correlations and yet retain the appealing feature of 

satisfying the positive-definite condition during the optimization. 

 

Engle and Kroner (1995) proposed a class of MGARCH model called the BEKK (named after Baba, Engle, 

Kraft, and Kroner) model. The motivation is to ensure the condition of a positive-definite conditional-variance 

matrix in the process of optimization. Engle and Kroner provided some theoretical analysis of the BEKK 

model and related it to the vech-representation form. Another approach examines the conditional variance as a 

factor model. The works by Diebold and Nerlove (1989), Engel and Rodrigues (1989), and Engle et al. (1990) 

are along this line. One disadvantage of the BEKK and factor models is that the parameters cannot be easily 

interpreted, and their net effects on the future variances and covariances are not readily seen. Bera et al. 

(1997) reported that the BEKK model does not perform well in the estimation of the optimal hedge ratios. 

Lien et al. (2001) reported difficulties in getting convergence when they used the BEKK model to estimate the 

conditional-variance structure of spot and futures prices. 

 

In this article we propose a new MGARCH model with time-varying correlations. Basically we adopt the vech 

representation. The variables of interest are, however, the conditional variances and conditional correlations. 

We assume a vech-diagonal structure in which each conditional-variance term follows a univariate GARCH 

formulation. The remaining task is to specify the conditional-correlation structure. We apply an autoregressive 

moving average type of analog to the conditional-correlation matrix. By imposing some suitable restrictions 

on the conditional-correlation-matrix equation, we construct a MGARCH model in which the conditional-- 

correlation matrix is guaranteed to be positive definite during the optimization. Thus, our new model retains 

the intuition and interpretation of the univariate GARCH model and yet satisfies the positive-definite 

condition as found in the constant-- correlation and BEKK models. 

 

The plan of the rest of the article is as follows. In Section 2 we describe the construction of the varying-

correlation MGARCH model. As in other MGARCH models, the new model can be estimated by use of the 

MLE method. Some Monte Carlo results on the finite-sample distributions of the MLE of the varying-

correlation MGARCH model are reported in Section 3. Section 4 describes some illustrative examples of the 

new model that use some real data sets. These are the exchange rate data, national stock market price data, and 

sectoral stock price data. The new model is compared against the CC-MGARCH model and the BEKK model. 

It is found that the new model compares favorably against the BEKK model. Extending the constant-

correlation model to allow for time-varying correlations provides some interesting empirical results. The 



estimated conditional-correlation path provides a time history that would be lost in a constant-correlation 

model. Finally, we give some concluding remarks in Section 5. 

 

 

 

2. A VARYING-CORRELATION MGARCH MODEL 

 

Consider a multivariate time series of observations { yt }, t =1, …, T, with K elements each, so that  

yt = (y1t, …, yKt)′. We assume that the observations are of zero (or known) mean. This assumption simplifies 

the discussions without straining the notations. Additional parameters would be required to represent the 

conditional-mean equation in the complete model if the mean were unknown. Under certain conditions, the 

MLE of the parameters in the conditional-mean equation is asymptotically uncorrelated with the MLE of the 

parameters of the conditional-variance equation. Under such circumstances, we may treat yt as pre-filtered 

observations [see Bera and Higgins (1993) for further discussions]. Otherwise, the parameter vector has to be 

augmented to take account of the parameters in the unknown conditional mean. 

The conditional variance of yt is assumed to follow the time-varying structure given by 

Var (yt |Фt-1) = Ωt ,   (1) 

where Фt is the information set at time t. We denote the variance elements of Ωt by σ2 
ijt, for i = 1, …, K,  and 

the covariance elements by σijt, where 1 ≤ i ≤ j ≤ K. Denoting Dt as the K x K diagonal matrix where the ith 

diagonal element is σit, we let ɛt = Dt
-1

 yt.. Thus, ɛt is the standardized residual and is assumed to be serially 

independently distributed with mean zero and variance matrix ɛt = { ρijt}. Of course, ɛt is also the correlation 

matrix of yt. Furthermore, Ωt = Dt ɛt Dt.  

To specify the conditional variance of yt, we adopt the vech-diagonal formulation initiated by Bolerslev et al. 

(1988). Thus, each conditional-variance term follows a univariate GARCH (p, q) model given by the equation 

   i = 1, …, K,  (2) 

where ωi, αih, and βih are nonnegative, and  < 1, for i = 1, …, K. 

Note that we may allow (p, q) to vary with i so that (p, q) should be regarded as the generic order of the 

univariate GARCH process. Researchers adopting the vech-diagonal form typically assume that the above 

equation also applies to the conditional-covariance terms in which σ2 
it is replaced by σijt and y2 

it replace by y 
it 

y 
jt for 1 ≤ i ≤ j ≤ K. We shall deviate from this approach, however. Specifically, we shall focus on the 

conditional-correlation matrix and adopt an autoregressive moving average analog on this matrix. Thus, we 

assume that the time varying conditional-correlation matrix ɛt is generated from the recursion 

    (3) 

ɛ = { ρij } is a (time-invariant) K x K positive definite parameter matrix with unit diagonal elements and Ψt-1 

is a K x K matrix whose elements are functions of the lagged observations of yt. The functional form of Ψt-1 

will be specified below. The parameters θ1 and θ2 are assumed to be non-negative with the additional 

constraint that θ1 + θ2 ≤ 1. Thus, ɛt is a weighted average of ɛ, ɛt-1, and  

Ψt-1. Hence, if Ψt-1  and ɛ0 are well-defined correlation matrices (i.e., positive definite with unit diagonal 

elements), ɛt will also be a well-defined correlation matrix. 

 



It can be observed that Ψt-1 is analogous to y
2

i,t-1 in the univariate GARCH(1, 1) model. However, as ɛt is a 

standardized measure, we also require Ψt-1 to depend on the (lagged) standardized residuals ɛt. Denoting Ψt = 

{ ψijt}, we propose to consider the following specification for Ψt-1: 

 ,   1 ≤ i ≤ j ≤ K   (4) 

 

Thus, ψt-1 is the sample correlation matrix of { ɛt-1 , … , ɛt-M }. We define Et-1  as the K x M matrix given by 

Et-1  = (ɛt-1, …, ɛt-M). If Bt-1 is the K x K diagonal matrix where the ith diagonal element is  

for i = 1, … , K, we have 

       (5) 

Note that when M = 1, Ψt-1 is identically equal to the matrix of unity. Updating the conditional-correlation 

matrix with respect to the matrix of unity is of course not meaningful. Thus, taking first-order lag for the 

formulation of Ψt-1 is not sufficient. Indeed, M ≥ K is a necessary condition for Ψt-1 to be positive definite. 

When positive-definiteness is satisfied, Ψt-1 is a well-defined correlation matrix. Thus, the condition M ≥ K 

will be imposed subsequently. In particular, in all of the computations reported in this article we assume  

M = K.  

Equation (3) is analogous to the univariate GARCH equation, with the additional restriction that the sum of 

the coefficients is equal to 1. Indeed, ɛt involves updating the conditional-correlation matrix with respect to 

the latest conditional-correlation matrix ɛt-1 and a sample estimate of the conditional-correlation matrix based 

on the recent M standardized residuals. We shall call the model specified by (2), (3), and (5) the varying-

correlation MGARCH (VCMGARCH) model. 

Assuming normality, yt |Фt-1 ∼ N(0, Dt ɛt Dt ) so that (ignoring the constant term) the conditional log-

likelihood ℓt of the observation yt is given by 

 

from which we can obtain the log-likelihood function of the sample as . Here the log-likelihood 

function is conditional on ɛ0, Ψ0, , and y0 being fixed. These assumptions have no effects on the asymptotic 

distribution of the MLE. Denoting θ = (ω1, α11, … , α1p, β11, …. , β1q, ω2, …. , βKq, ρ12, …. , ρK-1,K , θ1 , θ2) as the 

parameter vector of the model, the MLE of θ is obtained by maximizing ℓ with respect to θ. We shall denote 

this value by ɛ.  

For parameter parsimony, (p, q) is usually taken to be of low order. For p = q = 1, the total number of 

parameters in the VC-MGARCH model is 3K + K(K + 1) / 2 + 2. In comparison, an unrestricted BEKK(1 , 1) 

model has K(K +1) / 2 + 2K
2
 parameters. For example, for K = 2, 3, and 4, the number of parameters in the 

VC-MGARCH model is 9, 14, and 20, respectively, whereas that for the BEKK model is 11, 24, and 42, 

respectively. The number of parameters in the VC-MGARCH model always exceeds that of the constant-

correlation model by 2, because of the parameters θ1 and θ2. Indeed the CC-MGARCH model is nested within 

the VCMGARCH model under the restrictions θ1 = θ2 = 0. 

The conditions 0 ≤ θ1, θ2 ≤ 1, and θ1 + θ2 ≤ 1 pose some problems in the optimization. One way to get around 

this difficulty is through transformation. For example, we may define θi = ( ) for i = 2, where λ1 

and λ2 are unrestricted parameters. The log-likelihood function may be initially optimized with respect to λ1 , 

λ2, and other parameters of interest. The optimization is then shifted to the original vector θ when convergence 



with respect to λ1 , λ2, and other parameters has been achieved. This technique is used in the computations 

reported in this article. 

 

3. SOME MONTE CARLO RESULTS 

Research on the asymptotic theory of conditional heteroscedasticity models has been lagging behind their 

empirical applications. Weiss (1986), Pantula (1989), Bollerslev and Wooldridge (1992), Lee and Hansen 

(1994), Lumsdaine (1996), and Ling and Li (1997b) investigated the asymptotic distribution of the quasi-MLE 

(QMLE) of the univariate ARCH/GARCH models. Sufficient conditions for consistency and asymptotic 

normality have been established. Recently, Ling and McAleer (2000) examined the asymptotic distribution of 

a class of vector ARMA-GARCH models. They established conditions for strict stationarity and ergodicity 

and proved the consistency and asymptotic normality of the QMLE under some mild moment conditions. 

Although the models considered by Ling and McAleer are quite general, the CCGARCH framework is 

adopted, and time-varying conditional correlation is not allowed. An extension of the results by Ling and 

McAleer to the VC-MGARCH model will be interesting. This, however, is beyond the scope of this article. 

An interesting issue for empirical applications concerns the properties of the MLE of the conditional 

heteroscedasticity models in small and moderate samples. In the univariate case, Engle et al. (1985) and 

Lumsdaine (1995) examined the small sample properties of the MLE of the ARCH and GARCH models. In 

this section we report some results on the small sample properties of the MLE of the VC-MGARCH model 

based on a small-scale Monte Carlo experiment. It is not our intention to provide a comprehensive Monte 

Carlo study of the MLE. We shall focus our interest on the small-sample bias and mean squared error only. 

The reliability of the inference concerning the model parameters will not be examined. Our results, however, 

will provide some preliminary evidence with respect to the small-sample properties of the MLE of the 

VCMGARCH model. 

We consider bivariate VC-MGARCH models in which the conditional-variance equations are given by 

 

 

We consider four experimental setups. The true parameter values of the data-generating processes of these 

experiments, labelled E1 through E4, are given in Tables 1 and 2. Observations {yt}, are generated from these 

models assuming the errors are normally distributed. We consider T = 500, 1,000, and 1,500. The MLEs are 

calculated for each generated sample. Using Monte Carlo samples of 1,000 runs, we estimate the bias and 

mean squared error (MSE) of the MLE. All calculations reported in this section and the next are coded in 

GAUSS. 



 

E1 and E2 represent models with higher volatility persistence (as measured by αi + βi), and E3 and E4 

represent models with lower volatility persistence. The selected values of ρ in the experiments are .2 and .7. It 

can be seen from the Monte Carlo results that the biases of the MLE are generally quite small. The bias 

decreases with the sample size, although in some cases not steadily. Likewise, the same is true for the MSE. 

Overall, for the sample sizes and models considered, the bias and MSE appear to be small. In the next section, 

we illustrate the application of the VC-MGARCH model with some real data sets. 

 

4. SOME ILLUSTRATIVE EXAMPLES 

We examine three sets of financial data, denoted by DSI, DS2, and DS3. DS1 consists of two exchange rate 

(versus U.S. dollar) series, namely, the deutsche mark (D) and the Japanese yen (J). These series represent 

2,131 daily observations from January 1990 through June 1998. DS2 covers the stock market indices of the 

Hong Kong and the Singapore markets. We use the Hang Seng Index (H) for the Hong Kong market and the 

SES Index (S) for the Singapore market. There are 1,942 daily (closing) prices for each series, covering the 

period from January 1990 through March 1998. DS3 consists of three sectoral price indices of the Hong Kong 

stock market. These are the Finance (F), Properties (P), and Utilities (U) sectors. Each series includes 2,440 

daily observations covering the period from October 1990 through August 2000. DS1 was downloaded from 

the website of the Federal Reserve Bank of New York. DS2 was compiled from various issues of the Stock 

Exchange of Singapore Journal. Some adjustments were made to account for the differences in the holidays of 

the two exchanges. DS3 was downloaded from Datastream. 

Figures 1 through 3 present the plots of the seven series in the three data sets. In Figure 1 the Japanese yen (Y) 

series have been rescaled for easy presentation. This is similarly done for the Hang Seng Index (H) series in 

Figure 2. We can see that the exchange rates of the Deutsche mark and the Japanese yen generally moved in 

tandem against the U.S. dollar during the sample period. As expected, the three sectoral indices in the Hong 

Kong stock market moved quite closely together. This is especially true for the Finance and Properties 

Indices. In contrast, the Utilities Index was quite sluggish in the mid-1990s, whereas the Finance and 

Properties Indices underwent a bull run during this period. It is quite clear from Figure 2 that the national 

stock markets of Hong Kong and Singapore experienced different phases of bulls and bears. The general 

impression is that Hong Kong has a more volatile market compared with Singapore. 



 

 

Table 3 provides a summary of the descriptive statistics of the data. The summary statistics refer to those of 

the differences of the logarithmic series (expressed as a percentage). It can be seen that all differenced 

logarithmic series exhibit excess kurtosis (compared with the normal distribution) in the unconditional 

distribution. Whereas the exchange rate data (DS1) demonstrate no evidence of serial correlation, the stock 

return data (DS2 and DS3) show significant serial correlation, as suggested by the Q, statistics. The Q2 

statistics show that there is serial correlation in the conditional variance for all data sets, and GARCH-type 

modeling may be required. In the subsequent analysis, we apply MGARCH models to the data sets. 

Autoregressive filters are used for the conditional mean equations. Thus, the following conditional-mean 

equations are considered: 

 



 

   (11) 

where ɛt |Фt-1 ∼ N (0, Ωt ). The types of MGARCH model we consider are the CC-MGARCH(1, 1) model, the 

VC-MGARCH(1, 1) model, and the BEKK(1, 1) model. The parameters of the conditional-mean and 

conditional-variance equations are estimated simultaneously with the use of MLE assuming normality. 

We fit the CC-MGARCH(1, 1) model to the data sets, using Bolerslev’s (1990) algorithm. The results are 

summarized in Table 4. The standard errors reported are calculated using the robust QMLE covariance matrix 

of the parameters. It can be seen that the estimates of α‚ β, and ρ are statistically significant at the 5% level for 

all data sets. In comparison, the exchange rate data have the highest intensity of persistence in volatility as 

measured by . With respect to the correlation coefficients, the returns of the national stock markets of 

Hong Kong and Singapore have the lowest correlation. In contrast, the correlations between the various 

sectoral indices of the Hong Kong stock market are the highest. 

 

 

Table 5 summarizes the estimation results of the VC-MGARCH(1, 1) models for the three data sets. Again, it 

can be seen that the estimates of α‚ β, and ρ are statistically significant at the 5% level for all data sets. In 

addition, al estimates of θ1 and θ2 are statistically significant at the 5% level, indicating that the correlations 

are significantly time varying. We note that the intensity of the volatility persistence remains approximately 

unchanged compared with the CC-MGARCH models. Indeed, incorporating time-varying correlations does 

not have much effect on the estimates of α and β. The estimates of ρ in the varying-correlation models are al 

larger than the corresponding estimates of ρ in the constant-correlation models. This, however, does not imply 

that the correlations are on average higher in the varying-correlation model. It should be noted that the time-

invariant component of the conditional correlation coefficient in the VC-MGARCH(1, 1) model is  

(1 - θ1 - θ1)ρ. A comparison of the correlations in the two models will be provided below.  

We also estimate the BEKK(1, 1) model defined by the conditional-variance equation 

 

This equation is for the bivariate case. The trivariate model is similarly defined. Tables 6 and 7 summarize the 

estimation results. It is found that all off-diagonal elements of the GARCH (i.e., gij) and ARCH (i.e., aij) terms 

of the conditional-variance equations are insignificant. Thus, Table 7 represents the diagonal BEKK(1, 1) 

models. 



 

As the CC-MGARCH(1, 1) model is nested within the VCMGARCH (1, 1) model, ignoring the extension 

would induce model misspecification. We now proceed to examine the model diagnostics of the estimated 

models. Table 8 summarizes the maximized log-likelihood value 4LF5 and a battery of diagnostic tests for the 

fitted models. The constant-correlation assumption is tested using a Lagrange multiplier test (LMC) based on 

the estimates of the CC-MGARCH(1, 1) model and the likelihood ratio (LR) test based on the estimates of the 

VC-MGARCH(1, 1)  model. LMC is the Lagrange multiplier test suggested by Tse (2000) for the assumption 

of (joint) constant correlation in a MGARCH model. It is asymptotically distributed as χ2
R, where R = K (K -

1)/2, under the null. From part A of Table 8 we can see that the constant-correlation assumption is rejected for 

all data sets at the 5% level of significance. In part B of Table 8 we present the likelihood ratio statistic LR, 

which tests for the restriction H0 : θ1 = θ2 = 0. It can be seen that the constant-correlation assumption is 

rejected for all data sets at any conventional level of significance. 

To further test for misspecification in the MGARCH models we adopt the regression-based diagnostics 

suggested by Wooldridge (1990, 1991). The methodology developed by Wooldridge applies to a wide class of 

possible misspecification. Here we focus on the problem of misspecification in the conditional 

heteroscedasticity. As shown by Wooldridge, the suggested tests are robust to departure from distributional 

assumptions that are not being tested. Since our main concern is misspecification in the conditional variance, 

we use the squared standardized residuals and the cross-products of the squared standardized residuals as the 

indicators. 

We first consider tests based on the squared standardized residuals. We denote ˆɛit  as the estimate of the 

standardized residual ɛit  and σ2
it as the estimated conditional variance of yit. We define  

λit = as the vector of indicator variables and ∇θσ
2

it as the gradient vector of σ2
it with 

respect to θ evaluated at ˆθ. Denoting (∇θσ
2

it)/ ˆσ
2

it as ∇θˆσ
-2

it, we regress each element of ˆλit on ∇θˆσ
-2

it to 

obtain the Q-element residuals ˆrit. Finally, we regress unity on the vector of Q regressors ˆфitˆrit, where ˆфit = 

ˆɛ2
it - 1. We calculate Wii(Q) = T - SSR, where SSR is the sum of squares of the residuals of the last 

regression. If there is no model misspecification, Wii(Q) is asymptotically distributed as χ2
Q.  

The preceding diagnostic statistic can be calculated for the cross-products of the standardized residuals from 

different equations as tests for pairwise correlations. Specifically, we define  

ˆλit =  and ∇θ ˆфit as the gradient vector of фit = ɛit ɛjt - ˆρijt with 

respect to θ evaluated at ˆθ. We regress each element of ˆλit on ∇θˆσijt to obtain the Q-element residuals ˆrijt and 

then regress unity on the Q regressors ˆфijtˆrijt, where фijt = ˆɛjt ˆɛijt - ˆρijt. We define the test statistic as Wii(Q) 

= T - SSR for 1 ≤ i ≤ j ≤ K, which is asymptotically distributed as χ2
Q when there is no misspecification. 

 



We apply the W statistics to the MGARCH models with Q = 4. From the results in Table 8 we can see that 

both the CC-MGARCH and the VC-MGARCH models pass the diagnostic checks of the W statistics. Indeed, 

the W statistics of the two models are quite similar. As the constant-correlation assumption is not supported by 

the LMC and the LR statistics, one might expect the W statistics of the CC-MGARCH model to be significant. 

The fact that this is not the case may be an indication of loss in power when the test has no specific 

alternative. As for the BEKK model, most diagnostics are insignificant, with the exception of W11 in DS3. It 

is noted that the CC-MGARCH model has the lowest log-likelihood for all models. The VC-MGARCH model 

has the highest log-likelihood for DS2 and DS3, and the BEKK model has the highest log-likelihood for DS1. 

Based on penalized likelihood criteria such as the AIC, VC-MGARCH is the preferred model for DS2 and 

DS3, and BEKK is the preferred model for DS1. 

 

 

 

 



 

In Table 9 we present the summary statistics of the standardized residuals of the fitted models. It can be seen 

that the standardized kurtosis and the Q2 statistics have dropped significantly compared with those of the raw 

data in Table 3. We note that the Q1 and Q2 statistics are presented here for completeness. As pointed out by Li 

and Mak (1994) and Ling and Li (1997a), these statistics are not distributed as χ2
 under the null of no 

misspecification. Although some of the Q1 statistics appear to be large, we report that none of the lagged 

autocorrelation coefficients are larger than .08 in absolute value. Although most Q statistics seem to be low, 

there is an exception for Q2 in the F series of DS3. This result agrees with the fact that W11 in part C of Table 8 

is also found to be significant. 

To obtain a clearer picture of the time history of the conditional correlations, we plot the time paths of the 

conditional correlations based on the VC-MGARCH and BEKK models. The plots are presented in Figures 4-

8. It can be seen from the graphs that the conditional correlations estimated from the VC-MGARCH and 

BEKK models follow each other quite closely. However, the paths based on the BEKK model have much 

larger variability than those estimated by the VC-MGARCH model. In what follows we describe the 

conditional-correlation paths as provided by the VC-MGARCH model in some detail. 

  

Figure 4 presents the correlations between the deutsche mark and the Japanese yen. Largely, there are two 

sub-periods when the conditional correlations of these two currencies were mostly above the average 



(constant) level, namely, October 1991 to June 1993 and March 1994 to October 1996. From October 1996 to 

June 1998, the conditional correlations were mostly below the average level. 

Figure 5 presents an interesting case in which we can see that the conditional correlations between the Hong 

Kong and the Singapore stock markets experienced an upward shift. From 1994 onward, the conditional 

correlations were mostly above the average level, whereas the reverse was true before 1994. This finding has 

important implications for the international diversification of equity portfolios. The increasing conditional 

correlation means that the two national markets were becoming more closely integrated and implies that there 

are diminishing benefits from international diversification. Using moving windows of unconditional 

correlations, Longin and Solnik (1995) showed that there was evidence of increasing correlation between 

international stock markets in 1960-1990. Further results were updated by Longin and Solnik (2001). Our 

similar finding for the Hong Kong and the Singapore markets is commensurate with the increasing importance 

of intra-Asian business in the 1990s. Indeed, in the second half of the 1990s, many companies with business 

activities in Hong Kong were listed on the Singapore exchange. 

Figures 6-8 show that the pairwise correlations between the three sectors in the Hong Kong stock market are 

quite similar. Broadly speaking, the conditional correlations were above average in the sub-periods of 1993-

1994 and mid-1997 to mid-1999. These two sub-periods coincide with the time when the Hong Kong stock 

market was experiencing a downturn. In contrast, during the sub-periods of the bull runs from 1995 to mid-

1997 and post-mid-1999, the conditional correlations were below average. At the risk of oversimplification, 

this casual observation agrees with the hypothesis that contagion is stronger for negative returns than for 

positive returns. In a recent study, Bae et al. (2000) examined the financial contagion among Asian and Latin 

American economies with the use of a multinomial logit model. They reported that the evidence of contagion 

being stronger for negative returns than for positive returns is mixed. Finally, we note that for the BEKK 

model the conditional correlations are quite unstable in some periods. 

We shall end this section by stating that it is not our intention to claim that the VC-MGARCH models as 

presented here represent the best MARCH models for the data. Other MARCH models could also provide the 

conditional-- correlation structure. The VC-MGARCH model, however, does provide a viable alternative that 

is relatively easy to estimate. As the examples have illustrated, modeling correlations as a time-varying 

structure provides some interesting results that are not obtainable from constant-correlation models. 

 

5. CONCLUSIONS 

In this article we propose a new MGARCH model with time-varying correlations. We assume a vech-diagonal 

structure in which each conditional-variance term follows a univariate GARCH formulation. The remaining 

task is to specify the conditional-correlation structure. We apply an autoregressive moving average type of 

analog to the conditional-correlation matrix. By imposing some suitable restrictions on the conditional-

correlation-matrix equation, we construct a MGARCH model in which the conditional-correlation matrix is 

guaranteed to be positive definite during the optimization. 

We report some Monte Carlo results on the finite-sample distributions of the MLE of the varying-correlation 

MGARCH model. It is found that the bias and MSE of the MLE are small for sample sizes of 500 or above. 

The new model is applied to three data sets, namely, the exchange rate data, the national stock market data, 

and the sectoral price data. The new model is found to pass the model diagnostics satisfactorily and compare 

favorably against the BEKK model, whereas the constant-correlation MGARCH model is found to be 

inadequate. Extending the constant-correlation model to allow for time-varying correlations provides some 

interesting empirical results. In particular, the estimated conditional-correlation path provides an interesting 

time history that would not be available in a constant-correlation model. 

 

ACKNOWLEDGMENTS 

Y. K. Tse acknowledges the support by the National University of Singapore academic research grant RP-

3981003. Albert Tsui is grateful to Ronald Lee for providing research support when he was on leave at the 

University of California at Berkeley. An earlier version of this article was presented at the World Congress of 



the Econometric Society, Seattle, July 2000. We are indebted to the participants of the conference for their 

comments. We also thank Jeffrey Wooldridge (the Editor), the Associate Editor, and two anonymous referees 

for their many helpful suggestions. Any remaining errors are, of course, ours only. 

 

 

REFERENCES 

Bae, K.-H., Karolyi, G. A., and Stulz, R. M. (2000), “A New Approach to Measuring Financial Contagion,” NBER 

Working Paper 7913. 

Baillie, R. T., and Myers, R. J. (1991), “Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge,” 

Journal of Applied Econometrics, 6, 109-124. 

Bera, A. K., Garcia, P., and Roh, J. S. (1997), “Estimation of Time-Varying Hedging Ratios for Corn and Soybeans: 

BGARCH and Random Coefficient Approaches,” Sankhya: Series B, 59, 346-368. 

Bera, A. K., and Higgins, M. L. (1993), “ARCH Models: Properties, Estimation and Testing,” Journal of Economic 

Surveys, 7, 305-366. 

Bollerslev, T. (1990), “Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized 

ARCH Model,” Review of Economics and Statistics, 72, 498-505. 

Bollerslev, T., Chou, R.Y., and Kroner, K. F. (1992), “ARCH Modelling in Finance: A Review of the Theory and 

Empirical Evidence,” Journal of Econometrics, 52, 5-59. 

Bollerslev, T., Engle, R. F., and Wooldridge, J. M. (1988), “A Capital Asset Pricing Model With Time-Varying 

Covariances,” Journal of Political Economy, 96, 116-131. 

Bollerslev, T., and Wooldridge, J. M. (1992), “Quasi-Maximum Likelihood Estimation and Inference in Dynamic 

Models With Time-Varying Covariances,” Econometric Reviews, 11, 143-172. 

Diebold, F. X., and Nerlove, M. (1989), “The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor 

ARCH Model,” Journal of Applied Econometrics, 4, 1-21. 

Engel, C., and Rodrigues, A. P. (1989), “Tests of International CAPM With Time-Varying Covariances,” Journal of 

Applied Econometrics, 4, 119-138. 

Engle, R. F., Granger, C. W. J., and Kraft, D. (1984), “Combining Competing Forecasts of Inflation Using a Bivariate 

ARCH Model,” Journal of Economic Dynamics and Control, 8, 151-165. 

Engle, R. F., Hendry, D. F., and Trumble, D. (1985), “Small-Sample Properties of ARCH Estimators and Tests,” 

Canadian Journal of Economics, 18, 66-93. 

Engle, R. F., and Kroner, K. F. (1995), “Multivariate Simultaneous Generalized ARCH,” Econometric Theory, 11, 122-

150. 

Engle, R. F., Ng, V K., and Rothschild, M. (1990), “Asset Pricing With a Factor-ARCH Covariance Structure: Empirical 

Estimates for Treasury Bills,” Journal of Econometrics, 45, 213-237. 

Gourieroux, C. (1997), ARCH Models and Financial Applications, New York: Springer-Verlag. 

Karolyi, G. A. (1995), “A Multivariate GARCH Model of International Transmissions of Stock Returns and Volatility: 

The Case of the United States and Canada,” Journal of Business and Economic Statistics, 13, 11-25. 

Kroner, K. F., and Claessens, S. (1991), “Optimal Dynamic Hedging Portfolios and the Currency Composition of 

External Debt,” Journal of International Money and Finance, 10, 131-148. 

Lee, S. W., and Hansen, B. E. (1994), “Asymptotic Theory for the GARCH(1, 1) Quasi-Maximum Likelihood 

Estimator,” Econometric Theory, 10, 29-52. 

Li, W. K., and Mak, T. K. (1994), “On the Squared Residual Autocorrelations in Non-Linear Time Series with 

Conditional Heteroscedasticity,” Journal of Time Series Analysis, 15, 627-636. 

Lien, D., and Luo, X. (1994), “Multiperiod Hedging in the Presence of Conditional Heteroscedasticity,” Journal of 

Futures Markets, 14, 927-955. 



Lien, D., Tse, Y K., and Tsui, A. K. (2001), “Evaluating the Hedging Performance of the Constant-Correlation GARCH 

Model,” Applied Financial Economics, forthcoming. 

Ling, S., and Li, W. K. (1997a), “Diagnostic Checking of Nonlinear Multivariate Time Series with Multivariate ARCH 

Errors,” Journal of Time Series Analysis, 18, 447-464, 

(1997b), “On Fractionally Integrated Autoregressive Moving-Average Time Series Models With Conditional 

Heteroscedasticity,” Journal of the American Statistical Association, 92, 1184-1194. 

Ling, S., and McAleer, M. (2000), “Asymptotic Theory for a Vector ARMA-GARCH Model,” mimeo, University of 

Western Australia. 

Longin, F. M., and Solnik, B. (1995), “Is the Correlation in International Equity Returns Constant: 1960-1990?” Journal 

of International Money and Finance, 14, 3-26. 

(2001), “Correlation Structure of International Equity Markets During Extreme Volatile Periods,” Journal of Finance, 56, 

649-676. 

Lumsdaine, R. L. (1995), “Finite-Sample Properties of the Maximum Likelihood Estimator in GARCH(1, 1) and 

IGARCH(1, 1) Models: A Monte Carlo Investigation,” Journal of Business and Economic Statistics, 13, 1-10. 

--- (1996), “Consistency and Asymptotic Normality of the QuasiMaximum Likelihood Estimator in IGARCH(l, 1) and 

Covariance Stationary GARCH(1, 1) Models,” Econometrica, 64, 575-596. 

Pantula, S. G. (1989), “Estimation of Autoregressive Models With ARCH Errors,” Sankhya: Series B, 50, 119-138. 

Tse, Y. K. (2000), “A Test for Constant Correlations in a Multivariate GARCH Model,” Journal of Econometrics, 98, 

107-127. 

Weiss, A. A. (1986), “Asymptotic Theory for ARCH Models: Estimation and Testing,” Econometric Theory, 2, 107-131. 

Wooldridge, J. M. (1990), “A Unified Approach to Robust, Regression-Based Specification Tests,” Econometric Theory, 

6, 17-43. 

--- (1991), “On the Application of Robust, Regression-Based Diagnostics to Models of Conditional Means and 

Conditional Variances,” Journal of Econometrics, 47, 5-46. 

 


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2002

	A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations
	Yiu Kuen TSE
	Albert K.C. TSUI
	Citation


	Microsoft Word - 419481-convertdoc.input.407414.Jh2c6.docx

