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ABSTRACT 

In this study, an experimental rig representing a deep enclosure was designed to be used to validate 
a CFD-based fire model in predicting the outcome. The model then can be used for further study to 
investigate physical phenomenon within a deep enclosure and to develop an engineering fire 
severity (heat release rate, HRR, vs time vs position [1]) model. Two empirical models (the VU 
model [1] and Kawagoe model [2]) were used along with Fire Dynamics Simulator (FDS) in 
designing the experimental rig. For a specific sized enclosure, when the HRR was prescribed to the 
FDS as input from the VU model, it was accurately re-produced, while the HRR from the Kawagoe 
was used as the input the FDS calculated much lower value. The experimental rig of that specific 
size was then built and various parameters were measured from the tests with liquid fuel fire within 
this experimental rig. The measured HRR was prescribed into the FDS and the FDS could 
reproduce HRR values well. However, the predicted temperature and radiation flux was not as 
good, especially when the flames were near the opening. This may be due to the tendency of flames 
over-projecting outside the opening in FDS simulations. 
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1 INTRODUCTION 

Understanding the behaviour of fire in an enclosure, its effect on structure and the safety of 
occupants in a building is imperative in designing an efficient strategy of safety for the fire 
engineers. The development of a fire in an enclosure of a building not only depends on the quantity 
of the combustible/flammable material and the location of the ignition point in the enclosure, but 
also strongly governed by the geometry of the enclosure. In addition, the variety of the 
combustible/flammable materials as well as the size and shape of the enclosure can critically affect 
the behaviour of fire in the enclosures and can turn it to be more challenging in designing the safety 
plan 

In reality, enclosures in buildings come with various shapes and a wide range of sizes. Many 
enclosures have lengths (L) and widths (W) that are much greater than their height (H), like 
corridors, tunnels or open plan areas in a commercial building (e.g. an office). These are known as 
deep enclosures [1]. A typical layout of a deep enclosure is presented in Figure 1, where the 
symbols W = Width (horizontal dimension parallel to the plane of the ventilation opening), D = 
Depth (horizontal dimension perpendicular to the plane of the ventilation opening), and H = Height 
(vertical dimension from the bottom surface to the top surface). 
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NOMENCLATURE 

Ao                    ventilation area (m2) 
At                   total inside surface area of the enclosure (m2) 
D                     depth of enclosure (m) 
h                      height of opening (m) 
Hc                    heat of combustion of the fuel  (MJ/kg) 
H                     height of enclosure (m) 
HRR, 

.
Q         rate of heat release (kW) 

HRRPUA,      rate of heat release per unit area 

am
.

                   rate of air inflow into a fully  
                        developed fire (kg/s) 
tb                      burnout time (sec) 
W                    width of enclosure (m) 
w                     width of opening (m) 
 
Greek symbols 
ℛ                   predicted values  
𝜓𝜓                   reference values 
𝜉𝜉                    difference between predicted and                                            
reference value 

 

Subscripts 

air         air 

avg        average 

g           gas 

i            number, i= 1, 2… n 

m          mean 

 

 

 

 

 

 

 

 

 

 

Figure 1: Typical layout of a deep enclosure (after Moinuddin and Thomas [1]) 

The oxygen flow rate through an opening will determine the extent of the combustion process and 
heat release rate (HRR) from the fire in the enclosure [4]. Many previous studies show that the 
combustion process in deep enclosures is strongly affected by the flow of air coming across the 
opening (vents) as well as the geometry of the enclosure. For example, the comparison of HRR and 
fire behaviour in a deep enclosure and a wide enclosure with different opening sizes and shapes are 
described in a study by Thomas and Bennetts [5]. In their study, they found that the behaviour of 
fire in two enclosures with different opening sizes (full opening, w=W and partial opening, w<W) 
vary substantially and that the behaviour of fire in a deep enclosure will differ from that in a wide 
enclosure with the same opening geometry. To be specific, the average mass loss rate in a deep 
compartment fire is less than that in a wide enclosure even when the openings are the same size. 
With the similar opening geometry, the average mass loss rate in a deep enclosure is only equal to 
0.35 - 0.56 times that of the wide enclosure, which leads to a difference in fire duration in two 
enclosures.  
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A series of small-scale experiments with various enclosure sizes, locations of fire and geometries of 
opening were carried out in the study of Beji et al. [6]. This study measured the HRR and 
combustion gases under a calorimeter hood as well as the temperature inside the enclosure using 
thermocouple trees at various locations. It is noted that the inflow rate of air and HRR was only 
affected by the shape of opening but not the length of the enclosure. It was also reported that the 
vertical distribution of gas temperatures inside the enclosure was nearly uniform with that for 
height when ventilation-controlled conditions were established. 

One of the benchmark experimental works was conducted by Moinuddin and Thomas [1], who 
investigated the behaviour of fires in deep enclosures. They reported that the fire duration in a deep 
enclosure was significantly affected by the height of the opening. With the same width of opening, 
the fire duration doubles if the height of opening reduces to the half the size. Their work also 
showed that the burning rate was dropped to about 50% when the opening height was reduced to 
half without changing the width of the enclosure. Their work [1] proposed a model named the VU 
model, which can be used for the calculation of the HRR based on the enclosure geometry. They 
also compared the results of the VU model with that of the Conseil International du Batiment (CIB) 
model [1, 7] and the Society of Fire Protection Engineers (SFPE) model [1, 8-9] using experiments 
carried out with different compartment opening sizes. The results indicate that, for deep enclosures, 
where D/H ≥ 2 and D/W ≥ 2, the VU model shows better performance, while in deep but square 
compartments (D/H ≥2 and D/W<2), the CIB model or the SFPE method should be used.  

It is important that models for the calculation of the HRR based on the enclosure geometry be 
verified in full-scale configuration. The establishment of a full-scale test for observing fire 
behaviour in deep enclosures is very expensive and takes a long time. Therefore, consideration 
should be given to using scaling relationships [3] or a Computational Fire Dynamic (CFD) model 
as alternative methods to predict fire behaviour in deep enclosures. However, it is essential to 
design a scaled experimental rig that can be used in predicting full-scale fire behaviour and/or the 
validation of the CFD simulations with predictive capability of fire development in the deep 
enclosure.  

Thomas et al. [10] performed a numerical study using a CFD based model, Fire Dynamic 
Simulator, version 4 (FDS4), and compared the results with the experimental data by Moinuddin 
and Thomas [1]. The results show that the initial movement of the flame-front through the 
enclosure in FDS4 was similar to that found experimentally. However, the predicted timing of 
movement of the flame-front later in the fire, and predicted HRR and gas and steel wall 
temperatures vary greatly from the experimental values. Finally, Thomas et al. [10] concluded that 
FDS4 could not simulate experiments in deep enclosures measuring 8m x 2m x 0.6m. Therefore, 
FDS must be improved and/or the experimental rig redesigned (as the depth, D to height, H ratio of 
D/H=13 which is apparently too high). 

Recently, a new version of FDS (version 6) [11] has been released with improved evaporation and 
combustion sub-models. Therefore this study aims to redesign the experimental rig in which fire 
behaviour can be accurately simulated using FDS6. Once the FDS model is validated against the 
experimental results, the behaviour of fires in the deep enclosure can be understood evidently and 
this can be utilized to develop an appropriate fire severity model for deep enclosures.  

However, in this study the validation is limited to prescribed HRR [12] only. In this approach, 
when the fire size is prescribed in HRR, FDS calculates volatile (gaseous form of the fuel) 
production rate (mass loss rate of the fuel) by dividing the prescribed fire size by heat of 
combustion (Hc) of the fuel. The fuel bed created in FDS then acts as a pump which pumps volatiles 
at that production rate. Then the reaction between oxygen and volatiles are modelled by FDS’ 
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combustion model and HRR is re-calculated (in other word the prescribed HRR is readjusted based 
on oxygen availability) and the resulting transport of heat and combustion products is also 
simulated. It is aimed to see firstly, whether the combustion model can reproduce the prescribed 
HRR which is obtained from experiment with the same oxygen availability and secondly, with 
reasonable reproduction of the HRR, how well FDS can calculate solid surface temperature, flame 
temperature and radiation flux.  

 
2  RIG DESIGNING TECHNIQUE 

2.1  Concept of rig design 

The concept of rig designing is a trial and error method. The steps are given below: 

Step 1: Nomination of size and shape of a “pure” deep enclosure, where D/H ≥ 2 and D/W ≥ 2 or 
for one which is deep but square enclosures (D/H ≥2 and D/W<2) [1]. 

Step 2: Calculation of HRR using empirical models, such as the Kawagoe equation [2] and the VU 
model [1].  

Step 3: Prescription of this calculated HRR into FDS6 to examine the recalculation of HRR by FDS 
as discussed above. 

Step 4: If the prescribed and FDS calculated HRRs are not the same, changing the enclosure 
dimensions (step 1) and repeating redo steps 2 and 3. This process is continued until the prescribed 
and the predicted HRRs are nominally same.  

2.2  Detailed Technique 

In this study, based on [10], the depth of the experimental rig is considered to reduce so that the 
depth to height ratio is halved from D/H=13. Therefore the depth was set as 4m. As the variation of 
many parameters can be too complex, the width of the rig is fixed as 2m thereby D/W ≥ 2 condition 
is fulfilled. The parameter height (H) is needed to vary by maintaining D/H ≥ 2 condition. Three 
different heights are chosen: 0.6m (D/H~6.67), 0.8m (D/H=5) and 1.0m (D/H=4) to determine an 
appropriate height to obtain reproducible HRR data from FDS simulation, when the HRR is 
prescribed. 

The FDS6 simulations were conducted for a fire in a deep enclosure with a depth of 4 m, width of 2 
m, and for three different heights of 0.6 m, 0.8 m and 1.0 m with the input HRR from the Kawagoe 
equation and the VU model. After the completion of the simulation, the output HRR, was examined 
and used to compare with the results from the Kawagoe equation and the VU model. Based on the 
comparison of the output HRR from FDS and the input HRR obtained from the Kawagoe equation 
and the VU model, the decision of modifying the experimental rig were made for the next step to 
carry out the experiments. 

 2.3  Empirical Models 

Two empirical models, the Kawagoe equation and the VU model, were used to calculate the HRR 
of a fire in an enclosure based on the entrained flow of air through the opening. The Kawagoe 
equation was used to calculate the HRR from a fire based on only the geometry of the opening, 
while the VU model not only considered the opening geometry but also investigated the influence 
of enclosure dimensions. 
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The Kawagoe Equation 
 

The Kawagoe model was developed by Kawagoe [2] based on a series of experimental tests 
conducted in the 1950s with full scale rooms as well as model rooms of various constructions. 
Kawagoe proposed a relationship between the pyrolysis rate and the ventilation through an 
opening. He showed that the pyrolysis rate not only depends on the ventilation area but also on the 
height of the ventilation opening [13]. 

From those tests, Kawagoe identified a new term, named the ‘ventilation factor’ 𝐴𝐴𝑜𝑜√ℎ, where Ao is 
the ventilation area and h is the height of the opening. Based on the ventilation factor, the rate of air 
inflow (ma) into a fully developed fire in an enclosure is identified as follows [14]: 

hAm oa 5.0
.

=    (kg/sec)   ……. (1) 

Based on the rate of air inflow, the stoichiometric rate of heat release (
.

Q ) is calculated as follows: 

aairc mHQ
.

,

.
.=   (kW)………(2) 

where aircH ,  (heat released when one kg of air is consumed in combustion) can be taken as 3,000 
kJ/kg [14]. Therefore, the HRR from a fully developed fire in an enclosure is calculated as: 

hAQ o.1500
.
=  (kW) ……. (3) 

This is the Kawagoe equation which is used to calculate the input HRR for the CFD simulations. 
 
The VU Model 
 
Traditionally, the average HRR of a fire in an enclosure is calculated based on the ventilation 
factor, 𝐴𝐴𝑜𝑜√ℎ, or its derivative form  tAhA /0  (with At =total inside surface area of the enclosure), 
which consider primarily the shape and size of the opening [1]. However, the dimensions of the 
enclosure also have effect on the HRR. Therefore a new model was proposed in their study to 
obtain the HRR based on all of the geometrical parameters of the enclosure with equal emphasis on 
each parameter. Based on the analysis of various series of experimental results, they developed a 
model, named as the VU model, for predicting the HRR. The equation of the model is as follows, 

HRRavg=1.161×W0.726×D−0.516×H0.766×w0.521×h1.071  ……..(4) 

where, w and h are the width and height of the opening, respectively.  They emphasized that this 
model is ideal for applying in deep enclosures (where D/H ≥ 2 and D/W ≥ 2) and it can also work 
quite well for enclosures where D/H ≥ 2 and D/W = 1 after comparison with the experimental 
results from CIB tests [15] by eight laboratories in several countries. 

For all methods, the duration of the fire or burnout time can be calculated using the following 
equation [1]: 

tb = ( )
HRR

 H x (kg) fuel ofamount  Load Fuel c  (sec) ………. (5) 

2.4  CFD based fire model 

The CFD based fire model which is used in this study for modelling fires in a deep enclosure is 
FDS version 6. The FDS model was developed by the National Institute of Standard and 
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Technology (NIST). FDS goes along with Smokeview, a post-processing software tool which is 
used to observe the fire behaviour, smoke movement and other simulation data calculated from 
FDS. FDS uses a form of Navier-Stokes equations to study low speed, thermally-driven flow with 
an emphasis on smoke and heat transport from fires [12].  

Two principal methods of simulating fires using FDS are: simulated fire growth and prescribed fire 
size. In prescribed fire size approach– a fire size is prescribed, usually as a vent with a HRR per 
unit area (HRRPUA) is specified (which can be varied with time using a ramp function) with 
specified combustion parameters (including Hc). All other surfaces are specified as non-
combustible. The rest is discussed in Section 1. In simulated fire growth approach, FDS calculates 
volatiles (gas phase fuel) production rate through simulation of pyrolysis (for solid fuel) or 
evaporation (for liquid fuel) process.  In this study, only the prescribed fire size method is used.  

 

Figure 2. Computational domain with different fuel tray locations in the FDS  
Computational domain with two trays placed at four different locations is shown in Figure 2. The 
enclosure is modelled as constructed of steel. A large domain outside enclosure is also included to 
capture burning outside the enclosure. All of the preliminary simulations for rig designing purpose 
were run with a grid size of 50 mm, which provided grid converged solutions for prescribed fires in 
the previous studies of [17-18]. However, a grid convergence study was later conducted for 
validation of the results against the experimental results and is presented in Section 4.2 . The details 
thermos-physical, pyrolysis and combustion parameters used for the simulation are presented in 
Table 1. 
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Table 1 Thermo-physical, pyrolysis and combustion parameters for CFD based fire modelling 

Property Ethanol Steel (from [16]) 
Thermal conductivity 
(w/m.k) 

T= 20., f=0.168 / 
T=225., f=0.2   / 

T= 20, f=50. /     
T=677, f=30.6 / 

Specific heat (kj/kg.k) 
T= 20., f=1.1   / 
T=60., f=1.23   / 
T=225., f=1.7/ 

T= 20., f=0.46/    
T=377., f=0.60/   
T=677., f=0.91/ 

Density (kg/m3) 790 7850 
Heat of combustion (kJ/kg) 25930  
Soot yield 0.001  

 

3  IMPLEMENTION OF RIG DESIGNING TECHNIQUE 

Two trays of fuel measuring  0.9 m × 0.9 m × 0.5 m  in size were considered inside the enclosure. 
Each fuel tray was considered to be filled with 4 kg of ethanol. Based on two empirical models, as 
discussed in section 2.3, the HRR and burnout times were calculated for dimension of each 
enclosure and presented in Table 2.  

Table 2. Calculated HRR and burnout times by empirical models for dimension of each enclosure  

Case Enclosure 
Dimension 

(D × W × H) 

Scaling 
Parameters 

Kawagoe VU model 
HRR 
(kW) 

Burnout 
time (sec) 

HRR 
(kW) 

Burnout 
time (sec) 

Case 1 4 m × 2 m × 0.6 m 
 

D/H~6.67 and 
D/W=2 

1394 150 527.3 393 

Case 1 4 m × 2 m × 0.8 m 
 

D/H=5 and 
D/W=2 

2147 97 895 232 

Case 1 4 m × 2 m × 1 m 
 

D/H=4 and 
D/W=2 

3000 69 1347.6 154 

The results of the HRR from the FDS simulations are presented in Figure 3. It can be seen in Figure 
3 (a-c) that there is a large difference in HRRs between the FDS simulation and the Kawagoe 
model. The HRRs from the FDS simulations were much less than that calculated from the Kawagoe 
equation for all different fuel tray locations and for all enclosure dimensions. This is particularly 
apparent during the first 60 seconds, when FDS6 was unable to reproduce the HRR, though the 
HRR was prescribed from the Kawagoe model. It appears that fire could not entrain enough 
air/oxygen for combustion reaction with the amount of fuel gas ejected from the vent. It also 
appears that for larger opening and enclosure height, the Kawagoe model predicts greater 
unrealistic fire. It is also observed from the mass fraction of the unburnt fuel shown in Figure 4. 

FDS results when the HRRs are prescribed based on the VU model are presented Figure 3 (d-f). 
The differences between the output HRR and the calculations from VU the model are found to be 
insignificant in both simulations except first 60 secs or so. These results indicate that FDS 6 can 
predict the HRR well when the prescribed HRR is obtained using the VU model with the output 
HRR from the FDS tending to be equal to the input value (527kW) in the case of the 0.6m of rig 
height. Similarly, the output HRRs are close to the input values of 895 kW and1347kW (obtained 
from VU model) for the case of 0.8m and 1.0 m rig heights, respectively. In addition, the output 
values from the back tray position, as shown in Figure 3 (d-f), were more stable and closer to the 
input HRRs than the values obtained from the simulations for other locations of the tray. 
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Figure 3. Comparison of HRR vs time from FDS and empirical models. 

As FDS has predicted the output value very well for 0.6m, 0.8m and 1.0m enclosure heights, 
anyone of these can be used as the height of enclosure to build the experimental rig. In this work 
the dimensions of the rig was selected as 4 m (length) × 2 m (width) ×  0.6 m (height). 
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(a) After 20 secs (b) After 40 sec 

Figure 4 (a) mass fraction of the unburnt gaseous fuel ejected from the vent are filling up behind 
the flame front via recirculation and (b) larger space is filled up by gas with high  mass fraction 

ethanol pushing the flame front towards the opening. 

4  EXPERIMENTAL PROCEDURE 

4.1 Rebuilding the rig 
A deep enclosure was built in the Victoria University facility on the Werribee Campus by 
Moinuddin and Thomas [1] and was used in their works. The enclosure was 8.0m long, 2.0m wide 
and 0.6m high (D/W of 4 and D/H of ∼13) and it was built by using 1.3mm thick sheet steel. 

To establish the experimental setup of this research, the original rig was modified by cutting it in 
half of the depth. Given that it was built with 1.3 mm thick sheet steel, it is very hard to modify the 
geometry of the rig. This work could only be done by using both an oxyacetylene welding cutter 
and triangle grinder. After the original rig was cut, the surface at the side of the cutting was very 
sharp and had to be filed to make it flat.  

   
Figure 5. The experimental rig after modification of the original enclosure (window locations included) 

The dimensions of the modified enclosure was 4 m long (D), 2 m width (W) and 0.6 m high (H). 
One side (2.0 m × 0.6 m) of the enclosure was fully opened for ventilation. All other sides were 
closed by the steel walls. There were also two glass windows on the enclosure wall which were 
used for observation of the fire behavior in the rig. The windows were constructed from fire-
resistant glass and one was placed at the back side of the enclosure while the other was on one of 
the side walls and close to the opening side. The geometry of the enclosure and location of the 
windows are shown in Figure 5. 
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There were eight trays of fuel with similar geometry located inside the experimental rig. The size of 
each tray was 0.90 m × 0.90 m × 0.05 m and was constructed of 3 mm thick steel sheet. These 
eight trays were placed in the rig in 2 rows and 4 columns, and were numbered from one (1) to 
eight (8) with tray 7 and tray 8 closest to the opening side. The location of the fuel trays is shown in 
Figure 6.  Each tray was filled with 4L commercial grade methylated spirits with 97% of ethanol 
and 3% of water.  

 
Figure 6. Location of fuel trays and location of the two radiometers in the experimental enclosure. 

(light receiving face of radiometers is upward shown with arrows). 
 

4.2 Instrumentations  
1.5mm diameter type K-thermocouples were used for the measurement of temperature at different 
locations during the fire test. This type of thermocouple was used in these experiments because of 
their durability and robustness [18]. For each tray of fuel, one thermocouple was welded to the 
inside steel roof to measure inside surface temperature while three other thermocouples were used 
to collect information on gas temperatures. The distribution of these four thermocouples can be 
seen in elevation view in Figure 7. 

 
Figure 7. Locations of thermocouples from the elevation view. 

Two radiometers were used during the experiments. Radiometers were cooled by a water system 
with a pump, tubing and water reservoir. These were Gordon-type radiometers and were covered by 
a sapphire window in order to eliminate convective heat flux. Both of the radiometers had a view 
angle of 1500. One of them was placed at the point crossed by the centerline of the enclosure with 
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the centerline of tray row number 1 (tray 1 and tray 2), while the other was located on the centerline 
between tray 7 and tray 8. The locations of the radiometers are shown in Figure 6 where light 
receiving face of radiometers is upward shown with arrows.  

During the test, each tray was connected to a weight scale through a small hole on the floor of the 
enclosure without any contact with the enclosure wall and floor. Therefore, the mass of fuel could 
be measured during the fire test. 

An oxygen (O2) calorimeter was located above the enclosure (see Figures 4 and 5) at the opening 
side to collect the combustion products from the enclosure for calculation of the HRR. To calibrate 
the hood, one tray of known volume of methylated spirits was placed under the hood and ignited. 
The calibration factor of the oxygen system was determined based on the total heat of the known 
volume of fuel and the heat of the hood. The oxygen, carbon dioxide (CO2) and carbon monoxide 
(CO) analyzer in the O2 consumption system were set up as zero with pure nitrogen gas. Then the 
calorimeter was calibrated at approximately 80% with a gas mixture (known as span or calibration 
gas) to the scaled range of 0–25%, 0–10% and 0–1% for O2, CO2 and CO, respectively. 

A system comprises of 8-channel data acquisition module was used to collect data during the 
experiment, such as the HRR, temperature, and mass loss rate. This system was conducted from 12 
modules, with 7 modules connected to thermocouples for temperature measurement, one module 
for the load cell system to measure the mass of fuel trays. One module was connected to the 
radiometer and another for hood instrumentation (for gas analyzers and different pressure). The rest 
of the modules were used to connect all of the components of the system together, as well as to 
connect the system with a personal computer via serial communications. Data from the experiments 
was recorded using a software developed in-house based on a Microsoft Excel application. 
 

 
Figure 8. HRR repeatability during experiments. Dashed line represents jumping of flame (ignition) 

to the next row of trays. 

4 EXPERIMENTAL AND NUMERICAL RESULTS  
 
4.1 Experimental results. 
Two experiments were conducted at CESARE using the rig. Both experiments had the same 
amount of fuel and same fuel and enclosure configuration. The HRR vs time profiles from these 
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tests are presented in Figure 8. Excellent repeatability of the test result is observed in this figure. 
Four stages of burning process correspond to the burning of fuel in each row of the trays can be 
identified in the figure and this was also observed during the experiments. The ignition and burning 
of the fuel, and location of the flame in different trays were observed in the experiments and are 
presented in Table 3. The values of Table 3 were also verified from video observation and HRR 
curves presented in Figure 8 (indicated by dashed lines). Some related photos, captured during the 
tests, are also presented in Figure 9. 

 

   
(a) Combustion at tray 7-8. (b) Combustion at tray 5-6 (c) Combustion at tray 1-2 

Figure 9. Burning behaviour during tests. 

Table 3. Visual observation of flame movement 

Location of flame Time (seconds) 

Ignition at row 4 (tray 7,8) 0 
Beginning at row 3 (tray 5,6) 285 
Beginning at row 2 (tray 3,4) 545 
Beginning at row 1 (tray 1,2) 795 
Burn out 1060 

 
4.2 Numerical results. 
The HRRs of fires obtained from the experiments were prescribed into FDS 6 to see how well FDS 
reproduces prescribed input HRRs. In the input file, the description of fire was created to be similar 
to the experiment.  

Selection of Computational Grid 

To make quantitative comparison between experimental and numerical result, it is essential to 
select the simulation which is grid converged. In this study, simulations were conducted using 50 
mm as well as 25mm and 12.5mm grid sizes. The use of 25 and 12.5 mm grids for a domain of 4 
m × 2 m × 0.6 m in size demand a huge computational resource for simulation. Therefore, a 
supercomputer was used to meet the computational requirements.  For the same reason simulation 
with 12.5mm grid was conducted for up to 300 secs.  

The sensitivity results for the three different sizes of grid are presented in Figure 10. The prescribed 
HRR obtained from the experiment are also plotted in the same graph (Figure 10a) to see whether 
FDS can reproduce the data. It is observed that the differences among the data of HRRs obtained by 
using three different sizes of grid are not significant. However, as the HRR was prescribed in the 
simulation, it is not surprising that the model would produce similar results with minor variation. 
Therefore, a different parameter, which is not prescribed, is selected to see the grid convergence of 
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the simulation. In this case, the gas temperature of the front row tray is compared and presented in 
Figure 10(b). It is observed that the grid convergence is obtained with 25 mm size of grid as the 
results of 25 and 12.5 mm nominally converged.  

  
(a) HRR (b) Gas Temperature at ‘Under location’ of tray 7-8 

Figure 10. HRR and temperature from the experiment and simulation. 

A statistical analysis is conducted to assess the quantitative difference of the data compared to a 
reference value. Here, we have calculated quantitative difference of the data produced with 25 mm 
and 50 mm grid and then quantitative difference of the data produced with 12.5 mm and 25 mm 
grid. The method by Ierardi et al. [19] is adopted to calculate the error analysis. According to the 
approach, quantitative difference for an individual varaible can be measured by,  

𝜉𝜉 =
(ℛ − 𝜓𝜓)

𝜓𝜓
                                                            (6)  

Where, ℛ and 𝜓𝜓 are predicted and the reference values, respectively. The mean quantitative 
difference can be calculated by the absolute values of error in the individual points 𝑛𝑛.  

𝜉𝜉𝑚𝑚 =
∑ ��ℛ − 𝜓𝜓

𝜓𝜓 ��𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                      (7) 

The mean quantitative difference of among FDS predictions has been calculated and presented in 
Table 4. From this quantitative difference analysis, it has been decided that in this study, 25mm 
grid size simulation results would be used. 

Table 4: Analysis of mean relative error of the FDS prediction. 
 

Variables 
Mean quanative difference (%) between data Refered figure 

number 25mm grid vs 50mm grid 12.5mm grid vs 25mm grid 

HRR 4.9 1.7 Figure 10(a) 

Gas temperature_under_ tray 7-8 14.2 8.6 Figure 10(b) 
 

Reproducing Experimental HRR 
The FDS result of HRR, obtained for 25 mm grid size, are compared with that of the experiment 
and presented in Figure 11. This figure indicates that the simulation results of HRR are quite close 
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to the experimental data for the whole combustion process. There is a short period at the beginning 
where the FDS results were less than those in the experiment. During this period, the HRR from the 
FDS could not reach the peak of HRR. 

 

 
Figure 11. Comparison of HRR obtained from the experiment and simulation. 

 

It is likely that this difference was due to the flame location during the first stage of burning of the 
fuel, which is also shown in Figure 12. As seen in Figure 12(b), at 200 seconds the burning process 
took place at the lips of trays 7 and 8. However, in the experiment, the flame was above the trays, 
largely inside the enclosure. The flame front in the simulation deprives some part of the ejected fuel 
from the trays 7 and 8 of oxygen. 

 
(a) Location of the flame in the experiment 

 
(b) Location of the flame in the simulation 

Figure 12. Location of the flame at 200 seconds in the experiment and simulation. 

A previous study with an enclosure of 8m x 2m x 0.6m, Thomas et al [10] stated that in the 
simulation, the flame front tended to stay for much longer at the opening than in the experiments. 
By contrast, in this study, flame movement was observed similar in both experiment and simulation 
as shown in Figures 9 and 13, respectively. However, the flame front in the simulation moved back 
slightly later (5-10 sec) than that in the experiment. 
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(a) 294 sec (b) 551 sec (c) 799 sec 

Figure 13. The flame location during simulation. 
 

4.3 Comparison of Experimental and Numerical results- other parameters 
The gas temperatures were measured above each row of the trays in the experiment and predicted 
in the simulation. The comparison of temperature between them is presented in Figure 14. It is to 
be noted that flames over trays in the same row is not always symmetric due to its turbulent nature. 
Therefore, temperatures at the corresponding locations for trays 7 & 8, 5 & 6, 3 & 4 and 1 & 2 are 
averaged. There were four thermocouples above each tray and their locations are shown in Figure 
7. Similarly, the radiation fluxes emitted from the fire were measured in the experiment and 
compared with the prediction of that of the simulation. The results are shown in Figure 16. The 
details of the comparison are described below.   

Comparison of gas temperatures 
Generally, the simulation results deviated from the experimental results while the fire was located 
above trays 7 and 8 except first 45 sec. During this stage the temperature from simulation was 
much lower than that of  the experiment for all of  the locations of the thermocouple. It is likely that 
this difference was the result of (1) the difference in HRR explained in previous section and (2) the 
flame location during the first stage, which is shown in Figure 12. As seen in Figure 12(b), at 200 
seconds the burning process happened above row 4 (tray 7 and 8). However, in the experiment, the 
flame made direct contact with the thermocouples above tray 7 and 8 while in the simulation, at the 
same timeline moment, the flame stayed at the lips of the trays and did not make contact with the 
thermocouples. Interestingly, after 325 seconds, the moment the flame in the simulation moved 
back to the next row (row 3 with trays 5 and 6, as seen in Figure 6), the simulation results for all 
thermocouple locations (especially under and middle locations) showed a much lower deviation 
from the experimental data.  

For under and middle locations above trays 5 and 6, FDS provided more close results with the 
experimental measurements after about 575 seconds as shown in Figure 14 (d) and (e). This was 
the moment the flame passed tray 5 and 6 and the flame front moved back to trays 3 and 4. During 
the period from 0 to 575 seconds, the difference between the simulation and experimental results 
was significant, especially the gas temperature. This was ~250oC up to 325 sec and ~100oC 
between 325 and 575 sec. This might be the result of the flame location and the lack of contact 
between the flame and the thermocouples in the simulation, as was apparent for the comparison of 
temperatures in row 4 (tray 7 and 8). 

It is likely that, the flame location and movement had the same influence on the temperature at 
different locations above row 2 (tray 3 and 4) as they did at row 3 (tray 5, 6) and row 4 (tray 7, 8). 
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After the flame front moved back beyond row 2, results for thermocouple locations above this row 
were well predicted by FDS. However, prior to flame reaching row 2 the prediction was also good. 

Interestingly, the temperature above row 1 (tray 1 and tray 2) did not follow the same pattern as the 
previous row of trays. The temperature above row 1 (tray 1 and 2) was quite close to that in the 
experiment, even during the period in which combustion took place above this row. As illustrated 
in Figure 13(c), the flame at 799 seconds in the simulation tended to be in direct contact with the 
thermocouples above the row 1 fuel tray. This behaviour explains why the simulation result of 
temperature data matched well with the experimental measurement, as shown in Figure 14 (d). 

   
(a) Tray 7-8 under (b) Tray 7-8 middle (c) Tray 7-8 low 

   
(d) Tray 5-6 under (e) Tray 5-6 middle (f) Tray 5-6 low 

   
(g) Tray 3-4 under (h) Tray 3-4 middle (i) Tray 3-4 low 

   
(j) Tray 1-2 under (k) Tray 1-2 middle (l) Tray 1-2 low 

Figure 14. Comparison of gas temperatures. 

Overall it is observed that temperature simulation above the tray is better predicted, at the front half 
of the enclosure, when the flame goes past the corresponding trays. On the other hand, for the back 
half of the enclosure, prior to the flame reaching the corresponding trays, the prediction was better. 
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Exceptionally temperatures above trays 1 and 2 are well matched throughout the simulation.  

Comparison of surface temperatures 
Figure 15 presents comparison of surface temperatures over four trays. It is to be noted that to 
predict the surface temperature, very fine computational grid is required to resolve thermal 
boundary layer. This is out of the scope of this study. Despite using relatively coarse grid near the 
solid surface Figure 15 shows that peak temperatures obtained in both experimental and numerical 
study are quite close. 

 
(a) Comparison for tray 7 and 8 

 
(b) Comparison for tray 5 and 6 

 
(c) Comparison for tray 3 and 4 

 
(d) Comparison for tray 1 and 2 

Figure 15. Comparison of surface temperatures. 
 

 
Figure 16. Heat flux rate at radiometer 2. To reduce the noise from the FDS data, data from three 

instances are averaged in 3 per. Mov. Avg. (FDS) profile. 
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Comparison of radiation flux 
Figure 6 shows the locations of radiometers for collecting data of heat flux rate from the flame in 
both experiment and simulation. However, the data from radiometer 1 might be unreasonable due 
to soot covering the surface of this radiometer. Therefore, only data from radiometer 2, which was 
located at the opening side of the compartment, is presented in Figure 16. 

It can be seen from Figure 16 that the heat flux from the simulation were quite closed to 
experimental data except the first period of combustion process up to about 285 seconds when the 
flame was protruding out as observed in Figure 12(b). 

7 CONCLUSION 

In this study, both scaled tests and numerical simulation were carried out to find out the deep rig 
dimension that could be used to simulate fire behavior using CFD based fire model such as FDS 6. 
The main conclusions and findings of this study can be summarized as below: 

Redesigning of an experimental rig based on empirical models (VU model and Kawagoe equation) 
as well as FDS was carried out, so that tests with the designed rig can be realistically simulated by 
FDS. However, the HRR determined by the Kawagoe model could not be reproduced using the 
FDS model when that HRR was prescribed as input, while the HRR determined by the VU model 
was well reproduced by the simulation with FDS for a deep enclosure. 

The HRR obtained through the experiments was prescribed into FDS and observed that it could 
reasonably reproduce the HRR. FDS’ combustion model (reaction between gaseous fuel and 
oxygen) works well in this configuration when evaporation process is not modelled, rather 
prescribed via HRR. 

Temperature (surface and air) is an outcome of HRR. When the HRR from the experiments was 
prescribed into the FDS, the temperature prediction by the FDS at a specific thermocouple could be 
reasonably predicted after the flame front had crossed or prior to reaching that thermocouple, 
depending on the thermocouple location. Otherwise, FDS was unable to predict the temperature 
well at a specific thermocouple location when the flame front stayed at the lips of the 
corresponding fuel trays. Radiation flux was also well predicted by FDS except for the first period 
of combustion up to 285 seconds when a major part of the heat released outside the enclosure. 
In this study, a liquid evaporation model was not tested. Experimental results could be used for 
validation of the evaporation model without prescribed HRR. If the evaporation model is well 
validated, FDS could be used for developing improvements in fire severity models, such as the VU 
model. 
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