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Abstract

Cancer type classification with high throughput molecular data has received much atten-

tion. Many methods have been published in this area. One of them is called PAM (nearest

centroid shrunken algorithm), which is simple and efficient. It can give very good prediction

accuracy. A problem with PAM is that this method selects too many genes, some of which

may have no influence on cancer type. A reason for this phenomenon is that PAM assumes

that all genes have identical distribution and give a common threshold parameter for genes

selection. This may not hold in reality since expressions from different genes could have

very different distributions due to complicated biological process. We propose a new method

aimed to improve the ability of PAM to select informative genes. Keeping informative genes

while reducing false positive variables can lead to more accurate classification result and

help to pinpoint target genes for further studies. To achieve this goal, we introduce variable

specific test based on Edgeworth expansion to select informative genes. We apply this test

on each gene and select some genes based on the result of the test so that a large number

of genes will be excluded. Afterward, soft thresholding with cross-validation can be further

applied to decide a common threshold value. Simulation and real application show that

our method can reduce the irrelevant information and select the informative genes more

precisely. The simulation results give us more insight about where the newly proposed pro-

cedure could improve the accuracy, especially when the data set is skewed or unbalanced.

The method can be applied to broad molecular data, including, for example, lipidomic data

from mass spectrum, copy number data from genomics, eQLT analysis with GWAS data,

etc. We expect the proposed method will help life scientists to accelerate discoveries with

highthroughput data.
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Chapter 1

Introduction

It is important to determine the type of cancer accurately. However, the curse of dimension-

ality, the small number of samples, and the number of irrelevant genes of high throughput

genomics data make this task difficult. Beyond prediction accuracy, another important task

is to select relevant genes. One straightforward approach is to apply a standard t-test1;2

to each gene or a non-parametric test such as the Wilcoxon score test1;3. Some other ma-

chine learning algorithms, such as Support Vector Machine (SVM)4, k-Top Scoring Pair

(k-TSP)5, have been applied to this area. In this report, we focus on the popular method

nearest shrunken centroid6.

The nearest shrunken centroid method is a method modified from nearest-centroid clas-

sification to suit high dimensional data. It is also referred as PAM (prediction analysis of

micro-array). PAM measures the scaled distance between each class center and overall cen-

ter. This distance is thresholded by soft thresholding procedure. The soft-thresholding for

distance d is defined as:

d′ = sign(d)(d− c)I(d>c), where I(d>c) =

 1 if d > c

0 otherwise

Where c is the threshold value. After soft thresholding, some distances become zero which

means the corresponding variables will be left out in further classification. The threshold
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value in PAM is chosen by 10-fold cross-validation (CV).

The PAM is a simple and efficient method that has very good prediction accuracy. The

paper introducing this method has been cited 2249 times by the time that we worked on

this paper. An example of application of PAM is on classification and prediction of clinical

Alzheimers diagnosis7 and for predicting patient Survival8. When it is applied to cancer

studies, a potential problem is that there may be too many genes being selected by PAM,

some of which may not contribute to the cancer type prediction. In the cross-validation step

in PAM, a common threshold value is selected for all the genes, which implicitly assumes

that all genes have identical distribution. However, this assumption may not hold because

the expressions of genes may have very different distributions due to complicated biological

processes. To resolve the problem, we propose an individual thresholding procedure which is

able to account for different distributional information of different variables. The procedure

aims to find informative genes and reducing the number of false positive variables, which can

lead to more accurate classification result and help pinpoint target genes for further studies.

We propose to achieve the threshold of variables with individual threshold parameter via

a test based on Cornish-Fisher expansion (TCF)9. Application of the TCF test to data from

each variable will give us a unique critical value. This value is then used along with the soft

thresholding procedure to define a unique optimal thresholding parameter for each variable.
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Chapter 2

Methods

This chapter describes the details of the new method. For convenience, we refer the new

method as TCF-PAM. The overall idea of TCF-PAM is to first apply the test based on

Cornish-Fisher expansion to the data from each variable to obtain a critical value. The

critical value and any given threshold value will jointly define a thresholding parameter.

Why different thresholding parameters are needed? We explain the rationale through the

PAM procedure.

In PAM, the class label is decided by the probability given by Naive Bayes algorithm

P (class k|X = x) =

∏n
i=1 fXi

(xi|class k)P (class k)

P (X = x)
,

where X is the gene expression data and class k is the class label of the sample. But it is

not easy to decide the distribution of fXi
(xi|class k). Suppose there are only 2 classes in the

dataset. When both classes follows normal distribution, the

logfXi
(xi|class k) ∝ xiµi − µ2

i /2

σ2
+ Ck(xi, σ

2
i ),

Where Ck(xi, σ
2
i ) =

x2i
2σ2

i
− log(2πσ2

i )/2. In the original PAM algorithm, the term Ck(xi, σ
2) is

ignored in further calculation of the discriminant function, which separates the class bound-

aries. This makes sense in the case with normal data with constant variance. When assuming
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common σ2, then the term Ck(xi, σ
2) gives the same value for k = 1, 2. In this case, there is

no point to include Ck(xi, σ
2) in comparison of the likelihood to form discriminant functions.

When the data for both classes follows the same gamma distribution,

logfXi
(xi|class k) ∝ xi/µi + log(1/µi)

1/ν
+ Ck(xi, ν),

Where Ck(x, ν) = νlog(xν)− log(πν)− log(x). In this situation, the Ck(x, ν) does not play

a role. In the two situations ablove, common threshold value for both class are reasonable.

When the data for one class is from normal distribution, and the other is from gamma

distribution, then

logfXi
(xi|class 1) ∝ xiµi − µ2

i /2

σ2
+ C1(xi, σ

2),

logfXi
(xi|class 2) ∝ xi/µi + log(1/µi)

1/ν
+ C2(xi, ν),

where C1(x, σ2) = x2

2σ2 − log(2πσ2)/2 and C2(x, ν) = νlog(xν) − log(πν) − log(x). They

are different and both contribute to the difference in the likelihood functions. In this case,

ignoring the Ck(xi, .) term in PAM would miss some important information due to the

difference in distribution. Unfortunately, we do not know the distribution of data in practice.

We do know that the data from genomics are often skewed since they are generally measuring

light intensities from high throughput equipment.

To describe how we can improve PAM, let xij be the gene expression data for ith gene

of jth sample, and yj be the label for the jth sample, where i = 1, 2, ...,m, j = 1, 2, ..., n.

The possible outcomes of y are 1, 2, ..., K, where K denotes the number of classes in this

data set. Let nk denote the number of samples in class k. The center of ith gene in class

k is xik =
∑

l∈{j: yj=k} xil/nk, and the overall center of ith gene is xi =
∑n

j=1 xij/n, where

n =
∑K

k=1 nk.
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To scale the class center toward the overall center, define

dik =
xik − xi

mk (si + s0)

where s2
i is the mean squared error for the ith gene:

s2
i =

1

n− k

K∑
k=1

∑
l∈{j: yj=k}

(xil − xik)2,

and mk =
√

1/nk + 1/n. In PAM, s0 is the median of si to avoid the situation where the

denominator of dik is equal to 0. We set s0 = 10−8 which is a small value so that the statistic

dik will follow its original distribution.

We modify the PAM method by introducing a selection procedure based on Edgeworth

expansion of two-sample t-statistic. Note that the numerator of dik can be written as:

xik − xi =

∑
l∈{j: yj=k} xil

nk
−

(∑
l∈{j: yj=k} xil

n
+

∑
l∈{j: yj 6=k} xil

n

)

= (
1

nk
− 1

n
)nk

∑
l∈{j: yj=k} xil

nk
− n− nk

n

∑
l∈{j: yj 6=k} xil

(n− nk)

=

∑
l∈{j: yj=k}(1−

nk
n

)xil

nk
−

∑
l∈{j: yj 6=k}(1−

nk
n

)xil

n− nk
= z1ik − z2ik,

where z1ik is the sample mean of z1ikl = (1− nk/n)xil, for l ∈ {j : yj = k}, and z2ik is the

sample mean of z2ikl = (1− nk/n)xil, for l ∈ {j : yj 6= k}. The denominator of dik is basically

the estimated standard error of the numerator. From the above derivation, dik is studentized

two-sample statistic for testing the equality of population means for {z1ikl, l ∈ (j : yj = k)}

and {z2ikl, l ∈ (j : yj = k)}. The t-statistic dik admits the Edgeworth expansion for the

cumulative distribution10;11.

P (T < x) = Φ (x) +
1√
N

A

6
(2x2 + 1)φ(x) +O(N−1)
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where T is the two sample statistic of {z1ikl, l ∈ (j : yj = k)} and {z2ikl, l ∈ (j : yj = k)},

Φ(x) and φ(x) are CDF and PDF of standard normal distribution and

A =

{
σ2

1

λ
+

σ2
2

1− λ

}−3/2{
σ3

1γ1

λ2
− σ3

2γ2

(1− λ)2

}
,

where λ =
n1

n
, σ2

1 and σ2
2 are the population variance of {z1ikl, l ∈ (j : yj = k)} and {z2ikl, l ∈

(j : yj = k)}, respectively, and γ1 and γ2 are population skewness from the two samples with

observed data {z1ikl, l ∈ (j : yj = k)} and {z2ikl, l ∈ (j : yj = k)}, respectively. Given the

Edgeworth expansion, we can find the percentile ηik, α of the approximated distribution of

dik, which has the following Cornish-Fisher Expansion:

ηik, α = zα −
1√
N

A

6
(2z2

α + 1),

where zα is the α percentile of the standard normal distribution. Since all the population

parameters are unknown, the coefficients in the Cornish-Fisher expansion are estimated

based on sample moments of z1ik and z2ik. The population variance in A can be estimated

by sample variance and population skewness γj in A can be estimated by:

γ̂j =
nj

(nj − 1)(nj − 2)

nj∑
l=1

{
zikjl − z̄ikj

Sj

}3

.

It has been shown in Zhang & Wang12 that the two-sample test based on Cornish-Fisher

expansion is more power than the two-sample t-test if and only if A > 0 for upper tailed

test and A < 0 for lower tailed test. Let η̂ik,0.05 and η̂ik,0.95 denote the estimated 5th and

95th percentile of the approximated distribution of dik, and let tik,0.05 and tik,0.95 denote the

5th and 95th percentile of t distribution of two sample t-test of z1ikl and z2ikl. Based on the

result of Zhang & Wang12, we use the following procedure to decide the cutoff value, which

will be used as the threshold value for dik.

In order to reduce the noise, we only keep the genes whose dik is more extreme than the

critical values cutoff upik, cutoff lowik. These genes are retained as potential informative
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1: for each gene i do
2: for each class k do
3: if upper tailed test and Â < 0 then
4: cutoff upik ← tik,0.95

5: cutoff lowik ← tik,0.05

6: else if upper tailed test and Â ≥ 0 then
7: cutoff upik ← η̂ik,0.95

8: cutoff lowik ← η̂ik,0.05

9: else if lower tailed test and Â ≥ 0 then
10: cutoff upik ← tik,0.95

11: cutoff lowik ← tik,0.05

12: else if lower tailed test and Â < 0 then
13: cutoff upik ← η̂ik,0.95

14: cutoff lowik ← η̂ik,0.05

genes. This is equivalent to set d∗ik = dik when dik < cutoff lowik or dik > cutoff upik; and

set d∗ik = 0, otherwise, i.e.

d∗ik = dikI(dik<cutoff lowik or dik>cutoff upik).

The genes with d∗ik = 0 are excluded from further analysis, and those genes with d∗ik 6= 0 are

very likely to have influence on the class label. Now we have obtained a new set of values

d∗ik, which will be used in the following soft thresholding procedure.

Next, we shrink d∗ik further by a soft thresholding procedure. Let

d#
ik = sgn(d∗ik)(|d∗ik| −∆)+

= sign(dik)(|dik| −∆)+(1dik>max(∆,cutoff upik) + 1dik<min(−∆,cutoff lowik)),

where ∆ is a threshold value determined by 10-fold cross validation.

In the 10-fold cross-validation, each ∆ value corresponds to a model, which has CV error

and corresponding selected genes. The ∆ value corresponding to the smallest CV error

is the optimal thresholding value. Sometimes, the second smallest CV error is within one

standard deviation of the smallest error, which means, the prediction performance has little

difference with these two threshold values. In many cases, chasing after the threshold value
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can lead to too many variables retained in the model (which is a sign of overfit). Therefore

we recommend the following: if the second smallest error is within one standard deviation

of the smallest error and the number of selected genes for the second smallest CV error is

less than the number of genes correspond to the smallest CV error, we choose the threshold

value correspond to the second smallest error as the optimized threshold value. Otherwise,

the optimal threshold is set to be the one with smallest training error.

With the selected optimal threshold value, the shrunken centroid for ith gene and kth

class can be written as:

x̄′ik = x̄i +mk(si + s0)d#
ik.

This shrunken centroid is then used to compute the discriminant function for a new sample

x∗ = (x∗1, x
∗
2, ..., x

∗
p) belonging to class k:

δk(x
∗) =

p∑
i=1

(x∗i − x′ik)2

(si + s0)2
− 2 log πk

The first term is the L − 2 norm of the studentized distance of the new sample x∗ to the

kth shrunken centroid. If the distance is small, the new sample is more likely to belong to

class k. The class C(x∗) for this new sample is:

C(x∗) = argmin
k

δk(x
∗)

The πk is the frequency of class k, where
∑K

k=1 πk = 1. The −2logπk term included in

the discriminant function will make sure the discriminant function give appropriate credit

to unbalanced sample sizes. This is particularly important when none of the variables are

informative to the class status and the sample sizes are severely unbalanced. For example,

suppose 90% samples belong to class 1 and 10% belong to class 2 and no given variables

are related to the class status. Then the −2logπk will be smaller for class 1 and bigger for

class 2. This will make about 90% of samples being classified to class 1, which leads to

misclassification error of around 10%. Without this term, random guessing will put 50%

sample in class 1. That leads to at least 40% misclassification error.

8



We can apply softmax function to make this discriminant score a probability. The prob-

ability of the new sample x∗ belongs to class k is:

p̂k(x
∗) =

e−
1
2
δk(x∗)∑K

l=1 e
− 1

2
δl(x∗)

For each given new sample x∗, we can decide the class label with the largest probability

p̂k(x
∗).

9



Chapter 3

A simulation study

In this chapter, we will present the result of a simulation study to compare the performance

of TCF-PAM and PAM.

We generate a binary class dataset (yj, xij), i = 1, ..., p, j = 1, ..., n, in which yj ∈ {1, 2}

denotes the class label for the jth observation and xij denotes the jth observation of ith

variable. Let n1, n2 denote the sample size for classes 1 and 2, respectively. Denote λ = n1/n,

the sample proportion of observations from class 1.

Inspired by the fact that high throughput data are often skewed, we generate data using

skewed distribution and symmetric distribution. In the first class, xij = εij + 0.5∗
√

2, where

εij ∼ Gamma(shape = 0.08, rate = 0.2), for i = 1, ..., 5, and xij ∼ Normal(µ = 0.4, σ2 = 2),

for i = 6, ..., 1000. That is, the first five variables in the first class have shifted gamma

distribution while the rest of the variables are normally distributed. In the second class, all

variables are independently generated from Normal(µ = 0.4, σ2 = 2). hence, the first five

variables are informative in that they determine the class label. The remaining variables

are non-informative since they have no contribution to the class label. Different sample

size ratios between the two populations may have an influence on the result, hence we set

λ = 0.1, 0.2, ..., 0.9 and fix n1 = 250. With fixed n1, the sample size for the second class

n2 = 250(λ−1 − 1) is a decreasing function of λ. Therefore smaller λ corresponds to bigger

total sample size while large λ correspond to less total sample size. Since both small and large
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values of λ lead to unbalanced sample sizes, we can expect different performance depending

on how many samples are allocated to the skewed population. The cases with λ close to 1

should be more difficult to classify than the case with other λ values.

The generated samples will be split into almost balanced two parts, one part for variable

selection and training the models, and the other part for assessing the prediction accuracy.

Our goal is to identify informative variables and reduce the selection of non-informative

variables by the variable selection procedure described in Chap 2.

The result in Table 3.1 is based on 50 runs. In each run we randomly generate a new

binary class dataset according to the data generation described in the beginning of Chap

3. The first six columns in the table are the average cross-validation error for the training

data (CV error), prediction error for the test data (test error), and the prediction error if the

modeling only have the first five variables included for the two methods (Oracle error). The

last six columns show the average number of variables selected. TP (true positive) refers

to the average number of selected informative variables, i.e. correctly identified variables

among the first five. The column FP (false positive) gives the average number of selected

non-informative variables, and the column Oracle shows the number of variables selected if

the model only includes the first five variables, i.e, all the variables are informative and no

other variables included. The standard error from the 50 runs is shown in parenthesis.

From Table 3.1, the cross-validation error and test error are similar for both methods

which means there does not seem to have overfiting problems. To compare the prediction

performance, we conduct two-sample one-sided t-test on prediction error of the two methods

for each λ value. Based on the p-value given by the two-sample t test, we conclude that the

prediction error of TCF-PAM is significantly lower than the prediction error of PAM when

λ = 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8. Highly significantly different performance was observed

when λ = 0.1 (p-value=1.3e-11), λ = 0.2 (p-value=1.7e-15), λ = 0.6 (p-value =1.1e-19),

λ = 0.7 (p-value=5.1e-11). In all these cases, the prediction performance of TCF-PAM is

much better than that of PAM. The differences at λ = 0.5 and λ = 0.9 is not significant (at

λ = 0.5, p-value=0.06; at λ = 0.9, p-value = 0.355).

In terms of selection of true informative (TP) variables, TCF-PAM has much better
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PAM TCF PAM TCF
CV test Oracle CV test Oracle # selected variables # selected variables

λ error error error error error error FP TP Oracle FP TP Oracle
0.1 10 10 10 9.7 9.8 10 56.4 0.8 1 30.5 4.8 0.7

(0) (0) (0) (0) (0) (0) (26.3) (0.3) (0.3) (4.5) (0.1) (0.2)
0.2 19.8 20 19.9 19.1 19.2 19.9 293.8 2.6 3 13.9 5 1.7

(0) (0) (0) (0.1) (0.1) (0) (53.1) (0.4) (0.3) (2.5) (0) (0.3)
0.3 29 29.6 29.1 27.9 28.8 29.4 306.7 4.8 5 12.3 4.8 3

(0.1) (0.1) (0.1) (0.2) (0.2) (0.1) (31.1) (0.1) (0) (2.8) (0.1) (0.3)
0.4 36 37.5 36.7 33.6 35 38.8 262.1 5 5 48.1 4.9 3.2

(0.3) (0.2) (0.2) (0.5) (0.4) (0.2) (28.8) (0) (0) (4.4) (0.1) (0.2)
0.5 28.2 29.3 27.7 28.2 26.8 30 13.1 4.2 4.4 9 4.2 3.6

(1) (1.2) (1.2) (1) (1.1) (1.5) (7.2) (0.2) (0.2) (2.9) (0.1) (0.1)
0.6 35.6 36.7 31 28.5 28.2 29.3 203.2 4.9 5 18.5 4.5 3.8

(0.4) (0.3) (0.4) (0.6) (0.6) (0.7) (24.8) (0) (0) (2.3) (0.1) (0.1)
0.7 28.9 29.9 29.4 26.2 26 27.3 256.7 3.4 2.8 26.2 4 3

(0.2) (0.2) (0.1) (0.4) (0.5) (0.4) (37) (0.3) (0.4) (2.6) (0.2) (0.2)
0.8 19.8 19.9 19.9 18.6 18.9 18.7 60.3 0.8 0.4 24.5 2.6 2.2

(0) (0) (0) (0.3) (0.2) (0.3) (21) (0.3) (0.2) (2.6) (0.2) (0.3)
0.9 10.1 10.1 10.1 9.6 10.1 9.9 0 0 0 17.7 1.1 0.5

(0) (0) (0) (0.2) (0.2) (0.1) (0) (0) (0) (3.4) (0.2) (0.1)

Table 3.1: Result for simulation study. CV error is the average cross-validation error for
the training data and test error is the prediction error for the test data. TP (true positive)
shows the average number of correctly selected informative variables. The column FP (false
positive) shows the average number of selected non-informative variables. The column Or-
acle error and Oracle give prediction error and number of variables selected if the model
only included the informative variables. The standard error from the 100 runs is shown in
parenthesis (rounded to keep only 1 significant digit).

performance when the dataset is heavily unbalanced, i.e, λ = 0.1, 0.2, 0.8, 0.9. In particular,

when λ = 0.1 or 0.2, nearly all informative variables were selected by TCF. But PAM on

average selected less than 1 informative variable when λ = 0.1 and selected less than 3

informative variables when λ = 0.2. When λ = 0.9, the dataset is heavily unbalanced but

the sample size is small. PAM loses its ability of variable selection , and made its decision

based on class proportion. TCF still can select informative variables.

In terms of the number of non-informative variables selected by mistake (FP), TCF-

PAM can select less non-informative variables in all the situations except when λ = 0.9. In

particular, for most λ values, the number of flase positives for PAM is often several hundred

12



while that for TCF-PAM is mostly less than 30. TCF-PAM not only gives less false positive

than PAM, but also has smaller fluctuation in its results. This can be seen from the smaller

standard error of FP for TCF-PAM than that for PAM, which means TCF-PAM gives more

stable results. When λ = 0.9, the FP for PAM is zero because PAM can not select any

variable with small sample size.

In the performance of oracle situation, i.e, only the first five variables were provided

to the TCF-PAM and PAM algorithms, we can see that PAM on oracle dataset seems to

slightly outperform the PAM with all 1000 variables. On the other hand, the TCF-PAM

applied to 1000 variables outperform its application to the oracle data. For the case with

nearly balanced samples sizes (λ = 0.4, 0.5, 0.6), knowing the true informative variables in

the oracle case helps PAM to slightly reduce the prediction error. On the other hand, the

oracle information in the nearly balanced case did not help TCF-PAM in prediction error.

For those moderate to severely unbalanced cases, the prediction errors for the TCF-PAM or

PAM applied to the oracle data are comparable to those when they were applied to the data

with 1000 variables. Such result of TCF-PAM showing similar predict error but with less

number of selected variables tells that there is redundancy in the informative variables. Even

though five variables clearly have different distributions for the two classes, some subset of

them can provide the same information as all five variables.
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Chapter 4

Applications to real data

In this section, we will use some public microarray data to compare the performance of

TCF-PAM with PAM.

4.0.1 Application 1: Comparison of performance of two methods

on 10 datasets

The summary of the datasets is in Table 4.1.

As discussed in previous section, we are interested in the test error and number of genes

selected. A better method has smaller test error and possibly smaller number of genes

selected. Since we use 10-fold cross-validation to decide the optimal threshold value, the

dataset n.class gene ntrain ntest TrainClassSize TestClassSize Source
Leukemia1 3 7129 38 34 11,19,8 14,19,1 13

Leukemia2 3 12582 57 15 20,20,17 4,8,3 14

Lung1 3 7129 64 32 44,13,7 23,6,3 15

SRBCT 4 2308 63 20 8,23,12,20 3,6,6,5,5 16

Breast 5 9216 54 30 7,12,6,20,9 3,7,3,12,5 17

Lung2 5 12600 136 67 93,13,12,4,14 46,7,5,2,7 18

DLBCL 6 4062 58 30 7,4,7,30,6,4 3,2,4,16,3,2 19

Leukemia3 7 12558 215 112 28,52,9,18,42,14,52 15,27,6,9,22,6,27 20

Cancers 11 12533 100 74 8,12,11,11,10,6,9,8,9,6,10 14,12,1,1,1,5,6,18,16 21

GCM 14 16063 144 46 8,8,16,8,24,8,16,8,8,8,8,8,8,8 3,3,4,3,6,3,6,2,3,3,3,2,3,2 4

Table 4.1: Summary of datasets
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random patitioning of data could lead to different test result. We run the random partition

100 times on each dataset. For each partition, we record the test error and the number of

selected genes. Table 4.2 and Fig 4.1 summarize the result of applying the two methods to

the Breast cancer dataset. Similiar summaries for other datasets are given in the appendix.

The side by side barplot shows the number of errors in the horizontal axis and frequency

out of 100 runs in the vertical axis. The label for each bar gives the average number of

selected genes with median absolute deviation (MAD) in parenthesis. A method with better

performance is expected to have more occurrence in the left side of the plot. The five number

summary table shows numerical summary of the test error and the number of genes selected

by PAM and TCF-PAM.

TCF PAM
test Er # genes test Er # genes

Min. 0.00 264 1.00 392
1st Qu. 1.00 598 3.00 4819
Median 1.00 933 3.00 4819
Mean 1.32 1793 2.89 4297

3rd Qu. 1.00 2427 3.00 4819
Max. 5.00 7504 5.00 8960

Table 4.2: Five Number Summary of the # of misclas-
sification subjects among 30 test samples and the number
of genes selected by PAM and TCF-PAM.

Figure 4.1: Side by side barplot of the number of
errors versus frequency out of 100 runs. The label for
each bar gives the average number of selected genes with
MAD in parenthesis.

From Table 4.2, we can see that more than 75% times out of 100 runs, the TCF-PAM

has prediction error less than 1/30 while more than 75% prediction errors being more than

3/30 for PAM. The number of genes selected by TCF-PAM is less than 1000 in 50% of the

runs, while PAM slected more than 4800 genes in more than 75 runs. It is apparent from

the side by side barplot in Fig 4.1 that most of the errors for TCF-PAM is 0 or 1 out of

30 subjects in the test samples, and most of the errors for PAM is 3 out of 30. TCF-PAM

will need on average 933 genes to reach 0 error or 598 genes to reach 1 error while PAM’s

best performance requires on average of 2868 genes to reach 1 error. Majority of time, PAM
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selected on average 4819 genes and the error is 3 out of 30 subjects.

To compare the performance of the two methods on all 10 datasets, we model the prob-

ability of making a correct prediction from each method using the 100 runs. The higher

this probability for a method, the better the method. We use a binary logistic regression

model to estimate this parameter. The logistic regression model has a factor ‘method’ with

two levels, TCF-PAM and PAM, with the response being whether a correct prediction was

made. The log odds of successful prediciton is given by

log(
psuccess,i,j

1− psuccess,i,j
) = µ+αi + βj + (αβ)ij, i = TCF −PAM or PAM, j = 1, ..., 10. (4.0.1)

where psuccess,i,j is the probability of making a correct prediction using ith method on jth

dataset, µ is the intercept, α1 and α2 are the effects of TCF-PAM and PAM, respectively;

βj is the effect of the jth datasets j = 1, 2, ..., 10; (αβ)ij is the interaction effect of method

and dataset. To access the interaction effect, a deviance test was conducted by comparing

the model in (4.0.1) with the following model:

log(
psuccess,i,j

1− psuccess,i,j
) = µ+ αi + βj, i = TCF − PAM or PAM, j = 1, ..., 10. (4.0.2)

The chisquare test of model (4.0.2) against model (4.0.1) gives p-value = 2.2e-16, which gives

us strong evidence that the two methods have different performance on different datasets.

This conlusion matches the result of our simulation study that TCF-PAM has better per-

formance when the dataset is unbalanced. Since the perfomance varies depending on the

dataset, we next compare the performance of TCF-PAM and PAM on each dataset using

the model:

log(
psuccess,i

1− psuccess,i
) = µ+ αi, i = TCF or PAM.

The deviance test of H0 : αi = 0 yields the p-value shown in Table 4.3. In Table 4.3, log

odds ratio refers to the log odds of TCF-PAM over PAM for predicting successfully versus

incorrectly, i.e. estimate of α1 − α2, where α1 is the effect of TCF-PAM and α2 is the effect
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PAM TCF-PAM
Group dataset adjusted log odds odds 1/odds median mean median mean

p-value ratio ratio ratio
Cancers 1 1980 1952 3544 4453

1 DLBCL 1 3808 3677 3835 3762
Lung1 1 7 73 1 331
SRBCT 1 136 140 57 84
Lung2 0.0036 -0.52 0.6 1.7 2674 2650 1042 1775

2 Leukemia1 1.2e-33 -1.3 0.27 3.7 63 159 28 978
Leukemia3 7.8e-86 -0.96 0.38 2.6 10342 9679 3893 3915
Leukemia2 2.5e-06 0.65 1.9 0.52 7959 5816 24 275

3 GCM 2.7e-05 0.22 1.2 0.8 2395.5 2520 5811 6630
Breast 1e-13 0.84 2.3 0.43 4819 4297 933 1793

Table 4.3: Result of comparing the two methods for 10 datasets. Adjusted p-value is the
p-value adjusted with Bonfferoni correction of multiple comparisons. The column of Log
odds ratio shows the log odds of effect of TCF over effect of PAM. The last four columns
show the median and mean number of genes selected by the two methods.

of PAM. This is because the odds ratio is

pTCF

1−pTCF

pPAM

1−pPAM

= exp{αTCF − αPAM}.

For example, the odds ratio of successful prediction for TCF-PAM over PAM is 2.3 for the

Breast cancer data, which means that odds of making a correct prediction for TCF-PAM is

2.3 times of that of PAM.

The first group in Table 4.3 list the datasets on which the two methods did not show

significant difference in the probability of making correct predictions. Since prediction accu-

racy is not significantly different in these cases, the number of genes used in the prediction

tells us which method is more powerful. TCF-PAM and PAM have similar performance for

the dataset DLBCL since they use similar number of genes. PAM is better for the dataset

Cancers while TCF-PAM is better for datasets SRBCT. For the dataset Lung1, the median

and mean for TCF-PAM are quiet different, which means the number of genes selected are

skewed from different runs of each algorithm. TCF-PAM can achieve relatively small predic-

tion error with less number of genes in most cases (more than half). But in some situations

it can give relatively high prediction error with large number of selected genes because of
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bad spliting in cross-validation. Then, intuitively, we may choose to resplit the dataset and

re-run the program.

The second group in Table 4.3 shows the datasets on which PAM is more likely to make

a correct prediction. With the frequency of occurrence out of 100 runs and number of genes

selected plots shown in the Appendix, we describe the results for several datasets. For the

dataset Lung2, TCF-PAM misclassifies all the test samples in class ‘SQUA’ to class ‘ADEN’

and correctly classify all samples belonging to ‘ADEN’, while PAM correctly predicts ‘SQUA’

samples but makes mistakes on ‘ADEN’. While the class ‘ADEN’ has a large proportion of

samples (93 samples) in the training dataset, TCF-PAM enlarges the effect of this class.

Similar pattern happens for the dataset Leukemia1, TCF is more likely to predict a new

sample to the class with large class size in the training data. The class ‘T cell’ (8 samples

in training data) is more likely to be classified to the class ‘B Cell’ (19 samples in training

data) by TCF-PAM. Considering that the class ‘T Cell’ and class ‘b Cell’ in the dataset

Leukemia1 belong to same class in some studies13, the two classes are similar. For dataset

Leukemia3, TCF-PAM loses the power for class ‘BCR’ (9 samples in training data). Aimed

to choose informative genes, TCF-PAM loses some power for the class with small training

class size. When we compare the genes selected by the two methods, TCF-PAM aims to

reduce the number of genes while PAM selects too many genes which may not give much

information about the class status.

The third group of Table 4.3 is the dataset on which TCF-PAM has significantly larger

probability of making a correct prediction. For the dataset Leukemia2, TCF-PAM and PAM

had similar range in the number of misclassification, but TCF-PAM has higher frequency

of smaller errors, which leads to better prediction accuracy in TCF-PAM. And the number

of selected genes is drastically reduced by TCF-PAM. There are 14 classes for the dataset

GCM, which makes classification difficult for most classifier. For all the 100 runs on GCM

dataset (A.1), TCF-PAM has smaller prediction error than that of PAM. For the Breast

cancer dataset, as discussed at the beginning of this section, TCF-PAM is 2.3 times more

likely to give small prediction error using a small number of genes than PAM.
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LOOCV error # of genes selected
mRMR-IFS 0.105 117

PAM 0.042 28
TCF 0.053 16

Table 4.4: Result of three methods on gene expression in nontumoral liver tissue and
recurrence-free survival in hepatitis C virus-positive HCC dataset (GSE 17856)

4.0.2 Application 2: Comparison to mRMR-IFS on GSE17856

through leave-one-out CV

We also apply the two methods on the dataset GSE17856 from NCBI. This dataset has 95

samples from 2 classes (43 tumor, 52 non-tumor) and 25073 genes.

We compare the performance of TCF-PAM, PAM and the mRMR-IFS strategy proposed

by Gui et al.22. The method mRMR-IFS first trains all the samples to get the rank of each

gene, then it selects a subset of top ranked genes as the variables for prediction. The

prediction result for each sample is based on nereast neighbors. The subset of genes with the

smallest error is selected by this method. Gui et al. reported leave-one-out cross validation

error. To compare the results with TCF-PAM and PAM, we also apply these two methods

on the dataset GSE17856 to get the LOOCV error. The LOOCV procedure is as follows:

Leaving out a single sample from the dataset as the validation data, we train the models

with the remaining samples. This is repeated such that all the samples in the dataset is

used once as the validation data. This is the same as a K-fold cross-validation with K being

equal to the number of samples in the dataset. The total number of misclassifications is the

LOOCV error.

Summary of the results is given in Table 4.4. The first column is the LOOCV error for

each method. The second column is the number of genes selected. The LOOCV error of

TCF-PAM and PAM is smaller than the traning error of mRMR-IFS which means TCF-

PAM and PAM outperform mRMR-IFS. The LOOCV error of TCF-PAM has 1% more error

than PAM, but the number of genes used in TCF-PAM is about half of those by PAM.

The datasets GSE 17856 also gives the GO-ID and its corresponding functions. These
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selected genes potentially have influence on tumor. We show the functions of the 16 genes

selected by TCF in Table 4.5.
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GenBank Function
Accession #
NM014652 (protein binding)(nucleus)(cytoplasm)(protein import into nucleus)

(intracellular protein transport)(protein transporter activity)
NM025082 (M phase of mitotic cell cycle)(mitotic prometaphase)

(mitotic cell cycle)(condensed chromosome kinetochore)
(DNA binding)(nucleus)(chromosome)(cytosol)

NM001033112(translation repressor activity)(regulation of translation)(cytoplasm)
(negative regulation of translational initiation)(protein binding)

NM022748 (protein binding)(focal adhesion)(lung alveolus development)
(positive regulation of cell proliferation)(cell migration) (cell junction)

NM032257 (binding)(intracellular)(zinc ion binding)(metal ion binding)
NM014789 (DNA binding)(intracellular)(nucleus)(metal ion binding)

(regulation of transcription, DNA-dependent)(zinc ion binding)
NM032689 (DNA binding)(intracellular)(nucleus)(metal ion binding)

(regulation of transcription, DNA-dependent)(zinc ion binding)
NM005586 (negative regulation of transcription from RNA polymerase II promoter)

(nucleus)(cytoplasm)(activation of JUN kinase activity)
(embryo development)(dorsal/ventral axis specification)
(negative regulation of Wnt receptor signaling pathway)
(cytoplasmic sequestering of transcription factor)(protein binding)
(negative regulation of DNA binding)(cell differentiation)
(transcription factor binding)(trophoblast giant cell differentiation)
(embryonic skeletal system morphogenesis)

NM175075 (molecular function)(cellular component)(biological process)
NM003124 (aldo-keto reductase (NADP) activity)(sepiapterin reductase activity)

(nucleolus)(cytoplasm)(tetrahydrobiopterin biosynthetic process)
(nitric oxide biosynthetic process)(oxidoreductase activity)
(NADP binding)(oxidation-reduction process)

NM024653 (double-stranded RNA binding)(protein kinase inhibitor activity)
(nucleus)(nucleolus)(negative regulation of protein kinase activity)
(protein kinase binding)(negative regulation of phosphorylation)

NR045217

Table 4.5: Summary of gene functions
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Conclusion

In this report, we presented the TCF-PAM, an improved version of PAM method. The PAM

method assumed that all the genes are identically distributed which may not be the case

in real applications. Through introducing the TCF-PAM test on each variable(gene), we

derived variable specific thresholding parameter. This is achieved through seperate higher

order expansion to approximate the quantiles of the comparison statistic. Cross validation

was further used to select the final set of variables with training data. Numerical studies

show that our method achieve similar prediction error using less variables and therefore less

complex models. Our method significantly reduces false positive rate compared to the orig-

inal PAM algorithm.

In applying Naive Bayes algorithm as the starting point, we also assumed that all the

variables(genes) are independent so that the variable specific thresholding parameter can be

selected independently. If the variables(genes) are not independent, we recommend to first

use sparse principle component analysis to convert the variables into linearly uncorrelated

features before applying the TCF-PAM algorithm.
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Appendix A

Appendix: Tables, Figures, and

further description of the results for

application 1

We list the detailed result from section 4.1 in Appendix.

We combine two kinds of plots in Table A.1, A.2, A.3, in which the left column is the

plot of frequency out of 100 runs versus number of errors, and the right column is the square

root of the median number of genes selected versus number of errors. For the left column,

the better method will have higher bar for small errors which means the method is more

likely to give small error, and lower bar for large errors which means the method is less likely

to give large error. For the right column, because that the number of genes selected has a

large range, we take square root of the median number of genes selected so that it is easy to

compare different methods. And the error bar is the square root of median plus and minus

the square root of MAD(mean absolute deviation) of the number of genes selected. The

MAD is based on formula

MAD = constant ∗median ( |Xi −median(X)| ) ,
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Where the constant use the default value 1.4826 in R.

The better method will have lower bar for al the possible number of errors and shorter

error bar. If we can get same number of errors with less number of genes, these genes selected

are more informative.

PAM performs better than TCF-PAM for datasets Leukemia1 and Lung2. It is clear that

PAM gives just 1 error more than 95 times out of 100 runs for the Leukemia1 dataset. The

number genes used for 1 error is 47 by PAM, which is a small number compared to 1108 used

by TCF-PAM. For the dataset Lung2, PAM gives 0 error about half times when TCF-PAM

will give at least 1 error.

The results for dataset SRBCT and DLBCL seems comparable from the two plots. They

have a similar frequency for each possible number of errors. But TCF-PAM uses fewer genes

to give 5 errors than the number of genes used by PAM for the dataset SRBCT.

PAM has pretty consistent results for the Cancers dataset. The prediction errors are

always 9 while the number of selected genes varies each time. However, TCF-PAM can

achieve 7 errors with fewer genes used. Although TCF-PAM may give 17 errors with almost

all the genes included, it is more likely to give the less error result because about three

fourths of the time TCF-PAM had 7 errors.

TCF-PAM outperforms PAM on the GCM dataset. Because the errors given by TCF-

PAM is less than the errors given by PAM all the time. Although PAM selects fewer genes,

low prediction accuracy means the genes selected are not informative or there is a lack of

fit in the PAM model. TCF-PAM also outperforms PAM on the Breast cancer dataset.

TCF-PAM has zero or one error most of times and with less number of genes selected, while

PAM has three errors most of the times.
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Table A.1: Frequency of occurrence out of 100 runs and number of genes selected. The left panel of each row is side by side
frequency plot. The label on the bar is the median and median absolute deviation (MAD) of number of genes selected. The
right panels are side by side plot of the number of genes. The error bar shows square root of MAD of number of genes selected.
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Table A.2: Frequency of occurrence out of 100 runs and number of genes selected. The left panel of each row is side by side
frequency plot. The label on the bar is the median and median absolute deviation (MAD) of number of genes selected. The
right panels are side by side plot of the number of genes. The error bar shows square root of MAD of number of genes selected.
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Table A.3: Frequency of occurrence out of 100 runs and number of genes selected. The left panel of each row is side by side
frequency plot. The label on the bar is the median and median absolute deviation (MAD) of number of genes selected. The
right panels are side by side plot of the number of genes. The error bar shows square root of MAD of number of genes selected.
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