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Abstract

A simple and reliable method of inference for the spatial parameter in spatial autore-

gressive models is introduced, based on a statistic obtained by centering and rescaling

the numerator of the concentrated Gaussian score function. The resulted tests and confi-

dence intervals are robust against the distributional misspecifications and are insensitive

to the spatial layouts and the error standard deviation. In contrast, the standard meth-

ods based on Gaussian score and information matrix may lead to inconsistent inference

when errors are nonnormal, and can be quite sensitive to the spatial layouts and the

error standard deviation even when errors are normally distributed. Extensive Monte

Carlo results are reported and an empirical illustration is given.

Key Words: Spatial dependence; Confidence interval; LM Tests; Centering; Rescaling;

Finite sample performance; Robustness.

JEL Classification: C12, C13, C21

1 Introduction.

Consider the mixed regressive, spatial autoregressive (SAR) model:

Yn = λWnYn + Xnβ + un (1)

where n is the total number of spatial units, Yn is an n × 1 vector of observations on these

spatial units, Xn is an n×k matrix containing the values of the exogenous regressors, Wn is

a specified n × n spatial weights matrix, and un is an n-dimensional vector of independent

and identically distributed (iid) disturbances of zero mean and finite variance σ2, λ is the

scalar spatial parameter, and β is a k × 1 vector of regression coefficients. When there are

no regressors Xn in the model, the SAR model becomes a pure SAR process.

∗We benefited from the Vth World Conference of the Spatial Econometrics Association, Toulouse, 2011.
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Due to its popularity in modelling cross-sectional dependence induced by neighborhood

effects, spillover effects, copy-catting, peer-group effects, etc., the SAR model of Cliff and

Ord (1973, 1981) has been extensively studied and applied in recent years.1 One popular

method for estimating the SAR model is the maximum likelihood (ML) or quasi-maximum

likelihood (QML) (Ord, 1975; Smirnov and Anselin, 2001; Lee, 2004a,b). Let θ = (β′, σ2, λ).

Let An(λ) = In−λWn with In being an n×n identity matrix. If the disturbances are exactly

normal, we have the true loglikelihood function,

`n(θ) = −n

2
log(2πσ2) + log |An(λ)| − 1

2σ2
[An(λ)Yn − Xnβ]′ [An(λ)Yn − Xnβ] . (2)

Maximizing `n(θ) gives the ML estimator (MLE) of θ. If the errors are not exactly normal,

as are assumed in this paper, `n(θ) can still be used as a working log-likelihood called the

quasi-loglikelihood and maximizing it would still produce a consistent estimator of θ provided

that certain regularity conditions are satisfied (Lee, 2004a). The resulted estimator is called

the quasi-maximum likelihood estimator (QMLE). Now, given λ, `n(θ) can be partially

maximized, which gives the constrained QMLEs of β and σ2, respectively,

β̂n(λ) = (X ′
nXn)−1X ′

nAn(λ)Yn, (3)

σ̂2
n(λ) =

1

n
Y ′

nA′
n(λ)MnAn(λ)Yn, (4)

where Mn = In − Xn(X ′
nXn)−1X ′

n. These lead to the concentrated loglikelihood of λ as

`c
n(λ) = −n

2
[log(2π) + 1] − n

2
log σ̂2

n(λ) + log |An(λ)| (5)

Maximizing `c
n(λ) gives the unconstrained QMLE λ̂n of λ, and substituting λ̂n into β̂n(λ)

and σ̂2
n(λ) gives the unconstrained QMLE β̂n ≡ β̂n(λ̂n) of β, the unconstrained QMLE

σ̂2
n ≡ σ̂2

n(λ̂) of σ2, and hence the unconstrained QMLE θ̂n = (β̂′
n, σ̂2

n, λ̂n)′ of θ.

Lee (2004a) gives a detailed study on the asymptotic properties of QML estimation of

Model (1). In particular, he showed that the QMLEs of β and λ are
√

n-consistent if each

spatial unit depends on a fixed number of neighbors, otherwise they are
√

n/hn-consistent

if the number of neighbors is of order hn such that as n → ∞, hn → ∞ and hn/n → 0.

The QMLE of σ2 is always
√

n-consistent. Lee’s results lay the theoretical bases for the

likelihood-based inferences, under the likelihood ratio, Wald, or LM principle, for testing

and confidence interval (CI) construction for the SAR model.

Clearly, inference for spatial parameter λ is central to the SAR model. The likelihood

and Wald methods require the estimation of the full model, which needs to maximize nu-

merically the concentrated loglikelihood function `c
n(λ) to obtain the (Q)MLE of λ. This

1The representative theoretical works include Kelejian and Prucha (1999, 2001), Lee (2002, 2003, 2004a,

2007a,b), Bao and Ullah (2007), Robinson (2010), Born and Breitung (2010), and Yang (2010b). The

representative empirical applications include Case (1991), Case, et al. (1993), Besley and Case (1995),

Brueckner (1998), Bell and Bockstael (2000), Bertrand, et al. (2000), and Topa (2001).
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can be computationally demanding for large sample sizes and general spatial weight ma-

trices as the maximization process involves repeated calculations of the determinant of the

matrix An(λ). In contrast, the LM method requires only the estimation of the model for a

given value of λ, thus the numerical maximization is avoided. However, the standard LM

tests and the test-based CI (i.e., the CI obtained by inverting the test) are derived under

the assumption that the errors are normal, thus may face the issue of robustness against

distributional misspecifications. Another important point to make is that even when the

error distribution is known (e.g., normal) or the test is asymptotically robust against the

distributional misspecification (e.g., testing for lack of spatial effect in SAR model consid-

ered in this paper), the standard LM tests may still suffer from finite sample size-distortions

due to the facts that the concentrated score is not centered and its variance estimator is

biased. A simple and reliable method for testing and CI construction for λ is thus desirable.

Section 2 introduces the standard LM tests, and the test-based CIs for λ. Section 3

introduces a robust version of the LM test, through which a robust CI is given. Section

4 presents Monte Carlo results for comparing the finite sample behaviors of the standard

and the robust LM tests as well as the corresponding CIs. Section 5 presents an empirical

application. Section 6 concludes the paper.

2 LM Tests and Confidence Intervals for Spatial Parameter

We are interested in testing and confidence interval (CI) construction for the spatial

parameter λ in the SAR model. In particular, we are interested in the score-based inferences

as they do not require the estimation of the spatial parameter, and thus avoid the numerical

optimization which can be computationally demanding for large sample sizes and general

spatial weight matrices. The classical inferences of this type under normality assumption are

readily available based on the results of Anselin (1988a,b) and Lee (2004a). In particular,

the score-based or LM test of the hypothesis of no SAR effect in the regression model, i.e.,

H0 : λ = 0 vs Ha : λ 6= 0, is given in Anselin (1988a):

LMA =
û′

n0WnYn

σ̂n0

√

T0nσ̂2
n0 + η̂′

n0Mnη̂n0

, (6)

where T0n = tr(W 2
n + W ′

nWn), η̂n0 = WnXnβ̂n0, ûn0 = Yn − Xnβ̂n0, β̂n0 = β̂n(0), and

σ̂2
n0 = σ̂2

n(0). Alternatively, LMA can be written as

LMA =
Y ′

nMnWnYn

σ̂n0

√

Y ′
n(MnT0n/n + P ′

nW ′
nMnWnPn)Yn

,

where Pn = Xn(X ′
nXn)−1X ′

n. When the errors are iid normal, LMA is asymptotically

N (0, 1) under the null hypothesis of no spatial lag effect. However, it is not clear whether

this asymptotic normality holds when the errors are nonnormal.
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A more general test of spatial effect in the SAR model is the test of the null hypothesis

H0 : λ = λ0 versus the alternative hypothesis Ha : λ 6= λ0 where λ0 is the hypothesized

value for the spatial parameter, not necessarily zero. This general test is more interesting

in the sense that it can be inverted to give a confidence interval for λ without having to

estimate it. Let Sc
n(λ) = d

dλ`c
n(λ) be the concentrated score function. Let ‘tr’ denote the

trace of a matrix and let Gn(λ) = WnA−1
n (λ). We have,

Sc
n(λ) = −tr(Gn(λ)) + σ̂−2

n (λ)Y ′
nA′

n(λ)MnWnYn = σ̂−2
n (λ)ûn(λ)′G◦

n(λ)An(λ)Yn, (7)

where ûn(λ) = An(λ)Yn − Xnβ̂n(λ) = MnAn(λ)Yn and G◦
n(λ) = Gn(λ)− 1

ntr(Gn(λ))In.

The variance of Sc
n(λ) can be estimated in at least two different ways in the context

of the SAR model. One is based on the expected information matrix and the other is

based on the observed information matrix, resulting two versions of LM tests of the general

hypothesis. The expected information matrix, In(θ) = −E
(

∂2

∂λ2 `
c
n(λ)

)

, is given as

In(θ) =
1

σ2









X ′
nXn, 0, X ′

nηn(λ)

0, n
2σ2 , trGn(λ)

ηn(λ)′Xn, trGn(λ), ηn(λ)′ηn(λ) + σ2tr(G2
n(λ) + G′

n(λ)Gn(λ))









where ηn(λ) = Gn(λ)Xnβ. Partition In(θ) according to (β, σ2) and λ, and denote the

submatrices by In,11, In,12, In,21 and In,22. Then the asymptotic variance of Sn(λ) is

AVar[Sc
n(λ)] = In,22 − In,21I

−1
n,11In,12

= σ−2ηn(λ)′Mnηn(λ) + tr[G2
n(λ) + G′

n(λ)Gn(λ)]− 2[trGn(λ)]2. (8)

Combining (7) and (8), evaluating at the constrained MLEs and simplifying, we obtain an

LM statistic for inference for λ,

LME(λ) =
ûn(λ)′G◦

n(λ)An(λ)Yn

σ̂n(λ)
√

η̂n(λ)′Mnη̂n(λ) + σ̂2
n(λ)T1n(λ)

. (9)

where η̂n(λ) = Gn(λ)Xnβ̂(λ) and T1n(λ) = tr[G◦
n(λ)2 + G◦

n(λ)′G◦
n(λ)]. When λ = 0, we

have An(0) = In, G◦
n(0) = Gn(0) = Wn, ηn0 = WnXnβ, and T1n(0) = tr(W 2

n + W ′
nWn).

Thus, LME(0) simplifies to LMA given in (6).

An alternative way to estimate the variance of Sc
n(λ) is to replace the expected informa-

tion submatrices by the corresponding observed information submatrices evaluated at the

constrained MLEs, resulting an expression that is identical to

Hn(λ) = − d2

dλ2
`c
n(λ) = tr(G2

n(λ)) + R2n(λ)− 2

n
R2

1n(λ),

where R1n(λ) = σ̂−2
n (λ)Y ′

nA′
n(λ)MnWnYn and R2n(λ) = σ̂−2

n (λ)Y ′
nW ′

nMnWnYn. This leads

to the Hessian-based LM statistic of the form,

LMH(λ) =
û′

n(λ)G◦
n(λ)An(λ)Yn

σ2
n(λ)

√

tr(G2
n(λ)) + R2n(λ)− 2

nR2
1n(λ)

. (10)
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Under the assumptions that the model disturbances are iid normal, LMH(λ)
D−→ N (0, 1)

(see Lee, 2004a, p. 1911), and a similar result holds for LME(λ). The two inferential

statistics are asymptotically equivalent and they lead immediately to two asymptotically

equivalent tests and two asymptotically equivalent CIs for λ.

Thus, for testing H0 : λ = λ0 versus Ha : λ 6= λ0, one rejects H0 at α level of significance

if |LME(λ0)| > Zα/2, or if |LMH(λ0)| > Zα/2, where Zα/2 is the upper α/2-quantile of

the standard normal distribution. Both tests are very simple to implement and the most

interesting case is to test H0 : λ = 0. However, if such a test is rejected, one would be

interested in making a more precise statement about the true value of λ. Thus, a confidence

interval statement for λ is desirable, which can simply be obtained by inverting the tests.

A 100(1− α)% large sample CI for λ obtained by inverting LME(λ0) is defined as

CIE(λ) =
(

min{λ0 : LME(λ0) ≥ −Zα/2}, max{λ0 : LME(λ0) ≤ Zα/2}
)

, (11)

and similarly, a 100(1− α)% large sample CI for λ based on LMH(λ0) is defined as

CIH(λ) =
(

min{λ0 : LMH(λ0) ≥ −Zα/2}, max{λ0 : LMH(λ0) ≤ Zα/2}
)

. (12)

Lee (2004a, p. 1911) commented that even when {ui} are not normally distributed

the LMH(λ0) test can still be asymptotically valid as long as limn→∞ hn = ∞ and γ = 0

which is the third central moment of ui. Thus, one would expect a similar conclusion

holds for LME(λ0). This conclusion implies that when the error distribution is skewed, the

tests LME(λ0) and LMH(λ0) can be asymptotically invalid. However, he did not proceed

to provide results that correct the non-robustness of the LM tests against the skewness.

Furthermore, when hn is bounded and the disturbances are nonnormal, the asymptotic

behaviors of these tests are not clear. Also, to the best of our knowledge, there are no

results available in the literature about the finite sample performance of these tests and the

corresponding test-based CIs even when the disturbances are iid normal.

In this paper, we show that the two LM tests discussed above are in general not robust

against nonnormality. We introduce a robust LM test statistic by centering and then rescal-

ing the numerators of LME(λ0) and LMH(λ0), which captures the effects of both skewness

and excess kurtosis and thus is robust against the nonnormality of the error distribution

whether hn is bounded or unbounded. We show that such corrections are also effective in

improving the finite sample performance of the LM tests even when the disturbances are

iid normal. This robust test can be inverted to give a more reliable CI for λ. We further

show that LMA = LME(0) is asymptotically robust against excess skewness and kurtosis,

but Monte Carlo results show that its finite sample behavior can be quite dependent on

the spatial layout and the magnitude of error standard deviation. Monte Carlo results also

show that the robust LM test and the corresponding confidence interval perform well in

finite sample, and they clearly outperform the non-robust counterparts.
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3 Robust LM Tests and CIs for Spatial Parameter

From the discussion above, we see that it is highly desirable to derive a test that is not

only asymptotically robust against the distributional misspecification, but also insensitive

to the spatial layouts and error standard deviation in finite sample. Motivated by Yang

(2010a), we first note that the key quantity, û′
n(λ)G◦

n(λ)An(λ)Yn, in the concentrated score

function Sc
n(λ) given in (7) can be written as

û′
n(λ)G◦

n(λ)An(λ)Yn = u′
nMnG◦

n(λ)un + u′
nMnG◦

n(λ)Xnβ

because û′
n(λ) = MnAn(λ)Yn, An(λ)Yn = Xnβ + un, and MnXn = 0. It follows that

E
[

û′
n(λ)G◦

n(λ0)An(λ)Yn
]

= σ2tr[MnG◦
n(λ)], (13)

which is clearly not zero in general, although it approaches to zero when n → ∞. This

indicates that the standard LM statistics may not be centered properly for finite n, which

suggests that one should work with the centered quantity

û′
n(λ)G◦

n(λ)An(λ)Yn − σ2tr[MnG◦
n(λ)]

or its feasible version, obtained by replacing σ2 by its unbiased (constrained) estimator,

û′
n(λ)G◦

n(λ)An(λ)Yn − n

n − k
σ̂2

n(λ)tr[MnG◦
n(λ)] = û′

n(λ)Dn(λ)An(λ)Yn, (14)

where Dn(λ) = G◦
n(λ)− 1

n−k tr(MnG◦
n(λ))In. Clearly, the quantity in (14) has a zero mean.

Second, we note that the estimators of the variance of the score function are obtained

under the assumption that the errors of the model are normally distributed. These variance

estimators may not be consistent when the errors are not normally distributed. As a

result, the distributions of LME(λ) and LMH(λ) may not coverage to N (0, 1). Thus, a

correction on the variance is also necessary after the mean correction. It is easy to see that

û′
n(λ)Dn(λ)An(λ)Yn = u′

nMnDn(λ)un + u′
nMnDn(λ)Xnβ = u′

nMnDn(λ)un + u′
nMnηn(λ).

By Lemma A.4 (ii) in the appendix, we have

Var
(

û′
n(λ)Dn(λ)An(λ)Yn

)

= σ4T2n(λ) + σ2η′
n(λ)Mnηn(λ) + σ4κd′n(λ)dn(λ) + 2σ3γη′

n(λ)Mndn(λ) (15)

where T2n(λ) = tr[Mn(Dn(λ) + D′
n(λ))MnDn(λ)], dn(λ) = diagv(MnDn(λ)), and γ and κ

are, respectively, the measures of skewness and excess kurtosis of un,i.

This variance formula captures the effects of skewness and excess kurtosis of the errors,

and is thus robust against nonnormality in these senses. Using (14) and (15), one obtains a

modified LM-type statistic that is properly centered and rescaled, and thus would be robust

against distributional misspecifications and spatial layouts.2

2While the ideas of centering and rescaling are not new (see, e.g., Koenker, 1981; Moulton and Randolph,

1989; and Robinson, 2008), there is an issue of how to implement them. Our method is clearly the simplest.
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Some regularity conditions are necessary before we introduce the new robust test and

confidence interval for λ.

Assumption 1: The innovations {ui} are iid with mean zero, variance σ2, skewness γ

and excess kurtosis κ. Also, the moment E|ui|4+ε exists for some ε > 0.

Assumption 2: The elements of the n× k matrix Xn are uniformly bounded for all n,

and limn→∞
1

nX ′
nXn exists and is nonsingular.

Assumption 3: The elements {wn,ij} of Wn are at most of order h−1
n uniformly for all

i, j, with the rate sequence {hn}, bounded or divergent, satisfying h1+δ
n /n → 0 as n → ∞

for some δ > 0.

Assumption 4: The sequences of matrices {Wn} and {A−1
n (λ)} are uniformly bounded

in both row and column sums.3 As a normalization, wn,ii = 0, for all i.

Assumption 5: {A−1
n (λ∗)} is uniformly bounded in either row or column sums uni-

formly in λ∗ in a compact set containing in its interior the true value λ.

Assumption 6: The elements of Mnηn(λ) are of uniform order O(1/
√

hn), and for

0 ≤ c < ∞, limn→∞(hn/n)η′
n(λ)Mnηn(λ) = c.

These assumptions are essentially adapted from Lee (2004a). Assumption 1 is required

for the application of the central limit theorem for linear-quadratic forms of Kelejian and

Prucha (2001) for the cases when hn is bounded, and its extended version by Lee (2004a,

Appendix A) for the cases when hn is unbounded. Assumption 2 identifies the different types

of spatial dependence considered. Typically, one type of spatial dependence corresponds

to the case where each unit has a fixed number of neighbors, which in turn means that

hn is bounded. The other type of spatial dependence corresponds to the case where the

number of neighbors of each spatial unit grows as n goes to infinity, and in this case hn is

divergent. See Case (1991) and the discussions in Lee (2004a, p. 1903) for the practical

situations when this might occur. However, hn can only increase at a slower rate than n

(i.e., one needs to limit the spatial dependence to a manageable degree) to ensure the proper
√

n/hn-consistency of λ̂n.4 Assumptions 3 and 4 provide conditions for this. Assumptions

5 and 6 are, respectively, Assumptions 7 and 10 of Lee (2004a).

Now, recall the quantities defined earlier: T2n(λ) = tr[Mn(Dn(λ) + D′
n(λ))MnDn(λ)],

dn(λ) = diagv(MnDn(λ)). Let η̂n0 ≡ η̂n(λ) = Gn(λ)Xnβ̂n(λ), σ̂2
n0 ≡ σ̂2

n(λ), and dn0 ≡
dn(λ). Let γ̂n0 and κ̂n0 are, respectively, the sample skewness and excess kurtosis of ûn(λ).

The following theorem presents a robustified version of the LM test statistics given above.

3That is, supi

∑n

j=1
|wn,ij | < ∞ and supj

∑n

i=1
|wn,ij | < ∞.

4Lee (2004a, Footnote 8) commented that whether hn is bounded or divergent has interesting implications

on the least square estimation of β and λ, i.e., the least square estimators are inconsistent when hn is bounded,

but can be consistent when hn is divergent. The results presented in this paper show that the behavior of

hn has interesting implications on the robustness of the standard LM statistics as well.
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Theorem 1. Under the Assumptions 1-6, a robustified LM-type inferential statistic for

λ takes the following form

LMR(λ) =
û′

n(λ)Dn(λ)An(λ)Yn

σ̂n0

√

η̂′
n0Mnη̂n0 + σ̂2

n0T2n(λ) + σ̂2
n0κ̂n0d

′
n0dn0 + 2σ̂n0γ̂n0η̂

′
n0Mndn0

, (16)

such that (i) LMR(λ)
D−→ N (0, 1); (ii) LME(λ) and LMH(λ) are in general not asymptoti-

cally equivalent to LMR(λ) when hn is bounded, but they are when hn is divergent, and (iii)

When λ = 0, LME(0), LMH(0) and LMR(0) are asymptotically equivalent.

The proof of Theorem 1 is given in the appendix. Theorem 1 leads immediately to a

robust test for testing H0 : λ = λ0 against Ha : λ 6= λ0, which rejects H0 in favor of Ha if

LMR(λ0) > Zα/2, and a robust CI for λ as

CIR(λ) =
(

min{λ0 : LMR(λ0) ≥ −Zα/2}, max{λ0 : LMR(λ0) ≤ Zα/2}
)

. (17)

The results of Theorem 1 imply that if one knows that hn is bounded as n increases, one

should use LMR(λ) as LME(λ) or LMH(λ) may not lead to correct inference statements for

the spatial effect λ even when n is large unless one knows for sure the error distribution is

normal; if one knows that limn→∞ hn = ∞, one can choose any of the three LM statistics

as they are asymptotically equivalent and are robust to distributional misspecifications.5

However, simple derivations, following the proof of Theorem 1, show that

LMR(λ)− LME(λ) = Op((hn/n)1/2),

which implies that the mean of LME(λ) can differ from zero quite significantly if each

spatial unit has many neighbors. Thus, it is suggested that one should use the robust

statistic LMR(λ) to conduct statistical inference for λ. Monte Carlo results given in the

following section provide a strong support to these statements. When λ = 0, the three

statistics are asymptotically equivalent, meaning that any of the three can be used for

testing H0 : λ = 0. However, Monte Carlo results given in the following section suggest

that LMR(0) is still more reliable as it is much less sensitive to the spatial layouts and the

error standard deviation than LME(0) or LMH(0).

4 Monte Carlo Study

The finite sample performance of the inference methods for the spatial parameter in the

spatial autoregressive model introduced in this paper are evaluated based on a series of

5Lee (2004a, p.1911) stated that the classical inference methods are valid as long as limn→∞ hn = ∞

and γ = 0. However, our results show that γ = 0 is not required for the asymptotic validity of the classical

inference methods. See the proof of Theorem 1 given in the appendix and the Monte Carlo results provided

in the next section.
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Monte Carlo experiments. These experiments involve a number of different error distribu-

tions and a number of different spatial layouts. Comparisons are made between the usual

LM tests and the corresponding CIs and their robust counterparts to see the effects of the

error distributions and the spatial layouts.

4.1 Spatial layouts and error distributions

Two general spatial layouts are considered in the Monte Carlo experiments and they

are applied to different test statistics involved in the experiments. The first is based on

the Queen contiguity, and the second is based on the notion of group or social interactions

(Case, 1991; Lee, 2004a) with the number of groups G = nδ where 0 < δ < 1. In the case

of Queen contiguity, the number of neighbors is between 3 and 8 and does not change when

sample size n increases, whereas in the case of group interaction, the number of neighbors

for each spatial unit increases with the increase of sample size but at a slower rate. Also,

the number of neighbors is allowed to change from group to group.

The details for generating the Wn matrix under Queen contiguity are as follows: (i)

index the n spatial units by {1, 2, . . . , n}, randomly permute these indices and then allocate

them into a lattice of r×m(≥ n) squares, (ii) let Wn,ij = 1 if the index j is in a square which

shares either a common side or a vertex with the square containing the index i, otherwise

Wn,ij = 0, and (iii) divide each element of Wn by its row sum. Other weight matrices based

on spatial contiguity can be constructed in a similar manner. See, e.g., Anselin (1988b).

To generate the Wn matrix according to the group interaction scheme, (i) calculate the

number of groups according to G = Round(nδ), and the approximate average group size

m = n/G, (ii) generate the group sizes (n1, n2, . . . , nG) according to a discrete uniform

distribution from m/2 to 3m/2, (iii) adjust the group sizes so that
∑G

g=1 ng = n, and (iv)

define Wn = diag{Wg/(ng − 1), g = 1, . . . , G}, a matrix formed by placing the submatrices

Wg along the diagonal direction, where Wg is an ng × ng matrix with ones on the off-

diagonal positions and zeros on the diagonal positions. In our Monte Carlo experiments,

we choose δ = 0.3, 0.5, and 0.7, representing respectively the situations where (i) there are

few groups and many spatial units in a group, (ii) the number of groups and the sizes of

the groups are of the same magnitude, and (iii) there are many groups with few elements

in each. Clearly, under Queen contiguity, hn defined in the theorems is bounded, whereas

under group interaction, hn is divergent with rate n1−δ. Note that the latter spatial layout

contains that of Case (1991) as a special case.

The reported Monte Carlo results correspond to the following three error distributions:

(i) standard normal, (ii) mixture normal, standardized to have mean zero and variance 1,

and (iii) log-normal, also standardized to have mean zero and variance one. The standard-

ized normal-mixture variates are generated according to

ui = ((1− ξi)Zi + ξiτZi)/(1− p + p ∗ τ2)0.5,

9



where ξ is a Bernoulli random variable with probability of success p and Zi is standard

normal independent of ξ. The parameter p in this case also represents the proportion of

mixing the two normal populations. In our experiments, we choose p = 0.1, meaning that

90% of the random variates are from standard normal and the remaining 10% are from

another normal population with standard deviation τ . We choose τ = 4 to simulate the

situation where there are gross errors in the data. The standardized lognormal random

variates are generated according to

ui = [exp(Zi) − exp(0.5)]/[exp(2)− exp(1)]0.5.

This gives an error distribution that is both skewed and leptokurtic. The normal mixture

gives an error distribution that is still symmetric like normal but leptokurtic. All the Monte

Carlo experiments are based on 10,000 replications.

4.2 Performance of the tests

The performance of the robustified LM statistic, LMR(λ), introduced in Section 3 is

compared with that of the usual LM statistics LME(λ) and LMH(λ). The Monte Carlo

experiments are carried out based on the following data generating process:

Yi = λw′
n,iYn + β0 + X1iβ1 + X2iβ2 + ui.

When the Queen-contiguity spatial layout is used, X1i’s are drawn from
√

12U(0, 1) and

X2i’s are drawn from N (0, 1). When the group-interaction spatial layout is used, the re-

gressors are generated as in Lee (2004a) to allow the values within a group to be correlated.

Specifically, the regressors X1ig and X2ig of the ith member in the gth group are generated

as X1ig = (2z1g + z1ig)/
√

5 and X2ig = (2z2g + z2ig)/
√

5, where all the random variates

z1g, z1ig, z2g and z2ig are iid N (0, 1). Furthermore, the parameters β = {5, 1, 1}′ and σ = 2.

Four different sample sizes are considered, i.e., n = 50, 100, 200, and 500.

Size of Tests and Coverage Probability of CI. The empirical mean, standard

deviation (SD), and the 5% equi-tail probability of the three statistics, LME(λ), LMH(λ),

and LMR(λ), are reported in Tables 1-4, where Tables 1-3 corresponds to group interaction

spatial layout with, respectively, G = n0.3, G = n0.5 and G = n0.7, and Table 4 corresponds

to Queen contiguity. The results generally show that both LME(λ) and LMH(λ) can perform

poorly in the sense that their empirical means, SDs and tail probabilities can be far from

their nominal levels which are 0, 1 and 0.05, respectively. The true value of λ also affects the

performance of these two tests. In contrast, LMR(λ) performs well in general, irrespective

of the error distributions, spatial layouts, the magnitude of the error standard deviation,

and the true value of the spatial parameter. In particular, the empirical mean of LMR(λ)

is always very close to 0, showing that our mean correction procedure works very well. The

empirical SD of LMR(λ) is also fairly close to its nominal level 1, which shows that our
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rescaling procedure also works well. These two adjustments lead to a simple and reliable

inference procedure for λ. More details on the finite sample performance of LME(λ) and

LMH(λ) are as follows.

The empirical mean, SD, and tail probability of LME(λ) can be far below their nominal

levels (0, 1, 0.05). As a result, the inference based on LME(λ) can be quite misleading.

For example, when n = 50 and 100 with large group interactions (i.e., few large groups

as in the case where G = n0.3, Table 1), the empirical mean can be as low as −0.6566

(corresponding to λ = 0.25 and n = 100), the empirical SD can be as low as 0.6737

(corresponding to λ = −0.5 and n = 50), and the empirical tail probability can be as low

as 0.0069 (corresponding to λ = −0.5 and n = 50). Similar to LME(λ), the LMH(λ) can

also perform quite poorly. It performs worse than LME(λ) in terms of empirical mean, but

better in terms of empirical SD. Unlike LME(λ) whose tail probability is almost always

below and sometimes far below its nominal level, the tail probability of LMH(λ) tends to

be above its nominal level and can often be far above its nominal level, in particular when

sample size is small and spatial dependence is strong, e.g., in Table 1 with λ = −0.75 and

n = 50, the empirical tail probability is 0.1238 compared with nominal level 0.05.6

The results in the tables show that one of the major factors affecting the distribution

of the two standard LM statistics is the spatial layout, or rather the degree of spatial

dependence. In contrast, the new test is much more robust to the spatial layout. In

situations of a large group interaction, e.g., G = Round(n0.3) as in Table 1, the number

of groups ranges from 3 to 6 for n ranging from 50 to 500. Thus, there are only a few

groups, each containing many spatial units which are all neighbors of each other. This

heavy spatial dependence distorts severely the distributions of LME(λ) and LMH(λ). In

comparison, in situations of small group interaction, e.g., G = Round(n0.7) as in Table 3,

the number of groups ranges from 15 to 77 for n ranging from 50 to 500. In this case,

there are many groups each having only 3 to 8 units, giving a spatial layout with a very

weak spatial dependence. As a result, the distributions of LME(λ) and LMH(λ) are much

closer to N(0,1). The results (not reported for brevity) also show that the error standard

deviation also heavily affects the performance of the two standard statistics LME(λ) and

LMH(λ), but has little effect on the robust LM statistic LMR(λ).

Power of the tests. Empirical frequencies of rejection of the three tests are plotted

in Figures 1 & 2 against the values of λ from -0.75 to 0.75 (horizontal line). In our power

comparison, simulated critical values for each test are used, which means that the reported

powers of the tests are size-adjusted. Figure 1 corresponds to group interaction spatial

6We note that both LME(λ) LMH(λ) can perform worse when n = 100 than when n = 50. The reason

is that from n = 50 to n = 100, the number of groups increase only from 3 to 4, and the average group size

increases from 16.7 to 25. This means that although a large sample contains more information, under this

particular spatial layout, increasing sample size from 50 to 100 is not enough to compensate the increase in

the degree of spatial dependence.

11



layout with G = n0.5 while Figure 2 is for Queen contiguity; both figures contain nine plots

respectively, which corresponds to different combinations of three error distributions and

three sample sizes.

The figures reveal that the spatial layout and the sample size are the two important

factors affecting the power of these tests. With less neighbors or with a larger sample, the

tests become more powerful. It is interesting to note that when there is spatial dependence,

it is harder to detect the spatial dependence when the spatial parameter is negative than

when it is positive (see Figure 1). The error distribution does not seem to affect the power

of the tests much, as the three plots in the same line look very similar.

The figures also show that the power of LME(λ) and LMR(λ) is very close to each

other, as their curves almost overlap; but surprisingly, the power of LMH(λ) behaves in an

odd way. As shown in Figure 1, for negative λ, LMH(λ) seems to have a slightly better

performance than the other two tests. But this advantage fades away when λ becomes

positive, and the three tests performs very similar for λ from 0 to 0.5. When λ exceeds

0.5, the power of LMH(λ) starts to drop sharply. This phenomenon can also be observed in

Figure 2, though milder. The reason for this abnormal behavior of LMH(λ) may be due to

the fact that observed information matrix does not guarantee a positive variance estimate.

5 An Empirical Illustration

To illustrate the applications of the three tests and compare their performances, we adopt

a well known data set here: the cigarettes demand for United States. The data contains

a panel of 46 states over 30 years (1963-1992) and is listed as CIGAR.TXT on the Wiley

web site related to Baltagi (2001). In the data set, the independent variable is cigarette

sales (in packs per capita). The covariates are price (per pack of cigarettes); population;

population16 (above the age of 16); consumer price index (with 1983=100); per capita

disposable income; and minimum price (in adjoining states per pack of cigarettes). In

our study, only cross-sectional data are needed, thus without loss of generality, we focus

on the three specified years: 1970, 1980 and 1990. Another thing worth noting is that, the

covariate consumer price index is omitted in our SAR model, as for a given year, the

consumer price index is fixed and is no longer a useful variable.

We consider two SAR models: (I) both response and covariates are original; (II) both

response and covariates are log transformed. The null hypothesis H0 : λ = λ0 with different

λ0 values from -0.75 to 0.75 are tested. Also the CIs for λ are computed. The test results

and CIs are summarized in Tables 5 and 6. Based on the data of 1970 and 1980, the three

statistics lead to the same conclusion: the spatial effect is not significant. However, based

on the 1990 data, the three statistics lead to different conclusions with LMR(λ) showing a

positive λ which is significant at 5% level based on both models, but the other two tests

showing a non-significant λ based on the model with log scale, and a barely significant result
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based on the model with original scale. Thus the new statistic shows a stronger evidence

for the existence of the spatial dependence among the cigarette sales in 1990 at the different

states. This result is reasonable considering the fast developments in transformation and

communications over the period 1970-1990.

6 Conclusion

This paper introduces a robust statistic LMR(λ) for making inferences for the spatial

lag dependence parameter λ in a spatial autoregressive model. The new test is constructed

by first centering the numerator of the concentrated (quasi-) score function of λ, and then

finding the variance of the feasible version of the centered quantity, allowing the errors to

be nonnormal. This corrects both the mean and the variance of the standard LM statistics.

The mean adjustment is, however, often neglected in the literature, which happens to be

more important in spatial models as the degree of spatial dependence can increase with the

sample size (Lee, 2004a), making the concentrated score function more biased.

Compared with the inferences based on the two standard LM statistics, the inference

based on the robust LM statistic is much more reliable. The robust statistic is seen to be

very simple as well, thus it is recommended for the practical applications. The same idea

can potentially be applied to many other models of similar nature, for example, the spatial

error model, i.e., linear regression with a spatial autoregressive or moving average error,

the spatial ARMA model (Anselin, 1988b), and the spatial ARAR model (Anselin, 1988a;

Kelejian and Prucha, 2001). The key is that the concentrated score function or in general

the concentrated estimating equation can be written as linear-quadratic forms of a random

vector of iid elements. However, each model has its own unique feature, we plan to pursue

these issues in future research.

An important related issue is to conduct statistical inference for spatial dependence

allowing the existence of unknown heteroscedasticity. Apparently LMR(λ) is not robust

against heteroscedasticity. Recently, Born and Breitung (2010) proposed heteroscedasticity-

robust LM tests of spatial lag and/or spatial error dependence based on an elegant idea:

rewriting the numerators of the usual LM tests, e.g., u′
n0WnYn in (6), as a sum of n uncor-

related terms so that the outer product of gradients (OPG) variant of the LM test can be

employed. This approach takes the advantage of the facts that the diagonal elements of Wn

are zero. While the tests are robust against the heteroscedasticity of unknown form, they

suffer from the same problems as, e.g., LMA given in (6). Also, it cannot be directly applied

to the case when λ 6= 0. Nevertheless, it is no doubt of a great interest to combine their

ideas with the ideas used in this paper to produce tests that are not only robust against

heteroscedasticity, but also possess good finite sample properties. As this issue is highly

non-trivial, it will be pursued in a separate paper.
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Appendix: Lemmas and Proof of the Theorem

For the proofs of the theorem and its corollary, we need the following lemmas.

Lemma A.1 (Lee, 2004a, p.1918): Suppose that the elements of the n × k matrix Xn

are uniformly bounded; and limn→∞
1

nX ′
nXn exists and is nonsingular. Then the projectors

Pn = Xn(X ′
nXn)−1X ′

n and Mn = In − Xn(X ′
nXn)−1X ′

n are uniformly bounded in both row

and column sums.

Lemma A.2 (Lemma A.9, Lee, 2004b): Let {An} be a sequence of n× n matrices that

are uniformly bounded in both row and column sums. For Mn defined in Lemma A.1,

(i) tr(MnAn) = tr(An) + O(1)

(ii) tr(A′
nMnAn) = tr(A′

nAn) + O(1)

(iii) tr[(MnAn)2] = tr(A2
n) + O(1), and

(iv) tr[(A′
nMnAn)2] = tr[(MnA′

nAn)2] = tr[(A′
nAn)2] + O(1)

Furthermore, if the elements an,ij of An are O(h−1
n ) uniformly in all i and j, then,

(v) tr2(MnAn) = tr2(An) + O( n
hn

) and

(vi)
∑n

i=1((MnAn)ii)
2 =

∑n
i=1 a2

n,ii + O(h−1
n ),

where (MnAn)ii is the ith diagonal element of MnAn.

Lemma A.3 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two

sequences of n × n matrices that are uniformly bounded in both row and column sums. Let

Cn be a sequence of conformable matrices whose elements are uniformly O(h−1
n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly O(h−1
n ).

Lemma A.4 (Kelejian and Prucha, 2001, p.227, extended): Let {An} be an n×n matrix

of elements {an,ij}, bn be an n × 1 vector of elements {bn,i}, and un be an n × 1 random

vector of iid elements, having mean zero, variance σ2, skewness γ, and excess kurtosis κ.

Let Qn = u′
nAnun + b′nun. Let an = diagv(An), the column vector formed by {an,ii}. Then,

(i) E(Qn) = σ2tr(An),

(ii) Var(Qn) = σ4tr(AnA′
n + A2

n) + σ4κa′nan + σ2b′nbn + 2σ3γa′nbn.

Furthermore, if {an,ij} are of uniform order Op(h
−1
n ), {bn,i} are of uniform order Op(h

− 1

2
n ),

and {An} are uniformly bounded in either row or column sums, then

(iii) E(Qn) = O( n
hn

), and

(iv) Var(Qn) = O( n
hn

).

Subsequently, if hn is bounded, then E(Qn) = O(n) and Var(Qn) = O(n).
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Proof of Theorem 1: For (i), the derivation of LMR(λ) is already given before the

appearance of Theorem 1. Now, the numerator of LMR(λ) can be written as

û′
n(λ)Dn(λ)An(λ)Yn = u′

nMnDn(λ)un + u′
nMnηn(λ),

which is a linear-quadratic form in un of iid elements. Recall Gn(λ) = WnA−1
n (λ), An(λ) =

In−λWn, and Dn(λ) = Gn(λ)− 1

ntr(MnGn(λ))In. Under Assumption 2, Lemma A.1 shows

that Mn is uniformly bounded in both row and column sums. Under Assumptions 3 and

4, Lemma A.3 shows that Gn(λ) is uniformly bounded in both row and column sums, and

that the elements Gn(λ) are uniformly O(h−1
n ). Lemma A.2 (i) shows that 1

n tr(MnGn(λ)) =

O(h−1
n ). It follows that Dn(λ), and hence MnDn(λ), are uniformly bounded in both row

and column sums and that the elements of Dn(λ), and hence the elements of MnDn(λ),

are uniformly O(h−1
n ). Thus, the central limit theorem for the linear-quadratic form of Lee

(2004a) is applicable to u′
nMnDn(λ)un + u′

nMnηn(λ), which shows that

û′
n(λ)Dn(λ)An(λ)Yn

σ
√

σ2T2n(λ) + η′
n(λ)Mnηn(λ) + σ2κd′n(λ)dn(λ) + 2σγη′

n(λ)Mndn(λ)

D−→ N (0, 1).

Replacing σ2, ηn(λ), γ, and κ by their consistent estimators defined in the theorem leads to

the result (i).

For (ii), it suffices to show that

(a) η′
nMnηn = O(n/hn)

(b) T2n(λ) = O(n/hn),

(c) d′n(λ)dn(λ) = O(n/h2
n)

(d) η′
n(λ)Mndn(λ) = O(n/h

3/2
n ), and

(e) T1n(λ) ∼ T2n(λ),

which are all quite straightforward. These results allow us to conclude that when hn is

bounded, the denominator of LMR(λ) differs from that of LME(λ) essentially by a term

κd′n(λ)dn(λ)+2σγη′
n(λ)Mndn(λ), which can be of the same order as the leading terms in the

denominator. Thus, asymptotically, LME(λ) does not converge to N (0, 1) in distribution.

It is well known that LMH(λ) is asymptotically equivalent to LME(λ) and thus it does not

converge to N (0, 1) in distribution either. When hn is divergent, the difference term is of a

smaller order, and thus the three statistics are asymptotically equivalent.

For (iii), we note that when λ = 0, An(λ) = In, Gn(λ) = Wn, and Dn(λ) = Wn −
1

n−k tr(MnWn)In. It follows from Lemma A.2 (i) that 1

n−k tr(MnWn) = O(n−1). Thus, from

Lemma A.2 (vi), we have d′n(λ)dn(λ) = O(h−1
n ). By Cauchy-Schwarz inequality, one sees

that η′
n(λ)Mndn(λ) ≤ [d′n(λ)dn(λ)]

1

2 [η′
nMnηn]

1

2 = O(n
1

2 /hn). Thus, the term κd′n(λ)dn(λ)+

2σγη′
n(λ)Mndn(λ) is always of smaller order than σ2T2n(λ) + η′

n(λ)Mnηn(λ). Hence, the

three statistics are asymptotically equivalent whether hn is bounded or unbounded.
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Table 1. Empirical Means, SDs and Tail Probabilities: Group Interaction with G = n0.30

LME(λ) LMH(λ) LMR(λ)

λ n Mean SD Prob Mean SD Prob Mean SD Prob

0.75 50 -0.6136 0.7711 0.0144 -0.7846 0.9184 0.0914 -0.0072 1.0194 0.0474

-0.5905 0.7644 0.0136 -0.7485 0.9088 0.0822 0.0048 0.9861 0.0441

-0.5642 0.7620 0.0144 -0.7006 0.9008 0.0760 0.0106 0.9915 0.0422

100 -0.4877 0.8359 0.0166 -0.6216 0.9567 0.0805 -0.0072 0.9812 0.0398

-0.4690 0.8510 0.0176 -0.6001 0.9709 0.0852 0.0075 0.9939 0.0427

-0.4453 0.8596 0.0236 -0.5672 0.9762 0.0833 0.0109 0.9797 0.0425

200 -0.4917 0.8742 0.0324 -0.6025 0.9634 0.0765 0.0190 0.9977 0.0482

-0.5082 0.8661 0.0308 -0.6182 0.9572 0.0801 -0.0039 0.9847 0.0435

-0.4920 0.8696 0.0374 -0.5993 0.9674 0.0834 -0.0026 0.9767 0.0443

500 -0.3804 0.9375 0.0491 -0.4217 0.9807 0.0653 -0.0096 0.9945 0.0483

-0.3847 0.9438 0.0504 -0.4272 0.9881 0.0681 -0.0147 0.9999 0.0499

-0.3618 0.9393 0.0460 -0.4014 0.9802 0.0636 0.0023 0.9915 0.0465

0.50 50 -0.5606 0.8221 0.0308 -0.6883 0.9638 0.0930 0.0017 1.0188 0.0494

-0.5512 0.8316 0.0327 -0.6744 0.9780 0.0983 -0.0052 1.0114 0.0496

-0.5204 0.8205 0.0291 -0.6250 0.9518 0.0785 -0.0063 0.9689 0.0414

100 -0.5408 0.8073 0.0125 -0.7097 0.9399 0.0902 0.0008 0.9877 0.0442

-0.5338 0.7992 0.0115 -0.6968 0.9293 0.0821 0.0004 0.9668 0.0417

-0.5098 0.7725 0.0114 -0.6509 0.9007 0.0695 0.0088 0.9487 0.0356

200 -0.5170 0.8651 0.0325 -0.6249 0.9670 0.0873 -0.0095 0.9840 0.0418

-0.5083 0.8698 0.0349 -0.6149 0.9704 0.0851 -0.0045 0.9862 0.0434

-0.4989 0.9087 0.0405 -0.6091 1.0068 0.0925 -0.0129 0.9895 0.0455

500 -0.3985 0.9243 0.0305 -0.5214 1.0016 0.0830 -0.0068 1.0046 0.0453

-0.3887 0.9024 0.0269 -0.5052 0.9787 0.0740 0.0023 0.9796 0.0405

-0.3856 0.8982 0.0267 -0.4975 0.9745 0.0722 -0.0016 0.9923 0.0417

0.25 50 -0.5581 0.7395 0.0071 -0.7797 0.9040 0.0743 -0.0012 0.9816 0.0468

-0.5338 0.7504 0.0082 -0.7457 0.9168 0.0806 0.0169 0.9748 0.0478

-0.5124 0.7353 0.0085 -0.7066 0.8937 0.0636 0.0237 0.9408 0.0408

100 -0.6566 0.7955 0.0181 -0.8398 0.9555 0.1187 0.0044 1.0108 0.0459

-0.6529 0.7794 0.0175 -0.8290 0.9378 0.1116 0.0020 0.9836 0.0434

-0.6374 0.8331 0.0257 -0.8147 0.9957 0.1266 -0.0152 0.9847 0.0420

200 -0.4826 0.8798 0.0397 -0.5773 0.9648 0.0799 -0.0021 0.9946 0.0470

-0.4767 0.8824 0.0396 -0.5701 0.9668 0.0780 0.0011 0.9948 0.0468

-0.4577 0.8845 0.0390 -0.5445 0.9673 0.0761 0.0045 0.9883 0.0477

500 -0.3649 0.9363 0.0442 -0.4412 0.9946 0.0727 -0.0063 0.9961 0.0453

-0.3672 0.9361 0.0418 -0.4432 0.9938 0.0720 -0.0096 0.9955 0.0453

-0.3610 0.9333 0.0444 -0.4343 0.9926 0.0739 -0.0114 0.9860 0.0433

0.00 50 -0.5337 0.8258 0.0211 -0.6904 0.9898 0.1038 -0.0026 1.0116 0.0454

-0.5196 0.8446 0.0232 -0.6721 1.0123 0.1045 -0.0027 1.0170 0.0450

-0.4899 0.8633 0.0318 -0.6231 1.0307 0.1062 -0.0030 1.0018 0.0423

100 -0.6342 0.7956 0.0266 -0.7917 0.9472 0.1109 -0.0124 0.9853 0.0428

-0.6100 0.8066 0.0260 -0.7621 0.9555 0.1066 0.0056 0.9843 0.0423

-0.5935 0.8208 0.0324 -0.7385 0.9693 0.1083 -0.0044 0.9687 0.0402

Note: The three rows under each n correspond to normal, normal-mixture, and log-normal error.

(1−Tail Probability) gives the coverage probability of the test-based CI.
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Table 1. Cont’d

LME(λ) LMH(λ) LMR(λ)

λ n Mean SD Prob Mean SD Prob Mean SD Prob

0.00 200 -0.4074 0.9144 0.0436 -0.4867 0.9867 0.0743 0.0059 1.0102 0.0518

-0.4097 0.9046 0.0385 -0.4870 0.9794 0.0714 -0.0002 0.9963 0.0468

-0.3966 0.8857 0.0369 -0.4660 0.9530 0.0633 -0.0001 0.9868 0.0466

500 -0.3767 0.9420 0.0464 -0.4468 0.9985 0.0732 -0.0147 1.0024 0.0459

-0.3513 0.9390 0.0425 -0.4189 0.9906 0.0661 0.0114 0.9987 0.0473

-0.3478 0.9124 0.0376 -0.4111 0.9644 0.0593 0.0078 0.9790 0.0429

-0.25 50 -0.5624 0.8402 0.0393 -0.6943 1.0010 0.1019 0.0113 1.0303 0.0576

-0.5653 0.8284 0.0412 -0.6908 0.9831 0.1020 -0.0103 1.0019 0.0496

-0.5206 0.8577 0.0371 -0.6297 1.0059 0.0935 0.0012 1.0008 0.0483

100 -0.5940 0.7950 0.0137 -0.7906 0.9530 0.1090 -0.0092 0.9831 0.0436

-0.5812 0.7981 0.0154 -0.7713 0.9506 0.1038 -0.0031 0.9773 0.0427

-0.5783 0.8091 0.0163 -0.7687 0.9596 0.1027 -0.0233 0.9620 0.0397

200 -0.4148 0.9173 0.0410 -0.5093 1.0016 0.0810 0.0017 1.0189 0.0516

-0.4097 0.8927 0.0351 -0.4980 0.9739 0.0726 0.0048 0.9874 0.0447

-0.4053 0.9138 0.0431 -0.4866 1.0001 0.0778 -0.0057 0.9837 0.0423

500 -0.2831 0.9529 0.0460 -0.3300 0.9928 0.0621 -0.0151 0.9940 0.0502

-0.2597 0.9475 0.0439 -0.3043 0.9842 0.0564 0.0083 0.9879 0.0464

-0.2617 0.9474 0.0429 -0.3049 0.9833 0.0575 0.0010 0.9876 0.0456

-0.50 50 -0.6452 0.6759 0.0069 -0.9436 0.8828 0.1085 -0.0054 0.9643 0.0461

-0.6326 0.6737 0.0063 -0.9228 0.8987 0.1103 -0.0024 0.9364 0.0405

-0.6178 0.7483 0.0067 -0.9317 1.0518 0.1778 -0.0141 0.9800 0.0421

100 -0.5230 0.8278 0.0234 -0.6741 0.9546 0.0912 0.0136 1.0014 0.0471

-0.5074 0.8384 0.0275 -0.6524 0.9631 0.0876 0.0250 1.0062 0.0504

-0.5102 0.8212 0.0333 -0.6379 0.9502 0.0860 -0.0015 0.9716 0.0449

200 -0.4949 0.8745 0.0400 -0.5911 0.9707 0.0826 -0.0006 0.9882 0.0448

-0.4873 0.8773 0.0384 -0.5815 0.9730 0.0837 0.0024 0.9874 0.0444

-0.4907 0.8993 0.0494 -0.5837 1.0002 0.0925 -0.0164 0.9874 0.0449

500 -0.3256 0.9473 0.0454 -0.3887 0.9970 0.0675 -0.0123 0.9985 0.0471

-0.3120 0.9338 0.0427 -0.3725 0.9828 0.0616 0.0014 0.9835 0.0443

-0.3141 0.9513 0.0463 -0.3773 1.0037 0.0693 -0.0072 0.9991 0.0487

-0.75 50 -0.6115 0.7979 0.0247 -0.8122 0.9855 0.1238 0.0177 1.0436 0.0519

-0.6003 0.7820 0.0309 -0.7858 0.9780 0.1138 0.0117 0.9938 0.0476

-0.5974 0.8027 0.0374 -0.7639 0.9999 0.1174 -0.0202 0.9751 0.0427

100 -0.5935 0.8059 0.0248 -0.7609 0.9585 0.1058 -0.0020 0.9914 0.0454

-0.5815 0.8112 0.0278 -0.7423 0.9630 0.1038 0.0019 0.9813 0.0461

-0.5564 0.8065 0.0264 -0.7057 0.9437 0.0906 0.0081 0.9801 0.0447

200 -0.4411 0.8789 0.0309 -0.5614 0.9817 0.0806 -0.0061 0.9900 0.0431

-0.4270 0.8879 0.0277 -0.5450 0.9891 0.0826 0.0063 0.9959 0.0425

-0.4276 0.8837 0.0299 -0.5426 0.9782 0.0781 -0.0090 0.9832 0.0417

500 -0.3735 0.9362 0.0463 -0.4347 0.9905 0.0698 -0.0090 0.9962 0.0504

-0.3693 0.9334 0.0444 -0.4297 0.9863 0.0679 -0.0060 0.9920 0.0475

-0.3687 0.9252 0.0447 -0.4258 0.9771 0.0663 -0.0110 0.9880 0.0474

Note: The three rows under each n correspond to normal, normal-mixture, and log-normal error.

(1−Tail Probability) gives the coverage probability of the test-based CI.
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Table 2. Empirical Means, SDs and Tail Probabilities: Group Interaction with G = n0.5

LME(λ) LMH(λ) LMR(λ)

λ n Mean SD Prob Mean SD Prob Mean SD Prob

0.75 50 -0.5747 0.8609 0.0318 -0.6740 0.9670 0.0879 0.0089 1.0185 0.0492

-0.5760 0.8405 0.0323 -0.6728 0.9506 0.0855 -0.0023 0.9792 0.0400

-0.5572 0.8627 0.0339 -0.6422 0.9673 0.0836 -0.0032 0.9699 0.0397

100 -0.4444 0.9095 0.0397 -0.5138 0.9776 0.0735 -0.0109 1.0014 0.0458

-0.4286 0.8952 0.0341 -0.4935 0.9607 0.0634 0.0023 0.9784 0.0415

-0.4147 0.8957 0.0359 -0.4718 0.9540 0.0604 0.0032 0.9659 0.0422

200 -0.3913 0.9396 0.0457 -0.4532 0.9929 0.0695 -0.0101 1.0036 0.0486

-0.3784 0.9364 0.0460 -0.4385 0.9861 0.0710 0.0016 0.9906 0.0451

-0.3520 0.9114 0.0347 -0.4050 0.9505 0.0532 0.0201 0.9661 0.0417

500 -0.2770 0.9756 0.0499 -0.3105 1.0004 0.0594 -0.0012 1.0077 0.0499

-0.2823 0.9678 0.0464 -0.3153 0.9923 0.0577 -0.0073 0.9978 0.0473

-0.2635 0.9730 0.0520 -0.2951 0.9933 0.0589 0.0075 0.9979 0.0526

0.50 50 -0.5049 0.8827 0.0222 -0.6286 0.9986 0.0910 0.0044 1.0261 0.0487

-0.5089 0.8552 0.0218 -0.6272 0.9683 0.0842 -0.0075 0.9843 0.0400

-0.4819 0.8043 0.0181 -0.5810 0.9060 0.0645 0.0074 0.9304 0.0345

100 -0.4600 0.9158 0.0356 -0.5445 0.9918 0.0814 0.0149 1.0161 0.0495

-0.4709 0.9008 0.0387 -0.5543 0.9812 0.0780 -0.0025 0.9918 0.0439

-0.4601 0.8871 0.0378 -0.5353 0.9608 0.0722 -0.0043 0.9602 0.0397

200 -0.3840 0.9399 0.0435 -0.4524 0.9963 0.0717 -0.0179 1.0008 0.0451

-0.3638 0.9312 0.0396 -0.4295 0.9860 0.0670 0.0011 0.9873 0.0451

-0.3693 0.9021 0.0326 -0.4284 0.9454 0.0572 -0.0136 0.9594 0.0389

500 -0.2909 0.9689 0.0498 -0.3277 0.9950 0.0613 -0.0108 1.0016 0.0490

-0.2707 0.9727 0.0501 -0.3067 0.9990 0.0603 0.0091 1.0035 0.0513

-0.2934 0.9494 0.0445 -0.3279 0.9719 0.0536 -0.0186 0.9792 0.0436

0.25 50 -0.4863 0.8801 0.0288 -0.6065 1.0060 0.0935 -0.0067 1.0146 0.0457

-0.4781 0.8481 0.0248 -0.5884 0.9720 0.0799 -0.0054 0.9700 0.0403

-0.4585 0.8483 0.0266 -0.5543 0.9618 0.0729 -0.0012 0.9610 0.0391

100 -0.3732 0.9342 0.0396 -0.4518 1.0061 0.0730 0.0054 1.0162 0.0496

-0.3593 0.9117 0.0347 -0.4320 0.9834 0.0687 0.0165 0.9869 0.0435

-0.3598 0.9061 0.0369 -0.4240 0.9645 0.0617 0.0029 0.9743 0.0440

200 -0.3858 0.9478 0.0474 -0.4452 1.0009 0.0748 -0.0013 1.0087 0.0496

-0.3865 0.9403 0.0482 -0.4440 0.9924 0.0669 -0.0041 0.9981 0.0505

-0.3779 0.9169 0.0399 -0.4283 0.9567 0.0569 -0.0045 0.9756 0.0456

500 -0.2789 0.9880 0.0528 -0.3195 1.0159 0.0629 -0.0052 1.0210 0.0528

-0.2684 0.9616 0.0484 -0.3064 0.9871 0.0590 0.0051 0.9931 0.0480

-0.2535 0.9503 0.0443 -0.2889 0.9723 0.0531 0.0158 0.9806 0.0436

0.00 50 -0.4837 0.8929 0.0321 -0.6091 1.0170 0.0931 -0.0028 1.0245 0.0525

-0.4822 0.8651 0.0321 -0.5957 0.9812 0.0828 -0.0088 0.9854 0.0458

-0.4505 0.8369 0.0254 -0.5456 0.9386 0.0692 0.0134 0.9415 0.0374

100 -0.4447 0.9295 0.0449 -0.5260 1.0135 0.0836 -0.0008 1.0171 0.0519

-0.4379 0.9150 0.0441 -0.5154 0.9931 0.0800 0.0012 0.9962 0.0451

-0.4253 0.8596 0.0312 -0.4894 0.9231 0.0570 0.0000 0.9404 0.0390

Note: The three rows under each n correspond to normal, normal-mixture, and log-normal error.

(1−Tail Probability) gives the coverage probability of the test-based CI.
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Table 2. Cont’d

LME(λ) LMH(λ) LMR(λ)

λ n Mean SD Prob Mean SD Prob Mean SD Prob

0.00 200 -0.3645 0.9343 0.0367 -0.4441 0.9935 0.0694 0.0030 0.9986 0.0443

-0.3541 0.9327 0.0367 -0.4321 0.9915 0.0668 0.0124 0.9951 0.0482

-0.3553 0.8991 0.0325 -0.4226 0.9469 0.0588 0.0029 0.9583 0.0371

500 -0.2736 0.9687 0.0480 -0.3129 0.9952 0.0569 0.0057 1.0008 0.0497

-0.2839 0.9634 0.0499 -0.3232 0.9903 0.0597 -0.0060 0.9946 0.0482

-0.2676 0.9630 0.0468 -0.3051 0.9871 0.0588 0.0064 0.9896 0.0470

-0.25 50 -0.5645 0.8647 0.0316 -0.7253 1.0283 0.1210 -0.0052 1.0137 0.0470

-0.5692 0.8426 0.0358 -0.7217 1.0048 0.1056 -0.0201 0.9757 0.0471

-0.5406 0.8093 0.0254 -0.6698 0.9379 0.0801 -0.0065 0.9432 0.0390

100 -0.4886 0.9187 0.0477 -0.5865 1.0138 0.0883 -0.0217 1.0132 0.0511

-0.4673 0.9117 0.0487 -0.5572 1.0030 0.0857 -0.0043 0.9990 0.0489

-0.4425 0.8991 0.0447 -0.5161 0.9752 0.0754 0.0069 0.9737 0.0445

200 -0.3571 0.9507 0.0471 -0.4278 1.0075 0.0755 0.0069 1.0120 0.0500

-0.3600 0.9281 0.0433 -0.4269 0.9854 0.0678 0.0014 0.9864 0.0445

-0.3483 0.9082 0.0359 -0.4101 0.9570 0.0590 0.0057 0.9662 0.0413

500 -0.2670 0.9752 0.0500 -0.3098 1.0040 0.0598 0.0076 1.0075 0.0496

-0.2855 0.9720 0.0485 -0.3285 1.0011 0.0631 -0.0124 1.0033 0.0480

-0.2693 0.9688 0.0477 -0.3097 0.9950 0.0601 -0.0002 0.9938 0.0489

-0.50 50 -0.5467 0.8730 0.0345 -0.7170 1.0541 0.1238 0.0115 1.0151 0.0474

-0.5544 0.8657 0.0398 -0.7176 1.0502 0.1208 -0.0093 0.9953 0.0446

-0.5277 0.8390 0.0292 -0.6649 0.9882 0.0973 -0.0021 0.9590 0.0383

100 -0.4702 0.9251 0.0511 -0.5510 1.0074 0.0856 -0.0141 1.0108 0.0526

-0.4337 0.9351 0.0500 -0.5032 1.0053 0.0822 0.0197 0.9899 0.0477

-0.4547 1.0273 0.0726 -0.5116 1.0723 0.0979 -0.0174 1.0151 0.0536

200 -0.3901 0.9393 0.0482 -0.4652 1.0025 0.0768 -0.0083 1.0022 0.0458

-0.3724 0.9453 0.0489 -0.4438 1.0048 0.0732 0.0077 1.0031 0.0494

-0.3710 0.9299 0.0452 -0.4327 0.9832 0.0647 0.0000 0.9682 0.0465

500 -0.2892 0.9581 0.0465 -0.3302 0.9859 0.0590 -0.0136 0.9895 0.0459

-0.2570 0.9732 0.0468 -0.2975 1.0010 0.0607 0.0188 1.0032 0.0486

-0.2628 0.9574 0.0471 -0.2986 0.9829 0.0571 0.0083 0.9751 0.0452

-0.75 50 -0.4997 0.8869 0.0323 -0.6785 1.0683 0.1200 0.0134 1.0295 0.0513

-0.5084 0.8708 0.0416 -0.6804 1.0774 0.1193 -0.0052 0.9889 0.0497

-0.4966 0.8706 0.0438 -0.6409 1.0424 0.1015 -0.0103 0.9639 0.0429

100 -0.4156 0.9257 0.0393 -0.5281 1.0261 0.0896 0.0091 1.0144 0.0477

-0.4157 0.9302 0.0510 -0.5212 1.0442 0.0886 0.0047 0.9875 0.0453

-0.4162 1.0190 0.0785 -0.5128 1.1415 0.1101 -0.0090 0.9879 0.0515

200 -0.3517 0.9523 0.0463 -0.4199 1.0097 0.0697 0.0273 1.0138 0.0532

-0.3726 0.9434 0.0480 -0.4387 1.0042 0.0732 0.0023 0.9964 0.0500

-0.3709 0.9292 0.0450 -0.4265 0.9788 0.0653 -0.0048 0.9674 0.0436

500 -0.2671 0.9667 0.0438 -0.3174 0.9978 0.0596 0.0035 0.9991 0.0489

-0.2644 0.9709 0.0465 -0.3141 1.0022 0.0595 0.0054 1.0013 0.0506

-0.2689 0.9523 0.0436 -0.3144 0.9808 0.0587 -0.0031 0.9802 0.0429

Note: The three rows under each n correspond to normal, normal-mixture, and log-normal error.

(1−Tail Probability) gives the coverage probability of the test-based CI.
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Table 3. Empirical Means, SDs and Tail Probabilities: Group Interaction with G = n0.7

LME(λ) LMH(λ) LMR(λ)

λ n Mean SD Prob Mean SD Prob Mean SD Prob

0.75 50 -0.3947 0.9711 0.0513 -0.3991 1.0378 0.0723 -0.0064 1.0418 0.0538

-0.3847 0.9486 0.0486 -0.3866 1.0305 0.0668 0.0011 0.9919 0.0468

-0.3774 0.9329 0.0386 -0.3665 1.0539 0.0511 -0.0007 0.9578 0.0400

100 -0.3089 0.9803 0.0495 -0.3194 1.0151 0.0610 -0.0083 1.0215 0.0538

-0.3052 0.9761 0.0528 -0.3157 1.0164 0.0652 -0.0063 0.9841 0.0453

-0.3031 0.9816 0.0483 -0.3104 1.0208 0.0576 -0.0087 0.9603 0.0442

200 -0.2442 0.9897 0.0492 -0.2570 1.0095 0.0568 0.0011 1.0145 0.0514

-0.2527 1.0001 0.0555 -0.2668 1.0220 0.0633 -0.0083 0.9910 0.0485

-0.2606 1.0263 0.0519 -0.2738 1.0485 0.0589 -0.0181 0.9645 0.0383

500 -0.1673 0.9895 0.0475 -0.1803 0.9988 0.0515 0.0040 1.0020 0.0477

-0.1670 1.0093 0.0556 -0.1814 1.0196 0.0592 0.0040 0.9958 0.0497

-0.1610 1.0636 0.0638 -0.1775 1.0688 0.0665 0.0086 0.9819 0.0471

0.50 50 -0.3361 0.9773 0.0493 -0.3556 1.0545 0.0755 -0.0026 1.0421 0.0541

-0.3344 0.9607 0.0464 -0.3565 1.0405 0.0724 -0.0051 0.9973 0.0466

-0.2981 0.9229 0.0339 -0.3045 1.0280 0.0504 0.0227 0.9706 0.0430

100 -0.3049 0.9722 0.0495 -0.3253 1.0114 0.0637 0.0024 1.0128 0.0499

-0.2938 0.9642 0.0445 -0.3153 1.0044 0.0576 0.0118 0.9808 0.0440

-0.3112 0.9903 0.0451 -0.3277 1.1131 0.0578 -0.0099 0.9699 0.0410

200 -0.2048 0.9838 0.0498 -0.2236 1.0056 0.0569 0.0173 1.0073 0.0535

-0.2022 0.9735 0.0480 -0.2213 0.9955 0.0547 0.0188 0.9815 0.0465

-0.2106 0.9878 0.0459 -0.2292 1.0031 0.0516 0.0075 0.9735 0.0408

500 -0.1708 0.9857 0.0498 -0.1872 0.9968 0.0548 -0.0040 0.9980 0.0507

-0.1532 0.9998 0.0523 -0.1708 1.0103 0.0557 0.0133 0.9955 0.0488

-0.1279 1.0421 0.0543 -0.1480 1.0408 0.0563 0.0354 0.9990 0.0519

0.25 50 -0.3912 0.9625 0.0526 -0.4274 1.0395 0.0790 -0.0138 1.0274 0.0518

-0.3845 0.9262 0.0447 -0.4192 1.0021 0.0690 -0.0104 0.9797 0.0456

-0.3770 0.9062 0.0384 -0.3991 0.9920 0.0551 -0.0120 0.9505 0.0410

100 -0.2823 0.9886 0.0520 -0.3130 1.0335 0.0694 0.0102 1.0284 0.0546

-0.3002 0.9478 0.0464 -0.3305 0.9919 0.0618 -0.0103 0.9803 0.0436

-0.2926 0.9241 0.0358 -0.3170 0.9635 0.0457 -0.0071 0.9460 0.0398

200 -0.2258 0.9886 0.0539 -0.2506 1.0134 0.0630 0.0059 1.0127 0.0525

-0.2136 0.9722 0.0481 -0.2389 0.9961 0.0555 0.0174 0.9886 0.0491

-0.2244 0.9704 0.0413 -0.2476 0.9961 0.0482 0.0033 0.9729 0.0426

500 -0.1707 0.9870 0.0470 -0.1895 0.9988 0.0519 0.0002 0.9993 0.0493

-0.1771 0.9807 0.0496 -0.1967 0.9924 0.0529 -0.0065 0.9887 0.0479

-0.1642 0.9909 0.0519 -0.1844 0.9949 0.0535 0.0052 0.9868 0.0493

0.00 50 -0.3314 0.9738 0.0517 -0.3832 1.0693 0.0868 0.0182 1.0313 0.0543

-0.3356 0.9427 0.0456 -0.3824 1.0384 0.0721 0.0073 0.9944 0.0494

-0.3399 0.9063 0.0464 -0.3825 1.0067 0.0644 -0.0115 0.9526 0.0470

100 -0.2755 0.9799 0.0513 -0.3114 1.0260 0.0661 0.0100 1.0181 0.0537

-0.2841 0.9438 0.0440 -0.3182 0.9870 0.0578 -0.0004 0.9794 0.0473

-0.2845 0.9102 0.0363 -0.3100 0.9395 0.0442 -0.0055 0.9434 0.0403

Note: The three rows under each n correspond to normal, normal-mixture, and log-normal error.

(1−Tail Probability) gives the coverage probability of the test-based CI.
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Table 3. Cont’d

LME(λ) LMH(λ) LMR(λ)

λ n Mean SD Prob Mean SD Prob Mean SD Prob

0.00 200 -0.2489 0.9816 0.0495 -0.2797 1.0095 0.0616 -0.0128 1.0057 0.0500

-0.2262 0.9520 0.0439 -0.2551 0.9775 0.0546 0.0098 0.9746 0.0437

-0.2395 0.9307 0.0383 -0.2635 0.9450 0.0438 -0.0065 0.9504 0.0399

500 -0.1667 0.9972 0.0511 -0.1883 1.0097 0.0536 0.0036 1.0095 0.0515

-0.1761 0.9835 0.0511 -0.1967 0.9953 0.0557 -0.0063 0.9954 0.0502

-0.1532 0.9569 0.0400 -0.1708 0.9608 0.0433 0.0155 0.9679 0.0413

-0.25 50 -0.3590 0.9758 0.0532 -0.4121 1.0647 0.0827 0.0055 1.0362 0.0605

-0.3512 0.9513 0.0517 -0.3959 1.0593 0.0713 0.0089 0.9952 0.0501

-0.3469 0.9324 0.0482 -0.3731 0.9947 0.0573 0.0028 0.9663 0.0483

100 -0.2828 0.9749 0.0508 -0.3217 1.0264 0.0669 -0.0034 1.0109 0.0539

-0.2976 0.9667 0.0499 -0.3298 1.0065 0.0623 -0.0209 0.9877 0.0463

-0.2608 0.9417 0.0442 -0.2813 0.9613 0.0498 0.0106 0.9681 0.0463

200 -0.2193 0.9965 0.0540 -0.2569 1.0265 0.0641 0.0069 1.0197 0.0540

-0.2171 0.9669 0.0503 -0.2501 0.9953 0.0604 0.0083 0.9830 0.0495

-0.2485 0.9478 0.0407 -0.2736 0.9622 0.0466 -0.0259 0.9566 0.0414

500 -0.1764 0.9922 0.0501 -0.1988 1.0061 0.0563 -0.0113 1.0043 0.0538

-0.1658 0.9881 0.0477 -0.1857 0.9997 0.0535 -0.0008 0.9933 0.0459

-0.1634 0.9976 0.0490 -0.1775 0.9931 0.0500 0.0001 0.9866 0.0452

-0.50 50 -0.3001 0.9932 0.0593 -0.3403 1.0777 0.0759 0.0058 1.0458 0.0607

-0.3156 1.0067 0.0628 -0.3449 1.1264 0.0711 -0.0123 0.9978 0.0521

-0.2854 1.0252 0.0724 -0.2811 1.0349 0.0705 0.0127 0.9881 0.0578

100 -0.2475 0.9893 0.0569 -0.2590 1.0140 0.0619 0.0011 1.0201 0.0565

-0.2440 1.0476 0.0622 -0.2379 1.0438 0.0618 0.0030 0.9996 0.0488

-0.2384 1.1017 0.0709 -0.2098 1.0413 0.0654 0.0050 0.9817 0.0586

200 -0.2287 0.9790 0.0514 -0.2562 1.0035 0.0587 -0.0100 1.0004 0.0508

-0.2298 0.9961 0.0536 -0.2477 1.0050 0.0587 -0.0109 0.9724 0.0438

-0.2391 1.0839 0.0612 -0.2373 1.0284 0.0648 -0.0205 0.9804 0.0451

500 -0.1829 0.9922 0.0509 -0.2083 1.0078 0.0585 -0.0200 1.0039 0.0487

-0.1411 1.0113 0.0540 -0.1630 1.0245 0.0593 0.0214 1.0021 0.0522

-0.1558 1.0350 0.0606 -0.1669 1.0286 0.0602 0.0050 0.9763 0.0463

-0.75 50 -0.2544 1.0075 0.0652 -0.2197 1.0159 0.0600 -0.0077 1.0441 0.0581

-0.2245 1.2177 0.0778 -0.1722 1.3473 0.0717 0.0192 1.0305 0.0545

-0.2440 1.3603 0.1101 -0.1426 1.2835 0.1012 -0.0043 1.0307 0.0726

100 -0.2328 0.9955 0.0548 -0.2147 0.9683 0.0514 0.0060 1.0224 0.0533

-0.2463 1.1763 0.0643 -0.1997 1.0434 0.0610 -0.0080 1.0095 0.0427

-0.2289 1.3660 0.0711 -0.1551 1.1195 0.0704 0.0056 1.0029 0.0400

200 -0.1797 0.9988 0.0540 -0.1681 0.9859 0.0513 0.0080 1.0150 0.0526

-0.1885 1.2206 0.0723 -0.1442 1.0939 0.0699 -0.0003 1.0130 0.0431

-0.1851 1.4805 0.0944 -0.1082 1.2114 0.0947 -0.0013 0.9955 0.0348

500 -0.1726 0.9827 0.0492 -0.1990 0.9977 0.0551 -0.0087 0.9942 0.0504

-0.1682 1.0327 0.0600 -0.1895 1.0454 0.0633 -0.0043 0.9937 0.0466

-0.1476 1.1535 0.0828 -0.1536 1.1374 0.0817 0.0113 0.9779 0.0469

Note: The three rows under each n correspond to normal, normal-mixture, and log-normal error.

(1−Tail Probability) gives the coverage probability of the test-based CI.
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Table 4. Empirical Means, SDs and Tail Probabilities: Queen Contiguity

LME(λ) LMH(λ) LMR(λ)

λ n Mean SD Prob Mean SD Prob Mean SD Prob

0.75 50 -0.3666 0.8690 0.0199 -0.4782 0.9642 0.0594 0.0022 1.0405 0.0491

-0.3594 0.8305 0.0171 -0.4660 0.9219 0.0501 0.0056 0.9859 0.0417

-0.3560 0.8049 0.0139 -0.4558 0.8973 0.0440 -0.0022 0.9472 0.0389

100 -0.2534 0.9419 0.0329 -0.3301 0.9954 0.0563 0.0031 1.0221 0.0487

-0.2328 0.9296 0.0318 -0.3065 0.9824 0.0552 0.0230 1.0052 0.0481

-0.2392 0.8686 0.0224 -0.3033 0.9187 0.0392 0.0082 0.9487 0.0377

200 -0.1845 0.9741 0.0415 -0.2431 1.0046 0.0563 0.0089 1.0171 0.0520

-0.1965 0.9582 0.0384 -0.2551 0.9867 0.0521 -0.0044 0.9982 0.0472

-0.2000 0.9239 0.0330 -0.2539 0.9490 0.0437 -0.0115 0.9610 0.0390

500 -0.0978 0.9791 0.0461 -0.1309 0.9902 0.0516 0.0264 0.9972 0.0497

-0.1118 0.9923 0.0465 -0.1462 1.0032 0.0516 0.0119 1.0093 0.0524

-0.1111 0.9673 0.0437 -0.1446 0.9743 0.0460 0.0117 0.9750 0.0448

0.50 50 -0.3217 0.9059 0.0281 -0.4079 1.0049 0.0680 -0.0008 1.0209 0.0510

-0.3200 0.8730 0.0226 -0.4025 0.9730 0.0621 -0.0054 0.9773 0.0393

-0.2949 0.8608 0.0218 -0.3662 0.9486 0.0508 0.0086 0.9525 0.0393

100 -0.2077 0.9666 0.0411 -0.2695 1.0190 0.0596 -0.0013 1.0179 0.0508

-0.1933 0.9545 0.0421 -0.2531 1.0046 0.0577 0.0115 1.0030 0.0513

-0.1900 0.9363 0.0359 -0.2488 0.9832 0.0531 0.0071 0.9731 0.0418

200 -0.1508 0.9654 0.0431 -0.1952 0.9898 0.0532 0.0053 0.9949 0.0476

-0.1726 0.9575 0.0397 -0.2172 0.9837 0.0494 -0.0178 0.9857 0.0468

-0.1307 0.9558 0.0389 -0.1739 0.9733 0.0468 0.0227 0.9826 0.0444

500 -0.0810 1.0034 0.0494 -0.1077 1.0115 0.0529 0.0142 1.0155 0.0515

-0.0959 0.9810 0.0467 -0.1219 0.9911 0.0515 -0.0010 0.9923 0.0485

-0.0868 0.9683 0.0408 -0.1125 0.9741 0.0443 0.0074 0.9768 0.0434

0.25 50 -0.2256 0.9485 0.0377 -0.2973 1.0307 0.0676 0.0028 1.0377 0.0547

-0.2376 0.8873 0.0280 -0.3039 0.9659 0.0541 -0.0126 0.9680 0.0425

-0.2226 0.8663 0.0229 -0.2848 0.9363 0.0446 -0.0022 0.9409 0.0368

100 -0.1688 0.9747 0.0447 -0.2168 1.0193 0.0597 0.0058 1.0175 0.0526

-0.1726 0.9491 0.0401 -0.2186 0.9926 0.0549 -0.0001 0.9892 0.0459

-0.1590 0.9178 0.0314 -0.1989 0.9572 0.0458 0.0095 0.9560 0.0397

200 -0.1081 0.9848 0.0470 -0.1447 1.0061 0.0560 0.0152 1.0078 0.0504

-0.1192 0.9759 0.0443 -0.1553 0.9988 0.0541 0.0034 0.9983 0.0502

-0.1323 0.9376 0.0385 -0.1669 0.9602 0.0449 -0.0120 0.9575 0.0419

500 -0.0795 0.9905 0.0486 -0.0995 0.9997 0.0516 0.0046 0.9997 0.0506

-0.0875 0.9873 0.0472 -0.1080 0.9967 0.0513 -0.0037 0.9963 0.0492

-0.0793 0.9613 0.0422 -0.0982 0.9669 0.0442 0.0039 0.9702 0.0432

0.00 50 -0.2495 0.9431 0.0390 -0.3178 1.0329 0.0701 0.0002 1.0218 0.0513

-0.2384 0.9172 0.0372 -0.3032 1.0062 0.0654 0.0081 0.9900 0.0498

-0.2497 0.8720 0.0279 -0.3106 0.9504 0.0507 -0.0123 0.9371 0.0402

100 -0.1388 0.9893 0.0466 -0.1831 1.0314 0.0591 0.0113 1.0245 0.0550

-0.1490 0.9559 0.0416 -0.1908 0.9979 0.0562 -0.0007 0.9891 0.0476

-0.1575 0.9152 0.0346 -0.1957 0.9504 0.0454 -0.0139 0.9485 0.0427

Note: The three rows under each n correspond to normal, normal-mixture, and log-normal error.

(1−Tail Probability) gives the coverage probability of the test-based CI.
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Table 4. Cont’d

LME(λ) LMH(λ) LMR(λ)

λ n Mean SD Prob Mean SD Prob Mean SD Prob

0.00 200 -0.1153 0.9908 0.0478 -0.1464 1.0121 0.0544 0.0037 1.0098 0.0511

-0.1070 0.9760 0.0440 -0.1373 0.9993 0.0535 0.0114 0.9945 0.0481

-0.1238 0.9595 0.0421 -0.1525 0.9764 0.0484 -0.0077 0.9769 0.0461

500 -0.0792 0.9948 0.0498 -0.0970 1.0044 0.0537 -0.0084 1.0024 0.0489

-0.0672 0.9927 0.0490 -0.0849 1.0011 0.0519 0.0035 1.0003 0.0496

-0.0654 0.9618 0.0407 -0.0812 0.9665 0.0415 0.0048 0.9695 0.0422

-0.25 50 -0.1603 0.9646 0.0443 -0.2191 1.0510 0.0695 0.0003 1.0321 0.0588

-0.1637 0.9132 0.0314 -0.2170 0.9902 0.0548 -0.0050 0.9747 0.0442

-0.1649 0.8864 0.0309 -0.2137 0.9569 0.0465 -0.0101 0.9475 0.0437

100 -0.1438 0.9905 0.0514 -0.1808 1.0314 0.0644 0.0009 1.0246 0.0567

-0.1346 0.9619 0.0431 -0.1686 1.0022 0.0562 0.0095 0.9940 0.0488

-0.1377 0.9167 0.0346 -0.1659 0.9480 0.0428 0.0039 0.9465 0.0399

200 -0.0917 0.9906 0.0489 -0.1170 1.0121 0.0554 0.0019 1.0075 0.0535

-0.1078 0.9735 0.0472 -0.1326 0.9939 0.0525 -0.0149 0.9897 0.0488

-0.1203 0.9433 0.0387 -0.1424 0.9600 0.0431 -0.0288 0.9591 0.0416

500 -0.0654 0.9857 0.0469 -0.0799 0.9941 0.0496 0.0007 0.9924 0.0475

-0.0699 0.9785 0.0446 -0.0839 0.9874 0.0474 -0.0039 0.9849 0.0457

-0.0628 0.9744 0.0449 -0.0757 0.9804 0.0472 0.0025 0.9793 0.0470

-0.50 50 -0.2347 0.9762 0.0522 -0.2946 1.0729 0.0766 -0.0097 1.0367 0.0617

-0.2242 0.9409 0.0412 -0.2796 1.0328 0.0684 -0.0019 0.9960 0.0488

-0.2127 0.8911 0.0323 -0.2572 0.9685 0.0528 0.0029 0.9352 0.0371

100 -0.1144 0.9953 0.0521 -0.1473 1.0336 0.0639 0.0101 1.0242 0.0555

-0.1352 0.9578 0.0444 -0.1664 0.9975 0.0559 -0.0120 0.9843 0.0474

-0.0996 0.9312 0.0343 -0.1230 0.9592 0.0423 0.0223 0.9549 0.0417

200 -0.0979 0.9989 0.0517 -0.1196 1.0195 0.0573 -0.0082 1.0133 0.0537

-0.0865 0.9716 0.0437 -0.1074 0.9917 0.0491 0.0030 0.9848 0.0474

-0.0855 0.9505 0.0385 -0.1043 0.9640 0.0437 0.0027 0.9647 0.0419

500 -0.0555 0.9906 0.0494 -0.0686 0.9981 0.0511 0.0010 0.9963 0.0493

-0.0490 0.9974 0.0482 -0.0618 1.0051 0.0512 0.0075 1.0026 0.0504

-0.0445 0.9732 0.0437 -0.0554 0.9779 0.0467 0.0114 0.9784 0.0452

-0.75 50 -0.1850 0.9748 0.0487 -0.2372 1.0641 0.0723 -0.0050 1.0265 0.0570

-0.1882 0.9435 0.0420 -0.2360 1.0282 0.0637 -0.0107 0.9900 0.0487

-0.1654 0.9161 0.0365 -0.1997 0.9886 0.0548 0.0078 0.9520 0.0439

100 -0.1108 0.9844 0.0488 -0.1366 1.0221 0.0580 -0.0110 1.0094 0.0549

-0.1090 0.9530 0.0440 -0.1337 0.9891 0.0539 -0.0097 0.9751 0.0471

-0.0995 0.9189 0.0348 -0.1186 0.9465 0.0419 -0.0019 0.9393 0.0378

200 -0.0912 0.9950 0.0512 -0.1099 1.0156 0.0568 -0.0100 1.0078 0.0540

-0.0712 0.9825 0.0461 -0.0884 1.0019 0.0523 0.0099 0.9936 0.0475

-0.0727 0.9518 0.0415 -0.0879 0.9657 0.0442 0.0071 0.9657 0.0448

500 -0.0373 1.0039 0.0509 -0.0451 1.0107 0.0536 0.0142 1.0092 0.0515

-0.0573 0.9930 0.0493 -0.0654 0.9999 0.0508 -0.0060 0.9970 0.0497

-0.0460 0.9567 0.0414 -0.0521 0.9629 0.0424 0.0049 0.9574 0.0415

Note: The three rows under each n correspond to normal, normal-mixture, and log-normal error.

(1−Tail Probability) gives the coverage probability of the test-based CI.
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Table 5. Tests of Spatial Dependence Based on Cigarettes Sales Data

Original Log Transformed

Year λ LME(λ) LMH(λ) LMR(λ) LME(λ) LMH(λ) LMR(λ)

1970 0.75 -3.2923 -4.9678 -3.3882 -3.1523 -4.6773 -3.2230

0.50 -3.4321 -4.0558 -3.4237 -3.2126 -3.8432 -3.1717

0.25 -2.1948 -1.9151 -2.0025 -2.0657 -1.8950 -1.8339

0 0.2004 0.1510 0.6071 0.0449 0.0359 0.4956

-0.25 2.8019 2.2509 3.4107 2.3660 1.9803 3.0048

-0.50 4.5944 4.6845 5.3270 4.0725 4.1505 4.8117

-0.75 5.2592 7.1883 5.9724 4.8213 6.3388 5.5360

1980 0.75 -2.7093 -3.7047 -2.7680 -2.7235 -3.7691 -2.7809

0.50 -2.4012 -2.6371 -2.3406 -2.5735 -2.9843 -2.5106

0.25 -1.0990 -0.9940 -0.8367 -1.5538 -1.4966 -1.2951

0 0.7884 0.6638 1.2729 0.0649 0.0566 0.5419

-0.25 2.6420 2.3691 3.2985 1.8253 1.6186 2.4795

-0.50 3.9563 4.1715 4.6799 3.2487 3.2368 3.9901

-0.75 4.5396 5.7516 5.1976 4.0467 4.7545 4.7587

1990 0.75 -1.8229 -2.2717 -1.6732 -2.1401 -3.0326 -1.9965

0.50 -0.8020 -0.8688 -0.3895 -1.4281 -1.6781 -1.1210

0.25 0.6563 0.6735 1.2831 -0.0355 -0.0370 0.4464

0 2.0887 2.2325 2.8523 1.5592 1.6209 2.1839

-0.25 3.2107 3.8154 4.0292 2.9266 3.3646 3.6401

-0.50 3.9094 5.2455 4.7114 3.8221 5.1242 4.5599

-0.75 4.1720 6.0593 4.8954 4.1828 6.3617 4.8760

Table 6. 95% CIs for λ Based on Cigarettes Sales Data

Year LME(λ) LMH(λ) LMR(λ)

1970 (-0.1642, 0.2205) (-0.2170, 0.2552) (-0.1159, 0.2450)

(-0.2034, 0.2348) (-0.2475, 0.2582) (-0.1417, 0.2667)

1980 (-0.1522, 0.3953) (-0.1914, 0.3949) (-0.0796, 0.4200)

(-0.2705, 0.3295) (-0.3035, 0.3247) (-0.1800, 0.3658)

1990 ( 0.0243, *) ( 0.0433, 0.6864) ( 0.1475, *)

(-0.0666, 0.6473) (-0.0499, 0.5442) ( 0.0334, 0.7273)

Note: * means that rational solution is unavailable.

Two rows in each year, models based on original and logged data.
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Figure 1: Size-Adjusted Empirical Power of LME(dashed line), LMH(dotted line) and LMR(solid line): G = N 0.5.
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Figure 2: Size-Adjusted Empirical Power of LME(dashed line), LMH(dotted line) and LMA(solid line): Queen.
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