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We consider an extension of the Standard Model with the global symmetry-breaking pattern
SOð5Þ=SOð4Þ, where the Higgs boson arises as a pseudo-Nambu-Goldstone boson. The scalar content
of the theory consists of a Standard-Model-like Higgs field and an extra real scalar field. The flavor sector
of the model is extended by two right-handed neutrinos compatible with the observed light-neutrino
phenomenology, and we find that the correct vacuum alignment determines the mass of the heavier neutrino
eigenstate to be around 80 TeV. The new singlet-scalar state generates dynamically a Majorana mass term
for the heavy-neutrino states. We show how the model leads to the correct baryon asymmetry of the
Universe via leptogenesis in the case of two degenerate or hierarchical heavy neutrinos.
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I. INTRODUCTION

After the discovery of the Higgs boson and thereby
the verification of the Standard-Model-like electroweak
symmetry-breaking (EWSB) pattern to very high accuracy,
the neutrino sector provides one of the most prominent
sources for phenomenology beyond the Standard Model
(bSM). In addition to not explaining the neutrino mass and
mixing patterns, the Standard Model (SM) does not contain
fields which would act as dark matter (DM), and it does not
allow for dynamical explanation of the baryon asymmetry
of the Universe (BAU).
These issues provide motivation to explore extensions of

the SM even if the present collider experiments have not
revealed any direct signals of bSM physics. The absence of
direct signals must be interpreted to imply that the new
physics occurs either at scales beyond the current exper-
imental reach and/or is very weakly coupled with the SM.
Here we contemplate the idea that the EWSB and

neutrino mass generation are connected via a minimal
extension of the SM scalar sector, and the neutrino sector,
in turn, could mend the SM shortcomings in explaining the
BAU and DM abundance. In this paper, we focus on the
details of the BAU and comment on the possible routes
towards DM model building.
An attractive explanation of the Majorana nature of

massive neutrinos is provided by the seesaw mechanism
[1–6], which not only gives an explanation of the smallness
of neutrino masses via heavier fermionic singlets, but

also gives an explanation to the observed BAU through
leptogenesis [7,8].
Connecting the neutrino mass generation to EWSB and

the details of flavor physics likely requires a larger scalar
sector than the SM one. The compatibility with the
spectrum observed at the LHC can be achieved in models
predicting the Higgs as a pseudo-Nambu-Goldstone boson
(pNGB); see e.g. Ref. [9] for a review of this type of
model. The Higgs sector can be either elementary or
composite. While the composite case is attractive as it
allows us to address the hierarchy problem, it lacks
simple dynamics to produce the SM-fermion masses.
The elementary case, on the other hand, provides a
calculable framework to assess the observed symmetry-
breaking pattern and low-energy spectrum [10], and
facilitates an effective description of flavor physics in
terms of Yukawa interactions [11] as in the SM. We will
follow the latter route in this paper.
We will investigate the SOð5Þ → SOð4Þ pattern of global

symmetry breaking as a renormalizable field theory simul-
taneously protecting the Higgs mass and reproducing a
Majorana neutrino mass term. The coset of the global
symmetry-breaking pattern, SOð5Þ=SOð4Þ, allows the pres-
ence of a SM scalar doublet using the fundamental
representation for the scalar sector. Explicitly, the funda-
mental of SO(5) decomposes as 5 ¼ 1 ⊕ ð2; 2Þ, and there-
fore a scalar singlet appears in the model. The SM
extension featuring a scalar singlet (also dubbed SSM)
is a common renormalizable augmentation of the Higgs
sector and has been scrutinized in the literature; see e.g.
Refs. [12–20]. Our model differs essentially from these
models, since in our case the singlet exists as a part of a
larger multiplet due to a larger global symmetry.
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We extend the SOð5Þ=SOð4Þmodel by adding two right-
handed (RH) neutrinos whose interaction and mixing
patterns are chosen to conform with experimental results.
We will find that the presence of these fields will orient
the vacuum so that a proper EWSB pattern ensues. This,
together with properties of the vacuum, provides nontrivial
constraints on the model parameters. Finally, the new
matter fields will allow observed BAU to be generated
via leptogenesis. The details of the mechanism are sensitive
to whether the masses of the RH neutrinos are hierarchical
or almost degenerate.
We find that the observed BAU, together with a correct

pattern of EW symmetry breaking with a spectrum com-
patible with observations, is achieved in the following
scenario: the SO(5) symmetry breaks at a scale of the order
of v ∼ 104 TeV, and the heaviest neutrino mass eigenstate
has a mass around 80 TeV. The Higgs boson with mass
125 GeV is mostly a Goldstone-like state, and the heavier
singlet state in the SO(5) multiplet is assumed to be lighter
than the heaviest RH neutrino. This forces the scalar self-
coupling to be tiny, of order 10−8. Consequently, the
heavier scalar state has mass m2 ∼ λv2 ∼Oð1 TeV2Þ,
and the trilinear Higgs coupling will be of the order of
Oð10−4 TeVÞ.
The paper is organized as follows. In Sec. II we outline

the details of the model. In Sec. III we analyze vacuum
structure and how this constrains the parameter space of
the model. In Sec. IV we discuss how the observed BAU
can be produced in this model. We analyze quantitatively
the cases of degenerate or hierarchical neutrinos. In Sec. V
we present our conclusions and outlook for further work.

II. THE MODEL

In this work we consider the minimal extension of the
SM scalar sector incorporating an elementary pNGBHiggs.
We adopt a tree-level scalar potential that features a global
symmetry-breaking pattern SOð5Þ → SOð4Þ. The scalar
degrees of freedom are conveniently parametrized by a
multiplet Σ describing a linear σ-model based on the coset
SOð5Þ=SOð4Þ. We adopt the following notation,

Σ ¼ ðσ;Π1;Π2;Π3;Π4Þ; ð1Þ

where σ is a massive scalar degree of freedom and Πi,
i ¼ 1;…; 4 are the four Nambu-Goldstone (NGB) fields
associated with the broken generators of SO(5). The
general SO(5)-symmetric potential is given by

V ¼ 1

2
m2

ΣΣTΣþ λ

4!
ðΣTΣÞ2: ð2Þ

The electroweak (EW) gauge group, SUð2ÞL × Uð1ÞY , is
embedded in SOð5Þ such that the three broken generators
of SUð2ÞL are those associated with the three NGB’s Πi,
i ¼ 1;…; 3. The field Σ contains an EW Higgs doublet, H,

and another real singlet, φ, which are the EW interaction
eigenstates. The relevant physical mass eigenstates will in
general be mixtures of the neutral component of H and φ
such that the Higgs is mostly the NGB-like state, while the
heavier singlet neutral scalar is mostly the σ-like eigenstate.
Explicitly,

H ¼ 1ffiffiffi
2

p
�Π1 þ iΠ2

hþ iΠ3

�
; ð3Þ

and in the unitary gauge we can write the potential of Eq. (2)
in terms of the neutral components of the EW eigenstates,
h ¼ cos θΠ4 þ sin θσ and φ ¼ − sin θΠ4 þ cos θσ,

V0 ¼
m2

H

2
h2 þm2

φ

2
φ2 þ 1

4!
λHh4 þ

λφ
4!

φ4 þ λHφ

12
h2φ2; ð4Þ

withm2
Hðμ0Þ¼m2

φðμ0Þ≡m2
Σ, λHðμ0Þ¼λφðμ0Þ¼λHφðμ0Þ≡λ,

where the scale μ0 is of the order of the symmetry-breaking
scale and is determined by renormalization conditions.1

The radiative symmetry-breaking dynamics implies

hhi ¼ v sin θ≡ vw ¼ 246 GeV; ð5Þ

and

hφi ¼ v cos θ: ð6Þ

Radiative corrections single out a value for the angle θ, and
the large hierarchy vw ≪ v is reflected in sin θ ≪ 1.
Furthermore, we introduce two RH Majorana neutrinos.

We couple them via Yukawa interactions to the EW-singlet
scalar state, φ, such that the Majorana masses for the RH
neutrinos are induced via the symmetry breaking. However,
a generic Majorana mass term for RH neutrinos is allowed
by gauge interactions, and hence the most generic
Lagrangian we can write is

−Lν ¼ YijNRiðL ~HÞj þ
1

2
ðNRÞciMijNRj

þ 1

2
αijðNRÞciNRjφþ H:c:

¼ MDNRνL þ 1

2
ðNRÞcMNNR þ H:c: ð7Þ

where

MD ¼ vwY and MN ¼ Mþ hφiα: ð8Þ

We note that MN must be symmetric due to the Majorana
condition ðNRÞc ¼ CNR

T . The Lagrangian in Eq. (7) is a

1Note that one can relate the masses and couplings of different
field components to the corresponding parameters in the
SOð5Þ-invariant Lagrangian only at the scale where SOð5Þ
becomes effectively restored as the couplings will run differently.
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realization of the type I seesaw. It is always possible to
diagonalize MN ; i.e. there exists a matrix V such that

Mþ hφiα ¼ VDNVT; ð9Þ

with the heavy-neutrino mass matrix defined as ðDNÞij ≡
mNiδij.

III. VACUUM ALIGNMENT ANALYSIS

In the following, we assume a simplified structure of the
bare Majorana mass matrix M ¼ diagðM0;M0Þ, and con-
sider two specific textures for α: diagonal and almost
democratic,

α0

�
1 − ϵ 0

0 1

�
; α0

�
1 1 − ϵ

1 − ϵ 1

�
; ð10Þ

where ϵ ≪ 1 is introduced to provide small splitting of
masses in the diagonal case and to provide a nonzero mass
contribution for the lightest eigenstate in the democratic
case. In these two cases, the masses of the heavier
mass eigenstate are, respectively, M0 þ jα0jv cos θ and
M0 þ 2jα0jv cos θ, up to corrections of OðϵÞ. Next we
consider the constraints arising from the vacuum alignment
on the parameters M0 and α0. We will find that vacuum
alignment is mainly determined by α0, while the correct
value of the Higgs boson mass imposes an upper limit
for M0.
As shown in Ref. [11], in the absence of the RH-neutrino

sector, the EW gauge and top corrections prefer an
unbroken EW symmetry, i.e. the value θ ¼ 0. Switching
on the coupling αij between the RH neutrinos and the
singlet φ, the picture changes, implying a nontrivial align-
ment angle, θ. This is due to the different dependence on
the vacuum alignment angle of the RH neutrinos and the
SM sector, as can be seen from Eqs. (5) and (6).
To illustrate the main features of the vacuum structure in

the model under study, we first consider the simplest case
setting M0 ¼ 0 in Eq. (8) and ϵ ¼ 0 in Eq. (10). For the
democratic α-matrix, this corresponds to one heavy neu-
trino since there are two eigenvalues, one of which is zero.
For the diagonal α-matrix, this corresponds to two degen-
erate heavy neutrinos.
With the choice M0 ¼ 0, one can obtain simple analytic

expressions. Moreover, the result on the alignment angle θ
is essentially not affected by nonzero values of M0. This is
due to the fact that allowing nonzero M0 does not alter the
θ-dependence of the neutrino contribution to the one-loop
effective potential.
To arrive at a simple analytic expression for the non-

trivial solution for the vacuum alignment angle, we also
ignore the one-loop corrections from the scalar sector. In
the numerical analysis, we include all these corrections and
show that the results for the alignment do not essentially

change from the simplified results. In this simplified limit,
the effective potential up to the one-loop level can be
written as

Veff ¼ V0 þ VSM
1 þ Vν

1; ð11Þ

where following the notations of Ref. [11], the one-loop
contributions in the σ-background and in the MS scheme
can be written as

VSM
1 ¼ 3g4σ4sin4θ

64π2
·

�
ASM log

g2σ2sin2θ
μ20

þ BSM

�
;

Vν
1 ¼

jα0j4
32π2

σ4cos4θ ·

�
Aν log

jα0j2σ2cos2θ
μ20

þ Bν

�
ð12Þ

where we define

ASM ¼ 1

16

��
g2 þ g02

g2

�
2

þ 2

�
−
y4t
g4

;

BSM ¼ 1

16

�
8y4t
g4

�
3 − log

y4t
4g4

�
−
5

3
− log 16

þ
�
g2 þ g02

g2

�
2
�
log

g2 þ g02

4g2
−
5

6

��
;

Adiag
ν ¼ −2; Ademoc

ν ¼ −16;

Bdiag
ν ¼ 3; Bdemoc

ν ¼ −16
�
2 log 2 −

3

2

�
: ð13Þ

We choose the renormalization scale, μ0, such that the
tree-level vacuum expectation value, hσi ¼ v, is not
changed by the one-loop corrections and determine the
preferred value of the vacuum alignment by minimizing
the effective potential with respect to θ. This yields the
following nontrivial solution for θ:

tan2θ¼−
2Aνjα0j4
3ASMg4

¼ 512jα0j4
3ð16y4t −3g4−2g2g02−g04Þ : ð14Þ

We assume the SM-like RG running of the gauge and top-
Yukawa couplings up to the renormalization scale, μ0.
In this simplified limit, the MS mass of the Higgs can be

written as

ðmMS
h Þ2¼ 3g4v2w

16π2Aνð2Aνjα0j4−3ASMg4Þ

×

�
−3ASMg4ð2ASMAν−3ASMBνþ3AνBSMÞ

þ2Aνjα0j4ð2ASMAνþ3ASMBν−3AνBSMÞ

þ3ASMAνð3ASMg4þ2Aνjα0j4Þ log
�
−
3ASMg2

2Aνjα0j2
��

:

ð15Þ
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Once we have the expression for the MS mass, we
calculate the physical mass following Refs. [21,22].
Next, we turn to the full numerical analysis including the

one-loop corrections from the scalar sector and adding a
nonzero Majorana mass parameter, M0. The values for the
symmetry-breaking scale and the absolute value of the
Majorana-neutrino Yukawa coupling, jα0j, for a stable
minimum solution producing the correct Higgs mass are
given in Fig. 1. We find that increasing the hard Majorana
mass parameterM0, while requiring a stable minimum with
respect to the angle θ, constrains the minimum allowed
physical mass of the Higgs. We show this dependence
in Fig. 2.
The democratic or diagonal α-matrix implies two hier-

archically separated or two degenerate mass eigenvalues
and, therefore, corresponds respectively to one or two
heavy RH flavors. In Fig. 3 we show how the value of the

symmetry-breaking scale and the value of the Majorana
Yukawa coupling depend on these two possibilities for

the RH-neutrino mass textures. We have fixed mMS
h ¼

128 GeV to account for the correct physical Higgs mass.
We note that in both cases the value of the heaviest neutrino
turns out to be around 80 TeV.

IV. SEESAW MECHANISM
AND LEPTOGENESIS

Baryogenesis via leptogenesis [8] is a simple mechanism
to explain the BAU. The asymmetry is usually expressed in
terms of the net baryon-to-photon ratio [23]

ηB ¼ nB − nB̄
nγ

≃ ð6.08� 0.04Þ × 10−10: ð16Þ

The effect of nonperturbative (Bþ L)-violating spha-
leron processes can convert a lepton asymmetry into a
baryon asymmetry [7,8]. This scenario can be well imple-
mented within the seesaw (type I) mechanism [1–4]: in the
thermal leptogenesis scenario, after the inflation period, the
heavy RH neutrinos are produced by thermal scatterings,
and subsequently they can decay out-of-equilibrium, pro-
ducing both lepton and CP number violation, therefore
satisfying all of Sakharov’s conditions (see Ref. [24] for a
review).
In this section, we study the different possibilities to

produce the observed amount of the BAU within the model
presented in the previous section. We restrict ourselves to
the minimal RH-neutrino sector with two heavy flavors to
illustrate the main features of generating BAU. We note,
however, that extending the neutrino sector with a third RH
neutrino would allow for a DM candidate like the one
considered e.g. in Refs. [25–27]. Furthermore, the addition
of a third, lighter RH neutrino would not affect the vacuum
structure, since this is predominantly determined by the

FIG. 1. The values of the vacuum expectation value and the
(absolute value of the) Majorana Yukawa coupling, jα0j, as a
function of M0, when the correct Higgs mass and the vacuum
solution are imposed. Solid (dashed) lines correspond to the
democratic (diagonal) α-matrices in Eq. (10).

FIG. 2. The minimum allowed physical Higgs mass value as a
function of M0 when the vacuum solution is imposed. The figure
corresponds to the democratic texture in Eq. (10). The result of
the diagonal case is practically indistinguishable.

FIG. 3. The values for the symmetry-breaking scale as a
function of the Majorana neutrino Yukawa coupling for one
and two heavy RH neutrinos with identical couplings. The points
correspond to values at M0 ¼ 0 in Fig. 1.
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heaviest state. We leave, however, the study of DM
phenomenology to future work, and concentrate here on
details of how to generate the BAU.
Interestingly the two simple forms of α given in Eq. (10)

imply different possibilities for the production of the
baryon asymmetry in this model: the diagonal form will
allow for resonant leptogenesis, while the democratic one
will allow for the nonresonant standard scenario.
We express the neutrino Dirac-Yukawa couplings

through the Casas-Ibarra parametrization [28]. We notice
that this parametrization is valid also in presence of
additional contributions to the bare Majorana-neutrino
mass term. Indeed, in a generic basis for the heavy
Majorana-neutrino mass matrix, MN , we write

MD ¼ iU�
PMNS

ffiffiffiffiffiffi
Dν

p
Ω

ffiffiffiffiffiffiffi
DN

p
V†; ð17Þ

with the diagonal heavy- and light-neutrino mass matrices
defined respectively as ðDNÞij ≡mNiδij and ðDνÞij ≡
miδij, with mi < 1 eV and i ¼ 1, 2, 3.
The matrix UPMNS is the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix describing leptonic interactions, Ω
is a general 3 × 3 complex matrix that can be parametrized
as Ω ¼ Rðθ23ÞRðθ13ÞRðθ12Þ with θij complex, and V is
the matrix diagonalizing the RH Majorana mass matrix.
Similarly to the standard type I seesaw scenario, one can
go to the basis where the RH Majorana mass matrix is
diagonal; i.e. V is set to unity.
In the analysis that follows, we will restrict ourselves to

the minimal case of two heavy RH neutrinos,

MN ¼ diagðM1;M2Þ; ð18Þ

and parametrize two different regimes in terms of δ≡
ðM2 −M1Þ=M1:

(i) degenerate masses for δ ≪ 1 and
(ii) hierarchical spectrum for δ ≫ 1,

corresponding to our choice of a diagonal or a democratic
α-matrix, respectively. Producing the correct EW spectrum
and the Higgs mass fixes the mass of the heaviest RH
neutrino to be not heavier than about 80 TeV. Therefore, the
simplest hierarchical leptogenesis scenario is not possible
due to the Davidson-Ibarra bound [29] on the lightest
RH neutrino mass. A possible solution to circumvent this
bound and achieve a viable low-energy leptogenesis
scenario is to consider nearly degenerate RH-neutrino
masses, the so-called resonant leptogenesis [30,31].
We will consider this scenario in Sec. IVA.
An alternative low-energy scenario considered in

Ref. [32] is the case where the couplings between the
RH neutrinos and the singlet scalar provide an additional
source ofCP violation, and allow us to avoid the Davidson-
Ibarra bound. In this case both the bare Majorana mass
and the off-diagonal mass term, αij, i ≠ j, are needed to
produce a successful baryogenesis scenario. We consider a

minimal extension of the model to allow for this lepto-
genesis scenario in Sec. IV B.

A. Scenario I: Resonant leptogenesis

Here we consider the case where the two RH neutrinos
are quasidegenerate, and the oscillations between different
neutrino flavors provide a sufficient enhancement of CP
violation. This scenario is dubbed resonant leptogenesis
[30,31], and it has been extensively studied in connection to
the Dirac and/or Majorana CP-violating phases in the
PMNS neutrino mixing matrix [33]. For recent develop-
ments, see e.g. Refs. [34–36]. This scenario is particularly
interesting since it can directly relate the low-energy CP
violation in the lepton sector to the BAU.
To estimate the asymmetry, we follow Refs. [27,33,37],

and the corresponding details about the resonant lepto-
genesis scenario can be found in Appendix A 1. We
consider two heavy RH neutrinos with masses M1 and
M2 which, in the notation of Eq. (7), satisfy

δ≡ ðM2 −M1Þ=M1 ≫
ðY†YÞ12
16π2

: ð19Þ

We assume that the baryon-to-photon ratio at recombi-
nation satisfies ηB ≃ 0.01Nf

B−L, where Nf
B−L is explicitly

given in Eq. (A1). The proportionality constant contains the
sphaleron conversion factor, asph, which for SM particle
content is 28=79 ∼ 1=3, and the dilution due to the photon
production between the leptogenesis scale and the scale
of recombination, 1=f ¼ 86=2387 ∼ 1=30, assuming the
standard isentropic expansion [38].
The end result of the analysis for the normal hierarchy of

the active neutrinos is

δ≃ 0.8 × 10−7
�
fðmν;ΩÞ
fmax

��
M1

104 GeV

�
; ð20Þ

where fmax ≃ 0.005, and the function f, defined explicitly
in Appendix A 1, incorporates the dependence on the
light-neutrino masses, mν, and mixings via Ω. With RH
neutrinos at the scale M1 ∼ 80 TeV, the degeneracy of the
order of δ≲ 10−7 is expected for a viable leptogenesis
scenario.
Hence, this scenario requires considerable fine-tuning

in the mass spectrum, but nevertheless provides a viable
scenario to produce the observed BAU.

B. Scenario II: Hierarchical masses

Let us now consider leptogenesis in the case where the
RH neutrinos of the model have hierarchical masses, i.e.
δ ¼ ðM2 −M1Þ=M1 ≫ 1. Our model contains the same
degrees of freedom as the one considered in detail in
Ref. [32]. We therefore follow their prescription to imple-
ment the two-stage Boltzmann equations, taking the inter-
actions of the singlet scalar into account. The relevant
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processes for the Boltzmann equations are OðY2Þ, OðY4Þ,
and OðY2α2Þ corresponding to ΔL ¼ 1 decays, ΔL ¼ 2
scatterings, and ΔL ¼ 1 scatterings, respectively.
The additional CP violation due to the extra scalar is

generated by N2 → LH decays via N1N2φ interactions.
The lighter neutrino, N1, remains in equilibrium and
can mediate potentially dangerous washout processes.
However, if N1 is weakly enough coupled, then this
washout effect is suppressed, and does not disturb the
enhancement of the CP violation [32].
The coupled equations for the abundances of the two

neutrino flavours, Y1 and Y2, and the lepton asymmetry
YL−L̄ are

z1
∂YL−L̄

∂z1 ¼ ϵ1D1

�
Y1

Yeq
1

− 1

�
þ ϵ2D2

�
Y2

Yeq
2

− 1

�
− YL−L̄ðW1D1

þWS1 þW1D2
þWS2Þ; ð21Þ

z1
∂Y1

∂z1 ¼ −
�
Y1

Yeq
1

− 1

�
ðD1 þD21 þ S1Þ þ

�
Y2

Yeq
2

− 1

�
D21

ð22Þ

−
�

Y1Y2

Yeq
1 Y

eq
2

− 1

�
SN1N2→HH

−
�

Y2
1

Yeq2
1

− 1

�
SN1N1→HH; ð23Þ

z1
∂Y2

∂z1 ¼ −
�
Y2

Yeq
2

− 1

�
ðD2 þD21 þ S2Þ þ

�
Y1

Yeq
1

− 1

�
D21

ð24Þ

−
�

Y1Y2

Yeq
1 Y

eq
2

− 1

�
SN1N2→HH

−
�

Y2
2

Yeq2
2

− 1

�
SN2N2→HH; ð25Þ

where Yi ¼ ni=n
eq
γ , zi ≡Mi=T, z2 ¼ z1M2=M1, and

Yeq
i ≡ 3

8
z2i K2ðziÞ: ð26Þ

Here K2ðzÞ is the modified Bessel function of the second
kind. The CP violation is parametrized by

ϵi ≡ ΓðNi → LHÞ − ΓðNi → L̄H̄Þ
ΓðNi → LHÞ þ ΓðNi → L̄H̄Þ ; ð27Þ

and the functions denoted by Γ, D, S, and W correspond
to different decay, scattering, and washout processes. The
functions D, S, and W are defined in Appendix A 2, while
the decay rates, Γ, are defined in Appendix B 1.
We can now directly proceed to presenting the numerical

results we obtain for our model. The scalar sector has three

parameters, mΣ, λ and the angle θ, while the leptonic sector
depends on α0, ϵ, M0 and the Yukawa matrix Y.
The constraints on vacuum alignment and correct mass
for the Higgs boson leave M0, ϵ, Y, and λ as free
parameters. The Yukawa matrix, Y, enters through the
decay rates Γi ¼ ΓðNi → LHÞ þ ΓðNi → L̄H̄Þ and ϵ
through Γ21¼ΓðN2→N1φÞ given explicitly in Eq. (B2).
A convenient parametrization is given by considering the
equilibrium parameters Ki, i ¼ 1, 2, and K12,

Ki ≡ Γi

Hi
¼ ~mi

m⋆
; K21 ≡ Γ21

H2

; ð28Þ

and we define

~mi ≡ ðYY†Þiiv2w
2Mi

; m⋆ ≡ 4πv2w

ffiffiffiffiffiffiffiffiffiffiffiffi
8π3g�
90M2

P

s
; ð29Þ

and the Hubble rate is given by

HðTÞ≡ T2

ffiffiffiffiffiffiffiffiffiffiffiffi
8π3g�
90M2

P

s
; Hi ≡HðT ¼ MiÞ: ð30Þ

The value of the lepton asymmetry is rather sensitive to
the value of ϵ, and the parameter M0 is constrained to be
relatively small, M0 ≲ 3 TeV (see Fig. 1), from the Higgs
mass requirement. In Fig. 4 we show the resulting abun-
dances of the two neutrino species obtained from the
Boltzmann equations together with the corresponding
equilibrium densities, and the net lepton abundance. To
obtain the observed BAU, the net lepton abundance must be
ηL ≡ YL−L̄ ¼ 1.1 × 10−9. The cross sections of the relevant
processes are given in Appendix B. A benchmark set of
parameters (case 1) leading to the desired value is given by
ϵ ¼ 2.3 × 10−4, jα0j ¼ 1.23 × 10−3 and M0 ¼ 0.4 TeV.
The mass of the heavier neutrino is fixed by the vacuum

FIG. 4. The benchmark scenario (case 1) in Table I with mass
hierarchy M2 ¼ 79.5 TeV and M1 ¼ 8.6 TeV. Shown in the
figure are the abundances of the two neutrinos with solid blue and
red lines. The dashed lines show the corresponding equilibrium
densities. The purple curve shows the resulting net lepton
abundance normalized by a factor 10−8 so that the value
corresponding to the observed BAU is YL−L̄ ¼ 0.11 × 10−8

shown by the horizontal dotted-dashed line.
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alignment to 79.5 TeV, while with the above parameters the
mass of the lighter one becomes 8.6 TeV. The values of
the light-neutrino Yukawa couplings, Y, enter the analysis
via factors K1 ¼ 0.01, K2 ¼ 4.0. The scalar self-coupling
enters through the trilinear coupling βφðH†HÞ, β ¼
2.5 × 10−4 TeV. Finally, with these parameters the mass
of the singlet scalar is Mφ ¼ 3.0 TeV.
This result is clearly sensitive to the values of the

parameters involved in the analysis. We have checked that
changing the parameter M0 by a factor of two has hardly
any effect for the asymmetry. This is expected, as M0 does
not affect the amount of CP violation. On the other hand,
the effects of varying ϵ in Eq. (10) and the light-neutrino
mass parameters entering via K2 have big effects on the
resulting lepton asymmetry. For concreteness, we show in
Fig. 5 the results considering ϵ → 2ϵ (case 2) and K2 →
10K2 (case 3). In Table I we list the values of the
benchmark point (case 1) and the numerical values con-
sidered in cases 2 and 3. In the second case the final lepton
asymmetry is enhanced, while in the third case it is
suppressed. For comparison, the dashed purple line shows
our benchmark point of Fig. 4.
From the numerical results we see that the effect due

to changing ϵ can be compensated for by changing K2

accordingly. As a consequence, one may expect that a
sizable portion of parameter space exists, within which the
observed BAU can be produced by this model.

V. CONCLUSIONS

In this paper we have considered an extension of the
SM where the Higgs boson arises as a pseudo-Nambu-
Goldstone boson. As a concrete framework, we have
considered the SOð5Þ=SOð4Þ coset in terms of elementary
scalar fields. The scalar content of the theory is accom-
modated in the fundamental of SOð5Þ, and in addition to
the SM Higgs sector it contains a real singlet scalar field.
Furthermore, we added two heavy RH neutrinos to explain
the masses and mixings of the light neutrinos and also to
generate BAU via leptogenesis. The neutrino Majorana
masses are generated through the interplay between a bare
mass term and a mass term arising dynamically from the
vacuum expectation value of the scalar singlet.
We found that the vacuum structure and the mass of the

Higgs boson imply stringent bounds on the model param-
eters. In particular, we demonstrated that these lead to the
requirement that the heavier of the two RH neutrino mass
eigenvalues is ∼80 TeV.
This in turn has consequences for the generation of the

BAU via leptogenesis. As we have discussed, this depends
sensitively on the assumed mass patterns of the RH
neutrinos. We analyzed in detail the cases of degenerate
and hierarchical RH neutrinos, and identified examples of
viable values of the parameters.
One could extend the model by adding a third RH

neutrino as well. This would be a suitable candidate for
dark matter given a vanishing mixing of this state with the
two other RH neutrinos. The vacuum analysis would not be
affected by its presence as we have shown that the vacuum
alignment is determined only by the heaviest RH neutrino
states. Furthermore, our analysis of BAU would also
remain unaffected.
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(a)

(b)

FIG. 5. We show in these plots a comparison of the main results
presented in Fig. 4 (dashed purple curve) and cases 2 (upper
panel) and 3 (lower panel) presented in Table I. See the text for
more details.

TABLE I. We show the values of the model parameters, K2, α0,
ϵ, β, and the values of v andM1 for the cases 1–3 (see the text for
details). All masses and v are in TeV. The heavy-neutrino masses,
M1 and M2, are determined by the vacuum and the matrix α.
For all the cases we use the same following benchmark values
of the remaining parameters: K1 ¼ 0.01, M0 ¼ 0.4 TeV, and
Mφ ¼ 3.0 TeV. The mass of the heavier neutrino is the same,
M2 ¼ 79.5 TeV, for all the cases.

No. K2 104jα0j 104ϵ 104β 10−4v M1

1 4.0 12.3 2.3 2.5 3.5 8.6
2 4.0 13.5 4.6 2.5 3.5 16.7
3 40 12.3 2.3 2.5 3.5 8.6
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APPENDIX A: DEFINITIONS

1. Definitions for resonant leptogenesis

To estimate the B − L asymmetry, we follow
Refs. [27,33,37]. The final asymmetry is given as a sum
of the contributions from the two lightest RH neutrinos, and
three lepton flavors

Nf
B−L ¼

X
i;α

Ni
Δα

¼
X
i;α

ϵiακðK1α þ K2αÞ; ðA1Þ

where i ¼ 1, 2, α ¼ e, μ, τ, and we define

ϵiα ≡ −
Γiα − Γ̄iαP
αðΓiα þ Γ̄iαÞ

; Kiα ≡ Γiα þ Γ̄iα

HðT ¼ MiÞ
¼ jmDαij2

Mim⋆
;

ðA2Þ

and

κðxÞ≡ 2

xzBðxÞ
�
1 − exp

�
−
xzBðxÞ

2

��
;

where zBðxÞ≃ 2þ 4x0.13e−
2.5
x : ðA3Þ

In the degenerate limit, the final asymmetry can be
written as

Nf
B−L ≃ ϵ̄ðM1Þ

3δ2

�
1

K̄1

þ 1

K̄2

�X
α

κðK1α þ K2αÞðIα
12 þ J α

12Þ;

ðA4Þ

where

Iα
ij ≡

Im½m�
DαimDαjðm†

DmDÞij�
MiMjmatmm⋆

;

J α
ij ≡

Im½m�
DαimDαjðm†

DmDÞji�
MiMjmatmm⋆

Mi

Mj
; ðA5Þ

and

K̄i ≡
X
α

Kiα; i ¼ 1; 2: ðA6Þ

Assuming that the baryon-to-photon ratio at recombi-
nation satisfies ηB ≃ 0.01Nf

BL
, for normal hierarchy it is

found that

δ2 ≃ 0.01
ϵ̄ðM1Þ
ηB

fðmν;ΩÞ

≃ 0.8 × 10−5
�
fðmν;ΩÞ
fmax

��
M1

106 GeV

�
; ðA7Þ

where fmax ≃ 0.005, and the function f incorporates the
dependence on the light-neutrino masses and mixings:

fðmν;ΩÞ≡ 1

3

�
1

K̄1

þ 1

K̄2

�X
α

κðK1α þ K2αÞðIα
12 þ J α

12Þ:

ðA8Þ

2. Definitions for the hierarchical case

In this appendix we give the decay, scattering and
washout functions that appear in the Boltzmann equations,
Eq. (21). We follow the notations of Ref. [32]. We define

W1Di
≡ 1

2Yeq
L
Di where Di ≡ γeqDi

neqγ H
¼ Kiz2i Y

eq
i
K1ðziÞ
K2ðziÞ

;

ðA9Þ

D21 ≡ K21z22Y
eq
2

K1ðz2Þ
K2ðz2Þ

: ðA10Þ

The scattering function for the process ij → mn reads

Sij→mn ≡ γeqij→mn

neqγ H
¼ mi

gγHi

1

32π2
zi

×
Z

∞

wmin

dw
ffiffiffiffi
w

p
K1ð

ffiffiffiffi
w

p Þσ̂ij→mn

�
w
m2

i

z2i

�
; ðA11Þ

wmin ¼ maxfðmi þmjÞ2; ðmm þmnÞ2g: ðA12Þ

We define

WS1 ¼
1

Yeq
L
ð2SN1t→LQ þ SN1H→Lφ þ S

N1φ→
1
LH

Þ

þ Y1

Yeq
L Y

eq
1

ðSN1L→Qt þ SN1L→HφÞ;

WS2 ¼
1

Yeq
L
ð2SN2t→LQ þ SN2H→Lφ þ S

N2S→
1
LH

þ S
N2S→

2
LH

Þ

þ Y2

Yeq
L Y

eq
2

ðSN2L→Qt þ SN2L→HφÞ; ðA13Þ

and

S1 ¼ 2SN1L→Qt þ 4SN1Q→Lt þ 2SN1L→Hφ þ 4SN1H→Lφ

þ 2S
N1φ→

1
LH

S2 ¼ 2SN2L→Qt þ 4SN2Q→Lt þ 2SN2L→Hφ þ 4SN2H→Lφ

þ 2S
N2φ→

1
LH

þ 2S
N2φ→

2
LH

: ðA14Þ

APPENDIX B: CROSS SECTIONS

All the cross sections are summed over both the initial
and final state degrees of freedoms (gauge, spins, lepton
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flavor). In some of the formulas we have found slightly
different coefficients compared to [32].

1. Decay widths

Γi ≡ ΓðNi → LHÞ þ ΓðNi → LHÞ ¼ ðYY†ÞiiMi

8π
: ðB1Þ

Γji ≡ ΓðNj → NiφÞ

¼ jðα†αÞjij2Mj

16π

��
1þ Mi

Mj

�
2

−
M2

φ

M2
j

�

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

M2
i

M2
j
−
M2

φ

M2
j

�
2

− 4
M2

i

M2
j

M2
φ

M2
j

s
: ðB2Þ

2. Scattering cross sections

Below we tabulate the relevant cross sections
σðij → mnÞ. The reduced cross sections are obtained from
these as

σ̂ðij → mnÞ ¼ 1

s
δðs;m2

i ; m
2
jÞσðij → mnÞ; ðB3Þ

where

δða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc: ðB4Þ

a. NiL → Qt̄

σðNiL → Qt̄Þ ¼ NcðYY†Þiiy2t
8π

s
ðs −m2

hÞ2
: ðB5Þ

b. NiQ → Lt

σðNiQ → LtÞ ¼ NcðYY†Þiiy2t
8πðs −MiÞ2

�
s − 2M2

i þ 2m2
h

s −M2
i þm2

h

þM2
i − 2m2

h

s −M2
i

log
s −M2

i þm2
h

m2
h

�
: ðB6Þ

c. NiL → Hφ

σðNiL → HφÞ ¼ ðYY†Þiiβ2
8π

s −M2
φ

s3
: ðB7Þ

d. Niφ → LH via Nj

σðNiφ→
j
LHÞ ¼ ðYY†Þiijðαα†Þjij2

16πðs −M2
jÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δðs;M2

i ;M
2
φÞ

q
× ½ðsþM2

i −M2
φÞðsþM2

jÞ − 4MiMjs�:
ðB8Þ

e. NiNj → HH

σðNiNj → HHÞ ¼ jðαα†Þjij2β2
8π

s − ðMi þMjÞ2
ðs −M2

φÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δðs;M2

i ;M
2
jÞ

q :

ðB9Þ
f. NiH → Lφ

σðNiH→LφÞ¼ ðYY†Þiiβ2
16πðs−M2

i Þ2

×log
s2ðs−M2

i −M2
φÞ2þs2E2

i

M4
i M

4
φþs2E2

i
: ðB10Þ
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