
InTechOpen Book Chapter Template 

 

Spatial competitive games with disingenuously delayed 

positions 
 

Marzieh Soltanolkottabi, David Ben-Arieh, John (C-W) Wu 

Department of Industrial and Manufacturing Systems Engineering 

Kansas State University,  

2069 Rathbone Hall 

1701B Platt St., Manhattan, Kansas, Riley 

Email: davidbe@ksu.edu 

Abstract 

During the last decade, spatial games have received great attention from researchers showing 

the behavior of populations of players over time in a spatial structure. One of the main factors 

which can greatly affect the destiny of such populations is the updating scheme used to 

apprise new strategies of players. Synchronous updating is the most common updating 

strategy in which all players update their strategy at the same time. In order to be able to 

describe the behavior of populations more realistically several asynchronous updating 

schemes have been proposed. Asynchronous game does not use a universal and players can 

update their strategy at different time steps during the play.  

In this paper, we introduce a new type of asynchronous strategy updating in which some of 

the players hide their updated strategy from their neighbors for several time steps. It is shown 

that this behavior can change the behavior of populations but does not necessarily lead to a 

higher payoff for the dishonest players.  The paper also shows that with dishonest players, 

the average payoff of players is less than what they think they get, while they are not aware 

of their neighbors’ true strategy.  

Keywords: Spatial games, Asynchronous updating, delayed positions 

1. Introduction 

Game theory is defined as the study of mathematical models to show conflict and cooperation 

between rational decision-makers [1]. It describes how rational players behave when 

interacting with each other and has been used as a method to model competition in 

competitive evolution which refers to as evolutionary game theory [2]. Evolutionary game 

theory is mainly the study of a population of interacting players in which players interact 

with each other and go through evolution [2]. Spatial games use evolutionary game dynamics 

on a spatial structure. This approach has brought together game theory and cellular automata 
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(CA). In these games, each player plays the game with its neighbors and based on the players’ 

strategy the various positions will be occupied by the owner of the cell or a neighbor [2]. 

In most spatial games, cells are updated in synchrony. A synchronous method of updating 

indicates that at every time all players on the lattice play at the same time and all cells are 

updated simultaneously. In contrary, in the asynchronous approach not all cells are updated 

at the same time but they can be updated in different times. This approach can be used for 

modeling real-world problems in which there is not a universal clock to enforce a 

synchronized updating. Using an asynchronous updating method can result in different 

dynamic behavior in comparison with synchronous method of updating [3]. Several studies 

have used asynchronous updating methods and have probed the differences of their behavior 

from the synchronous ones. In the literature there are several types of asynchronous updating 

which are more commonly used [4].  These methods are as follows: 

• Random updating: In this updating scheme, a player is selected at random from the 

population, and after playing against its neighbors its strategy is updated. This 

updating occurs in a time instance before the time that a general clock updates the 

value of all other cells. These time steps are usually called micro-time-steps. This 

method is the most used method of asynchronous updating which is in several 

studies used for probing the effect of asynchronous updating on stability of cellular 

automata or emerging cooperation [3, 5-11].  

This method is classified as Random asynchronous updating with replacement in 

which a player can be updated several times in micro-time-steps, or without 

replacement in which once a player is updated it cannot be updated again [5]. 

• Random order updating: In this updating method players are updated in a fixed 

random order in the entire simulation. In several studies this method has been used 

in analogy to random updating [3, 5, 6, 7, 10]. 

• Cyclic updating: in this updating method, cells are updated based on a fixed order. 

The method has been used in some studies in comparison with random updating [3, 

10, 12] 

• Clocked updating: In this updating method a clock or an oscillator is assigned to 

each player which moves along a period. In the starting position, each clock is set to 

a random starting position. The player updates its status when the clock reaches the 

top of its period [5, 7, 10]. A new methodology in this updating type is that the clock 

of each player can be influenced by the clocks of other players [5]. 

• α-synchronous updating: in this updating scheme an updating function is used to 

update a cell. Based on this function a cell updates its value with probability α, or 

remains unchanged with probability 1 – α. There are several studies in the literature 

of asynchronous updating in which a kind of probability based updating has been 

used in them [13-16].  

 

In addition to the more common methods which have been used in asynchronous updating 

there are some studies that have used some novel methods of updating. Lee et al. [17] 



presented a new cellular automaton in which each cell is consist of some sub-cells which are 

joined to each other and at each time step a random portion of cells on average are updated.  

As we illustrate here, there are several methods that can be used to asynchronously update a 

game. Most of these methods choose players and update their value in a time instance before 

the general clock updates all cells. In this study we have proposed a method in which, in 

contrary to general asynchronous updating methods, there are some players do seem not to 

update their strategy for some time steps although they update their strategies on their own 

and after a defined number of time steps they reveal their true strategy to their neighbors. 

This updating scheme can be referred as an asynchronous strategy with dishonest players. 

The flow of information and decisions of the winning strategies in this method are not the 

same as in synchronous updating. 

Moreover, there are some studies which has used a type of vague information shared between 

players. Bouré et al. [18] introduced a β-synchronism updating method. In this method, there 

is a probability to disrupt the transmission of information between cells. They showed that β-

synchronous updating causes phase transitions. Chen et al. [19] analyzed players' long-run 

behavior in evolutionary coordination games in which there exists imperfect monitoring in a 

large population and players can observe signals of other players' unseen actions and extract 

information from the signals by using the proposed simple or maximum likelihood 

estimation algorithm. They showed that player’s method of extracting information from the 

observed signal has a critical impact on the long-run behavior in evolutionary games. Zhang 

and Chen [20] have also considered a situation in which required payoff information does not 

exist. They built a model which is based on probability of switching for each player and 

showed that the number of neighbors consulted for updating and the relationship of the 

switching probabilities between competing strategies can intrinsically affect the evolutionary 

game.  Wang et al. [21] considered a silence strategy in the prisoner’s dilemma game, where 

players can either engage in the game as cooperators, defectors or silenced in which they gain 

no payoff. They showed that for the small payoff level, the silence strategy can increase the 

frequency of cooperation but for the large payoff level, great majority of players choose the 

silence strategy to avoid the high loss of engaging in games. They also presented an 

intermediate payoff level that could guarantee the optimal cooperation circumstance. 

Tanimito [22] proposed a mixed strategy system for spatial prisoner’s dilemma in which the 

player stochastically shows different behaviors to its neighbors based on the agent’s overall 

strategy. He showed that in this model, cooperation is increased in comparison with common 

mixed strategy models in which players offer strategies stochastically. 

The current proposed method can be useful when in many real-world situations we 

intentionally delay information transmission such as between competing companies, political 

parties or even in disease transmission.  In the following section the delayed updating method 

is described, then the game in which the model uses is introduced and finally results of 

delayed updating and consequent analysis are discussed. 

 



2. Methodology 

In our model we have considered that players are playing in a two-dimensional lattice in 

which each player in a center has 8 neighbors and the ones in the edges and in the corners 

have 5 and 3 neighbors respectively. The required steps to build a model that represents the 

behavior of a lattice in evolutionary spatial games with some dishonestly delayed players are 

as follows: 

1. Generate a lattice of size n2.  Populate the lattice with players of type A and type B.  

Players of type A constitute i% of the players while type B are (1-i)% of the n2 players.  

In our model players using strategy A are called Hawks and players with strategy B 

are referred to as Doves. 

2. The honest and dishonest positions are randomly allocated to the cells in the lattice. 

3. Each dishonest player is assigned a number between 1 and t and the player hides its 

strategy for that number of time steps.  In our model an identical t is used for all 

dishonest players. 

4. The payoff for all players is calculated. Variety of functions can be used to calculate 

the individual payoff for each player.  In this model the payoff is defined as the sum 

of payoffs that each player can get from playing with all its neighbors based on a 

given payoff matrix. Payoff calculation is described in section 2.2. Each player then 

adopts the strategy with the highest payoff.  

5. All the players update their true strategy in a synchronous manner but the dishonest 

players do not reveal their strategy for t time steps. The reader should note that the 

apparent and true strategies are the same for honest players. 

6. Steps 4 and 5 repeat for a defined number of iterations or until the lattice reaches 

quasi-equilibrium.  

2.1 Type of Game Used 

Spatial evolutionary games have looked into a variety of well-defined games. In the 

populations with two strategies 2×2 games are used to represent the payoff of players of 

different strategies competing with each other. These games are normally described by a 

general payoff matrix as follows [2]. 

 

 A B 

A 
(
𝑀11 𝑀12

𝑀21 𝑀22
) 

B 

 



This payoff matrix shows that A gets payoff 𝑀11 when playing with A; A gets payoff 𝑀12 

when playing with B; B gets payoff 𝑀21 when playing with A and B gets payoff 𝑀22 when 

playing with B.  

Based on the payoff matrix, several types of games can be defined by changing the relations 

between the payoffs. There are three types of most commonly used games to study the 

behavior of players; these games are the Prisoners’ Dilemma, Chicken (or Hawk and Dove) 

and Stag Hunt game. 

In the Prisoners’ Dilemma game, two persons are arrested because of a joint crime. Each of 

them can either cooperate with the other person and remain silent (strategy C), or can defect 

and confess (strategy D). if both cooperate then both get 𝑀22 points. If one cooperates while 

the other one defects, then the cooperator gets 𝑀21 points which is less than 𝑀22 and the 

defector gets 𝑀12 points which is more than 𝑀22. If both remain silent, they both get 𝑀11 

points which is more than 𝑀21 but less than 𝑀22. So, the relation between the payoffs is 𝑀12 >

𝑀22 > 𝑀11 > 𝑀21.  

In the Chicken Game, there are two players fighting for a resource. In this game b is the value 

of the contested resource, and C is the cost of an escalated fight. It is also assumed that the 

value of the resource is less than the cost of a fight (C>b); if b>C, the game becomes the 

Prisoners’ Dilemma game. There are two types of players defined in this game, termed Hawk 

and Dove, in which Hawks are strong fighters and Doves are appeasing.  If two Hawks 

compete with each other, they both pay the cost of fighting and finally divide the resource 

between themselves (𝑀11 = (𝑏 − 𝐶)/2). If one Hawk compete with a Dove, Hawk will get all 

resources (𝑀12 = 𝑏) and Dove gets nothing (𝑀21 = 0) and if two Doves compete with each 

other they will divide the resources between themselves without fighting 𝑀22 = 𝑏/2. So, the 

relation between the payoffs is 𝑀12 > 𝑀22 > 𝑀21 > 𝑀11. 

In the Stag Hunt game, two individuals are going on a hunt. Each person can choose either 

to hunt a stag or a hare. If someone decide to hunt a stag, he must have the cooperation of 

other person to succeed and the worth of a stag is more than a hare. In this game, if both 

individuals decide to hunt a hare each gets 𝑀11 points. If one of them decide to hunt a stag 

and the other one decide to hunt a hare, the one who has decided to hunt a hare gets 𝑀12 and 

the other person gets nothing (𝑀21 = 0). Otherwise, they can hunt a stag together and each 

gets 𝑀22. So, the relation between the payoffs is 𝑀22 > 𝑀12 > 𝑀11 > 𝑀21.  

In the evolutionary dynamic games, a game has a dilemma in it if the joint ii strategy with the 

highest payoff (𝑀𝑖𝑖) does not always have a non-negative replicator dynamic [23]. In a 2×2 

game world, only the payoff matrix determines whether a dilemma occurs in a game or not 

[23]. In all the above presented games 𝑀22 > 𝑀11 and the difference in their dilemma potential 

can be paraphrased as 𝐷𝐿1 = 𝑀11 −𝑀21 and 𝐷𝐿2 = 𝑀12 −𝑀22. We can say that if 𝐷𝐿1 ≤ 0 or 

𝐷𝐿2 ≤ 0 is not satisfied, it is confirmed that a certain type of dilemma game arises. Prisoners’ 

dilemma is a particular kind of game, because both conditions are not satisfied at the same 

time in it. Hawk-Dove game has just 𝐷𝐿2 > 0 and Stag-Hunt game has 𝐷𝐿1 > 0. In this study 

we just work with the second type of dilemma which can be seen in chicken type games. 



2-2 payoff calculation 

In every time step, each player plays against all of its immediate neighbors (Moore 

neighborhood). The payoff of each player (cell) is calculated as the sum all the payoffs that a 

player can get in playing with all its neighbors. The payoff matrix which shows the payoff 

that a player can get confronting any other player type is shown in Table 1.  

It is worth mentioning that using the payoff matrix alone in calculating the game’s outcome 

turns the game into a deterministic game, meaning that if we know the arrangement of the 

players in the lattice the result of the game is known with certainty. 

Table 1- payoff matrix for chicken game 

 Hawk Dove 

Hawk (b−C)/2, (b−C)/2 b, 0 

Dove 0, b b/2, b/2 

 

In this table, b is the value of the contested resource, and C is the cost of an escalated fight in 

the Hawk and Dove game. 

2.3 updating rule   

For updating a cell in general, we look for the player with the highest payoff in the 

neighborhood of a cell (center cell) and check if the payoff of that player is higher than the 

payoff of that center cell.  If the payoff is higher, the center cell adopts the strategy of the cell 

with the highest payoff, otherwise it keeps its current strategy. There is a possibility that more 

than one neighbors have the same highest payoff. In this case if there is at least one wining 

neighbors whose strategy is the same as the center cell, the center cell will keep its strategy.  

Otherwise the center cell will adopt the winning strategy.  

2.4 Hiding strategy 

Hiding strategy is the behavior of players who are dishonest in showing their updated 

strategy to their neighbors. In other words, they present an outdated strategy but keep track 

of their real strategy, so their payoff calculations are correct, but their neighbors’ are not. In 

the following, consider the center player as the only dishonest player with time delay of 

telling the truth equal to one period.  Figure 1 shows the hiding strategy process and its effect 

on the final strategies. The numbers in the cells show the payoff for the center player and its 

neighbors, but the payoff of neighbors are calculated based on their 8 neighbors some of 

which are not shown here. The following payoff matrix is used to calculate the payoffs which 

is a Hawk and Dove game with C equal to 10 and b equal to 5. 

  



 

 H D 
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(
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0 2.5
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In figure 1, it can be seen that the strategy of the central player after one step will be Hawk 

but the player displays its previous strategy which is Dove. All other players calculate their 

payoff based on the displayed strategy which is Dove other than the liar who knows its true 

strategy. So, the resulting payoff is what neighbors of a liar perceive and the honest payoff is 

the payoff that a liar calculates based on its true strategy and the perceived payoff information 

that its gets from its neighbors. In the next time step the center player reveals its true strategy 

which is Hawk which is calculated based on the honest payoff lattice and all other players 

reveal their strategy based on the perceived payoff lattice.  We can see that the hiding strategy 

of the center player has changed the destiny of the lattice from all Hawks to more Doves. 

                 

H D H  10 5 17.5  H H H  -12.5 -12.5 -12.5  D D D 

H D H → 10 7.5 10 → H D H → -12.5 0 -12.5 → D H D 

D H D  7.5 10 5  H H H  -12.5 -12.5 -12.5  D D D 

Initial 

State 
 Payoff  

Displayed 

strategy 
 Perceived Payoff  

True 

strategy 

         

        H H H  -12.5 -12.5 -12.5     

        H H H → -12.5 -20 -12.5     

        H H H  -12.5 -12.5 -12.5     

    Displayed 

strategy 
 Perceived Payoff   

         

H D H  10 5 17.5  H H H  -20 -20 -20  H H H 

H D H → 10 7.5 10 → H H H → -20 -20 -20 → H H H 

D H D  7.5 10 5  H H H  -20 -20 -20  H H H 

Initial 

State 
 Payoff  1st step  Payoff  2nd step 

 

Figure 1- illustrating hiding strategy 



In Figure 1, the first row shows the displayed strategy in asynchronous updating, the second 

row shows the true strategy of each player and the third row shows the strategy of the players 

using the regular synchronous updating. 

3. Experimental Results 

There are several factors to take into consideration when analyzing the results of our 

experiments.  In brief, the variables in our models are the size of the lattice (size of population 

of players), distribution of players in the first lattice, payoff matrix, the distribution of 

dishonest players in the lattice, and the time steps to hide a strategy. Changing each of these 

factors can change the final result of the game.  

In our experiments we have considered that after some iterations the population of each 

strategy in the final lattice becomes stable, so we can use the final lattice as a measure for our 

comparisons. Figure 2 shows this phenomenon that for both synchronous and asynchronous 

updating for different values of b, after some time steps the population will converge to an 

equilibrium or quasi-equilibrium state in which the percentage of players with the same 

strategy does not change or oscillates around the converged value. In the figure, the red line 

shows the percentage of hawks for synchronous updating, the blue line shows the percentage 

of players displaying a Hawk strategy in asynchronous updating, while the green line shows 

the true percentage of real Hawks in each time step. 
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Figure 2- percentage of Hawks in the last lattice  

The following lattices in Figure 3 show the arrangement of players in the first and last lattice 

for the graphs in Figure 2.  In these lattices, black cells show players with Hawk strategy and 

white cells show players with Dove strategy. 

 Synchronous updating 
Asynchronous updating 

(displayed strategy) 

Asynchronous updating 

(true strategy) 

b=3 

   



b=5 

   

b=7 

   

Figure 3- Last distribution of players in the lattice in Figure 2 

Figure 3, reveals the obvious conclusion that regardless of the type of updating a payer’s 

strategy, a high b value gives an advantage to the Hawk strategy as expected. 

In order to probe the behavior of our methodology in comparison with synchronous updating 

we have defined several experiments which can lead to more comprehensive analysis. All 

experiments are done in a 50 by 50 lattices updated 50 times in which 50% of the initial 

population of players are Hawks.  The following experiments (sections 3.1 to 3.3) have done 

for 5 different payoff matrices (b=1, 3, 5, 7, 9 and c=-10) and for 20 different random lattices in 

which 30% of players in the first lattice are dishonest. The time step for hiding the true 

strategy is 2.  

3.1 Comparing Percentage of Hawks in the Final Lattice  

This experiment shows the comparison in percentage of Hawks in the final lattice for 

synchronous and asynchronous updating. Table 2 shows the average percentage of Hawks in 

the last lattice using 20 experiments. 

  



Table 2- - Average of percentage of hawks in the last lattice for different values of b 

  1 3 5 7 9 

Synchronous updating 0.04922 0.19522 0.27369 0.73168 1 

Asynchronous 
updating 

(displayed strategy) 
0.01184 0.12838 0.41834 0.82762 1 

Asynchronous 
updating 

(true strategy) 
0.0121 0.12589 0.42632 0.82852 1 

 

We can see in Table 2 that when b is small, the final number of players with hawk strategy is 

slightly lower than when we have dishonest players in the population of players, but as b 

increases, more players have tendency to choose the Hawk strategy when there are players 

who hide their true strategy in the population. Thus, existence of hiding strategy will increase 

the slope of the graph which shows changing in percentage of Hawks with regard to changing 

in b. The following graph (Figure 4) shows this result. While the values of percentage of 

Hawks for asynchronous updating using displayed strategy and true strategy is very close to 

each other, only the true strategy is used in plotting the values. In this graph red line shows 

the percentage of Hawks for synchronous updating while green line shows the percentage of 

true Hawks in asynchronous updating when dishonest players show their true strategy in the 

last lattice.  

 

Figure 4- Average of percentage of hawks in the last lattice for different values of b 
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Figure 4 implies that when there are players who hide their strategy and as b increases there 

will be more Hawks than if they all play synchronously without hiding their strategies.   

3.2 Comparing Average Payoff in the Final Lattice between Synchronous and 

Asynchronous Updating  

This analysis compares the average payoff of all players (in the entire lattice) in the final lattice 

when updating synchronously and asynchronously. In the following graph (Figure 5) red line 

shows the payoff of players for synchronous updating while blue line shows the payoff of 

players in asynchronous updating when dishonest players hide their true strategy and the 

green line shows the payoff of players for asynchronous updating when dishonest players 

show their true strategy in the last lattice.  

 

Figure 5- Average payoff of players in the last lattice using different b values 

The graph shows that for a smaller b, the average payoff of the players in populations with 

dishonest players is more than the payoff in populations with no dishonest players, but as b 

increases the result will change to its opposite (rewarding more “honest” population). 

However, in both populations the average payoff has its highest amount when b is equal to 

C/2, but the changes in asynchronous updating is smoother. 

Comparing the average payoff of asynchronous updating shows that average payoff of 

players is less than what they think they get, while they are not aware of their neighbors’ true 

strategy.  However, these two payoffs are still very close to each other. 

3.3 Comparing Average Individual Payoff in the Final Lattice  

This experiment shows the comparison in average individual payoff of dishonest players in 

the final lattice with average individual payoff of honest players in the same lattice when 

updating asynchronously. In the following graph (Figure 6) the solid blue line shows the 

average payoff of honest players considering the displayed strategy of each player’s 
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neighbors, the solid green line shows the payoff of honest players from the omniscient point 

of view in which the true strategy of neighbors is used in calculation, the dashed blue line 

shows the payoff of dishonest players from their own point of view which is calculated based 

on considering the true strategy of those players but using the displayed strategy of their 

neighbors and the  dashed green line shows the payoff of dishonest players from the 

omniscient point of view calculated based on the true strategy of dishonest player and all its 

neighbors. 

  

Figure 6- Average of payoff for various player types using different b values  

This experiment shows that the average payoff that honest players get in playing in a 

dishonest society is more than the average payoff of liars, and so, lying has not led liars to 

higher payoff.   

3.4 Result of Changing Time Steps for Updating 

In this experiment we start with one random lattice and three payoff matrices (b=3, 5, 7), and 

check the behavior of asynchronous updating when we change time steps for updating from 

1 to 20 with a fixed percentage of liars (30%).  For comparing the behavior, we calculate the 

percentage of hawks in the last lattice. In the following graph (Figure 7) blue line shows the 

percentage of Hawks when dishonest players are hiding their true strategy and green line 

shows the percentage of Hawks when dishonest players show their true strategy in the last 

lattice.  
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Figure 7- Percentage of Hawks using different time steps  

We can see that increase of time delay can highly increase the percentage of hawks in the last 

lattice when b is small, but as b increases, the time step does not play an important role in the 

destiny of the lattice. 

3.5 Result of Changing Percentage of Liars in the Population 

In this experiment we start with one random lattice and three payoff matrices (b=3, 5, 7) and 

check the behavior of asynchronous updating when we change percentage of liars from 5% 

to 95% with a time step of 2, and a constant distribution of liars. For comparing the behavior, 

we calculate the percentage of hawks in the last lattice. In the following graph (Figure 8) blue 

line shows the percentage of Hawks when dishonest players are hiding their true strategy 

and green line shows the percentage of all real Hawks in the last lattice. 
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Figure 8- Percentage of Hawks using different percentage of dishonest players  

 



We can see that increasing the percentage of liars when it is less than 50% can decrease 

percentage of Hawks in the final lattice for small b and increase the percentage of Hawks for 

large b, but when the percentage of liars goes more than 50% it has the reverse effect on the 

population of Hawks in the last lattice. Although the percentage of Hawks grows large in 

some combinations of b and percentage of liars, this value is still less than the percentage of 

Hawks in synchronous updating for small b and more for large b as we saw in Figure 4.   

We can also show that when the number of liars is not large, what honest players get in reality 

is less than what they think they get and as the number of liars increase the honest players’ 

true payoff grows larger than the displayed one, which can be viewed as the result of living 

in a dishonest society. It is also worth to mention that when the percentage of liars is large for 

small b, the displayed payoff of dishonest players is more than the honest players, but the 

true payoff of liars is always less than the true payoff of honest players. 

4. Conclusion 

In this study, we established a new methodology for updating spatial games when there are 

some players who hide their updated strategies from their neighbors for some time steps. 

Using the Hawk and Dove game, a series of numerical simulations shows that this method of 

updating in comparison with common synchronous game can result in higher number of 

Hawks and thus lower average payoff in the quasi-equilibrium state of the games when the 

value of the contested resource in the game (b) is large and lower number of Hawks and 

higher average payoff when b is small. Moreover, the results indicate that the true average 

payoff of honest players is more than the average payoff of dishonest players which shows 

that disingenuously delay of those players cannot result in higher payoff for them although 

it may seem that hiding strategy will lead to a higher payoff for these players. This unintuitive 

result can be the effect of false information that a player gets from its neighbors due to its own 

dishonest behavior. The sensitivity analysis on the number of time steps that a dishonest 

player hides its true strategy shows that the increase in number of time steps to hide the true 

strategy can increase the percentage of Hawks in the last lattice when b is small, but as b 

increase this effect is diminished. The sensitivity analysis on the percentage of dishonest 

players in the society also shows that when b is small, the increase in percentage of liars will 

decrease the percentage of Hawks when percentage of liars is not large and as the percentage 

of liars increase more than 50% the percentage of Hawks will start increasing again. But for 

large b we can see a reverse behavior. 
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