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Abstract

As today’s networks are no longer individual networks, networks are less robust towards

failures and attacks. For example, computer networks and power networks are interdepen-

dent. Computer networks provide smart control for power networks, while power networks

provide power supply. Localized network failures and attacks are amplified and exacerbated

back and forth between two networks due to their interdependencies. This dissertation

focuses on finding solutions to enhance network robustness. Software-defined networking

provides a programmable architecture, which can dynamically adapt to any changes and

can reduce the complexities of network traffic management. This architecture brings oppor-

tunities to enhance network robustness, for example, adapting to network changes, routing

traffic bypassing malfunction devices, dropping malicious flows, etc. However, as SDN is

rapidly proceeding from vision to reality, the SDN architecture itself might be exposed to

some robustness threats. Especially, the SDN control plane is tremendously attractive to

attackers, since it is the “brain” of entire networks. Thus, researching on network robustness

helps protect network from a destructive disaster.

In this dissertation, we first build a novel, realistic interdependent network framework to

model cyber-physical networks. We allocate dependency links under a limited budget and

evaluate network robustness. We further revise a network flow algorithm and find solutions

to obtain a basic robust network structure. Extensive simulations on random networks and

real networks show that our deployment method produces topologies that are more robust

than the ones obtained by other deployment techniques.

Second, we tackle middlebox chain problems using SDN. In computer networks, applica-

tions require traffic to sequence through multiple types of middleboxes to accomplish network

functionality. Middlebox policies, numerous applications’ requirements, and resource alloca-

tions complicate network management. Furthermore, middlebox failures can affect network



robustness. We formulate a mixed-integer linear programming problem to achieve a network

load-balancing objective in the context of middlebox policy chain routing. Our global rout-

ing approach manages network resources efficiently by simplifying candidate-path selections,

balancing the entire network and using the simulated annealing algorithm. Moreover, in case

of middlebox failures, we design a fast rerouting mechanism by exploiting the remaining link

and middlebox resources locally. We implement proposed routing approaches on a Mininet

testbed and evaluate experiments’ scalability, assessing the effectiveness of the approaches.

Third, we build an adversary model to describe in detail how to launch distributed denial

of service (DDoS) attacks to overwhelm the SDN controller. Then we discuss possible defense

mechanisms to protect the controller from DDoS attacks. We implement a successful DDoS

attack and our defense mechanism on the Mininet testbed to demonstrate its feasibility in

the real world.

In summary, we vertically dive into enhancing network robustness by constructing a

topological framework, making routing decisions, and protecting the SDN controller.
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Chapter 1

Introduction and background

Software-defined networking (SDN) is becoming increasingly important, bringing benefits

that will potentially reform today’s computer network. We propose to enhance network

robustness using SDN. In this chapter, we first present our motivations by introducing the

role of SDN and the importance of network robustness in section 1.1. Second, we introduce

the concepts of network robustness, SDN, OpenFlow, and middlebox in section 1.2. Third,

we highlight our contributions in section 1.3. Finally, the organization of this dissertation is

introduced in section 1.4.

1.1 Introduction and motivation

Traditional computer networks rely on sophisticated protocols on legacy routers/switches

to provide numerous services. This leads to Internet ossification, which means the current

Internet has little space to scale. However, the population of network users is increasing dra-

matically, and users’ requests are becoming more diverse. Data representing global internet

traffic, in petabytes per month, is shown in Fig. 1.11.

Moreover, monthly active users of Facebook have been increasing dramatically over the

last 13 years and reached 2 billion by the end of June 20174. Monthly global mobile data

traffic is projected to be 49 exabytes by 2021, with annual traffic exceeding half a zettabyte5.

1



Figure 1.1: Global internet traffic (petabytes per month) over the past 11 years1.

The United States will need to invest up to $150 billion in fiber infrastructure over the next

five to seven years to support networking demand6. Furthermore, recent data, as reported

by Sandvine, indicate more than 70 percent of North American traffic is now streaming video

and audio7. Streaming traffic is delay-sensitive and consumes large bandwidth.

Security issues are another concern on today’s network. Recently, credit-reporting firm

Equifax revealed that hackers might have stolen financial and consumer data on at least

143 million customers8. Those data include birth dates, social security numbers, driver’s

licenses and addresses, which could lead to severe identity theft issues, and immeasurably

harm the U.S. finance credit system in the long run. In 2016, major Internet platforms

and services couldn’t be accessed in Europe and North America, because Dyn servers were

under DDoS attacks9. Such security threats have become even more severe in recent years.

Microsoft cloud user accounts saw a 300 percent increase in cyberattacks in 201610. Cisco’s

2017 mid-year cybersecurity report indicates that 34 percent of service providers lost revenue

from attacks. Moreover, the new destruction of service (DeOS) attacks are not aiming at

attacking, but at destroying networks by preventing defenders from restoring systems and

2



data11.

Traditional computer networks may face problems in adapting to the dynamics and re-

quirements of numerous applications. Fortunately, the concept of SDN makes this possible

by assigning networks more flexibility and programmability. SDN refers to a network ar-

chitecture enabling programmability and separating the control plane from the data plane.

It reforms sophisticated legacy routers/switches as simple forwarding elements, and further

supports network scalabilities and innovations. It highlights the importance of software and

allows us to manage network operations via open interfaces to further reduce expenditures.

For example, AT&T CTO expects SDN to reduce operational expenses by 40 percent by

202012, and CenturyLink’s CEO, Glen Post, said his company remains on track to see at

least $200 million in annual capital expenditures reduction13.

SDN is rapidly moving from vision to reality. Tech news indicated an incomplete list of

42 vendors offering SDN products14. Moreover, a number of SDN startups have already been

bought by larger companies, validating their potential. In 2012, VMware bought Nicira for

$1.25 billion. Then Juniper bought Contrail Systems for $176 million15.

Among its advantages, SDN brings opportunities to enhance a computer network’s ro-

bustness. First, SDN provides centralized management with visibility of entire networks.

One popular realization of SDN is OpenFlow16. The SDN controller supports acquiring flow

statistics from OpenFlow switches in real time. This helps identify potential threats and

speed up troubleshooting to guarantee network availability. Second, routing and rerouting

flows are managed by the controller on the fly. For example, SDN incorporates middleboxes

and dynamically routes flows along middlebox chains to accomplish network functionality.

These middleboxes help improve network robustness, e.g., by use of a load balancer to cir-

cumvent overloads and an IDS to detect anomalies. Moreover, SDN can flexibly reroute

traffic bypassing malfunction devices or drop malicious flows. Third, flow tables on Open-

Flow switches are updated by running programs on the controller. Network operators are no

longer required to remotely log in and configure each switch, which makes network more ro-

bust against any type of manual configuration errors. Moreover, SDN allows for eliminating

policy conflicts and attacks by simply programming the OpenFlow controller.
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When we enhance network robustness using SDN, we also need to study corresponding

issues. Massive research has been exploiting opportunities and innovating promising appli-

cations under SDN architecture; however, the design of SDN itself is conversely exposed to

security challenges. The issue of SDN robustness becomes a concern, before it can become a

substitute for traditional networks. On one side, we exploit the flexibility of SDN to enhance

network robustness. On the other side, the decoupled architecture itself might be exposed

to some security threats.

In general, today’s networks are independent networks. This leads to a situation where

localized damage in one system will be extended to another system through their depen-

dency links, triggering cascading failures and finally bringing large-scale damage2;17;18. For

example, the 2003 Italy blackout affected a total of 56 million people. Consequently, network

robustness is of great importance to ensure network availability, resilience, and adaption to

changing scenarios.

1.2 Background

In this section, we introduce the concepts of network robustness and SDN, since SDN is

the major technology to improve network robustness in this dissertation. Then, we present

“OpenFlow,” an SDN standard, and “middlebox,” one type of network device.

1.2.1 Network robustness

Network robustness refers to a network’s ability to withstand failures and attacks — a critical

attribute to evaluate networks. It ensures network availability, resilience, and adaption to

changing scenarios.

Current networks (e.g. biological, biosocial, electric, electronic, etc.) are no longer in-

dividual networks19–21, because one network often depends on another. For example, the

power network provides electricity to the computer network and, through the computer

network, computers gather information reported from the power network, consequently con-

4



trolling the power network. Localized damage in one network will be propagated to the other

one through dependency links, triggering cascading failures and finally bringing large-scale

damage17;18. A robust framework with proper allocation of dependency links can protect

networks from these large-scale damages. Moreover, SDN can be the enabling technology

in the computer network, thus affecting the robustness of the network framework. With

flexibilities of SDN to be discussed in subsection 1.2.2, and functionalities of middleboxes

to be discussed in subsection 1.2.3, attacks and failures could be detected and eliminated

within computer networks before being propagated, thus enhancing network robustness.

1.2.2 Software-defined networking

SDN is an emerging networking architecture with a design of decoupling the control plane

and the data plane, which, consequently, simplifies network management, lowers the cost of

network devices’ deployment, and potentially reforms today’s networks.

With increasing needs of numerous applications and enormous user demand, traditional

computer networks are becoming more complex. In traditional computer networks, there

are a large number of network devices, e.g., routers and middleboxes 1.2.4, with complicated

protocols running on them. Those devices are not only in charge of packet forwarding,

but are also responsible for accomplishing network functions and conducting sophisticated

management. Such integration of control logics and forwarding elements makes current IP

networks very difficult to scale and evolve. We call it Internet ossification and its details are

listed as follows:

1. Devices are vendor-specific. Network devices differ based on vendors and provide limited

interfaces to be configured. This does not allow network operators to easily update

network states. Network operators have to configure each network device separately.

They also need to reconfigure them when there are network failures and policy changes.

Moreover, such configurations are error-prone and very difficult to scale.

2. Protocols are sophisticated. To accomplish various policies, a set of protocols need to

be implemented. As needs of numerous applications increase, these protocols become
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more sophisticated and may conflict with each other. Network evolvement is caught in a

dilemma as to whether to gain more intelligence and sophistication, or not.

3. Testing platforms are insufficient. New ideas should be tested in realistic settings to

validate their practicality. However, research traffic cannot be isolated from production

traffic and this might lead to severe consequences in current IP networks16. A new routing

protocol can take five to 10 years to be fully designed, evaluated, and deployed in current

IP networks22.

SDN architecture consists of three planes and two interfaces, that is, application plane,

control plane and data plane; and northbound interface and southbound interface, shown in

Fig. 1.2. The biggest innovation is the separation of the control plane and the data plane.

All control logics are defined in the control plane, and the data plane is only responsible

for forwarding. That simplifies network management and further allows network to scale

to adapt to increasing demands. The three planes are logically separated, but they might

coexist with each other physically.

Figure 1.2: SDN architecture consists of three planes and two types of interfaces.

Compared with traditional computer networks, SDN has the following advantages:
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1. Centralized management — an SDN controller has an overview of entire networks, sim-

plifies traffic management to adapt to different application requirements, and provides

better network supervision23;24. All control logics are managed by authenticated appli-

cations and dispatched through the control-to-data plane channel using an OpenFlow

protocol.

2. Flexibility — SDN’s data plane is only responsible for forwarding packets. It assigns

more flexibilities on the networks without manually configuring legacy routers/switches.

Once network policies or conditions change, switches receive updated commands from the

controller and simply follow those instructions.

3. Programmability — SDN architecture introduces the ability of programmability. Network

operators can control and update network behaviors by programming each network device

dynamically via open interfaces. Such software programs are easier operated and less

error-prone25.

4. Innovation — SDN allows network innovations by isolating research traffic from pro-

duction traffic, and helps with new protocol tests in realistic settings. It also provides

functionalities of access control, load balancing, network monitoring, etc. to gradually

substitute traditional computer networks, and further stimulates innovations.

1.2.3 OpenFlow

OpenFlow is the current SDN de-facto standard26. It is a communication protocol between

the control plane and the data plane. Unless specified, switches in the data plane discussed

in this dissertation are OpenFlow-enabled switches.

OpenFlow switch

An OpenFlow switch consists of one or more flow tables, a group table, and one or more

OpenFlow channels connected to a remote controller27.
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Figure 1.3: A flow entry consists of header fields, actions, and counters.

The flow table contains a list of flow entries 1.3, which perform packet matching and

define forwarding actions. Each flow entry in the flow table consists of three fields: header

fields, actions, and counters. In the header fields, 12 fields, defined in OpenFlow 1.0, classify

a flow and provide various matching possibilities to meet different applications’ requirements.

Actions can be various and flexible — dropping the flow, forwarding the flow, or even chang-

ing flow content, etc. We can also customize actions. Counters are collected at the line rate,

and further used for network monitoring and management.

The OpenFlow channel refers to the interface connecting the OpenFlow switch to the

controller. OpenFlow defines a set of messages, e.g., symmetric messages “hello” and asyn-

chronous messages “packet-in,” to communicate or update status with the controller via this

channel. The controller can also configure and manage OpenFlow switches via the channel.

In addition, such communication is optionally secured by a transport layer security (TLS)

protocol.

Flow forwarding

When a packet arrives at an OpenFlow switch, packet header fields are extracted to try to

match the header fields of flow entries. When it matches the header field in a flow entry, it

will conduct the corresponding actions. If a flow cannot find a matching flow entry, it will be

encapsulated with an OpenFlow protocol header and forwarded to the controller to request
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a new flow-entry installation. After the new flow entry is installed, matched packets will be

forwarded according to its actions.

The new flow entry can be installed either proactively by the controller or as requested,

indicated above. The controller can also update and delete flow entries in flow tables.

1.2.4 Middlebox

Middlebox is a graphic description of an existing internet phenomenon providing network

functions other than IP routing. Since it is implemented as an intermediary box between

a source host and a destination host, it is called “middlebox”28. In traditional computer

networks, all functions above the IP layer, except IP routing functions, can be considered

as middlebox functions. For example, firewalls, proxies, DNS servers, and load balancers

are middleboxes, while IP routers are not. In SDN networks, switches are not considered

as middleboxes, while other functions are, as indicated above29. Today’s network relies

on these middleboxes to guarantee critical network functions, e.g., security inspection and

performance improvement. For example, load balancers are used to circumvent overloads,

and further improve network performance and robustness. RFC 3234 details taxonomy and

issues about middleboxes28.

Middlebox deployment

Middleboxes can be deployed in path 1.4 or off path 1.5. Off-path deployment is more

robust and can ensure end-to-end connectivity when failures occur. It is also more efficient

and flexible, since we only route flows to go through middleboxes as needed.

Middlebox policy chain

Network applications require traffic to sequence through multiple types of middleboxes to

accomplish desired network functions. We call this “middlebox policy chain.” For example,

flows have to first go through a firewall and then an IDS for security purposes29, shown in

Fig. 1.6.
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Figure 1.4: Middlebox in-path deployment — all flows on the red path are forced to be sent
through the middlebox, such as a firewall (FW).

Figure 1.5: Middlebox off-path deployment — secure flows are sent along the green path,
while others are sent through the firewall for inspection.

Figure 1.6: Example of a middlebox chain — flows sequenced through a firewall and then
an IDS.
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In a larger network with numerous middleboxes, flow routings along middlebox chains

become complex23, which might create false configurations. It is also difficult to dynamically

update routing paths. It is even more challenging to enable middlebox chains within limited

network resources.

1.3 Contributions

We vertically dive into enhancing network robustness by constructing a topological frame-

work, making routing decisions, and protecting the SDN controller. Our major contributions

can be summarized as follows:

1. We have designed and thoroughly tested an optimization-based scheme to allocate depen-

dency links within a budget constraint, where the numbers of nodes in the two networks

are not identical. To this end, we have built a realistic cyber-physical network framework

with one-to-multiple dependencies, two unequal-size individual networks, and weighted

dependency links. Cyber-physical networks are in essence interdependent networks, where

one network supports and affects the other through dependency links. Localized net-

work failures and attacks are amplified and exacerbated back and forth between the two

networks due to their interdependencies. We allocate dependency links to obtain more

network robustness under this realistic framework.

2. We have developed two routing schemes for middlebox policy enforcement to improve

network robustness. This is the first work to handle failures in middlebox chain scenarios

using OpenFlow. With our designs, network resources are managed efficiently to circum-

vent overloads, and the network can rapidly respond to middlebox failures. Consequently,

network robustness is improved. Moreover, results of the optimization on a test topol-

ogy include an increase up to 26.4 percent of the throughput, with respect to sequenced

shortest-path routing.

3. We have explored vulnerabilities of the SDN controller from the attacker’s point of view

and have detailed the adversary model. We have presented preliminary results for several
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strategies to protect the controller from saturation attacks. This work contributes funda-

mentally to detect and mitigate the SDN control plane’s vulnerabilities, and to further

enhance network robustness.

1.4 Organization

This dissertation is organized into chapters. In chapter 2, we present a thorough literature

review on the issues of network robustness. In chapter 3, we propose a novel robust network

framework and allocate dependency links to obtain more network robustness. In chapter 4,

we further enhance network robustness by managing middlebox policies and handling mid-

dlebox failures using SDN. In chapter 5, we build a detailed adversary model to identify

vulnerabilities of the SDN control plane, and present preliminary results on possible defense

mechanisms. Finally, we conclude this dissertation and discuss future work in chapter 6.
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Chapter 2

Literature review

Software-defined networking (SDN) is an emerging networking architecture that reduces com-

plexities of network traffic management and presents a design of programmable networks that

can adapt to changing application requirements25. SDN provides functionalities of access

control, load balancing, network monitoring, etc. to supplement traditional computer net-

works, and further stimulates more innovations. In particular, SDN brings opportunities

to network robustness, for example, fine-grained control over network-based security func-

tions; flexibly rerouting traffic bypassing malfunction devices or dropping malicious flows;

and other innovative applications such as protecting web servers from TCP SYN flooding,

etc.3;30;31 Massive research has been exploiting opportunities and innovating promising ap-

plications under SDN architecture; however, the design of SDN itself is conversely exposed

to security challenges. Moreover, a computer network is always coupled with other networks,

and a localized failure might destroy the entire network. It is of great importance to study

network robustness. We define network robustness as the network ability to withstand pos-

sible network failures or attacks; and it ensures network availability, resilience, and adaption

to changing scenarios.

SDN brings opportunities to enhance the computer network’s robustness. First, it pro-

vides better network supervision. The controller has an overview of the entire computer

network and can acquire flow statistics from OpenFlow switches on the fly. Thus, we can
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rapidly identify network failures or attacks. One common application is to identify attack-

ing flow patterns from collected data32;33. Second, SDN allows dynamicality of complex,

network-policy management. Data plane is only responsible for packet forwarding, to avoid

complicated configurations. For example, SDN dynamically routes flows along a middlebox

chain to accomplish network functionalities3;34. These middleboxes help improve network

robustness, e.g., a load balancer is used to circumvent overloads and an IDS is used to de-

tect anomalies. Third, SDN allows elimination of policy conflicts35 and mitigates attacks by

simply programming the OpenFlow controller.

We particularly outline how SDN helps solve the middlebox chain problem. Network

applications require traffic to sequence through multiple types of middleboxes to accomplish

desired network functions. For example, web traffic needs to go through a proxy and then

a firewall36. To fulfill network functions, various types of middleboxes are utilized, and

each type might have a hundred devices in a large network29;37. In traditional computer

networks, traffic steering to meet the above goals is a critical problem23, which might create

false configurations. It is also difficult to dynamically update the routing policy. It is

even more challenging to enable the stateful policy routing (middlebox policy chain) within

limited network resources (network link bandwidth, middlebox-processing capability, and

switch high-speed searching memory).

The problem of routing under middlebox sequence constraints has recently gained re-

markable attention due to the role played by many network devices called middleboxes (e.g.,

firewalls, VPN gateways, proxies, intrusion detection systems (IDS), WAN optimizers) on

network performance38–42. To enforce middlebox policies, a novel middlebox architecture

was presented by Sekar et al. in38. In this paper, the authors designed a network-wide con-

troller and a local coordinator to manage middlebox resources, resembling the architecture

of SDN networks. As a matter of fact, a centralized SDN controller makes a network trans-

parent and synchronous39, as well as more efficient for network administrators to manage.

Furthermore, Joseph et al. proposed a policy-aware switching layer to enforce middlebox

policy and increase middlebox utilization40. They also presented an off-path middlebox de-

ployment. However, under this off-path deployment, flows are often required to travel on one
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link multiple times, increasing the probability of link overload. Fayazbakhsh et al. further

modified legacy middleboxes to support FlowTags used to differentiate flows with different

policy requirements41. Alternatively, OpenFlow allows the identification of stateful policy

flows using available fields in the packet header. Using OpenFlow, Qazi et al. elaborated on

the complexity of selecting middleboxes and scheduling flows, and simplified the middlebox

traffic steering problem by offline pruning some of the less-promising routing paths29. The

proposed offline calculation is time consuming, and it was performed each time failures oc-

curred or policy changed. This aspect is problematic, since networks should quickly respond

toward middlebox/link overloads and failures. In summary, open issues are as follows: how to

select possible routing paths with middlebox policy enforcement, and how to quickly assign

flow routing paths to maintain network performance. In solving middlebox chain problems,

resources on the middleboxes are another constraint. We take on solving these open issues

in chapter 4.

Another topic of research in the field of middlebox management concerns how to deal

with link failures and middlebox failures43–46. Research indicated that middleboxes con-

tribute to 43 percent of high-severity incidents28;46. Thus, it is critical to study middlebox

failures. Existing solutions are either to prevent the effect of middlebox failures before-

hand47, or react after middlebox failures; for example, reconstruct middlebox states after

failures48. However, today’s network relies on sequenced types of middleboxes to provide

network functions, and different types of traffic go through different sequences — both of

these being beyond the scope of existing approaches. Restarting middleboxes is a common

approach to dealing with middlebox failures, but few articles considered the impact during

the restarting period. In addition, when application requirements change, middlebox policy

will be updated. To avoid misconfiguration during policy updates, SDN’s centralized and

programmable management helps solve this middlebox policy routing problem. Therefore,

we are the first to consider middlebox failures in the middlebox chain problem, and then

mitigate these failures’ consequences using SDN. This will be introduced in chapter 4.

As SDN invokes huge interest from both academia and industry, it is rapidly proceeding

from vision to reality. However, some researchers are arguing that SDN conversely brings
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several security threats due to nature of separation between the control plane and the data

plane49–53. It is not clear whether SDN brings more benefits, or conversely, more threats, to

today’s networks.

Several components in SDN architecture are exposed to robustness issues. Attacks might

occur on the application plane, the control plane, the data plane, the northbound interface,

or the southbound interface as shown in Fig. 1.254–61. First, attacks toward the controller

can lead to a disaster for the entire network. Thus, the controller is a particularly attractive

attack target. The controller might be exposed to unauthorized access and exploitation

through open interfaces (northbound and southbound interfaces). Second, when multiple

applications are deployed on the application plane, conflicting flow-rule problems may arise35.

Third, the control plane and the data plane are both exposed to scalability issues. For

example, the controller might be overwhelmed by an excess of flow-entry installation requests

and switches might fail to buffer all new flow packets. This can be exploited by attackers to

launch denial of service attacks.

OpenFlow is an enabler of SDN. In an OpenFlow network, when a packet arrives, a switch

forwards the packet based on the matching flow entry. When no flow entry matches, the

switch will generate a packet-in message to the controller for a flow-entry setup. Assume a

large volume of table-miss packets are coming. The same number of requests will be sent from

the switch to the controller62. Such requests will overwhelm the switch-to-control channel,

exhaust the controller computation resources, and further lead to controller dysfunctionality.

As network size scales or user requirements vary, the controller’s scalability issue will

become more severe. Many efforts have been made to solve this scalability issue. Researchers

proposed use of distributed controllers to decentralize the calculation burden of the single

controller63 and further protect the entire network from the single-point controller failure.

Moreover, some research on wildcard rules is aiming at reducing the number of requests from

the data plane64;65. All those solutions help improve the control plane scalability. They are

also valuable for denial of service (DoS) attack elimination strategies, due to the fact that

control plane scalability issues and control plane DoS attacks are both resource consumption

issues. However, when DoS attacks are launched, those strategies are no longer sufficient.
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To mitigate DoS attacks, we can detect a user with abnormal behaviors by simply setting

a rate-limiting threshold. When a user sends more flows than the threshold, we can block all

flows from that user66. However, those requests could come from legitimate users and simply

blocking all suspicious flows unavoidably affects flows from legitimate users. Moreover, in

the SDN architecture, attackers can generate excessive short new flows to overwhelm the

controller, but absolutely skip rate limiting. In this case, total rate of those attacking flows

is very small, and it’s hard to block the attacks by setting a rate-limiting threshold.

Crafting a huge amount of short table-miss packets forces the switch to inquire the

controller, leading to network dysfunctionalities. Such new table-miss packets’ flooding is

called “request flooding” for short in this dissertation. Many research groups are working

on this topic52;53;62;67–74. Request flooding will lead to switch software components overload,

switch-to-controller channel congestion, switch flow-table overflow, and controller’s resource

saturation71. Among them, controller-resource saturation is destructive to the entire net-

work. Avant-Guard72 and Lineswitch73;74 proposed a proxy-like switch extension to shield

the controller from attacks. Such a method is effective when it comes to TCP-SYN flooding.

We are targeting a more general request flooding, also indicated in53;62;67–71. OF-GUARD53

and Floodguard62 built an additional data plane cache to temporarily hold excessive new

packets to protect the controller. Zhang et al.71 and Wei et al.67 proposed to mitigate this

request-flooding attack from the controller side, instead of adding any extra complexity on

the data plane. Zhang et al. introduced weighted, fair-sharing queues to reduce the packets

from attackers being served71. Wei et al. dynamically maintained a trust list and updated

each user’s trust value to block the attackers67.

Thus, several challenges have arisen, as follows: Will the controller have enough CPUs

and memory to hold queueing lists? Does the controller work to completely block attackers?

How do we differentiate legitimate users from attackers? In this dissertation, we explore

controller vulnerabilities from the attacker’s point of view, and detail an adversary model

and defenses. This will be introduced in chapter 5.

Regarding the robustness of cyber-physical systems, Buldyrev et al. provided a one-

to-one node dependency interdependent network model to describe the cascading failures
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caused by the dependencies between two individual networks18. Cascading failures under

random attack18;75 and targeted attack76;77 were further studied in order to develop suitable

protection strategies. Not only node correlations78 and clustering coefficients within one in-

dividual network79, but also node coupling approaches of the nodes from two networks20;77;80

influence network robustness. Schneider et al. indicated that choosing a fraction of nodes as

autonomous beneficially increased robustness81. Mirzasoleiman et al. introduced weighted

individual networks and studied link-load effects on robustness in82. Results in83–85 com-

prehensively indicated and proved a coupling threshold existed for interconnected network

structural transitions from two independent functioning networks to a whole system. Fur-

ther research in edge attack rather than node attack was produced86. Gao et al. generalized

interdependent networks with two individual networks to n individual networks87. However,

all research is based on the one-to-one node dependency interdependent network model in18.

The one-to-multiple dependency model brought up in88 is more realistic than the one-to-one

node dependency model in previous papers. Reis et al. extended this to study indegree-

indegree and indegree-outdegree relationships, that is, one node can have multiple supports

from another network89. Yağan et al. proved that a proper allocation of dependency links in

their one-to-multiple dependency model would contribute to a more robust system90. Their

dependency model is valuable, but in reality, it is always the case that one network has mul-

tiple dependencies from the other network. The numbers of nodes in two individual networks

are not equal as well. Weights of dependency links are no longer identical. In chapter 3, we

build a realistic robust interdependent network model and allocate dependency links to make

the network more robust from cascading failures. With this allocation, we do not expect

localized damage in the computer network to propagate to an uncontrollable disaster for the

entire cyber-physical networks.

In summary, in this dissertation, we are analyzing and solving some challenging issues to

make networks more robust toward failures and attacks.
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Chapter 3

Robust network framework

In this chapter, we explore a robust cyber-physical network framework. Interdependent

network models are often used to show how one network has an effect on another network

through their dependencies. We propose a novel interdependent network model, which con-

sists of two individual networks with unequal numbers of nodes and one-to-multiple weighted

dependency links between the two networks. Based on realistic assumptions, this model dif-

fers from previous works that considered equal numbers of nodes in the two networks and

identical under limited budgets. We formulate an optimization problem to allocate depen-

dency links using least resources. This novel model enhances the practicability of traditional

cyber-physical system structures, but it makes the dependency-link deployment problem

more complex and the optimization problem cannot be solved in large networks. To overcome

this problem, we propose a new algorithm based on a revised network flow method. Exten-

sive simulations on random networks and real networks show that our deployment method

produces topologies that are more robust than the ones obtained by other deployment tech-

niques. Results indicate that our algorithm is efficient and cost-effective in designing robust

interdependent networks, and our deployment method is suitable for networks of any size.
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3.1 Interdependent network model

We build a novel network model for cyber-physical systems considering dependencies between

individual networks. First, we introduce interdependent network models. Second, we present

how one network affects the other in the cyber-physical systems. Third, we further discuss

individual network models and their dependencies.

3.1.1 Classic interdependent network model

Buldyrev et al. presented an interdependent model for a blackout in Italy in 200318. They

considered two networks, A and B, with the same number of nodes. Network A is a power

network, and the nodes of network A can be considered as power stations; network B is an

Internet network, and the nodes of network B are internet servers. Functioning of a power

station relies on control information provided by an internet server, and an internet server

needs power supply from a power station. The two networks are one-to-one coupled with

each other and rely on the other to provide critical resources. Connections between two

individual networks are presented by their dependency links.

3.1.2 Realistic interdependent network model

In real-world interdependent networks, a node in a network is often supported by multiple

nodes in another network. A one-to-one node dependency model is no longer suitable for

further interdependent network studies. And, it is always the case that numbers of nodes in

two individual networks are not equal in reality. Our novel interdependent network model

can be considered as one of our contributions. Moreover, costs of allocating dependency

links rely on geographical features, corresponding node loads, etc. Thus, dependency links

should be weighted rather than being assumed equal. Consequently, a one-to-one node-

dependency-link model is not realistic, but one-to-multiple dependency links with various

weights must be studied. Furthermore, dependency-link allocation designs can greatly affect

the robustness (R) of interdependent networks.
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Figure 3.1: Compared with previous models, we build a realistic cyber-physical network
framework with one-to-multiple dependencies, two unequal-size individual networks, and
weighted dependency links.

Our model consists of three parts: two individual networks (A and B) and their de-

pendencies91. Individual network models will be introduced in subsection 3.1.4, and their

dependencies are discussed in subsection 3.1.5. Two nodes in the same individual network

are connected by connected links, while two nodes from different individual networks are in-

terdependent by dependency links. Numbers of nodes in network A and B are denoted by NA

and NB, respectively, and dependency links are weighted. If all dependency links are iden-

tical, we call them non-weighted links or weighted links with weight equal to 1. The largest

component18;88;92, i.e., largest connected subgraph, represents a functioning component in

each individual network. We allow for one-to-multiple dependencies in the interdependent

network, rather than one-to-one dependency. Moreover, NA and NB are not necessarily equal

in our model. The improvement of our model from previous models is shown in Fig. 3.1.

3.1.3 Cascading failures

Cyber-physical systems are more likely to fail because of interdependence between cyber

networks (e.g., computer networks) and physical systems (e.g., power networks). If a power

station fails, the assumption is made that it will no longer supply power to the linked
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computers in computer networks. In addition, other power stations lose connections with

that station and must redistribute their loads. Therefore, we have an assumption that if

some nodes fail, the links (connected links and dependency links) connected to these nodes

fail. Then we obtain several disconnected groups of power stations after failures appearing

in the power network, and assume the largest component in the power network works as the

functioning component, rather than other small connected components88. The same thing

happens in the computer network, that is, we only consider the largest component. The

second assumption is that nodes not in the largest component (of its own network) fail.

Moreover, if no power station supplies power to a computer, the computer will not operate,

and vice versa, leading to the third assumption: nodes with no dependency links fail. N∗A

and N∗B represent the numbers of nodes in two stable networks when cascading failures come

to an end. Based on initial and stable network states, robustness is defined as:

R =0.5× (
N∗A
NA

+
N∗B
NB

) (3.1)

Cascading failure example

In Fig. 3.2, Ai indicates the ith node in one network A, while Bj represents the jth node in

another networkB. The connection between Ai andBj is represented bymij. The connection

between Ai and Aj is represented by aij, and the connection between Bi and Bj is represented

by bij, respectively. In Fig. 3.2a, we see an initial state of the interdependent networks

with one-to-multiple dependencies and unequal numbers of nodes in the two networks. We

consider the initial state in (a) as NA = 5 and NB = 6. In Fig. 3.2b, the initial failure rate

happening to network A is 0.2. It illustrates when A3 is attacked, the connected links a32, a34

and dependency links m33, m34 fail. Nodes A1, A2, A4, and A5 are in the largest component.

Network A influences Network B through m33 and m34. In Fig. 3.2c, B3 has no dependency

links, so B3 fails and the links connected to B3 fail. Node B1 and B2 fail as they become

disconnected from the functioning component of network B. Network B influences Network

A through m11, m12, and m22, as shown in Fig. 3.2d. Fig. 3.2e indicates that A1 and A2 have
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(a) Initial state (b) Initial failure (c) A to B

(d) Largest component in B (e) B to A (f) Stable state

Figure 3.2: A cascading failure process is illustrated.

no dependency links. In Fig. 3.2f, we have a stable state after cascading failures. A4A5 and

B4B5B6 are existing nodes, i.e., N∗A = 2 and N∗B = 3 at this time. According to Eq. (3.1),

R = 0.5× (2/5 + 3/6) = 0.45. It is noted that robustness (R) in the following simulations is

calculated by Eq. (3.1).

3.1.4 Individual network model

Erdős-Rényi (ER)93 and Barabśi-Albert (BA)94 are both random graph models. In the ER

model, each vertex has the same probability with a fixed number of edges. The BA model

is used to generate random scale-free networks using a preferential attachment mechanism.

It represents some real networks with the feature of containing few nodes (a.k.a., hubs) with

unusually high degree. We use these two typical random network models as the individual

network models to generalize our results. We also apply our strategies with real network

topologies in section 3.7.
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3.1.5 Discussion of dependency links

This work designs how to allocate dependency links with prior information of link weights.

The weights show the differences among dependency links. A larger weight represents a

higher cost to allocate this dependency link. We use a limited budget (total weights: tw) to

build all dependency links. To the author’s best knowledge, this is the first work to apply

the concept of limited budget to arrange dependency links from an engineering perspective.

Link allocation in this work shows how nodes in two individual networks are dependent and

is performed as an extensive study of node coupling75–77. In the following sections, we focus

on designing allocation strategies of dependency links.

3.2 Dependency-link allocation

Our design of dependency-link allocations is divided into the following two steps:

Step 1: Basic connectivity — each node has at least one dependency link with least total

weights.

Step 2: Augmented connectivity — we use the remaining budget to set up additional de-

pendency links.

3.2.1 Problem formulation

In Step 1, each node in one network requires power or information from the node in another

network through dependency links. Therefore, each node in the interdependent networks

should have at least one dependency link in our design. Using least total weights to achieve

basic connectivity becomes an optimization problem. Different weights of dependency links

complicate this problem. We adapt a revised network flow algorithm95 to solve it.

In our model, the numbers of nodes in two networks are unequal. The number of links

should be no less than the larger number of nodes in two networks, so that each node in that

network has one dependency link, while each node in the opposite network has at least one

dependency link. In this chapter, we assume the number of nodes in the right side network
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(NB) is larger than the number of nodes in the left side (NA). Therefore, a total of NB links

is needed to achieve basic connectivity using the least weights. We generally describe the

Step 1 as follows:

min
∑
i,j

mij ×Wij (3.2)

∑
i

mij = 1 (3.3)

∑
j

mij ≥ 1 (3.4)

Matrix m is a 0-1 matrix, which means that mij could only equal 0 or 1. If the link

between Ai and Bj is selected, mij is equal to 1. Matrix W is the matrix containing all

dependency-link weights in the network, and Wij represents the weight of edge mij.

3.2.2 Existing tools limitation

Solving the basic connectivity is an optimization problem. However, due to the large numbers

of variables in large networks (e.g., if 1,000 nodes are in each network, 1,000,000 variables

will be in our problem 3.2.1), this problem cannot be solved by traditional tools such as

LINGO or MATLAB.

3.3 Revised network flow algorithm

We revise the network flow algorithm96;97 to solve Step 1. This is another highlight of this

chapter. The new algorithm is the minimum cost maximum flow with lower and upper

bounds (cost flow for abbreviation in the following).

3.3.1 Notations of cost flow

G(V,E) is a finite directed graph in which every edge (u, v) ∈ E has a non-negative, real-

valued capacity c(u, v), lower flow bound c0(u, v), and a real-valued cost p(u, v). If (u, v) 6∈ E,
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we assume that c(u, v) = 0, c0(u, v) = 0, and p(u, v) = 0. The three properties of edge (u, v)

can be written as (c0(u, v), c(u, v); p(u, v)) for simplicity.

3.3.2 Basic constraints in cost flow

Let N = G(V,E) be a network with s, t ∈ V being the source and sink, respectively.

A flow in a flow network is a real function f : V × V → R with the following properties

for all nodes u and v. Notation f(u, v) is the network flow from u to v.

Capacity and lower flow bound constraints: c0(u, v) ≤ f(u, v) ≤ c(u, v). The flow along

an edge is larger than c0 but cannot exceed its capacity c.

Skew symmetry: f(u, v) = −f(v, u). The net flow of link (u, v) must be opposite of the

net flow of (v, u).

Flow conservation:
∑

v∈V f(u, v) = 0, unless u = s or u = t. The net flow of a node is

zero, except for the source, which “produces” flow and the sink which “consumes” flow.

Cost notation: p(u, v) denotes the unit cost of flow from node u to node v, and P (G)

denotes total cost of flow from s to t. Therefore, P (G) =
∑

(u,v)∈E p(u, v)× f(u, v).

3.3.3 Algorithm process

In a basic connectivity problem, we construct the network as follows: for a weight matrix W

with size NA × NB, we build NA nodes denoted by l1 through lNA
, and NB nodes denoted

by r1 through rNB
. An edge (li, rj) has properties denoted by (0, 1;Wij), which means for

any integer 1 ≤ i ≤ NA and 1 ≤ j ≤ NB, there is an edge between node li and rj, and the

lower flow bound is 0, capacity is 1, and cost is the corresponding value in the weight matrix,

Wij. In addition, we add an edge (s, li) with (1, NB; 0) for every li, and an edge (rj, t) with

(1, 1; 0) for every rj, as shown in Fig. 3.3, and then run the minimum cost maximum flow

algorithm on this network. All these edges are directed edges.

Residual capacity of an edge is denoted by cf (u, v) and cost of this edge is denoted

pf (u, v). If (u, v) ∈ E, then cf (u, v) = c(u, v) − f(u, v), pf (u, v) = p(u, v); cf (v, u) =

f(u, v) − c0(u, v), pf (v, u) = −p(u, v). These edges construct a residual network denoted
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Figure 3.3: Cost flow algorithm. Three properties are on each link, denoted by (c0, c; p).
The leftmost node is the source (s), and the rightmost node is the sink (t). The NA nodes
l1, l2, · · · , lNA

and the NB nodes r1, r2, · · · , rNB
represent NA rows and NB columns in matrix

W , respectively.

Gf (V,Ef ), representing the amount of available capacity. This residual network is a new

directed network compared to the original network with two properties on each edge: residual

capacity and cost. Augmenting is expected to happen in this residual network. A path can

be observed from u to v in the residual network, even though no path is evident from u to

v in the original network. If (u, v) ∈ E, we point out p(v, u) = 0 in the original network;

however, we have pf (v, u) = −p(u, v) in the new network. Since flows in opposite directions

cancel out, decreasing the flow from v to u and increasing the flow from u to v are identical.

An augmenting cycle is a negative-weight cycle in the residual network. Weight in the

network is the cost; sending flow around the cycle strictly decreases total cost and preserves

feasibility. A feasible flow f is optimal if and only if there are no augmenting cycles.

In a regular minimum cost maximum flow problem, first we should find maximum flow

with a feasible solution, and then find an augmenting cycle in order to identify minimum

cost. However, in this problem, all edges from rj to t are identical; every edge has both

lower bound and capacity equal to 1. Consequently, f(rj, t) is equal to 1 for any j, and

thus maximum flow of this network is NB. Therefore, the procedure of finding maximum

flow is unnecessary. By initially setting any feasible flow and finding an augmenting cycle
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repeatedly, minimum cost can finally be found. A negative-weight cycle can be found by

utilizing a shortest-path algorithm, for example, shortest path faster algorithm (SPFA).

3.3.4 Relationship between flow graph and link selection

We propose this cost flow algorithm to solve the following problem: in a bipartite graph, we

select the minimum number of links (equal to NB), such that all nodes are covered and have

the minimum total weights. Every feasible flow in the graph corresponds one-to-one to a set

of links, which satisfy the constraints in Eq. (3.2), (3.3), and (3.4).

(a) The basic connectivity (b) Uniform distribution (c) Random distribution

(d) An example of weighted net-
works

(e) Another weighted networks

Figure 3.4: Non-weighted link and weighted link allocation example. Specifically, dependency
links, in Fig. 3.4d and 3.4e, are allocated according to matrices Wnon−weighted and Wweighted,
respectively.

The capacity of link (rj, t) is 1, which means that at most one node can provide node rj

one unit of flow. Also, the lower bound is 1, which means node rj needs at least one unit
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of flow. These two constraints guarantee that node rj will acquire exactly 1 unit of flow;

therefore, the constraint in Eq. (3.3) is guaranteed.

Similarly, the capacity and lower bound of link (s, li) guarantee the constraint in Eq.

(3.4).

Matrix f can be any feasible flow matrix, and the selection of f does not influence the

final result; it is only an initial guess. The initial guess of f in our simulation is:

Algorithm 1 Cost Flow

Input: W (NA ×NB matrix)
Output: f (0-1 Matrix)

1: function MinCostMaxFlow(W )

2: p←


01×1 01×NA

01×NB
01×1

0NA×1 0 W 0
0NB×1 0 0 0
01×1 0 0 0


3: c←


01×1 ∞1×NA

01×NB
01×1

0NA×1 0 1 0
0NB×1 0 0 1
01×1 0 0 0


4: c0 ←


01×1 11×NA

01×NB
01×1

0NA×1 0 0 0
0NB×1 0 0 1
01×1 0 0 0


5: f ← any matrix that is a feasible initial flow
6: while true do
7: Dis← 0 with the same size as p
8: for all i, j do
9: if fij < cij then Disij ← pij

10: if fij > c0ij then Disji ← −pij
11: end for
12: Cycle←SPFA(Dis) . Use SPFA algorithm to find negative cycle.
13: if Cycle not found then return f

14: for each edge (u, v) on the cycle do
15: fuv ← fuv + 1
16: fvu ← fvu − 1
17: end for
18: end while
19: end function
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f ←



01×1 K 01×NB
01×1

0NA×1 0 D 0

0NB×1 0 0 1

01×1 0 0 0


K ←

[
11×(NA−1) NB −NA + 1

]

D ←



1 0 · · · 0 0 · · · 0

0 1 · · · 0 0 · · · 0

...
...

. . .
...

...
...

0 0 · · · 1 1 · · · 1


3.4 Dependency-link allocation example under limited

budget

We use an example to describe various strategies of non-weighted link and weighted link

allocations as shown in Fig. 3.4. In Fig. 3.4, blue links are allocated in basic connectivity

and yellow links show augmented connectivity by utilizing the remaining budget. Fig. 3.4a

shows the basic connectivity.

3.4.1 Parameters of the example

Here, we have parameters tw = 8, NA = 4, NB = 5.

Wnon−weighted =



1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
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Wweighted =



1 2 2 2 2

2 1 1 2 2

2 2 1 1 2

2 1 2 1 1


3.4.2 Adding non-weighted links

Comparing Fig. 3.4b and Fig. 3.4c, the numbers of dependency links are identical using

the limited budget, while distributions of these links differ. We offer simulation results and

analysis on different distributions of links in section 3.5.

3.4.3 Adding weighted links

With matrix Wweighted, we compare various sequences of dependency-links allocation in

Fig. 3.4d and Fig. 3.4e, resulting in different numbers of links using an equal limited budget.

We discuss the sequence of allocating dependency links and analyze simulation results in

section 3.6.

3.5 Non-weighted dependency-link model simulation

and comparison

Non-weighted dependency links, which can be assumed as links with the same weight 1, can

largely simplify the Step 1 talked about in section 3.2. In Step 2, considering the remaining

budget, no matter which links are selected, the number of links is equal because of the

identical weight of all links. However, the network robustness differs based on its deployment.

Many studies have indicated that node degree distribution is critical for robustness in the

interdependent networks. The aim of augmented connectivity is to achieve minimum variance

of node degrees, referred to as uniform distribution deployment in Fig. 3.4b. Also, instead of

adding links in this pattern, randomly adding additional links, known as random distribution

deployment, is shown in Fig. 3.4c.
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We apply ER networks to generate the topologies of two individual networks; however,

ER networks generated in each run in the simulation are not identical. Due to the stochastic

nature of ER networks, we simulate multiple times in order to obtain the average performance

of both deployment methods. The relationship between numbers of nodes in two individual

networks is formulated as NB = (1 + α) × NA. Therefore, node numbers NA and NB have

identical magnitude and ratio, making simulation results comparable. These descriptions

are also suitable for the weighted model in section 3.6.

Two non-weighted dependency-link deployments are simulated in Fig. 3.5a and Fig. 3.5b.

In these two distributions, we have the same average node degree. Also, in the basic con-

nectivity, we guarantee every node is connected to at least one node on the other side (left

side or right side). However, performances of these two distributions are not identical. The

simulations indicate uniform distribution is more robust than random distribution, as shown

in Fig. 3.5a and Fig. 3.5b. In81, the authors indicated similar conclusions under equal num-

bers of nodes in two networks. Our simulation results can be considered as the extensions

of results in81.

In Fig. 3.5c, each line represents a number of nodes (NA). Every line shows the rela-

tionship between initial failure rate and robustness (R), where we use uniform distribution

deployment. Simulation results show a threshold of the sharp decrease is between 0.4 and

0.5. We call this threshold critical failure rate (pc). The sharp decrease of robustness will

be the focus of further study. When initial failure rate is larger than 0.5, networks are very

likely to be completely destroyed.

3.6 Weighted dependency-link model simulation and

comparison

The concept of limited budget is first introduced by us from engineering perspectives. Given

the limited budget of dependency-links deployment, how to design the links’ deployment? We

have discussed how to allocate weighted dependency links using least total weights to achieve
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(a) The R of two strategies at different NAs (b) The R of two strategies at different initial
failure rates

(c) Each NA’s corresponding R at different initial failure
rates

Figure 3.5: Non-weighted networks comparisons.

basic connectivity in section 3.3. From a traditional viewpoint, maximizing the number of

dependency links always performs better statistically in the case where the dependency-link

weight distribution is independent of the structures of the two individual networks. Maximiz-

ing the number of dependency links in Step 2 might give us more robustness. Maximizing the

number of dependency links deployment and randomly adding dependency links deployment

are included in our comparison.

In randomly choosing deployment, if we choose links randomly from the beginning, a
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majority of nodes will not have a dependency link. This is not fair to random distribution.

Therefore, we implement the random selection algorithm after the basic connectivity. We

solve the basic connectivity by first using a revised network flow algorithm and then compare

robustness of the maximum number of link model and random links deployment model with

a limited budget. After the optimal allocation of dependency links in Step 1 is realized

by the revised network flow algorithm, we need to allocate additional links in augmented

connectivity using the remaining weights. There are two ways to realize Step 2.

3.6.1 Maximizing the number of dependency links

To maximize the number of links according to the greedy algorithm, the least weight link

should be added until the budget has been achieved. We sort weights using an unstable

sorting algorithm, quick sort, to make the process efficient and random98. For the purpose

of this study, “random” can be illustrated by saying if we have 5 units of budget left, but

we have 10 links with weight 1 to choose from, we should choose 5 links from 10 randomly,

instead of selecting links from left to right, up to down in the matrix.

∑
i,j

mij ×Wij ≤ cb

3.6.2 Randomly choosing dependency links

Randomly (with equal probability) let mij = 1

∑
i,j

mij ×Wij ≤ cb

In regular random selection, k items should be picked up from n items; however, in this

problem, we have a budget and we must guarantee the chosen links do not exceed the budget

limit; therefore, how many links will be chosen is unknown in advance. When we pick up

a link with a weight larger than the remaining budget, we cannot simply discard that link

and randomly choose another link, because this is very likely to happen when the remaining
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budget is low, and therefore the process will be very time-consuming. Consequently, we

design a more efficient algorithm for the random deployment problem. Our algorithm is

shown in Algorithm 2. Since our algorithm is exactly the same as the naive algorithm until

the remaining budget decreases to a number that is less than C, we will focus on the algorithm

complexity analysis when the remaining budget is less than C. In the simulation, elements

in the weight matrix follow the uniform distribution U{1, C}. Our algorithm is polynomial

with the complexity of O(N lgN), where N = NA × NB; while the naive algorithm is a

pseudo-polynomial algorithm with the complexity of O(C).

Algorithm 2 Randomly Choosing Edges

Input: W (NA ×NB matrix), cb
Output: ch (0-1 Matrix)

1: function RandomChoose(W )
2: ch←MinCostMaxFlow(W )
3: Create array s whose element is {int,int,int}
4: for all i, j do
5: if fij = 1 then cb← cb− pij
6: else if pij 6= 0 then s.append({i, j, pij})
7: end for
8: sort s by the third dimension
9: k ← s.size

10: chosen[1..k] = 0
11: while k > 0 do
12: r ← random int from 1 to k
13: if cb > s[r].third && chosen[r] = 0 then
14: cb← cb− s[r].third
15: choosen[r] = 1
16: else
17: k ← r − 1

18: end while
19: for all i in chosen do
20: if chosen[i] = 1 then
21: ch[s[i].f irst][s[i].second] = 1

22: end for
23: return ch
24: end function
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(a) The R of two strategies at different NAs (b) The R of two strategies at different initial
failure rates

(c) Each NA’s corresponding R at different initial failure
rates

Figure 3.6: Weighted networks comparisons.

3.6.3 Comparison

We obtain an adjacency matrix of dependency links between nodes from two networks based

on Step 1 and Step 2. Results of maximizing the number of links deployment show more

robust than results obtained by randomly choosing deployment, as shown in Fig. 3.6a and

Fig. 3.6b. Results indicate that various designs of weighted dependency links greatly affect

network robustness.

Similar to Fig. 3.5c, Fig. 3.6c illustrates the relationship between failure rate and robust-
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(a) NA = 300 and NB = 404 (b) NA = 300 and NB = 754

(c) NA = 300 and NB = 828 (d) NA = 300 and NB = 1085

(e) NA = 300 and NB = 1191

Figure 3.7: Models simulations in real topologies.

ness. We use a maximizing number of links deployment in the simulation. Zigzag occurs

due to randomness of simulation, but a falling trend can be observed in every line. Critical
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failure rate pc resides between 0.25 and 0.35, at which point the curves have a sharp decrease.

3.7 Extensive simulations on real network topologies

and Barabási-Albert networks

We have applied ER network topologies into previous simulations, thereby achieving mean-

ingful results regarding allocations of dependency links. Strategies now need to be applied

into our simulations with real network topologies in order to achieve the acceptability of our

design.

3.7.1 Real network topology simulation and comparison

In the simulation, we use the IEEE 300-bus system as the power network topology, which

is obtained from a power systems test case archive99. Computer network topologies are

obtained from Caida100 and Topology Zoo101. Dependency-link weights are generated in a

uniform distribution. Here, we should notice that real dependency-link weights are affected

by various factors, and exact data cannot be obtained by simply measuring and calculating.

For research purposes, studying mathematical models to achieve the estimated weight matrix

is an open issue, which is beyond the scope of our work.

With real network topology of two individual networks, the robustness of maximizing the

number of links deployment is greater than the robustness of randomly choosing deployment

as shown in Fig. 3.7. The simulation results coincide with previous simulation results with

ER networks. However, the curves of real topologies in Fig. 3.7 decrease more sharply than

those with ER topologies. The pc of real network topology is less than the pc of ER network

topology because of different node-degree distributions of two networks as shown in Fig. 3.8.

Versatility and conciseness are the primary advantages of ER network topology. Simu-

lations on ER networks show which deployment of interdependent networks is more robust.

Robustness simulation results based on ER networks are fit with results based on real topolo-

gies. Furthermore, the existence of pc is shown in the simulation results. This rate is critical
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to the protection of interdependent networks, because it gives us a threshold, under which

the fraction of nodes failed can be tolerated. Thus, a proper model equals the meaning of

millions of real data simulations.
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Figure 3.8: Different degree distributions.

3.7.2 Dependency-link allocation on Barabási-Albert networks

Discovering an optimal solution to Step 2 for both weighted and non-weighted dependency

links is in general challenging. To achieve more results, we explore more strategies on non-

weighed dependency link design. Here, we extend network topologies from ER networks to

Barabási-Albert networks, and protect the hubs by assigning them more dependency links.

We call this method protecting hubs deployment.

We simulate and compare random distribution deployment, uniform distribution deploy-

ment, and protecting hubs deployment with Barabási-Albert networks as the two individual

networks.

Hub failures always break a single network into several small components. In the inter-

dependent networks, if we assign more dependency links to the hubs of network A, the hubs

always have dependency links survivable from the dependent nodes failing in network B, and

won’t fail easily. Consequently, network A will be protected from breaking into several small
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components. However, less dependency links will be assigned to non-hubs due to a limited

budget. Now, we consider a case where the average number of dependency links is two for a

node in network B. When we assign more dependency links to the hubs, many non-hubs will

have only one dependency link, and they are at highly vulnerable states. Therefore, this new

protecting hubs deployment might not perform as well as the first two deployments. Fig. 3.9

indicates uniform distribution deployment has better performance, which is coincident with

our analysis.

(a) The R of three strategies at different NAs (b) The R of three strategies at different initial
failure rates

Figure 3.9: Three deployments within Barabási-Albert networks.

3.8 Contributions

In this chapter, we explore a more robust cyber-physical network framework. First, we

design a more realistic interdependent network model and demonstrate its cascading failure’s

process. Second, we allocate dependency links to make networks more robust, and we adapt

a revised network flow algorithm to solve this dependency-link allocation problem. Third,

we conduct extensive simulations on different network topologies to validate the effectiveness

of our deployment methods.

Our contributions are listed as follows:
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1. We propose a realistic cyber-physical network framework with one-to-multiple dependen-

cies, two unequal-size individual networks, and a weighted dependency link.

2. We deploy dependency links under a limited budget to obtain more robustness.

3. We adapt a revised network flow algorithm to obtain a basic network structure.

4. We conduct extensive simulations on different dependency-link deployments and individ-

ual network topologies. Robustness tends to have a sharp decrease at a certain initial

failure rate.
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Chapter 4

Middlebox policy enforcement using

SDN

Network applications require traffic to sequence through multiple types of middleboxes to

enhance network functionalities, e.g., load balancers are used to circumvent overloads and

IDSes are used to detect anomalies. Sequenced-middlebox policy routing on top of regu-

lar layer 2/3 flow routing is challenging to be flexibly managed by network administrators.

In addition, various types of middlebox resources concurrently obtained by numerous ap-

plications complicate network-resource management. Fortunately, SDN helps solve these

problems flexibly. Because of the existence of redundancy in the network, effects of mid-

dlebox failures could be eliminated if we are able to quickly reroute those affected flows to

middleboxes with enough processing capabilities. Therefore, the challenge is to find such

backup middlebox and reroute flows quickly when a middlebox failure occurs. SDN also

helps quickly identify the failures and find alternative paths in order to minimize failure

effects. In this chapter, we develop a global load-balancing routing approach and a local

rerouting approach to handle different scenarios in the middlebox chain problem using SDN.
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4.1 Middlebox policy enforcement problem

4.1.1 Problem statement

We are aiming at solving open issues in the middlebox chain problem. First, we propose

a candidate-path generation method to quickly select possible flow-routing paths. Second,

we propose to consider middlebox resources as one of the constraints in the middlebox

chain problem. Third, we are seeking to improve network performances with constraints of

numerous limited network resources. Fourth, the network can quickly respond to network

failures and changes.

4.1.2 Candidate paths generation

Candidate paths are used to balance network loads. We propose a set of routing paths

called “middlebox-by-middlebox shortest routing paths” (m-by-m routing paths) to simplify

candidate-path selection. When the middlebox policy is specified by network administrators,

candidate paths are determined. Mi denotes the set of the ith type middleboxes, e.g., fire-

walls, and |Mi| denotes the number of middleboxes of the type i. A middlebox policy chain

is “Source → M1 → M2 → ... → Mn → Destination.” Each candidate path is determined

by finding the shortest path to or from each middlebox: Source → M1, M1 → M2, ..., and

Mn → Destination. An example is shown in Fig. 4.1. There is a directed demand from S1

to S6 with the logical policy “S1 → firewall → intrusion detection system → S6.” Step 1 is

to find the shortest path from S1 to FW1 (or FW2). Step 2 is determination of the shortest

path from FW1 (or FW2) to IDS. Step 3 is to find the shortest path from IDS to S6.

Since there are two firewalls and one IDS, there will be at least two candidate paths for the

demand “S1 → S6” to route along. To be more general, if there are |MFW | firewalls and

|MIDS| IDSes, and the flow must go through a firewall then an IDS, there will be at least

|MFW | × |MIDS| possible paths for this flow to choose from.

We show three different m-by-m routing paths in Table 4.1. The difference between path

a and path b is a different firewall selection; the difference between path b and path c is a
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Table 4.1: Routing path (S1 → Firewall → IDS → S6)

Path
Step

1 2 3 4 5 6 7 8 9 10 11

a S1 S2 S5 S8 FW1 S8 S5 IDS S5 S4 S6

b S1 S3 FW2 S3 S6 S4 S5 IDS S5 S4 S6

c S1 S3 FW2 S3 S1 S2 S5 IDS S5 S4 S6

different shortest-path selection among multiple shortest paths.

We propose the m-by-m routing paths as candidate paths for the following reasons:

1. The m-by-m approach allows the simple generation of many candidate paths, and one of

them will be chosen by the centralized controller to achieve network load balancing. On

the chosen path, we can easily record link loads and middlebox loads. Therefore, we are

able to balance link and middlebox loads at the same time.

2. To avoid network congestion, the flows may be routed through a longer m-by-m shortest

path. However, within a certain step, the shortest path is always chosen to save network

resources.

3. Using this approach, flow-level routing can largely reduce the number of flow entries

Figure 4.1: Middlebox-by-middlebox shortest paths.
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installed on each switch, compared with flow-splitting routing.

4. The m-by-m approach can reduce congestion on a middlebox. Considering a routing ex-

ample with the policy “Source→ Firewall→ Destination,” the directed pairwise demand

list is {S1 → S5 : 10Mbps, S6 → S5 : 10Mbps, S7 → S5 : 10Mbps, S8 → S5 : 10Mbps},

shown in Fig. 4.2. FW1 will be overloaded if all flows choose the sequenced, shortest

source-destination path (SP routing approach). We use m-by-m shortest paths instead,

with which a middlebox of the same type (FW2) can help reduce congestion on the highly

used middlebox FW1 (because it is connected with a high-betweenness switch S2).

Figure 4.2: Middlebox overloaded example.

4.2 Global load-balancing routing

In the middlebox policy routing problem, we need to achieve network load balancing not

only on the links but also on the middleboxes. In this part, we formulate a mixed-integer

linear programming (MILP) problem to describe the network102 and accomplish our goal,

given the set of candidate paths. We call this global load-balancing routing approach (global
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LB approach). Considering multiple network-resource constraints to globally make routing

decisions is one of our contributions in this chapter.

4.2.1 Notations

Traffic matrix Dt represents demands of traffic types t, t ∈ T . Each traffic type has a dif-

ferent policy requirement. For example, traffic matrix D1 represents HTTP traffic demands,

which need to route through a firewall middlebox then an IDS middlebox; traffic matrix D2

represents all other traffic demands, which need to route through a firewall middlebox only.

Traffic demands are directed pairwise demands. Pd denotes the set of candidate paths for

a given pairwise demand d. Given a network topology, E denotes the set of links and M

denotes the set of middleboxes. The cardinality of a set is denoted by | |. For example, |Dt|

denotes the number of demand pairs of a traffic type t.

Constants:

ntdpe : the number of times link e occurs in path p of demand pair d of traffic type t.

δtdpm : 1 if middlebox m belongs to path p of demand pair d of traffic type t; 0, otherwise.

htd : volume of demand pair d of traffic type t.

ce : capacity of link e.

cm : capacity of middlebox m.

Variables:

xtdp : flow allocated to path p of demand pair d of traffic matrix t.

utdp : binary variable associated with xtdp.

θe : utilization of link e.

θm : utilization of middlebox m.

θ : maximum utilization of links and middleboxes.

4.2.2 Formulations

The demand satisfaction constraints are shown in Eq. 4.1. From the candidate paths, if we

choose path p to route the flow, the corresponding binary variable utdp equals 1; otherwise 0.
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The demand volume can be routed on only one path out of all the candidate paths, shown in

Eq. 4.2. Here, Eqs. 4.3 and 4.4 represent link-capacity constraints and middlebox-capacity

constraints, respectively. We use the variable θ to constrain link and middlebox utilization.

Both link and middlebox utilizations should be no greater than 1. The goal is to minimize

the maximum link or middlebox utilization, therefore achieving network load balancing. We

call θ the network utilization in the following sections.

P1:

minimize θ

subject to

xtdp = htdutdp, t ∈ T, d ∈ Dt, p ∈ Pd. (4.1)∑
p

utdp = 1, t ∈ T, d ∈ Dt. (4.2)

∑
t

∑
d

∑
p

ntdpextdp ≤ θece, e ∈ E. (4.3)

∑
t

∑
d

∑
p

δtdpmxtdp ≤ θmcm,m ∈M. (4.4)

θe ≤ θ ≤ 1, e ∈ E. (4.5)

θm ≤ θ ≤ 1,m ∈M. (4.6)

We substitute xtdp by htdutdp using Eq. 4.1, which largely reduces the number of vari-

ables and simplifies P1. Also, we can directly use variable θ, so the variables θe and θm are

omitted. P2 is the same problem derived from P1.
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P2:

minimize θ

subject to

∑
p

utdp = 1, t ∈ T, d ∈ Dt. (4.7)

∑
t

∑
d

htd
∑
p

ntdpeutdp ≤ θce, e ∈ E. (4.8)

∑
t

∑
d

htd
∑
p

δtdpmutdp ≤ θcm,m ∈M. (4.9)

4.2.3 Other use cases

Today, computer network demands are increasing dramatically, so network resources are

limited. Our LB routing approach improves network performance by balancing all network

loads. Our approach relies on the accuracy of estimated traffic demands, which can be

guaranteed using the approaches in103–105. By minimizing the maximum utilization, the

approach is effective to balance all network resources well.

Other network features (cost, delay, congestion, etc.) can also be formulation objectives.

We can slightly modify the load-balancing formulation to meet the new requirements. For

example, we formulate a problem P3 to minimize network cost in a simplified case of a single

traffic type. ye denotes the load of link e. ym denotes the load of middlebox m. ξe represents

the unit cost of link e. ξm represents the unit cost of middlebox m.
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P3:

minimize F =
∑

e ξeye +
∑

m ξmym

subject to

xdp = hdudp, d ∈ D, p ∈ Pd. (4.10)∑
p

udp = 1, d ∈ D. (4.11)

∑
d

∑
p

ndpexdp = ye, e ∈ E. (4.12)

ye ≤ ce, e ∈ E. (4.13)∑
d

∑
p

δdpmxdp = ym,m ∈M. (4.14)

ym ≤ cm,m ∈M. (4.15)

4.2.4 Complexity analysis

P2 is formulated as an MILP problem. It’s challenging for the controller to make routing

decisions in a short time, when the network is large and the topology or policy is updated.

We will illustrate how to solve this problem in section 4.3.

For the complexity of management, we have an estimation of the number of flow entries.

Upper bounds of the number of flow entries on each switch in the simplified case of a single

traffic type: |D|(|Len|+1)�
#switch

. |Len| denotes the number of distinct types of middleboxes in

the middlebox policy sequence of that single traffic type. � represents the diameter of the

network. #switch indicates the number of switches in the network.

4.3 Solutions of the global load-balancing routing

We are going to solve the load-balancing optimization problem in this section. First, we

use the branch-and-bound algorithm (BBA)102 to find the optimal solution of this problem.
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In the optimization problem, there are
∏

t∈T (
∏

i |Mi|)|Dt| possible combinations of variables.

Though BBA is an optimized algorithm, running time grows exponentially with the number

of variables. Therefore, the problem cannot be solved by BBA in a large network. Then,

we use the simulated annealing algorithm (SAN)102 to obtain near-optimal solutions in a

faster way, and then compare the results acquired from BBA and SAN algorithms in sub-

section 4.3.3.

4.3.1 Branch-and-bound algorithm

We apply BBA to solve this optimization problem, shown in Algorithm 3. BBA is a search

algorithm designated for discrete optimization problems, and it gives us the optimal solution

much faster than a brute-force approach.

Here we are applying BBA to a binary integer programming problem, so each binary

variable has two branches. Function SOLUTION(NU ,N0,N1) returns the optimal solution

θ∗ and the corresponding variable vector u of the relaxed LP subproblem. The following

constraints hold:

0 ≤ uj ≤ 1(continuous) for j ∈ NU

uj = 0 for j ∈ N0

uj = 1 for j ∈ N1

However, because of the searching nature of BBA, its execution time is, in general, as

exponential as the number of binary variables. If we have X binary variables and function

SOLUTION runs in O(S) time, the worst-case, overall running time is O(2XS). It is far

beyond our computing capability when it comes to a larger network.

4.3.2 Simulated annealing algorithm

We also apply the SAN algorithm as a substitute for the BBA. The algorithm is shown in

Algorithm 4. SAN is a general optimization technique for solving combinatorial optimization

problems, based on randomization techniques106. SAN is a heuristic algorithm and gives us
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Algorithm 3 Branch-and-Bound Algorithm (BBA)

Input: NU , N0, N1

Output: θbestBBA

1: function BBA(NU , N0, N1)
2: θ, u←solution(NU ,N0,N1)
3: if NU = ∅ or ∀i ∈ U , ui are binary then
4: if θ < θbestBBA then
5: θbestBBA ← θ
6: ubest ← u
7: else
8: if θ ≥ θbestBBA then return . Bounding
9: else . Branching

10: Choose i ∈ NU such that ui is fractional
11: BBA(NU\{i},N0 ∪ {i}, N1)
12: BBA(NU\{i},N0, N1 ∪ {i})
13: end function

an acceptably good solution; and, moreover, it is much faster than search-based algorithms.

The realization of SAN is very straightforward. Our stopping criterion is either the outer

loop counter reaches K (in our case K = 1000), or θSAN haven’t updated for 10 outer

loops. Initial temperature T 0 represents the ability of jumping out of a local minimum of

the algorithm. We reduce the temperature every L inner loops. L = 200.

Since in our algorithm, running time of computing F (x) is O((|E|+ |M |)X), where X is

the number of binary variables, the worst-case overall running time of SAN is O(KL(|E|+

|M |)X).

4.3.3 Algorithm test and comparison

We test the running time of these two algorithms as the number of binary variables increases.

Our test topology is shown in Fig. 4.3. There are two types of traffic: one is HTTP traffic,

which needs to route through a firewall then an IDS; the second is OTHER traffic, which

needs to route through a firewall only. The number of binary variables utdps is related to the

number of demand pairs, and the number of candidate paths of each demand pair. In the

matrix of HTTP traffic, there are five demand pairs, and each demand pair has four candidate

paths; while in the matrix of OTHER traffic, there are two demand pairs, and each demand
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Algorithm 4 Simulated Annealing (SAN) Algorithm

Input: A feasible solution x, T ← T 0 and L
Output: θSAN

1: xbest ← x, θSAN ← F (xbest)
2: while stopping criterion not true do
3: l← 0
4: while l < L do
5: z ← random neighbor(N(x))
6: ∆θ ← F (z)− F (x)
7: if ∆θ ≤ 0 then
8: x← z
9: if F (x) < θSAN then

10: θSAN ← F (x), xbest ← x

11: else if random(0, 1) < e−∆θ/T then
12: x← z
13: l← l + 1
14: end while
15: reduce temperature(T )
16: end while

pair has two candidate paths. The number of binary variables is “5×4+2×2 = 24.” We get

a group of test cases by increasing the number of demand pairs. The number of combinations

of variables is calculated based on the expression at the beginning of this section. We keep

Figure 4.3: SAN and BBA test network
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Table 4.2: Test cases and results

Results
Test Case

1 2 3 4 5 6 7 8

Binary variables 24 26 28 30 32 34 42 46
Combinations of Variables 4,096 8,192 16,384 32,768 65,536 131,072 2,097,152 8,388,608

Running Time Ratio (BBA / SAN) 88 157 876 974 1,534 2,109 12,884 23,891
θbestBBA 0.90 0.90 0.90 0.90 0.85 0.85 0.85 0.85
θSAN 0.90 0.90 0.90 0.90 0.85 0.85 0.85 0.85

the total traffic volume in the network identical for all eight test cases. Test results are listed

in Table 4.2. We have two observations from the results:

1. The ratio is defined as the BBA algorithm’s actual running time divided by the SAN

algorithm’s actual running time. The ratio grows exponentially as the number of variables

increases.

2. The SAN algorithm can always achieve a near-optimal solution. Specifically, the SAN

algorithm can achieve the optimal solution θ in all eight test cases.

4.4 Evaluation of our global load-balancing routing on

a Mininet testbed

In this section, we implement our global LB approach using OpenFlow on a Mininet testbed,

and evaluate its effectiveness, compared with SP routing. We use the topology shown in

Fig. 4.4, where the number of middleboxes is comparable to the number of nodes38 107.

The m-by-m approach provides several choices of paths to balance network link and

middlebox utilization. Each flow is assigned to only one candidate path according to the

LB optimization problem, and all candidate m-by-m shortest routing paths are evaluated

and stored at the same time. Flow entries on the switches are installed by the centralized

POX controller. ‘Iperf’ is used to generate traffic at constant rates and measure network

performances. Normalized throughput is defined as the ratio of received packets over sent

53



packets, that are given by ‘Iperf’. End-to-end latency is measured by sending ICMP packets

in addition to the regular traffic.

4.4.1 Experiment setup

In our test, there are two types of traffic: HTTP and OTHER traffic, as described in

subsection 4.2.1. Here we use traffic destined to port 5001 to denote ‘HTTP’ traffic, and port

5002 to denote ‘OTHER’ traffic. We test our approach with homogeneous and heterogeneous

traffic matrices. The homogeneous traffic matrix is a demand matrix where all directed

pairwise traffic demands are identical, and the data rate of each pair ranges from 1.5Mbps

to 3.6Mbps. We have a total of 182 directed pairwise traffic demands. Heterogeneous traffic

matrix means all but one outgoing traffic from a source node have identical data rates, and

the exceptional one has a much higher data rate than the others. The exceptional node is

chosen at random for each source node. For both homogeneous and heterogeneous matrices,

it is the case that half of the traffic is HTTP traffic, and the other half is OTHER traffic.

Link capacity is 115.0 Mbps and middlebox capacity is 93.0 Mbps. For end-to-end latency

measurement, during each 10-second trial of regular traffic, default size ICMP packets with

Figure 4.4: Test topology

54



an interval of 50 ms are injected between seconds 8 and 9, so that the network has an

opportunity to stabilize. An average of 50 independent trials is used for each total traffic

volume.

4.4.2 Observations from experiment results

Figure 4.5: Evaluation of global LB routing

In Fig. 4.5, our global LB routing achieves almost the highest normalized throughput,

when the total traffic volume equals 546.0 Mbps. At this point, network utilization is 1.

When total traffic volume exceeds 546.0 Mbps, network resources are no longer sufficient to

accommodate all flows and the normalized throughput decreases. Our LB approach shows

an increase up to 26.4 percent on the throughput, when compared with the SP approach

discussed in subsection 4.1.2. Throughput varies little between homogeneous traffic and

heterogeneous traffic in both approaches. We also measure overall packet losses. Since

results of normalized throughput and normalized packet losses are complementary, we don’t

show results of overall packet loss.
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In Fig. 4.6, end-to-end latency and loss rate from node 1 to node 14 are shown as total

traffic increases. Node 1 to node 14 is a representative node pair, and the shortest path

between them is the diameter of the test topology. When total traffic volume is between 273

Mbps and 546 Mbps, network resources are relatively sufficient for each demand pair, and

the LB approach achieves much lower end-to-end latency and loss rate than the SP routing.

When the total traffic volume is greater than 546 Mbps, there is a bottleneck link on all

possible paths from node 1 to node 14, i.e., both LB approach and SP routing are running

on a congested network. Though the network is congested, the LB approach tries to balance

the traffic so each flow is on a less congested path, while SP routing leads to very congested

paths. This is the reason why the LB approach achieves lower end-to-end loss rate than SP

routing. As expected, latency for any paths which are not shortest, including those of the

LB approach, is greater than SP routing when the entire network becomes fully congested

(the total traffic exceeds 546 Mbps), as shown in Fig 4.6.

4.5 Fast local rerouting

When there are long-term changes, recalculating routing paths of the entire network is

unavoidable but should be done quickly. When there is a transient disturbance (temporary

failure) on the network, we can centrally recalculate the MILP problem according to the

working subnetwork (global LB approach). However, this process takes more time and

forces the unaffected flows to reroute. Consequently, it increases the delay, packet loss, and

use of network resources. Therefore, the entire network recalculation is not a good way to

handle the transient disturbance. We have already evaluated the efficiency of solving the

MILP problem when dealing with long-term network changes in the previous section. In this

section, we design a local rerouting strategy to deal with network transient disturbance. With

regard to the transient disturbance, a redundant backup path is used until the disturbance

has ended.
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Figure 4.6: End-to-end latency and loss rate
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Table 4.3: Alternative paths (S1 → FW → IDS → S2 with the topology in Fig. 4.3)

Virtual path Physical path
Path 1 S1 → FW1 → IDS1 → S2 S1 → S2 → S5 → FW1 → S5 → S2 → IDS1 → S2

Path 2 S1 → FW1 → IDS2 → S2 S1 → S2 → S5 → FW1 → S5 → S3 → IDS2 → S3 → S1 → S2

Path 3 S1 → FW2 → IDS1 → S2 S1 → S3 → S4 → FW2 → S4 → S5 → S2 → IDS1 → S2

Path 4 S1 → FW2 → IDS2 → S2 S1 → S3 → S4 → FW2 → S4 → S3 → IDS2 → S3 → S1 → S2

4.5.1 Middlebox failures

Network failures may happen on links, switches, or middleboxes. Link and switch failures are

mostly studied; therefore, we only consider failures on middleboxes. We call the flows affected

by the failures “affected flows,” while flows not affected by the failures are called “unaffected

flows.” Middlebox failures belong to the transient disturbance, since one of the approaches

of handling a middlebox failure is to restart it28. We propose a fast-recovery mechanism to

handle middlebox failures by rerouting the affected flows during the restarting period. More

importantly, this mechanism is realized locally, and therefore does not disturb the unaffected

flows. To the best of our knowledge, this is the first work to handle failures in middlebox

chain scenarios using OpenFlow.

4.5.2 Backup middlebox selection

Let’s look at the example in Table 4.3, which lists all the candidate paths. These paths are

saved before failures by solving the MILP, and thus we can find alternative paths immediately

when there are failures on the middleboxes. For example, path 1 is chosen for routing a

directed demand from S1 to S2 when no failures occur. If FW1 fails, paths 3 and 4 can be

the alternative paths. The challenge is to quickly check whether the alternative path has

enough resources to accommodate the affected flows.

4.5.3 Rerouting strategy analysis

We next consider a network scenario in which one middlebox fails. Flows processed by this

middlebox lose some functionality and need to be routed through another middlebox with
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equivalent functionality during the restarting period. We work on finding a rerouting mech-

anism to achieve higher speed and better performances toward failures without focusing on

the routing path update process. The process is referred to as the network convergence pro-

cess, during which the network responds to the failures and network performance decreases.

Routing paths will come back to the original states when the failed middlebox resumes work

after restarting. To not influence the unaffected flows, we have two approaches discussed

below.

Flow modification

One of the approaches is to assign lower priority to the affected flows than the unaffected

flows. A similar approach is also discussed in108. That is, the switch routes the flows based

on priority. The affected flows can be routed only when all unaffected flows with higher

priority are delivered. This approach works well to route the unaffected flows first; however,

it does not take limited network resources into consideration. This may lead to packets from

the affected flows being dropped due to queuing-buffer overflow.

Flow accommodation

We propose a local fast-recovery mechanism without modifying the flows. The switch consid-

ers the affected and unaffected flows equally. The affected flows compete with the unaffected

flows for the link bandwidth and middlebox-processing capability. Our approach is to seek

an alternative path with enough bandwidth, and a backup middlebox with enough process-

ing capability, to accommodate the affected flows. In this way, there will be no failure effect

on the unaffected flows. Once several paths are available, we will choose the one that makes

the entire network as balanced as possible. We measure the network balance feature using θ

and expect to choose the path with the smallest θ.
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4.5.4 Traffic demand fluctuation

Our fast local rerouting approach is also applicable to the case where there are minor fluc-

tuations of some flows. For instance, one flow with a minor increase might overwhelm the

middleboxes and links on its routing path. We can seek an alternative path that can ac-

commodate this flow. It can be solved by the local rerouting approach as middlebox-failure

scenarios.

4.6 Evaluation of our fast local rerouting on a Mininet

testbed

In this section, we test our local rerouting approach when there are middlebox failures. We

use the same topology shown in Fig. 4.4. Experiment settings are also the same as those in

section 4.2 unless otherwise specified.

4.6.1 Experiment setup

We measure our fast local rerouting approach, and find how many flows are reallocated with

a new path and how much normalized throughput is increased when failures occur. Based

on our experiment settings, firewalls act as the network bottleneck and can be considered

as critical resources. IDSes are considered as non-critical resources since IDS resources are

relatively sufficient. We also consider three other scenarios for comparisons: global rerouting

flows, using the global LB approach proposed in section 4.2, when failure occurs; dropping

affected flows when failure occurs; and no middlebox failures. We test four scenarios with

the homogeneous traffic matrix.

4.6.2 Major observations from experiment results

When a device with critical resources fails, e.g., FW2, our fast local rerouting requires a

maximum of 21.1 percent flow reallocations of those required in the global rerouting ap-
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proach. When a device with non-critical resources fails, e.g., IDS2, our fast local rerouting

requires a maximum of 9.1 percent flow reallocations.

Moreover, our local rerouting approach achieves good network throughput, compared

with the global rerouting approach. In Fig. 4.7, two subfigures represent the normalized

throughput with a failure on FW2 and IDS2, as examples, respectively. When the failure

occurs on the critical-resource device FW2, our fast local rerouting achieves almost the same

normalized throughput. Results of our fast local rerouting approach reside between the

global rerouting approach and the affected-flows-dropped approach, as expected. Our local

rerouting increases the throughput up to 16.8 percent, compared with the affected-flows-

dropped approach.

4.6.3 Further analysis on experiment results

We test all possible failures occurring on each middlebox, respectively. We obtain a group

of results with the same trend on critical resource devices, namely, firewalls; and the other

group of results with the same trend on non-critical resource devices, namely, IDSes. Thus,

we select one failed firewall and one failed IDS, respectively, as examples in Fig. 4.7.

When the total traffic volume is greater than or equal to 546.0 Mbps, the local rerouting

approach and the global LB approach cannot find better routing paths, since no resource is

available to allow rerouting. When there are failures on IDSes with non-critical resources

and total traffic volume is larger than 546.0 Mbps, global rerouting routing and fast local

rerouting can still find alternative paths with IDS resources, shown in Fig. 4.7. When network

resources are scarce (total traffic volume is 655.2 Mbps), normalized throughput of any curve

converges. As the global rerouting approach achieves near-optimal results, there is a shift

on the normalized throughput, that is, the global rerouting approach dealing with failures

achieves a little bit higher throughput than the one with no failures.

Failures on middleboxes can also overwhelm the links. Let’s examine HTTP traffic. When

a firewall fails, each affected flow arrives at one of the working firewalls and selects one IDS.

Thus, there are (6 − 1) × 5 = 25 working candidate paths, and each affected flow chooses
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Figure 4.7: Failures on different middleboxes. Firewall 2 is connected to Switch 4, and IDS
2 is connected to Switch 5. Firewall 2 provides critical resources while IDS 2 does not.
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the best one. Near-optimal routing paths can always be found. However, an IDS’s failure

is different from a firewall’s, as the IDS is the last-type middlebox in the policy sequence.

When an IDS fails, each affected flow arrives at one working IDS and then routes along the

shortest path to its destination. There are fewer alternative paths (5 − 1 = 4); thus, some

links can be more easily overloaded.

4.7 Discussion of network scalability

We discuss network scalability to verify the practicability of our approaches. First, we

narrowed the choices of candidate paths to accelerate the routing path selection procedure.

Then we demonstrated the upper bounds of the number of flow entries in subsection 4.2.4.

The number of flow entries on each switch scales linearly as the number of distinct types

of middleboxes in a middlebox chain increases. It also linearly depends on the number of

demand pairs. The number of flow entries on each switch is within the switch-processing

capability, since � and #switch increase simultaneously and are canceled out. Furthermore,

the SAN algorithm approximates the optimal solution effectively. In addition, our design of

fast local rerouting indicated only affected flows need to be rerouted during the restarting

period of the failed middlebox. This mechanism is realized locally, which does not disturb

the working subnetwork. This is a great feature that supports network topology’s scalability.

Possible limitations of scaling the network reside in the controller, which include the diffi-

culty of synchronized communication between the controller and all switches, the controller’s

limited processing capability, etc. Distributed controller techniques can help reduce the bur-

den on the controller109. The problem on how to exploit the benefits of the centralized SDN

controller and scale the controller’s processing capability remains an open question in SDN

research and is beyond the scope of our work.
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4.8 Contributions

In this chapter, we formulate a mixed-integer linear programming problem to achieve a net-

work load-balancing objective in the context of sequenced-middlebox policy routing. Our

global routing approach manages network resources efficiently by simplifying candidate-path

selections, balancing the entire network, and using the simulated annealing algorithm. More-

over, in the case of middlebox failures, we design a fast recovery mechanism by exploiting

the remaining link and middlebox resources locally. To the best of our knowledge, this is the

first work to handle failures in the middlebox chain scenarios using OpenFlow. Finally, we

implement proposed routing approaches on a Mininet testbed and evaluate the experiments’

scalability, assessing the effectiveness of the approaches. Results of the optimization on a

test topology include an increase up to 26.4 percent of the throughput, with respect to a

sequenced shortest-path routing.

Our contributions are listed as follows:

1. We design an efficient routing strategy for middlebox policy enforcement.

2. We consider limited network resources (link loads, middlebox loads, and switch capabili-

ties) and formulate a novel flow management problem.

3. We design a fast local rerouting approach to handle middlebox failures.

4. We implement branch-and-bound, simulated annealing, and greedy algorithms to make

efficient routing decisions.

5. We implement our flow routing approaches on a Mininet testbed to validate its practical-

ity.
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Chapter 5

Robustness of SDN control plane

In this chapter, we evaluate and improve the robustness of the SDN control plane. First,

we discuss DoS attacks and SDN vulnerabilities. Second, we build an adversary model to

describe in detail how to launch DoS attacks to overwhelm the SDN controller. Third,

we implement a successful distributed DoS attack on the Mininet testbed. In section 5.4,

we discuss possible defense mechanisms and present our preliminary results. Finally, we

summarize our contributions at the end of this chapter.

5.1 DoS attacks

5.1.1 Definition

Attackers send a large number of requests to exhaust server resources, so that servers cannot

serve requests from legitimate users. This is called the DoS attack. Classic DoS attacks

target services such as a web server, a DNS server, etc.66

5.1.2 Severe consequences

DoS attacks lead to severe problems. In 2016, major websites such as Twitter, Netflix,

Spotify, Airbnb, Reddit etc., couldn’t be accessed for more than two hours, because Do-
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main Name System (DNS) provider Dyn was under DDoS attacks. Furthermore, the most

powerful DDoS attack in the first half of 2016 consumed 579 gigabits per second (Gbps) of

bandwidth110.

DDoS attacks pose an immense threat to the Internet, resulting in millions of dollars

in losses for companies. Attackers are constantly exploiting possible Internet vulnerabilities

to launch DDoS attacks, and researchers are improving their defense mechanisms to tackle

those attacks. Mirkovic et al. provided a thorough survey on the classification of existing

DDoS attacks and defense mechanisms66.

5.1.3 Mitigation of DoS attacks using SDN

As SDN emerges, it provides more possibilities to mitigate DoS attacks. For example, SDN

helps acquire flow information, and then pattern matching and machine learning techniques

are used to identify DDoS attacks32;33. Moreover, the SDN controller gains an overview of the

entire network and monitors network anomalies111;112. In addition, SDN is able to flexibly

route flows through security devices to identify attacks, as discussed in chapter 4. After

identifying attacks, SDN can react toward potential threats by simply dropping malicious

flows.

5.1.4 SDN vulnerabilities

In a traditional network, DoS attacks normally only affect one service. However, in an

SDN network, the DoS of the controller is destructive to the entire network, since the SDN

controller centrally provides services to all the flows. As today’s network is a hybrid of

both traditional and SDN networks, attackers first investigate which network is using SDN

and then launch a controller DoS attack. Shin et al. presented an SDN scanner to test

whether the targeted network is likely to be an SDN network68. Other works are focusing on

mitigating the controller DoS attack, given an SDN network62;67;71. In our work, we assume

an SDN network is given.

The OpenFlow controller can behave proactively or reactively. The proactive behavior
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means forwarding rules are installed beforehand, while the reactive one means the controller

installs forwarding rules requested by switches on the fly62. The proactive behavior reduces

communication overhead between the controller and switches. However, the reactive behavior

enables more flexibility, and flow entries are installed as requested in order to save flow-

table space. We are focusing on the reactive behavior, as it is more widely used in today’s

OpenFlow networks. When a new flow arrives at the network, the switch will ask the

controller first, and then the controller will calculate the forwarding rule for this packet.

This feature enables the dynamics of OpenFlow; however, it requires the controller’s fast

and massive calculations. Such calculations might overwhelm the controller, so that the

controller provides slow responses or no responses to the requests. This will give the attackers

an opportunity to launch the controller DoS attack.

5.2 Detailed adversary model

In this section, we build a controller DoS attack model from the attacker’s point of view. The

most successful attack is to break down the controller, consequently destroying the entire

network.

5.2.1 Problem statement

In the header field of an OpenFlow flow entry, 12 different fields are aiming at providing

fine-grained control and QoS guarantee, as defined in OpenFlow 1.0. Wildcard rules on the

switch can help reduce the number of requests from the data plane. However, the attacker

can always send numerous table-miss packets. Thus, we assume 12 fields need to be one-

to-one equivalent when packets match flow entries. To launch a DoS attack, attackers can

craft arbitrarily many random values to each field. For example, the destination IP address

can be crafted with up to 232 possibilities, though many of them are reserved IP addresses

or invalid ones. Moreover, one of the IP addresses can be combined with another field, such

as a destination port number, to represent another packet. The number of crafted packets
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grows exponentially. When a switch receives a packet, the switch looks up a matching flow

entry for it. However, those crafted packets are very unlikely to match a flow entry and

force the switch to send requests to the controller. Then, the controller receives excessive

attack requests and fails to respond to legitimate requests. Consequently, the entire network

is destroyed. This is called “controller saturation attack”.

5.2.2 Attack scenarios

Attackers expect to break down the controller with a small cost. Ideally, a single attacker can

generate a huge number of table-miss packets and force the switch to inquire the controller.

We define “request rate” as the number of packet-in messages sent from the switch to the

controller in a unit of time. As long as the request rate is larger than the controller’s

processing capability, the controller cannot serve requests from legitimate users in a timely

manner. The attack scenario is shown in Fig. 5.1. The switch is a simple Open Vswitch,

and the controller is a POX l2 learning controller.

Now, we briefly discuss how attackers bypass current security systems in controller sat-

uration attacks. First, they craft a huge number of short packets, and the aggregation flow

rate is very small, thus bypassing the rate-limiting method. Second, they can create packets

regardless of a specific protocol to make a protocol-based defense mechanism, say proxy,

ineffective. Third, they can replay some real packets captured in the past to avoid security

devices’ pattern inspection.

5.3 Implementation of DoS attacks

Our emulations are conducted on the Mininet testbed. We use “hping3” command to craft

packets113. The command is —

hping3 10.0.0.1 -i u200 --rand-source -d 80 -c 2000

The parameters are described as follows:

• u200: send one packet every 200 millisecond.
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Figure 5.1: Test scenario 1: The attacker, switch S1, and the controller are involved in the
DoS attack. The attacker conducts attacks through S1 toward the controller. Without loss
of generality, we add an additional switch S2 and four hosts to represent the test scenario.
Network topologies can consist of many switches and thousands of hosts.

• rand-source: a random source IP address is assigned for ease of crafting table-miss

packets.

• d 80: craft packets with the size of 80 bytes each.

• c 2000: send 2000 packets in total. This is used together with the “u” parameter to

set the test duration.

5.3.1 Measurement of DoS effects

We notice there are no standard methods to measure DoS effects. Some measurements are

used in the above-mentioned papers, for example, how fast will attacks succeed73, monitor

CPU/memory usage62, or the delay that a legitimate user will experience71. We agree on

measuring DoS effects based on controller availability71, that is, sending a probe to test the

delay the probe experiences. This measurement is more intuitive than monitoring CPU’s
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usages, because a CPU’s 100 percent usage indicates the controller is either best utilized or

congested. Moreover, we are arguing probes should be sent at a proper rate: fast enough to

get better time resolution; slow enough to avoid unnecessary burden on the controller.

5.3.2 DoS attack from a single attacker

Experiment setup

The attack scenario is shown in Fig. 5.1. The attacker, switch S1, and the controller are

involved in the DoS attack. The attacker conducts attacks through S1 toward the controller.

Without loss of generality, we add an additional switch S2 and four hosts to represent the

test scenario. Network topologies can consist of many switches and thousands of hosts.

Host H1 sends ICMP packets to H2 in order to measure the round-trip time (RTT), which

includes the controller processing time and switch S1 processing time. When an ICMP packet

arrives at the switch, the switch does not have any matching flow entry and then inquires

of the controller for actions. The controller and switch S1 are both involved during this

process. If the controller or the switch is congested, the round-trip time becomes large. In

our experiments, H1 sends an ICMP packet every one second for 10 seconds. The controller

instructs the ICMP packet with an action to its destination, but does not install any flow

entry. This ensures each measured RTT includes both the switch and controller processing

time. Otherwise, the subsequent ICMP packets will find a matching flow entry and follow

its actions without asking the controller.

Experiment 1

In Fig. 5.2, the X axis represents the attacking rate increase from 500 packets per second

(PPS) to 1500 PPS from the attacker. The Y axis is the RTT between H1 and H2. We

send repeated ICMP packets with an interval of 1s for 10 seconds. Each dot in Fig. 5.2 is

the average of RTTs for 100 runs. When the attacking rate is between 1,100 and 1,200, the

network becomes congested.
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Figure 5.2: The network becomes congested when attacks are launched.

Experiment 2

We measure the total number of packets received on switch S1 and the total number of

packet-in packets received by the controller, shown in Fig. 5.3. The green curve indicates

the ideal amount of packets sent from the attacker. The red curve represents total packets

received on switch S1. And the blue curve shows total packets received on the controller.

When the attacking rate is larger than 1,000 PPS, total packets received by the controller

remain the same. This might indicate the switch reaches its capability of generating packet-

in packets, shown in Fig. 5.2, or that the controller cannot receive and process those inquires.

Another experiment will be conducted to conclude.

Experiment 3

We further measure controller availability from another switch S2 to circumvent the limi-

tation of switch S1. The network is indicated in Fig. 5.4. Now S2 and its two hosts, H3

and H4, are used for testing controller availability. H3 sends ICMP packets to H4. At the
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Figure 5.3: There is only one attacker in the network. The green curve indicates the ideal
amount of packets sent from the attacker. The red curve represents total packets received
on the switch. The blue curve shows total packets received on the controller.

beginning, we are launching a 1,000 PPS attack from a single attacker. All those packets

from the attacker are expected to be sent through its connected switch S1, and then S1

will inquire the controller. However, we’ve noticed no matter how high the sending rate is,

the controller can still be accessed by probe requests. More results will be presented and

discussed in subsection 5.3.3.

We conclude the controller is never congested when there is only one attacker. The

controller cannot be successfully overloaded, no matter how many attackers are connected

with one switch. Combined with results from experiment 2, we can conclude that the switch

reaches its capability of generating packet-in packets. We can also conclude the switch’s low

processing capability protects the controller from overload to some extent.
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Figure 5.4: Test scenario 2: S2, and its two hosts H3 and H4, only work for testing controller
availability.

5.3.3 Distributed DoS attacks

Compared with DoS attacks, DDoS attackers will first compromise lots of hosts, then launch

attacks toward the controller using all these compromised hosts.

Launching a DDoS attack

Figure 5.5: Test scenario 3: N is the number of attackers. Each attacker has to be connected
with a separated switch. We measure the controller availability using a test switch, and its
two hosts H1 and H2.
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An attack scenario is indicated in Fig. 5.5. We launch DDoS attacks when there is one

attacker, 10 attackers, and 20 attackers, respectively. Each attacker has to be connected

with a separated switch to avoid reaching the switch’s processing limitation. We measure

controller availability using a test switch and two hosts, H1 and H2, connected to it. We

measure the round-trip time (RTT) using ICMP packets sent from H1 to H2. Results are

shown in Fig. 5.6. Generally, as the attacking rate increases, legitimate requests become more

difficult to be served. Ideally, RTT should keep increasing all the way when the attacking

rate is increasing. However, in the 10-attacker results, the curve becomes flat when the

attacking rate is greater than 150 PPS per attacker. This is because, when the aggregation

attacking rate is around 1500 PPS, the controller’s CPU is overwhelmed. Compared with

the green curve, we conclude as the number of attackers increases, the controller availability

decreases.

Figure 5.6: Results of RTTs represent controller availability. We launch DoS attacks when
there is a single attacker, 10 attackers, and 20 attackers, respectively. Each attacker must
be connected with a separated switch.
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Observations

We make the following observations:

The limitation on the switch bothers us when testing controller availability from the

discussion above. Such a limitation can be considered as packet-in generation ability. In

Mininet, the generation ability of a software switch is about 500 packets/second62. Hard-

ware switches have similar performances114. However, the controller processing ability is

larger than the switch packet-in generation ability in reality, which is validated through our

experiments. Thus, one attacker cannot break down the controller by creating massive table-

miss packets. Instead, the attacker can only overload the switch software components, and

the hosts connected with that switch are affected. We can also conclude the switch’s low pro-

cessing capability protects the controller from overload in real implementations. Thus, the

simulation results, regardless of real implementation in67, are no longer sufficient. Moreover,

with DDoS attacks, we’ve successfully decreased the controller’s availability.

5.4 Discussion of countermeasures

5.4.1 Challenges

To design defense mechanisms, a list of considerations should be noted. First, how do we

measure DoS effects? On one side, we need to know when the controller is under a DDoS

attack. On the other side, it helps measure effectiveness of defense mechanisms. Second,

how do we differentiate legitimate requests from attack requests? We do not expect to block

the requests from legitimate users accidentally. Third, defense mechanisms do not include

any switch modification and are able to mitigate the general request-flooding attacks, as

indicated in chapter 2. We expect to mitigate such attacks from the controller’s side, which

is flexible and does not include data plane’s modifications67;71. However, the controller, which

is supposed to mitigate attacks, is also a victim in the request-flooding attack scenario. This

is strikingly different from current DDoS defense mechanisms, which are independent from

the victim. We should guarantee the controller is still able to identify and respond to attacks
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when it is under attacks.

5.4.2 Proposed work and preliminary results

Differentiating legitimate users from attackers

The differentiation between legitimate users and attackers is challenging in a DoS attack.

Mirkovic et al. argued that once IP spoofing is solved, many other kinds of DDoS attacks

could be solved through fair-sharing among hosts66. Zhang et al. proposed a multi-layer fair

queueing method to guarantee legitimate users are served. However, whether the controller

has enough CPU and memory to manage the smart queueing is questionable. Instead,

blocking mechanisms can be used to protect the network indefinitely. We propose to slow

down suspicious attacks temporarily for further verification. Once attacks are verified, we

block them. Simultaneously, we can protect burst requests from legitimate users and a

reasonable delay will be added in exchange. The processing diagram of our proposed defense

mechanism is presented in Fig. 5.7. In this diagram, “queue” does not refer to packet

queueing buffers at the controller. Instead, it is a data structure to store packets’ arriving

time.

Protect the controller

For controller-side defense mechanisms67;71, a striking challenge is whether the controller is

still able to respond to attacks when it is under attacks. Consequently, our fundamental goal

is to make the controller work all the time.

1. Sliding-window method

Normally, we measure the attacking rate by counting the total number of attacking packets

per time slot. Let’s consider an attack scenario where the request rate is far more than

the controller’s processing rate. Before we get the rate of requests, the controller will be

saturated no matter how small the time slot is set. Our first step is to use a sliding-window

method. For example, if we want to block all users with the new request rate larger than
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Figure 5.7: Processing diagram of defense mechanisms.

100 PPS. We set the sliding-window size as 100. Once the window is full within one

second, we start our defense mechanism. Ideally, as the attacking rate increases, our

response is faster.

2. Block suspicious hosts

Once attacks are detected, the controller sends a traffic control command to the switch

and the switch blocks the attackers. We can easily implement traffic control commands

on Mininet, since Mininet depends on the Linux kernel. Moreover, this operation has also

been supported by hardware switches. For example, the controller can run shell or CLI

vendor extension commands on the switch in the Arista’s OpenFlow implementation115.

3. Drop coming packets

Lots of packets may be on the way before traffic control is effective. The controller drops
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the packets on itself, and also adds a flow entry on the switch to match and drop all

packets from suspicious users. It’s quite straightforward to identify the attacker’s real

IP address, since its IP address is associated with its MAC address, and we can get the

physical port of the attacker as well in the OpenFlow network.

4. Virtual functionality separation

We propose to virtually separate the controller into two sections. One section is used to

conduct general processing of requests. The other section conducts defense mechanisms

to mitigate attacks.

Preliminary results

Figure 5.8: Attacking rate is 130 PPS/attacker. X-axis indicates number of attackers. Blue
histogram represents controller availability under attacks. Yellow histogram represents con-
troller availability after applying the blocking mechanism.

We modify a remote POX controller to accomplish blocking DDoS attacks using the

sliding-window method as an example. We set the window size as 100. After identifying the

attacks, we block the attackers. We still use the ICMP request to measure the RTTs. In

Fig. 5.8, we use the 9th-second RTT result at which the network becomes stable.

This blocking mechanism works well when the network becomes stable, as shown in

Fig. 5.8. However, during our tests, we’ve noticed the controller is still congested before the
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blocking mechanism is applied. Thus, this creates possibilities for attackers to circumvent

our defense mechanism when the attacking rate is high enough, and a great many compro-

mise hosts are connected with different switches. We have also implemented the method to

differentiate legitimate users from attackers. Our detailed adversary model provides a fun-

damental and thorough analysis of SDN controller’s vulnerability. Our preliminary defense

mechanism can inspire and encourage more works for this topic.

5.5 Contributions

In this chapter, we study robustness of the control plane by evaluating its vulnerabilities. By

implementing DoS attacks from the attackers’ point of view, we demonstrate how attackers

explore the control plane’s vulnerabilities. In fact, implementations indicate that limited

switch capability protects the controller. We thoroughly discuss possible defense mechanisms

from the controller side, and present our preliminary results. This chapter represents a

fundamental research step for studying the SDN control plane’s vulnerabilities and inspires

more research on this topic. Our contributions are listed as follows:

1. We build a detailed DDoS adversary model.

2. We perform a thorough analysis on defense mechanisms.

3. We design a scalable and lightweight DDoS attack defense mechanism to protect the

controller from saturation attacks, and present preliminary results.

4. We implement and evaluate both DDoS attacks and defense mechanisms on the Mininet

testbed.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this dissertation, we work on enhancing network robustness. As defined in chapter 1,

network robustness is the network ability to withstand possible network failures or attacks;

and it ensures network availability, resilience, and adaption to changing scenarios. Our work

stresses the importance of studying network robustness, which is a complex topic attracting

researchers’ attention. Use of SDN creates many possibilities to address network robustness

issues. First, we present a robust cyber-physical network framework in chapter 3. Second, we

solve the middlebox chain problem, which is a critical network robustness issue addressable

with SDN in chapter 4. It’s important to note that SDN networks also have vulnerabilities.

Third, we demonstrate how attackers can exploit those vulnerabilities on the SDN control

plane and present preliminary results on defense mechanisms in chapter 5.

In chapter 3, we propose a novel interdependent network model to pursue increased

robustness of cyber-physical systems by properly allocating dependency links. We have con-

sidered one-to-multiple weighted dependency links between two individual networks, rather

than simply adopting the one-to-one node dependency model. This enhanced realistic model

highly complicates the design. Moreover, we formulate two optimization problems to allocate

weighted dependency links under a limited budget, and a revised network flow algorithm is
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adapted to obtain a basic network structure in an effective way. To the author’s best knowl-

edge, this is the first work to apply the concept of limited budget to arrange dependency

links from an engineering perspective. Simulations on dependency-link allocation strategies

in both random networks and real network topologies are performed to validate our strategies

and to identify the critical failure rate.

In chapter 4, we have explained how the middlebox policy chain can help networks

enhance robustness and accomplish various network functionalities. We demonstrate how to

solve critical issues in the middlebox chain problem. The middlebox policy makes the network

routing problem more difficult. To solve this problem, we formulate an MILP optimization

problem to allocate limited network resources and then use the simulated annealing algorithm

to find a near-optimal solution. The solution of the optimization problem selects one path

out of the candidate paths to be assigned to each flow for load balancing. The global load-

balancing routing not only distributes network loads well, but also keeps the number of flow

entries on each switch within the range of its processing capability. Furthermore, we propose

a fast local rerouting approach to tackle middlebox failures. The rerouting has no effect on

the working part of the network and can respond to middlebox failures quickly. Finally, our

experiments on Mininet validate the efficiency and effectiveness of our approach, and attest

to the feasibility of applying our approaches to real networks. On our test topology, our

load-balancing (LB) approach shows an increase up to 26.4 percent on the throughput and

much lower end-to-end latency, when compared with the shortest-path (SP) approach. Our

fast local rerouting approach achieves similar results to the global rerouting approach: both

approaches increase the throughput up to 16.8 percent, compared with the affected-flows-

dropped approach.

In chapter 5, we build an adversary model to describe in detail how to launch DDoS at-

tacks to overwhelm the SDN controller. This stresses the importance of studying the control

plane’s vulnerability to protect the network from a destructive disaster. We discuss DoS

attacks in both traditional and SDN networks. Furthermore, we implement a successful DoS

attack on the Mininet testbed to demonstrate its achievability in the real world. Finally, we

highlight the challenges to mitigate such attacks and present our preliminary results on pos-
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sible defense mechanisms. Results indicate a mechanism based on a sliding-window method

can successfully mitigate DoS attacks. In summary, this chapter represents a fundamental

research step for studying SDN control vulnerabilities and can inspire more research on this

topic.

6.2 Future work

In this dissertation, we research many aspects of enhancing network robustness. However,

open questions still require further investigation.

As the cascading failure is destructive to cyber-physical systems, protecting critical nodes

can prevent the network from triggering cascading behaviors. For example, we can assign

more resources to hubs or high-load nodes, but the effectiveness of such approaches needs

to be researched. How SDN techniques can be incorporated to dynamically allocate those

resources and distribute loads in interdependent-network scenarios also needs further inves-

tigation.

Moreover, middleboxes provide network functionalities to balance loads and detect net-

work anomalies. However, we can always face the situation where middlebox resources are

inadequate. Sometimes, we have to route flows quite far away to be served by the middlebox

with adequate resources. This issue needs to be addressed, because it consumes more link

bandwidth and produces additional delay. Network function virtualization (NFV) could be

a good solution by allocating resources with more flexibility. NFV is an emerging technol-

ogy aiming at using software components to gradually substitute for hardware middleboxes.

Multiple functionalities can be deployed on one workstation and share resources. Therefore,

resources are utilized with more flexibility and effectiveness. Associated problems should be

addressed, for example, location selection and resource allocation of NFV functions.

The final issue is control plane vulnerability. In chapter 5, we have presented a thor-

ough analysis on this issue. In the future, a comprehensive solution regarding the proposed

challenges listed in section 5.4 is required to fully protect an SDN network from controller

saturation attacks. Additionally, the controller must respond rapidly to attacks, so efficient
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solutions are needed to this end.
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