

Community-based management of hypertension in Nepal (COBMIN)

by

Arjun Khanal

B.E, Kantipur Engineering College, Tribhuvan University, 2008

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2017

 Approved by:

Major Professor

Dr. Daniel Andresen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/132492105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright

© Arjun Khanal 2017.

Abstract

In COBMIN project, we explore two popular software architectural pattern to implement

WHO (World Health Organization) STEPS Instrument for Non-Communication Diseases Risk

Factor Surveillance for Nepal. COBMIN web application implements Model-View-

Controller(MVC) pattern, which divides the application into three interconnected parts - model,

view, and controller. Similarly, COBMIN mobile application utilizes one of the most popular

Model-View-ViewModel (MVVM) software architectural pattern which isolates the

development of graphical user interface from the business logic and data models. We implement

above-mentioned pattern using new .Net Core technologies and a cross-platform mobile

development API Xamarin.Forms.

The COBMIN project comprises of a web application, a web API, and a mobile

application to facilitate community-based management of hypertension in Nepal. The primary

purpose of the web application is to manage demographic, behavioral, and physical information

of the members of the community who are part of the study group. The mobile application is

used to expedite the process of data acquisition from the members. The Web API defines

request-response message system for mobile client application employing the central data

storage.

iv

Table of Contents

List of Figures .. vi

List of Tables .. vii

Acknowledgements .. viii

Chapter 1 - Introduction .. 1

1.1 Project Description ... 1

1.2 Motivation ... 2

Chapter 2 - Related Work ... 3

2.1 Web Application Development .. 3

2.2 Mobile Application Development .. 4

2.3 Web API Development ... 5

Chapter 3 - System Requirement Analysis ... 7

3.1 Intended Users .. 7

3.2 Requirement .. 7

3.2.1 Web Application Requirements ... 7

3.2.2 Web API Requirements ... 8

3.2.3 Mobile Application Requirements ... 8

Chapter 4 - Implementation .. 9

4.1 Web Application Design ... 9

4.2 Web Application Architecture .. 11

4.2.1 Presentation Layer ... 12

4.2.2 Business Logic Layer ... 12

4.2.3 Data Access Layer ... 13

4.3 Use Case Diagram .. 14

4.4 Web API Architecture .. 16

4.5 Mobile Application Architecture .. 17

Chapter 5 - Evaluation .. 18

5.1 Web Application User Interface ... 20

5.2 Mobile Application User Interface ... 23

5.2 Performance Testing ... 25

v

5.2.1 Tool Used ... 25

5.2.2 Performance Measurement Terminologies .. 25

5.3 Web Application Performance Test .. 26

5.3.1 Web Application Test System Configuration .. 26

5.4 Web API Performance Test .. 28

5.5 System Security .. 32

Chapter 6 - Conclusion ... 33

5.1 Conclusion .. 33

5.2 Overall Experience ... 33

5.3 Future Work and Enhancements ... 34

Bibliography ... 35

vi

List of Figures

Figure 1-1: Components of COBMIN Project .. 1

Figure 2-1: MVC framework application architecture with entity framework 4

Figure 4-1: Entity Relationship Diagram .. 9

Figure 4-2: Model-View-Controller (MVC) Architecture .. 12

Figure 4-3: Web Application Use Case Diagram ... 15

Figure 4-4: Web API Architecture .. 16

Figure 4-5: Mobile application with MVVM pattern ... 17

Figure 5-1: Web Application Login Interface .. 20

Figure 5-2: Web Application Project List Interface ... 21

Figure 5-3: Web Application Interface for Sections of a Project ... 21

Figure 5-4: Web Application Question Edit Interface .. 22

Figure 5-5: Participant List Interface .. 22

Figure 5-6: Mobile Application Login Interface .. 23

Figure 5-7: Mobile Application Action Menu Interface ... 24

Figure 5-8: Web Application Login Test for 100 Users ... 27

Figure 5-9: Web Application Participant Search with 100 Request ... 28

Figure 5-10: Web API Login Test with 20 Users ... 29

Figure 5-11: Web API Get Project Detail with 20 Http Request .. 30

Figure 5-12: Web API Participant Search with 20 Http Request ... 31

Figure 5-13: Web API Get Question Detail with 20 Http Request ... 32

vii

List of Tables

Table 5-1: Test Cases and Results .. 20

Table 5-2: Web Application Client System Configuration... 26

Table 5-3: Web Application Server System Configuration .. 26

viii

Acknowledgements

I would like to thank members of the NEDS organization for giving this opportunity to

work on their project. Special thanks to Dinesh Neupane, Ph.D. student at Aarhus University,

Denmark, who helped me throughout the project for requirement gathering and analysis.

I would like to thank my major professor Dr. Daniel Andresen for graciously accepting

my project proposal and supporting, guiding and overseeing me throughout the project. I am

grateful to Dr. Mitchell Neilsen and my advisor Dr. Torben Amtoft for accepting my request to

be in advisory committee. Also, I am very thankful to Judy Dizon for guiding me and providing

extra time to work on my project.

I would also like to thank my beloved wife Tulsi Paudel Khanal and adorable son

Shreeyam Khanal for caring and supporting me throughout my study period.

1

Chapter 1 - Introduction

 1.1 Project Description

There are many non-profit organization working in public health projects in the high hilly

regions of the Nepal. The people who live in remote areas of Nepal have little access to health

care because of the geographic location. One of the organization working in public heath area is

Nepal Development Society (NEDS) http://www.nedsnepal.org/. NEDS is currently running the

public health project called “community-based management of hypertension (COBMIN) based

on WHO (World Health Organization) Steps Instrument survey for non-communicable diseases.

The purposed application is designed to provide a solution for organization (NEDS) to manage

their projects. This application addresses the few common problems faced by NEDS. First, it

facilitates to keep records of all the members participating in the project eliminating the paper-

records of those members. Second, it helps to manage multiple survey projects eliminating the

need for separate application. Third, it expedites the survey process by eliminating the need to

fill up the paper form. Fourth, it provides centralized database storage to analyze data.

Figure 1-1: Components of COBMIN Project

2

There above figures illustrates the components of the COBMIN projects. There are three

components involved in the project, web application, web API, and Mobile Application. The

web application serves as setup and reporting tool. This interface can be used to setup project

details and related institution, manage user and participants account, defined roles for the user,

and generate administrative reports and so on. On the other hand, Web API defines the services

and implements those services to facilitate the client application, for example, mobile application

to consume the defined resources in the web API. Both web application and web API utilize the

same central database storage. The third component is client application, android or iOS

application. The application is primarily used to facilitate the user to collect the responses to the

questions from the participants. Mobile application completely depends on web API component

for the data. The mobile application works based on request-response with web API.

 1.2 Motivation

NEDS works in diverse fields such as public health, environment, information

technologies, agriculture, education, veterinary and social sciences. NEDS has a team of top

experts from several fields with several years of professional experience. Currently NEDS has

ongoing projects on farmers health and pesticide management in Chitwan and community based

management of hypertension in Kaski district of Nepal. I recently joined this (NEDS)

organization and though of helping them with their ongoing COBMIN projects by designing and

developing the application which can keep track and manage the COBMIN project. So, I decided

to develop the application using new technologies so that I will have opportunity to learn new

technologies and contribute to the organization.

3

Chapter 2 - Related Work

 2.1 Web Application Development

There exist numerous methodologies and development process for designing and

implementing a web application. However, selecting a particular method greatly depends on the

requirements. Also, user friendliness and the performance of the application are other two factors

that influence the decision of choosing an appropriate development method.

Regarding web application, it is relatively easy with ASP.NET MVC framework since it

is lightweight and integrated with existing ASP.NET features. Moreover, MVC design pattern

segregates an application into three main components: the model, the view, and the controller.

I have selected ASP.NET MVC framework for this project for the following reasons.

First, it separates the application task in three layers - input logic, business logic, UI logic. It

allows the use of existing ASP.NET features such as forms authentication, Windows

authentication, and membership-based authentication. Views are the components which display

the application's user interface. Typically, it uses the model data and renders it to the user

interface. Controllers handle the user interaction with the application; it processes the user

request and selects a view to display to the user in the UI. It uses model data for validation and

input processing. The model implements the logic for the application data domain.

4

Figure 2-1: MVC framework application architecture with entity framework

COBMIN project has enough information stored in the database and requires an efficient

way to handle data binding between the application and data storage. ADO.NET entity

framework provides three ways to create data model: code-first, database-first, and model-first

approach. In code-first, classes are used by entity framework to generate the database schema. In

database-first, the entity framework creates the data model classes from the existing database. In

model-first approach, entity data model (.edmx) can be used to generate the code and the

database.

 2.2 Mobile Application Development

Xamarin.Forms is a API library to build native apps for iOS, Android, and Windows

using a single shared C# codebase. It has a great variety of cross-platform controls and layouts

which are mapped to platform-specific native user interface at runtime. It allows to share code

across different platform [9]. There are several mobile application development frameworks for

both android and iOS application development. But, I preferred Xamarin because it provides an

abstraction of the native API library and support code sharing and cross-platform controls.

5

 2.3 Web API Development

Application Programming Interface(API) generally refers to the communication between

computer systems over the network. The resources are hosted in the server and clients utilize the

resources by request-response message system. In the server-side, programming interface is used

facilitate the request-response system which is typically known as web services. The most

commonly used design model for web service are SOAP and REST.

Simple Object Access Protocol (SOAP) defines the messaging framework based on

Extensible Markup Language (XML). The main purpose of XML is store and transport data. It

defines the request and response format for every operation defined in the programming interface

based on XML. The request and response message contain all the parameters and its data types.

The details of the input and output parameters are documented in WSDL (Web Service

Description Language). The WSDL serves as a contract between the clients - the consumer of the

web service- and provider.

Representation state transfer(REST) is an architectural style for developing RESTful web

services which provides interoperability between computer Systems on the Internet. Rest utilizes

existing HTTP protocol for communicating between the systems. In Restful web services, a

request made to the resources is responded back in different format (XML, HTML, JSON). The

operations available through Rest web services include HTTP get, post, put, and so on.

I decided to use REST paradigm for COBMIN web service project for the following

reasons. First, it eliminates the overhead for the client app to modify and recompile the code

every time the WSDL contract definition changes. Second, REST is data driven and supports

many machine-humane readable format, for example, JSON (JavaScript Object Notation). Third,

REST is stateless. This eliminates the overhead to manage a session between the client and the

6

server. Once the user is authenticated, every time a user makes request to the server, it sends the

token in the HTTP header which eliminates the need to maintain a session between the server

and the client.

7

Chapter 3 - System Requirement Analysis

 3.1 Intended Users

There are basically two categories of the users, administrator and users. The

administrators are responsible for system setup – defining project and related questions - and

users perform various operations on the system, for example, surveying participants.

The trained personnel from NEDS organization is responsible for surveying the

participant. The users of the system are expected to be familiar with the system user interface

and various operations. The use of this application is not intended by participants. Participant are

subjects who take part in the projects indirectly.

 3.2 Requirement

The primary requirement of the application is to manage the survey questions and

conduct the study with the participant. The user interface developed will provide an easy and

efficient way to store the participant information, define survey project and its related questions,

and capture the responses to question in the database.

 3.2.1 Web Application Requirements

The web application is expected to meet following functional requirements.

1. Application should have interface to create two types of users – administrator and users.

2. Application should have role and privilege management interface.

3. Administrator should be able to define new institution, update the institutions information as

necessary.

4. Administrator should be able to create multiple survey projects under an institution.

5. Application should have interface to define the various sections, description and purpose of

the section for a project.

6. Administrator should have interface to define multiple questions for a section.

7. Application should have interface to setup list of options available for a question.

8

8. Administrator should have interface to manage user accounts.

 3.2.2 Web API Requirements

1. Web API should authenticate all the defined users in Web Application.

2. No user shall have access to the Web API except those defined in the systems.

3. API should have methods for the following operation:

a) Project List – Client app should be able to get all the defined projects in the web

application.

b) User Authentication – API should have method to authenticate the mobile application

user.

c) Participant List – API should define a method to search participant based on name of the

participant.

d) Question details – API should have method to get details of a question

e) Question Response – API should have method to save the responses to the questions.

f) Password Change – Client user should be able to change their user account password

using API methods.

g) Question Option – API should define method to get all the available options for a

question.

 3.2.3 Mobile Application Requirements

Mobile Application primary purpose to facilitate user for the following operations:

1. Application should have user interface for login.

2. Application should have interface to search the participants by their name.

3. Application should have interface for navigating through all the question for a project and

save the response from the participants.

4. Application should have interface to manage user profile.

9

Chapter 4 - Implementation

 4.1 Web Application Design

After the completion of requirement analysis, various components, and modules have

been identified and designed. All the participating entities and their relationship in the system

have been defined and presented in the following E-R diagram.

Figure 4-1: Entity Relationship Diagram

Dts_Answers
Id

ParticipantId

Id_Question_Options

Answer_Numeric

Answer_Text

Answer_yn

Id_Unit_of_Measures

Dts_Input_Types

Id

Input_Type

Dts_Institutions

Id

Institution_Name

Dts_Option_Groups

Id

option_group_name

Dts_Option_Groups_Choices
Id

Id_Option_Groups

Option_Choice_Name

Option_Choice_Code

Dts_Participants
Id

ParticipantId

First_Name

Last_Name

Contact_Number

Interview_Language

Consent_Obtained

Ward_No

Address

CreatedBy

CreatedDate

UpdatedBy

UpdatedDate

Dts_Privilege
Id

Name

Description

Path

[Group]

IconUrl

Dts_Question_Options
Id

Id_SVQ_Questions

Id_Option_Groups_Choices

Dts_SVQ_Headers
Id

Id_Institutions

Survey_Name

Survey_Code

Survey_Instructions

Miscellaneous_Info

CreatedDate

CreatedBy

Dts_SVQ_Questions
Id

Id_SVQ_Sections

Id_Input_Types

Id_Option_Groups

Question_Name

Question_Subtext

Question_Code

Measurement_Unit

CreatedDate

CreatedBy

Dts_SVQ_Sections
Id

Id_SVQ_Headers

Section_Name

Section_Title

Section_Instructions

Is_Required_Section

CreatedDate

CreatedBy

Dts_Unit_Of_Measure

Id

Unit_Measure_Name

Dts_Users
UserId

UserName

Password

FullName

MobileNumber

EmailAddress

Status

LastLoginIp

LastLoginDate

LastPasswordChangedDate

CreatedBy

CreatedDate

UpdatedBy

UpdatedDate

Dts_Users_Privilege
Id

Id_Users

Id_Privilege

10

Dts_Users:

This entity stored the user login information along with system access and user status.

The status represents whether the user has access to system or not.

Dts_Privilege:

This entity stores all the available privilege in the system. Dts_User_Privilege is used to

map users to privilege. This helps to identify the privileges associated with a particular user. This

is one to many relationships because a user can have multiple privileges.

Dts_SVQ_Headers:

This entity is used holds the all the survey project of an institution. Institution could

create multiple survey project.

Dts_SVQ_Sections:

Sections contains section name and section title. The relationship between Dts_Headers

to Dts_Sections is one to many.

Dts_SVQ_Questions:

This contains all the questions. Question_Name represents the actual question and

Queston_subtext provides extra information about the question making it easier to answer the

question. It contains primary keys from Dts_Input_Types and Dts_Option_Groups. The

relationship between section to question is one to many.

Dts_Input_Types:

This entity contains all the answers type that could be use while answering the questions.

Some of these include Dropdown box, Text, Checkbox, Radio Button etc.

11

Dts_Option_Groups:

This contains options group for generic question. For example, question related to

gender, age range, level of education is grouped and options choices for those questions are

stored in Dts_Option_Groups_Choices.

Dts_Question_Options:

This hold the question id and option choices id. Instead of keeping question id and its

associated option choices id, Dts_Question_Options id is recorded as the answer to the question.

Dts_Answers:

This entity captures the actual response from the user. It stores participant, question, and

answer along with unit of measure.

Dts_Participants:

It contains all the demographic information of the participant. In this application,

participants do not directly use the application. They provide their consent to volunteers who

perform survey and store all the answers received from the participant.

 4.2 Web Application Architecture

COBMIN is developed using MVC (model-view-controller) architecture. This primary

MVC architecture emphasis is separation of concern allowing the application to be divided into

three layers.

1. Presentation Layer

2. Business Logic (BI) Layer

3. Data Access Layer (DAL)

12

Figure 4-2: Model-View-Controller (MVC) Architecture

 4.2.1 Presentation Layer

The presentation layer presents the user the interface required to interact with the

application. It provides the interface to render the data to the user and allows the user to submit

the user request to the application. In MVC application, views are used for rendering the content

of the web page. Presentation layer interoperates with the business and data access layer to

receive the content for display.

 4.2.2 Business Logic Layer

Business logic layer form the middle layer in 3-tier architecture. It separates the

presentation and data access layer and contains all the business logic of the application. This

allows us to make changes in the business logic without having to change in presentation and

data access layer. In this application, Razor view engine is used to in presentation layer views,

13

the presentation layer could be rewritten using web form view engine without affecting the

business logic. This separation of layers allows us to work separately in each layer.

 4.2.3 Data Access Layer

In this application, MS-SQL database is used to store all the information in the

application. Data layer provides a mechanism to query against the database and get the results.

Entity framework has been used to create data access layer. It reduces writing and managing a

massive amount of ADO.NET code. It is an enhancement to ADO.NET to automate mechanism

for accessing and storing the data in the database.

To perform CRUD operation (insert, update, delete) into the database to access a table,

stored procedure could be created in the database. All the data manipulation operations are

written in the stored procedure. Entity framework provides a mechanism to call stored procedure

by calling functions. It maps the stored procedure results to import functions making it easy to

query the database.

In COBMIN application, COBMIN.DAL is the data access layer which contains a

CobinDB.edmx file. Below are the few functions defined as part of import?

PlsUserAuthentication:

This procedure is used to authenticate the user. It uses username and password as to

authenticate the user.

PlsUser:

This method is used for user management, for example, creation of new user, editing the

existing user, finding out all existing user in the system.

PlsParticipant:

Like PlsUser method, it manages the information for all the participants in the system.

14

PlsSVQHeaders:

This function is used to setup new project in the system. This represent the title of the

survey.

PlsSVQSections:

Sections belong to headers. We could define multiple sections for a particular survey

header. One survey may include multiple sections. This method allows us to create new section,

update the existing section and so on.

PlsSVQQuestions:

Under each section, there could be multiple questions. This method is used to retrieve all

the questions are that created as part of survey title. This allows CRUD operation related to all

the questions.

PlsInterviewQuestions:

This is the main method used to conduct the survey. This method is called to fetch all the

questions related to a survey in a sequential manner. Also, once the response has been recorded

from the participant, the method is invoked to save the information in the database.

 4.3 Use Case Diagram

UML use case diagrams provide pictorial view of the system users/actors who interact

with the system. Use case diagram represents set of actions known as use cases that the actors or

users of the system can perform. It describes the behavior of the system. The use case diagram

represented in figure 4-3 depicts two roles – administrator and user. The administrator performs

following actions in the system – creating new user accounts and managing their accounts, new

institution setup and defining projects under institution, setting up question sections and

questions, and viewing reports. The administrator actor inherits all the actions that a user actor

15

can perform in the system. The user actor can perform following actions in the system – login

into the system, view participant list, search participants, and interview the participants.

Figure 4-3: Web Application Use Case Diagram

16

 4.4 Web API Architecture

The figure below depicts the architecture used in web API. It has four components, web

API controller, repository classes, business layer and data access layer. The web API component

of the application acts as an HTTP based interface and handles request from client application,

for example, mobile application and performs operations on data. The repository classes provide

a mechanism to decouple the business and data access layer from the controller. Web API uses

inbuilt dependency injection (DI) to inject required dependency in object. Data access, business

layer, repository can be registered with dependency injection and can be injected to each other.

Repository classes define the method to access the data access layer by defining interfaces. Data

access layer is responsible for CRUD (Create, Read, Update, Delete) operation.

Figure 4-4: Web API Architecture

17

4.5 Mobile Application Architecture

The Model-View-ViewModel (MVVM) pattern is used in mobile application

development to separate the user interface with business and presentation logic. The view

represents user interface, view model implements properties and command to which view can

bind data, model represents the data model. View is aware of the state of the view model and

view model is aware of the model. However, the model is unaware of view model and view

model is unaware of view. The view model separates view with model. The view is not directly

dependent on the data model of the application. Whenever there is a change in model it sends

back the notification to the view model and the view model sends back to the view using change

notification events. The model relates to the view using data binding capability of the

Xamarin.Forms.

Figure 4-5: Mobile application with MVVM pattern

18

Chapter 5 - Evaluation

Evaluation of software system is a crucial part of the application development cycle.

Software testing evaluates the application based on the requirement analysis and finds out the

potential bugs in the system. It validates and verifies the software program is working as per the

requirements and meets the technical and business requirement. Some of the conventional

software testing methods are unit testing, black box testing, performance and stress testing etc.

For COBMIN project, some of the standard operation test cases have been defined and tested.

Test cases and results:

Following test case test the functionality of the application. Following test cases were

performed manually and verified.

Sn. Test Module Input Test Case Expected Result Test Result

1 Login Enter

username

and password

Enter wrong

username and

password.

A user-friendly

user message

should be

displayed.

Passed

2 Setup Page Navigate to

the Project

List Page.

It should

display the list

of projects.

It listed the project

list from the

database.

Passed

3 User Page Navigate to

Users List

Page

It should

display all the

system users

from the

database.

It listed the

available users

from the database.

Passed

4 User List Page Click on add

new user

icon.

It should

redirect to new

user creation

page.

It redirected to the

new user creation

form where user

can enter user

Passed.

19

details and save

user to database.

5 Participant List

Page

Navigate to

Participant

List.

It should list

all the existing

participants

from the

database.

It listed out the

participant as

expected.

Passed.

6 Participant List

Page

Click on add

new

participant

It should

redirect to page

to enter new

participant

information.

It redirected to the

new participant

page and saved the

data.

Passed

7 Participant List

Page

Click on Edit

Icon.

It should open

an editable

form with

existing

information of

participant.

It redirected to edit

form page and

displayed

associated

information for the

participant.

Passed.

8 Participant List

Page

Click on

delete Icon.

It should

prompt the

user before the

participant is

deleted.

It opened the

confirmation

dialogue box

before deleting the

participant.

Passed

9 Interview Page Select

Dropdown as

COBMIN

and enter

participant Id

It should

search the

participant id

and display the

associated

information

before survey

It displayed the

participant details

if it was found in

the database and

displayed error

message

otherwise.

Passed

20

questions

starts.

10 Interview Page Click on start

interview

icon.

It should start

the interview

session and

present the first

question from

the survey

questions set.

It took to the

question page and

presented with the

first question.

Passed

Table 5-1: Test Cases and Results

 5.1 Web Application User Interface

Login Interface:

Login Interface is used by administrators to setup the project and user accounts.

Figure 5-1: Web Application Login Interface

21

Project List Interface:

Project list interface is used to create new project, modify the existing one and navigate to

the sections of a project. It has small add icon to add the new project, standard edit icon to edit, a

branching icon to navigate to the section details.

Figure 5-2: Web Application Project List Interface

Section Interface:

The branching icon in the project list interface will navigate the user to the sections of a

project. Section Interface allows administrators to add new sections using small add icon, edit a

section, delete the section and navigate to questions related to that section.

Figure 5-3: Web Application Interface for Sections of a Project

22

Question Edit Interface:

The below screenshot shows the edit form interface for question. The same layout is used

for user, participant, section, project edit form interface.

Figure 5-4: Web Application Question Edit Interface

Participant List Interface:

Participant list interface also uses the same navigation icons to modify the participant

information. Also, similar interface is used for user account management.

Figure 5-5: Participant List Interface

23

 5.2 Mobile Application User Interface

Login Interface:

The login interface for mobile users has standard username and password form for user

authentication. The user is authenticated using Web API login method.

Figure 5-6: Mobile Application Login Interface

24

Action Menu Interface:

The below screenshot displays the action menu for mobile users. These actions require

service from Web API. The following action are available:

• Current Projects: List all the available project in the system.

• Questions: Starts an interview session with the participant and follows next question once the

first question is answered.

• Participants: This action menu allows to search participants.

• Change Password: Allows user to change current password and set to new password.

• Log Out: Allow user to go back to login page.

Figure 5-7: Mobile Application Action Menu Interface

25

 5.2 Performance Testing

Performance testing is carried out to ascertain the effectiveness of the application

especially when the number of users using the application increase. In Software application, it is

done to estimate the response time and throughput of the application. These statistical measures

give insight into how well the application is performing where number of user increase

significantly.

 5.2.1 Tool Used

The Apache JMeter, an open source Java software application, is used to measure the

performance of the COBMIN application. This tool is very handy for simulating the high number

of users and monitoring the response time of the application. It can invoke both HTTP get and

post request which facilitates to test both static and dynamic web pages.

 5.2.2 Performance Measurement Terminologies

Latency:

JMeter measures the latency from just before sending the request to just after the first

response has been received [10].

Connect Time:

JMeter measures the time it took to establish the connection, including SSL handshake

[10].

Throughput:

It is calculated as requests/unit of time. The time is calculated from the start of the first

sample to the end of the last sample. This includes any intervals between samples, as it is

supposed to represent the load on the server [10].

The formula is: Throughput = (number of requests) / (total time).

26

Standard Deviation:

Standard deviation is a measure of the variability of a data set. This is a standard

statistical measure [10].

Median:

 Median is a number which divides the samples into two equal halves. Half of the

samples are smaller than the median, and half are larger [10].

Elapsed time:

JMeter measures the elapsed time from just before sending the request to just after the

last response has been received [10].

5.3 Web Application Performance Test

The web application was tested reflecting the client-server scenario using workstation

computers.

 5.3.1 Web Application Test System Configuration

Operating System Windows 8.1 – 64 bits

RAM 16 GB

Processor Intel core i7

Processor Speed 3.4 GHz

Table 5-2: Web Application Client System Configuration

Operating System Windows 10 – 64 bits

RAM 16 GB

Processor Intel core i7

Processor Speed 2.9 GHz

Table 5-3: Web Application Server System Configuration

27

Test1: Login Page

I tested the login page with user login credentials supplied as a parameter for 100 users.

The expected maximum number of the user of the web application is around 20. The average

time per login request was less than two seconds.

Figure 5-8: Web Application Login Test for 100 Users

Test2: Search Participants

I tested the search participant page with participant Id supplied as a parameter for 100

http request. The average response time for 100 http request was 543 milliseconds. The total

number of participants in the system was 5.

28

Figure 5-9: Web Application Participant Search with 100 Request

 5.4 Web API Performance Test

The web API was tested reflecting the client-server scenario using exact same

configuration provided for web application testing.

Test1: API Login Test

The login method in the Web API authenticates the user using username and password. If the

user is successfully authenticated, the server creates new access token for that user and sends

back the token to the user. The average response time for this test was around two seconds.

29

Figure 5-10: Web API Login Test with 20 Users

Test2: API Get Project Details

API Get Project Detail methods is used to request all the available projects in the system.

This method validates the access token and if the token is valid it processes the request. I made

20 https request and the average response time for this method was around 4 seconds.

30

Figure 5-11: Web API Get Project Detail with 20 Http Request

Test3: API Participant Search

The response time for the search participant method was around 4 seconds as well.

31

Figure 5-12: Web API Participant Search with 20 Http Request

Test4: API Get Question Details

This method will retrieve the questions for a project sequentially. It uses session id,

question id to keep track of questions which are already responded to client. Moreover, this

method saves the previous question response and gets the new questions for that session. The

average response time for 20 http request was around 4 seconds.

32

Figure 5-13: Web API Get Question Detail with 20 Http Request

 5.5 System Security

Web applications are vulnerable to several security threats, for example, SQL injection,

cross-site scripting attacks, and cross-site request forgery. The COBMIN application uses

dynamic query and stored procedure to process the query and validates the requesting user. Also,

it uses ValidateAntiForgeryToken to prevent falsification of requests. The application validates

the request before it processes the request.

Likewise, the application utilizes encryption and decryption logic to conceal the

information related to the participants in the database storage. In COBMIN application, the

member's details are hidden, and functions which contain this logic are encryption itself making

it impossible to decrypt the logic and view the participant information. This is required to protect

the health information of the participants.

33

Chapter 6 - Conclusion

 5.1 Conclusion

The COBMIN application is particularly developed for NEDS organization for

expediting the survey process for Hypertension Management Program. The users of the system

can perform various operations related to projects.

1. User Management: This module manages the application users. Admin can add a new user,

edit and delete the existing users.

2. Participant Management: Users have the privilege to add new participant in the system and

save demographic information in the system.

3. Survey questions Management: Admin can define survey sections and questions within each

section.

4. Survey (Interview Session Management): Users can record the responses to each question in

the survey from the participating member in the program.

 5.2 Overall Experience

I designed and developed the COBMIN application using ASP.NET MVC and Entity

framework. I have used MS-SQL, a relational database management system, as a backend for the

storage system. This project helped me to enhance my knowledge of Model-View-Controller and

Entity framework. I gained a good practical knowledge of these technologies by implementing

these tools and techniques in the project.

Also, I learned database programming, for example, writing SQL queries in stored

procedure. Stored procedure is database objects which can be used to manage multiple dynamic

SQL queries and execute those queries based on the parameter passed to the procedure.

Moreover, I learned to write user defined function as part of database programming, for example,

34

writing password encryption and decryption logic. These types of functions are very useful while

working with sensitive data, for instance, the medical records of the persons.

I used visual studio 2010 for the development environment. I learned to configure the

project and install entity framework from Nuget package manager. I configured the project in

three parts COBMIN.Classes, COBMIN.DAL, COBMIN.Web. COBMIN.Classes contain

membership and role provider classes along with some static method. COBMIN.DAL holds

Entity Framework and functions for database operations. Similarly, COBMIN.Web contains

views for presentation, controller for request processing, and model for managing business logic

and rules.

In a nutshell, I gained significant knowledge about how to build the web application from

scratch following the software development lifecycle, requirement analysis, system design,

coding, testing, and release.

 5.3 Future Work and Enhancements

Following are the certain aspects of the application which can be improved for the future.

1. The current scope of the application is limited to NEDS organization and the specific project

they are working. In future, this can be extended to make it more general survey application.

2. It can be extended to make it applicable to other institutions for different types of survey

projects.

35

Bibliography

[1] MVC pattern for database operation. http://www.dotnetcurry.com/aspnet-mvc/1155/aspnet-

mvc-repository-pattern-perform-database-operations

[2] ASP.NET MVC Overview.

https://msdn.microsoft.com/enus/library/dd381412(v=vs.108).aspx

[3] Implementing CRUD functionality with Entity Framework in ASP.NET MVC application.

https://www.asp.net/mvc/overview/getting-started/getting-started-with-ef-using-

mvc/implementing-basic-crud-functionality-with-the-entity-framework-in-asp-net-mvc-

application

[4] Server-side Implementation. https://msdn.microsoft.com/en-us/library/hh404093.aspx

[5] Entity Framework. https://blog.magnusmontin.net/2013/05/30/generic-dal-using-entity-

framework/

[6] Representational state transfer. https://en.wikipedia.org/wiki/Representational_state_transfer

[7] Xamarin.Forms. https://www.xamarin.com/forms

[8] Token Authentication. https://samueleresca.net/2016/12/developing-token-authentication-

using-asp-net-core/

[9] Web API Architecture with Entity Framework

http://www.dotnetcurry.com/entityframework/1348/ef-core-web-api-crud-operations

[10] Performance Measurement Terminologies Definition.

http://jmeter.apache.org/usermanual/glossary.html

